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Abstract

Redundancy provides fault-tolerance. A service can run on multiple servers that

replicate each other, in order to provide service availability even in the case of

crashes. A way to implement such a replicated service is by using techniques

like state machine replication (SMR). SMR provides fault tolerance, while being

linearizable, that is, clients cannot distinguish the behaviour of the replicated

system to that of a single-site, unreplicated one. However, having a fully repli-

cated, linearizable system comes at a cost, namely, scalability—by scalability we

mean that adding servers will always increase the maximum system throughput,

at least for some workloads. Even with a careful setup and using optimizations

that avoid unnecessary redundant actions to be taken by servers, at some point

the throughput of a system replicated with SMR cannot be increased by addi-

tional servers; in fact, adding replicas may even degrade performance. A way to

achieve scalability is by partitioning the service state and then allowing partitions

to work independently. Having a partitioned, yet linearizable and reasonably

performant service is not trivial, and this is the topic of research addressed here.

To allow systems to scale, while at the same time ensuring linearizability, we

propose and implement the following ideas: (i) Scalable State Machine Repli-

cation (S-SMR), (ii) Optimistic Atomic Multicast (Opt-amcast), and (iii) Fast S-

SMR (Fast-SSMR). S-SMR is an execution model that allows the throughput of

the system to scale linearly with the number of servers without sacrificing con-

sistency. To provide faster responses for commands, we developed Opt-amcast,

which allows messages to be delivered twice: one delivery guarantees atomic

order (conservative delivery), while the other is fast, but not always guarantees

atomic order (optimistic delivery). The implementation of Opt-amcast that we

propose is called Ridge, a protocol that combines low latency with high through-

put. Fast-SSMR is an extension of S-SMR that uses the optimistic delivery of Opt-

amcast: while a command is atomically ordered, some precomputation can be

done based on its fast, optimistically ordered delivery, improving response time.
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Chapter 1

Introduction

We can only see a short distance ahead, but we

can see plenty there that needs to be done.

Alan Turing

In the last few years, we could witness the emergence of online services that

work at scales never seen before. Not only has the scale increased, but also the

demand of users for quality of the services provided. Such quality of service

can be understood in terms of availability and speed: users want services that

are always accessible and respond fast to requests. Naturally, as the number of

users increase, one can expect the quality of service to deteriorate if the system

implementing the service is not able to cope with higher scales, that is, if the

system is not scalable.

Both availability and scalability can be increased by means of replication. By

having multiple replicas running a service, if one of the replicas crashes, others

may be still accessible to users, so the service stays available, despite hardware

failure. Also, one could distribute the users among replicas, so that the work-

load would be divided among different machines, which would translate into

better scalability. However, when implementing replication, it makes sense to

keep replicas consistent; ideally, clients would not be able to tell that the sys-

tem is replicated at all based on the answers to requests. For many current on-

line services, the consistency requirements are very stringent. How to achieve

such a high level of consistency (i.e., linearizability [35]), while providing fault-

tolerance, scalability and fast replies, is the topic of this thesis.

1



2 1.1 Context and goal of the thesis

1.1 Context and goal of the thesis

Replication has been vastly studied in the last few decades [22], resulting in

numerous techniques that can be categorized according to the consistency level

ensured and their scalability. What has been found is that there is a trade-off

between consistency and performance, where performance means throughput,

latency and scalability. For instance, one could deploy a service using deferred-

update replication (DUR) [59], which has good scalability for requests that do

not change the state of the service. Although DUR provides a consistency level

lower than linearizability (namely, sequential consistency [8]), it is considered

good enough for many applications.

Since this thesis focuses on strongly consistent services, we target state ma-

chine replication (SMR) [46, 64], a well-known technique to provide fault tol-

erance without sacrificing linearizability. SMR regulates how client commands

are propagated to and executed by the replicas: every replica receives and exe-

cutes every command in the same order. Moreover, command execution must be

deterministic. SMR provides configurable availability, by setting the number of

replicas, but limited scalability: every replica added to the system must execute

all requests; hence, throughput does not increase as replicas join the system.

Distributed systems usually rely on state partitioning to scale (e.g., [19, 67]).

If requests can be served simultaneously by multiple partitions, then augment-

ing the number of partitions results in an overall increase in system throughput.

However, exploiting state partitioning in SMR is challenging: First, ensuring lin-

earizability efficiently when state is partitioned is tricky. To see why, note that the

system must be able to order multiple streams of commands simultaneously (e.g.,

one stream per partition) since totally ordering all commands cannot scale. But

with independent streams of ordered commands, how to handle commands that

address multiple partitions? Second, SMR hides from the service designer much

of the complexity involved in replication; all the service designer must provide

is a sequential implementation of each service command. If state is partitioned,

then some commands may need data from multiple partitions. Should the ser-

vice designer introduce additional logic in the implementation to handle such

cases? Should the service be limited to commands that access a single partition?

Throughout this thesis, we try to answer all these questions, while substantiating

the following claim:

It is possible to devise an approach that allows fault-tolerant systems to scale,

while providing strong consistency, that is, ensuring linearizability.



3 1.2 Research contributions

1.2 Research contributions

To prove the claim made above for this doctoral thesis, we propose a technique

called Scalable State Machine Replication (S-SMR). It solves the scalability

(or lack thereof) problem faced by traditional state machine replication through

partitioning the service state: a different group of servers is assigned to each

partition and each server executes only requests that concern its own partition.

Although totally ordering messages (i.e., with atomic broadcast [25]) allows

building strongly consistent systems, it does not scale. To allow partitions to

operate independently, thus providing scalability, client requests are only par-

tially ordered in S-SMR. This is done by means of atomic multicast [25]. We also

observe that atomic multicast alone does not guarantee linearizability and we

show how to address this issue.

One problem of atomic multicast is that it has inherently higher delay than

atomic broadcast [63], likely increasing response time when used for request

ordering. For this reason, we introduce Optimistic Atomic Multicast (Opt-

amcast), which is a class of atomic multicast protocols with lower latency than

previous ones, given a couple of reasonable assumptions. Opt-amcast proto-

cols deliver each message twice: there is a conservative delivery, which always

guarantees consistent order among messages, and an optimistic delivery, which

happens within one single communication step and is likely to match the con-

servative delivery order, although ordering mistakes are possible. We propose

an Opt-amcast protocol called Ridge, which combines high throughput with low

latency, by using a throughput-optimal dissemination technique.

Finally, we use the fast optimistic delivery of Opt-amcast to reduce response

time for commands. We do this by extending S-SMR with optimistic execu-

tion. The resulting model is called Fast Scalable State Machine Replication

(Fast-SSMR). It allows the execution of commands to be precomputed based on

their optimistic delivery. Fast-SSMR uses a dual state machine approach: there

is a conservative state machine and an optimistic state machine at each replica,

and they execute independently most of the time. This design does not require

services to be able to rollback execution: the conservative state is always con-

sistent, although likely behind the optimistic one, which may be incorrect; if the

optimistic state is incorrect, a repair is done by copying the conservative state

onto the optimistic one. The complexity of the technique lies in determining at

which point of the stream of optimistic commands the optimistic state machine

should resume its execution after a repair is completed.



4 1.3 Thesis outline

1.3 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we define the

system model considered in this work and present some definitions that are used

throughout the thesis. In Chapter 3, we briefly review traditional replication

techniques, including SMR. In Chapter 4, we introduce S-SMR, explaining how

it combines scalability with strong consistency. In Chapter 5, we introduce the

concept of optimistic atomic multicast and detail Ridge, an implementation of

optimistic atomic multicast that combines high throughput with low latency. In

Chapter 6, we show how Fast-SSMR extends S-SMR with optimistic execution,

reducing the response time of commands. Chapter 7 concludes this thesis and

points at possible research directions to continue this work.

F f



Chapter 2

System Model and Definitions

If people do not believe that mathematics is

simple, it is only because they do not realize

how complicated life is.

John von Neumann

In this chapter, we detail the system model and recall the notions of reliable

multicast, atomic multicast, consensus, and linearizability, our correctness crite-

rion.

2.1 Processes and communication

We assume a distributed system composed of a number of processes, divided into

an unbounded set of client processes C = {c1, c2, ...} and a bounded set of server

processes S = {s1, ..., sn}. The set of all process is Π = C ∪ S. Set S is divided

into k disjoint groups, S1, ...,Sk. Each process is either correct, if it never fails,

or faulty, otherwise. In any case, processes do not experience arbitrary behavior

(i.e., no Byzantine failures).

It is impossible to solve consensus in an asynchronous system [28], so we

consider a system that is partially synchronous [26]: it is initially asynchronous

and eventually becomes synchronous. The time when the system becomes syn-

chronous is called the Global Stabilization Time (GST) [26], and it is unknown to

the processes. Before GST, there are no bounds on the time it takes for messages

to be transmitted and actions to be executed; after GST, such bounds exist but

are unknown to the processes.

Processes communicate by message passing, using one-to-one or one-to-

many communication. One-to-one communication uses primitives send(p, m)

5



6 2.1 Processes and communication

and receive(m), where m is a message and p is the destination process. If sender

and receiver are correct, then every message sent is eventually received. One-to-

many communication is done with reliable multicast and atomic multicast.

2.1.1 Reliable multicast

We define reliable multicast here with the primitives reliable-multicast(γ, m) and

reliable-deliver(m), where m is a message and γ is the set of groups m is addressed

to (for brevity, we write “process in γ” meaning “process in some group g, where

g ∈ γ”). Reliable multicast guarantees the following properties:

– If a correct process reliable-multicasts m, then every correct process in γ

reliable-delivers m (validity).

– If a correct process reliable-delivers m, then every correct process in γ

reliable-delivers m (agreement).

– For any message m, every process p in γ reliable-delivers m at most once,

and only if some process has reliable-multicast m to γ previously (uniform

integrity).

2.1.2 Atomic multicast

Similar to reliable multicast, atomic multicast also allows messages to be sent

to a set γ of groups. It is defined by the primitives atomic-multicast(γ, m) and

atomic-deliver(m). Let relation ≺ be defined such that m ≺ m′ iff there is a

destination that delivers m before m′. Atomic multicast guarantees the following:

– If a correct process atomic-multicasts m, then every correct process in γ

atomic-delivers m (validity).

– If a process atomic-delivers m, then every correct process in γ

atomic-delivers m (uniform agreement).

– For any message m, every process p in γ atomic-delivers m at most once,

and only if some process has atomic-multicast m to γ previously (uniform

integrity).

– The order relation ≺ is acyclic. Also, for any two messages m and m′ and

any two processes p and q such that ∃{g, h} ⊆ γ ∩ γ′ : {p, q} ⊆ g ∪ h, if p

atomic-delivers m and q atomic-delivers m′, then either p atomic-delivers

m′ before m or q atomic-delivers m before m′ (atomic order).
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Atomic broadcast is a special case of atomic multicast in which there is a sin-

gle process group. Atomic multicast provides uniform agreement, whereas our

choice of reliable multicast ensures only non-uniform agreement. Uniform agree-

ment states that messages delivered by faulty destination processes are also de-

livered by all correct destination processes. Non-uniform agreement disregards

messages delivered only by faulty processes: for non-uniform agreement to hold,

it suffices that every message delivered by a correct destination is delivered by

all correct destinations. Although there are implementations of reliable multi-

cast that provide uniformity, those implementations require two communication

steps for messages to be delivered, while messages can be delivered within a

single communication step if uniformity is not enforced [62].

2.2 Consensus

An important part of this work relies on consensus to ensure that processes agree

upon which messages are delivered and in which order they are delivered. Thus,

we assume that consensus can be solved. Moreover, we distinguish multiple

instances of consensus executed with unique natural numbers. Consensus is de-

fined by the primitives propose(k, v) and decide(k, v), where k is a natural number

and v a value. Consensus satisfies the following properties in each instance k:

– If a process decides v, then v was previously proposed by some process

(uniform integrity).

– No two processes decide different values (uniform agreement).

– If one (or more) correct process proposes a value then eventually some

value is decided by all correct processes (termination).

2.3 Linearizability

A service may be defined based on a set of state variables V = {v1, ..., vm} that en-

code the service’s state and a set of commands (e.g., client requests) that change

the state variables and produce an output. Every command C may (i) read

state variables, (ii) perform some computation, (iii) modify state variables, and

(iv) produce a response for the command. An execution consists of a sequence of

application states alternating with command invocations and responses to such

commands.
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Linearizability is a consistency criterion defined based on the real-time prece-

dence of commands in the execution and a sequential specification. If the re-

sponse of command C1 occurs in execution E before the invocation of command

C2, then C1 precedes C2 in E in real-time, which we denote as “C1 <RT C2”. The

sequential specification of a service consists of a set of commands and a set of

legal sequences of commands, which define the behaviour of the service when it

is accessed sequentially. In a legal sequence of commands, every response to the

invocation of a command immediately follows its invocation, with no other invo-

cation or response in between them. For example, a sequence of operations for

a read-write variable v is legal if every read command returns the value of the

most recent write command that precedes the read, if there is one, or the initial

value otherwise. Finally, an execution E is linearizable if there is a permutation

π of the commands executed in E that (i) respects the service’s sequential spec-

ification and (ii) if C1 precedes C2 in real-time in E , then C1 appears before C2

in π [8].
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Figure 2.1. Linearizable vs. non-linearizable executions.

In Figure 2.1 (top), we show an example of an execution whose commands

can be reordered forming a legal sequence (i.e., it respects the sequential spec-

ification of variable x). However, there is no permutation that is legal and re-

spects the real-time precedence of commands at the same time: we can see that

C1 <RT C2 <RT C3, but a permutation that respected such real-time precedence

would not be legal. In Figure 2.1 (bottom), however, we cannot determine any
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real-time precedence between C2 and C3, because C3 was issued by client b before

client a received the reply for C2. For this reason, the execution at the bottom of

the figure is linearizable.

F f
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Chapter 3

Replication

A distributed system is one in which the failure

of a computer you didn’t even know existed

can render your own computer unusable.

Leslie Lamport

Replication in computer systems refers to managing a set of computers with

redundant data and/or services in a way to ensure that they are consistent with

each other, given a set of consistency criteria. It can be done to increase availabil-

ity, throughput, or both. By availability, we mean that the system continues to

work even in the presence of failures, as long as the number of failures is below

a given tolerable limit. By throughput, we mean the amount of work done by

the system per time unit, e.g., number of client requests handled per second.

There are many replication techniques [22], two of which have become

widely well-known: passive replication (primary-backup) and active replication

(state machine replication). The primary-backup replication approach [20] con-

sists of having a primary replica that is responsible for replying to client requests,

while having backup replicas that are able to take over the service if the primary

one crashes. State machine replication [46, 47, 64, 71], on the other hand, con-

sists of presenting the same set of client requests, in the same order, to all replicas;

the replicas will then independently execute all requests and reach the same state

after each request, and any of them may reply to the client. State machine repli-

cation thus has the following restriction: transitions in the state machine must be

deterministic, based only on the previous state and on the request being handled,

and all replicas must start at the same initial state. Since concurrency tends to be

a source of non-determinism, state machine replicas are usually single-threaded.

11
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Naturally, there are other replication schemes, such as chain replication [72,

73] and multi-primary replication, which is commonly used for transactional

databases that implement deferred-update replication [22, 23, 65, 67].

In the next few sections, we briefly describe the replication models mentioned

here. At the end of the chapter, we compare them based on their scalability and

consistency level provided.

3.1 Primary-backup

In primary-backup replication (PBR) [20], only one of the replicas is the primary

one; all the others are backup replicas. Clients send their requests to the primary

replica, which executes the request and forwards the results to the backups. To

ensure that any state change caused by the execution of the request was safely

persisted, the primary sends a reply only after being sure that a number of back-

ups have received the new state (e.g., by waiting for acknowledgements from

backup replicas, as in Figure 3.1).

An obvious consequence of this model is that read-only requests do not

require the primary to communicate with its backups, since there is no state

change; instead, the primary replies immediately to any request that does not

change the application state. Besides, it is possible to have non-deterministic ex-

ecution of the requests: any non-determinism is resolved by the primary, which

simply forwards the result to the backups. On the other hand, it is not possi-

ble for the clients to send any requests directly to a backup, not even read-only

requests, unless linearizability is not required. As all requests (to ensure lin-

earizability) have to be executed by the primary, adding replicas to the system

does not increase its maximum throughput, although it makes the system more

fault-tolerant.

If the primary fails, one of the backups takes over the role of primary and

proceeds with the execution. No inconsistency can be seen by the clients, since

no reply was sent before all backups had a copy of the state that preceded that

reply. If a replica is removed from the system (e.g., by crashing), the system must

be reconfigured so that the primary does not wait for its acknowledgement for

future request executions any more.
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backup
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new state

ACK

reply

ACK

execution

Figure 3.1. Primary-backup.

3.2 State machine replication

State-machine replication is a fundamental approach to implementing a fault-

tolerant service by replicating servers and coordinating the execution of client

commands against server replicas [46, 64]. The service is defined by a state ma-

chine, which consists of a set of state variables V = {v1, ..., vm} and a set of com-

mands that may read and modify state variables, and produce a response for the

command. SMR implements linearizability by regulating how client commands

are propagated to and executed by the replicas: (i) every non-faulty replica must

receive every command; and (ii) replicas must agree on the order of received and

executed commands. As long as every command is implemented by a determinis-

tic program, each replica will produce the same output upon executing the same

sequence of commands. State machine replication can be implemented with

atomic broadcast: if all commands are atomically broadcast to all servers, then

all correct servers deliver and execute the same sequence of commands, i.e., they

execute the commands in the same order. Moreover, if all servers have each a

full copy of the application state, they all start at the same initial state, and com-

mand execution is deterministic, then every server reaches the same state after

executing a given command and, thus, no two servers give different responses to

the same command (Figure 3.2).

A great advantage of this technique is that replica failures do not interfere

with the execution of commands by non-faulty replicas. As long as at least one

replica is up and running, the clients should notice no difference in the response

time to requests. On the other hand, requiring deterministic execution precludes

possibly faster ways of executing commands. For instance, multi-threaded exe-

cution is (usually) non-deterministic. Because of that, SMR usually requires the

execution of commands to be single-threaded.

There are some ways to optimize state machine replication. Read-only com-

mands do not change the state of the replicas and can thus be executed by only



14 3.3 Chain replication

atomic

broadcast

client

server replica

ri request

r2

r1

r4

r3

r1, r2, r3, r4

r1, r2, r3, r4

r1, r2, r3, r4

Figure 3.2. State machine replication.

one of them. Also, a single reply for each request is usually enough, so not every

replica has to send a reply to the client that issued a request. These optimiza-

tions allow the system implementing such technique to increase its maximum

throughput a bit more, but only up to a certain point, since all requests still need

to be atomically ordered.

3.3 Chain replication

In chain replication, server replicas form a chain in order to serialize the trans-

mission of client requests to all replicas. The replica at the head of the chain

is responsible for receiving each request, executing it and forwarding it to the

next replica in the chain, which effectively defines an order for all requests. Each

of the remaining replicas must execute the requests in the order in which they

were received from the previous replica. By doing this, this replication scheme

would fit into the definition of state machine replication, where each replica im-

plements a state machine, with the same restriction: request execution must be

deterministic.

Alternatively, the head replica forwards only the result of the request execu-

tion and the other replicas simply apply the same state change. In this case, it

would allow non-deterministic execution: whatever result was reached by the

head replica (deterministically or not) would be applied to the state of all other

replicas, ensuring consistency. This is not compatible with SMR any more, and

this variant of chain replication would be an instance of the primary-backup repli-

cation scheme.

In any case, the replica responsible for sending the replies is the last one, or
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tail replica (as in Figure 3.3). This ensures that no reply is sent for a request

before all replicas have applied the state change resulting from the request ex-

ecution. An immediate optimization is to send requests that do not change the

application state (e.g., read requests) to the tail replica only, which would reply

immediately. This optimization does not hurt linearizability, since (i) this kind

of requests would not change the state of the other replicas and (ii) all requests

have to pass through the tail replica, so it would be impossible for requests to be

handled in a non-linearizable way.

client

server replica

ri request r1, r2

r1

r2

r1, r2

replies

r1, r2

head tail

Figure 3.3. Chain replication.

The chain replication scheme proposed in [72] does not tolerate Byzantine

failures. One of the reasons for that is that any of the replicas in the chain may

forward incorrect information to its successors. For instance, the replica may

forward incorrect requests or correct requests in an incorrect order (if the chain

implements SMR), or incorrect states (if the chain implements PBR). Byzantine

chain replication, proposed in [73], aims at addressing this issue. It relies on

cryptographic signatures to create a shuttle message that is passed along and

extended by each replica on its way. The shuttle contains a certification by the

replica of: (i) the request (ii) the order assigned to that request and (iii) the

result for the request execution by that replica. This is made to ensure that all

replicas agree on what is the request currently being executed at each time and

what is its result. If a mismatch is detected by any replica, the chain halts and an

oracle is requested to fix the problem. In case of no replica reporting an error, at

the end of the chain, the tail replica adds its own part of the shuttle and sends

it back to the client, along with the reply to the request. Finally, the client may

check whether the received reply agrees with the result found by all replicas.
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3.4 Multi-primary replication

Both primary-backup and state machine replication schemes provide greater

availability as replicas are added to the system. However, throughput hardly

increases. In the case of the primary-backup scheme, all requests have to pass

through the one primary replica in the system, which eventually becomes a bot-

tleneck as its load is increased. State machine replication, on the other hand,

requires all requests to be executed by all replicas (at least all non-read-only re-

quests, even if optimizations are made), which also hits a performance limit at

some point.

In multi-primary (or deferred update [22]) replication, this issue is addressed

by allowing multiple replicas to act as primary at the same time. To do this,

a replica receives the request, executes it locally and then communicates with

all other replicas in the system to check if there are conflicting requests being

executed at the same time. If not, then the request execution is confirmed and

the state of the replicas is changed accordingly; otherwise, it is cancelled and the

replica state remains unchanged [57, 59, 65, 66, 67]. In either case, the client is

notified about the result (Figure 3.4).

To execute read-only requests (such as r1 in Figure 3.4), replicas do not need

to communicate with one another, since such requests do not invalidate the ex-

ecution of any other request being executed at the same time. However, this

allows non-linearizable executions to take place, so linearizability is not ensured

by a deferred update replication scheme: a client may retrieve an old value for a

data item after another client has already changed that value. Instead, the con-

sistency property ensured by deferred update replication is sequential consistency;

a system is sequentially consistent if there is a way to reorder the client requests

in a sequence that (i) respects the semantics of the commands, as defined in their

sequential specifications, and (ii) respects the ordering of commands as defined

by each client [8].

3.5 Combining linearizability and scalability

In this chapter, we have shown different ways of making services fault-tolerant

by means of replication. Different techniques provide different properties; in

particular, different levels of consistency. Some of them ensure linearizability,

while others allow throughput to scale, but none of them provides both at the



17 3.5 Combining linearizability and scalability

✁✂✄☎

�������

���	
�

��

�������

���	
�


���	

��

�	����������

	�	�����


✁✂✄☎

�������

���	
�

�������

���	
�


���	

�����


���	

�����

��

��

�����	��	
�


���	



Figure 3.4. Multi-primary (or deferred update) replication.

same time.1 Table 3.1 summarizes the kinds of replication techniques we have

listed. We added a row representing the contribution of this thesis, that is, a

scalable state machine replication technique (S-SMR), which combines lineariz-

ability with scalability.

Replication scheme Linearizable Scalable

Primary-backup Yes No

Multi-primary No Yes

State machine replication Yes No

Chain-replication Yes No

Scalable State Machine Replication Yes Yes

Table 3.1. Replication techniques and their properties.

In order to scale throughput, S-SMR employs state partitioning, so commands

can be sent only to some servers, that is, the servers responsible for replicating the

part of the state accessed by the command. Traditionally, SMR relies on totally

ordering commands, but in the case of S-SMR, this may become a bottleneck. To

1One notable exception is Google’s Spanner [24]. However, Spanner assumes clock synchrony

and works better with special clock hardware, e.g., atomic clocks.
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solve this problem, S-SMR does not totally order messages, but uses atomic mul-

ticast instead, which avoids enforcing a precedence relation between messages

that do not share destinations. This allows the ordering layer (i.e., the atomic

multicast protocol) to be itself also scalable.

Atomic multicast is scalable and is fundamental to S-SMR. However, it is in-

herently slower than atomic broadcast [63]. For this reason, we decided to create

optimistic atomic multicast, a class of protocols that reduces message ordering

time by allowing probabilistic ordering. We propose Ridge, our optimistic atomic

multicast protocol, which improves previous techniques and uses a throughput-

optimal message dissemination technique that does not penalize latency as much

as other throughput-optimal techniques, while providing optimistic deliveries.

F f



Chapter 4

Scalable State Machine Replication

When we had no computers, we had no programming

problem either. When we had a few computers, we had a

mild programming problem. Confronted with machines

a million times as powerful, we are faced with a gigantic

programming problem.

Edsger Dijkstra

This chapter presents Scalable State Machine Replication (S-SMR), an ap-

proach that achieves scalable throughput and strong consistency (i.e., lineariz-

ability) without constraining service commands or adding additional complexity

to their implementation. S-SMR partitions the service state and relies on an

atomic multicast primitive to consistently order commands within and across

partitions. We show here that simply ordering commands consistently across

partitions is not enough to ensure strong consistency in state machine replication

when the state is partitioned. To solve this problem, S-SMR implements execution

atomicity, a property that prevents command interleaves that violate strong con-

sistency. To assess the performance of S-SMR, we developed Eyrie, a Java library

that allows developers to implement partitioned-state services transparently, ab-

stracting partitioning details, and Volery, a service that implements Zookeeper’s

API [36]. All communication between partitions is handled internally by Eyrie,

including remote object transfers. In the experiments we conducted with Volery,

throughput scaled with the number of partitions, in some cases linearly. In some

deployments, Volery reached over 250 thousand commands per second, largely

outperforming Zookeeper, which served 45 thousand commands per second un-

der the same workload.

19
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The following contributions are presented in this chapter: (1) It introduces

S-SMR and explains its algorithm in detail. (2) It presents Eyrie, a library to

simplify the design of services based on S-SMR. (3) It describes Volery to demon-

strate how Eyrie can be used to implement a service that provides Zookeeper’s

API. (4) It presents a detailed experimental evaluation of Volery and compares

its performance to Zookeeper.

The remainder of this chapter is organized as follows. Section 4.1 gives an

overview of S-SMR. Section 4.2 explains the algorithm in detail. Section 4.3

proposes some performance optimizations. Section 4.4 argues about the cor-

rectness of the algorithm. Section 4.5 details the implementation of Eyrie and

Volery. Section 4.6 reports on the performance of the Volery service. Section 4.7

surveys related work and Section 4.8 concludes the chapter.

4.1 General idea

S-SMR divides the application state V (i.e., state variables) into k partitions

P1, ...,Pk. Each variable v in V is assigned to at least one partition, that is,

∪k
i=1

Pi = V , and we define part(v) as the set of partitions that contain v. Each

partition Pi is replicated by servers in group Si. For brevity, we say that server

s belongs to Pi with the meaning that s ∈ Si, and say that client c multicasts

command C to partition Pi meaning that c multicasts C to group Si. Finally, if

server s is in (the server group that replicates) partition P , we say that P is the

local partition with respect to s, while every other partition is a remote partition

to s.

To issue a command C to be executed, a client multicasts C to all partitions

that hold a variable read or updated by C , denoted by part(C). Consequently,

the client must be able to determine the partitions that may be accessed by C .

Note that this assumption does not imply that the client must know all variables

accessed by C , nor even the exact set of partitions. If the client cannot determine

a priori which partitions will be accessed by C , it must define a superset of these

partitions, in the worst case assuming all partitions. For performance, however,

clients must strive to provide a close approximation to the command’s actually

accessed partitions. We assume the existence of an oracle that tells the client

which partitions should receive each command.

Upon delivering command C , if server s does not contain all variables read

by C , s must communicate with servers in remote partitions to execute C . Essen-

tially, s must retrieve every variable v read in C from a server that stores v (i.e.,

a server in a partition in part(v)). Moreover, s must retrieve a value of v that is
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consistent with the order in which C is executed, as we explain next.

In more detail, let op be an operation in the execution of command C . We

distinguish between three operation types: read(v), an operation that reads the

value of a state variable v, write(v, val), an operation that updates v with value

val, and an operation that performs a deterministic computation.

Server s in partition Pi executes op as follows.

i) op is a read(v) operation.

If Pi ∈ part(v), then s retrieves the value of v and sends it to every partition

P j that delivers C and does not hold v. If Pi 6∈ part(v), then s waits for v

to be received from a server in a partition in part(v).

ii) op is a write(v, val) operation.

If Pi ∈ part(v), s updates the value of v with val; if Pi 6∈ part(v), s executes

op, creating a local copy of v, which will be up-to-date at least until the

end of C ’s execution (caching is explained in Section 4.3.1).

iii) op is a computation operation.

In this case, s executes op.

As we now show, atomically ordering commands and following the proce-

dure above is still not enough to ensure linearizability. Consider the execution

depicted in Figure 4.1 (a), where state variables x and y have initial value of 10.

Command Cx reads the value of x , Cy reads the value of y , and Cx y sets x and y

to value 20. Consequently, Cx is multicast to partition Px , Cy is multicast to Py ,

and Cx y is multicast to both Px and Py . Servers in Py deliver Cy and then Cx y ,

while servers in Px deliver Cx y and then Cx , which is consistent with atomic or-

der. Based on those deliveries, the reply to Cx is 20, the reply to Cy is 10, and the

only possible legal permutation for the commands in this execution is: Cy , Cx y ,

then Cx . However, this violates the real-time precedence of the commands, since

Cx precedes Cy in real-time (Cy is invoked after the reply for Cx is received).

Intuitively, the problem with the execution in Figure 4.1 (a) is that commands

Cx and Cy execute “in between” the execution of Cx y at partitions Px and Py . In

S-SMR, we avoid such cases by ensuring that the execution of every command

is atomic. Command C is execution atomic if, for each server s that executes C ,

there exists at least one server r in every other partition in part(C) such that the

execution of C at s finishes only after r starts executing C . More precisely, let

start(C , p) and end(C , p) be, respectively, the time when server p starts executing

command C and the time when p finishes C ’s execution. Execution atomicity

ensures that, for every server s in partition P that executes C , there is a server r
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Figure 4.1. Atomic multicast and S-SMR. (To simplify the figure, we show a

single replica per partition.)

in every P
′ ∈ part(C) such that start(C , r)< end(C , s). Intuitively, this condition

guarantees that the execution of C at s and r overlap in time.

Replicas can ensure execution atomicity by coordinating the execution of

commands. After starting the execution of command C , servers in each partition

send a signal(C) message to servers in the other partitions in part(C). Before

finishing the execution of C and sending a reply to the client that issued C , each

server must receive a signal(C) message from at least one server in every other

partition that executes C . Because of this scheme, each partition is required to

have at least f +1 correct servers for execution, where f is the maximum number

of tolerated failures per partition; if all servers in a partition fail, service progress

is not guaranteed. We separate execution from ordering [75]; the number or

required correct ordering processes depends on the ordering protocol.

Figure 4.1 (b) shows an execution of S-SMR. In the example, servers in Px

wait for a signal from Py , therefore ensuring that the servers of both partitions

are synchronized during the execution of Cx y . Note that the outcome of each

command execution is the same as in case (a), but the execution of Cx , Cy and

Cx y , as seen by clients, now overlap in time with one another. Hence, there is no

real-time precedence among them and linearizability is not violated.

4.2 Detailed algorithm

The basic operation of S-SMR is shown in Algorithm 1. To submit a command

C , the client queries an oracle to get set C .dests (line 5), which is a superset of
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Algorithm 1 Scalable State Machine Replication (S-SMR)

1: Initialization:

2: ∀C ∈K : rcvd_signals(C)← ;

3: ∀C ∈K : rcvd_variables(C)← ;

4: Command C is submitted by a client as follows:

5: C .dests← oracle(C) {oracle(C) returns a superset of part(C)}

6: atomic-multicast(C .dests, C)

7: wait for reply from one server

8: Command C is executed by a server in partition P as follows:

9: upon atomic-deliver(C)

10: others← C .dests \ {P}

11: reliable-multicast(others, signal(C))

12: for each operation op in C do

13: if op is read(v) then

14: if v ∈ P then

15: reliable-multicast(others, 〈v, C .id〉)

16: else

17: wait until v ∈ rcvd_variables(C)

18: update v with the value in rcvd_variables(C)

19: execute op

20: wait until rcvd_signals(C) = others

21: send reply to client

22: upon reliable-deliver(signal(C)) from partition P
′

23: rcvd_signals(C)← rcvd_signals(C)∪ {P ′}

24: upon reliable-deliver(〈v, C .id〉)

25: rcvd_variables(C)← rcvd_variables(C)∪ {v}

Algorithm variables:

K: the set of all possible commands

C .id: unique identifier of command C

oracle(C): function that returns a superset of part(C)

C .dests: set of partitions to which C is multicast

others: set of partitions waiting for signals and variables from P; also, P waits for

signals from all such partitions

signal(C): a synchronization message that allows S-SMR to ensure C to be execution

atomic

rcvd_signals(C): a set containing all partitions that already signaled P regarding the

execution of C

rcvd_variables(C): a set containing all variables that must be received from other

partitions in order to execute C
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part(C) used by the client as destination set for C (line 6).

Upon delivering C (line 9), server s in partition P starts executing C and

multicasts signal(C) to others, which is the set containing all other partitions in-

volved in C (lines 10 and 11). It might happen that s receives signals concerning

C from other partitions even before s started executing C . For this reason, s must

buffer signals and check if there are signals buffered already when starting the

execution of C . For simplicity, Algorithm 1 initializes such buffers as ; for all

possible commands. In practice, buffers for C are created when the first message

concerning C is delivered.

After multicasting signals, server s proceeds to the execution of C , which is

a sequence of operations that might read or write variables in V , or perform a

deterministic computation. The main concern is with operations that read vari-

ables, as the values of those variables may have to be sent to (or received from)

remote partitions. All other operations can be executed locally at s. If the opera-

tion reads variable v and v belongs to P , s’s partition, then s multicasts the value

of v to the other partitions that delivered C (line 15). The command identifier

C .id is sent along with v to make sure that the other partitions will use the appro-

priate value of v during C ’s execution. If v belongs to some other partition P
′,

s waits until an up-to-date value of v has been delivered (line 17). Every other

operation is executed with no interaction with other partitions (line 19).

After executing all operations of C , s waits until a signal from every other

partition has been received (line 20) and, only then, sends the reply back to the

client (line 21). This ensures that C will be execution atomic.

4.3 Performance optimizations

Algorithm 1 can be optimized in many ways. We briefly describe here some of

them and present caching in more detail.

– Even though all replicas in all partitions in part(C) execute C , a reply from

a single replica (from a single partition) suffices for the client to finish the

command.

– Servers can keep a cache of variables that belong to remote partitions;

when multi-partition commands are executed and remote variables are re-

ceived, this cache is verified and possibly updated.

– It is not necessary to exchange each variable more than once per command

since any change during the execution of the command will be determin-
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istic and thus any changes to the variable can be applied to the cached

value.

– Server s does not need to wait for the execution of command C to reach a

read(v) operation to only then multicast v to the other partitions in part(C).

If s knows that v will be read by C , s can send v’s value to the other parti-

tions as soon as s starts executing C .

4.3.1 Caching

When executing multi-partition commands, servers of different partitions may

have to exchange state variables. In order to reduce the amount of data ex-

changed and the time required to execute this kind of commands, each server

can keep a cache of variables that belong to remote partitions. When a server

executes a command that reads a variable from a remote partition, the server

stores the read value in a cache and uses the cached value in future read opera-

tions. If a command updates a remote variable, the server updates (or creates)

the cached value. The value of a variable stored in a server’s cache stays up-

to-date until (i) the server discards that variable’s entry from the cache due to

memory limitations, or (ii) some command that was not multicast to that server

changes the value of the variable. In S-SMR, servers of any partition P know

what servers of other partitions may be keeping cached values of variables from

P . They even know if such cached values are up-to-date (provided that they

were not discarded to free memory). Based on this information, servers can

proactively send messages to other servers to let them know if the values they

cache are still valid.

For instance, say there are two partitions P and Px , and there is a variable

x in Px . Every command that accesses x is multicast to Px , and each command

contains the list of partitions it was multicast to. Servers in Px can use this

information to keep track of what other servers received commands that access

x . When a command C that reads or updates x is multicast to both P and Px ,

servers in P update their cache with the value of x , which will stay valid until

some other command changes x ’s value. Servers in Px know that servers in P

also delivered C , since P ∈ C .dests, and that they are now aware of the newest

value of x . Say a command Cr , which reads x , is also multicast to Px and P , and

it is the first command that accesses x after C . Servers of Px know that servers

in P executed command C , and the value of x has not changed ever since. Thus,

they know that the cached value of x in those servers is still valid. So, as soon as

Cr is delivered, the servers of Px send a message to servers in P notifying that
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the value they hold of x is up-to-date. Naturally, some servers of P may have

discarded the cache entry for x , so they will have to send a request to Px servers

for x ’s newest value. If x was changed by a different command Cw that was

executed after C , but before Cr (i.e., C ≺ Cw ≺ Cr), the servers of Px will know

that the value cached in the servers of P is stale and send the newest value. How

servers use cached variables distinguishes conservative from speculative caching,

which we describe next.

Conservative caching: Once server s has a cached value of x , it waits for a

cache-validation message from a server in Px before executing a read(x) opera-

tion. The cache validation message contains of tuples 〈var, val〉, where var is a

state variable that belongs to Px and whose cache in P needs to be validated.

If servers in Px determined that the cache is stale, val contains the new value

of var; otherwise, val contains ⊥, telling s that its cached value is up to date. If

s had a valid cache of x (therefore receiving ⊥ as its value), but discarded x ’s

cached copy, s sends a request for x to Px .

Speculative caching: It is possible to reduce execution time by speculatively as-

suming that cached values are up-to-date. Speculative caching requires servers

to be able to rollback the execution of commands, in case the speculative as-

sumption fails to hold. Some applications (e.g., databases) allow rolling back

the execution of a command, as long as no reply has been sent to the client for

the command yet.

The difference between speculative caching and conservative caching is that

in the former servers that keep cached values do not wait for a cache-validation

message before reading a cached entry; instead, a read(x) operation returns the

cached value immediately. If after reading some variable x from the cache, dur-

ing the execution of command C , server s receives a message from a server in Px

that invalidates the cached value, s rolls back the execution to some point before

the read(x) operation and resumes the command execution, now with the up-to-

date value of x . Either with conservative or speculate caching, a server can only

send the reply for a command after every variable read from the cache has been

validated.

4.4 Correctness

In this section, we argue that, if every command in execution E of S-SMR is

delivered by atomic multicast and is execution atomic, then E is linearizable.

Execution atomicity is ensured by the signaling mechanism, described in Sec-

tion 4.1.
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Proposition 1. S-SMR ensures linearizability.

Proof. In S-SMR, servers execute commands in the order determined by atomic

multicast. As defined in Chapter 2, we denote the order given by atomic multicast

by relation ≺. Given any two messages ma and mb, “ma ≺ mb” means that both

messages are delivered by the same processes and ma is delivered before mb,

or there are messages m1, . . . , mn such that ma ≺ m1, m1 ≺ m2, and so on, and

mn ≺ mb, which can be written as ma ≺ m1 ≺ · · · ≺ mn ≺ mb.

We prove here that S-SMR does not violate linearizability: if a command x

precedes a command y in real time, i.e., the reply to x is received before y

is issued by a client, then it is impossible in S-SMR for y to precede x in the

execution. Suppose, by means of contradiction, that x finishes (i.e., its reply is

received) before y starts (i.e., a client issues y), but y ≺ x in the execution.

There are two possibilities to be considered: (i) x and y are delivered by the

same process p, or (ii) no process delivers both x and y .

In case (i), at least one process p delivers both x and y . As x finishes before

y starts, then p delivers x , then y . From the properties of atomic multicast, and

since each partition is mapped to a multicast group, no process delivers y , then

x . Therefore, we reach a contradiction in this case.

In case (ii), if there were no other commands in E , then the execution of x and

y could be done in any order, which would contradict the supposition that y ≺ x .

Therefore, there are commands z1, ..., zn with atomic order y ≺ z1 ≺ · · · ≺ zn ≺ x ,

where some process p0 (of partition P0) delivers y , then z1; some process p1 ∈ P1

delivers z1, then z2, and so on: process pi ∈ Pi delivers zi, then zi+1, where

1≤ i < n. Finally, process pn ∈ Pn delivers zn, then x .

Let z0 = y and let atomic(i) be the following predicate: “For every process

pi ∈ Pi, pi finishes executing zi only after some p0 ∈ P0 started executing z0.”

We now claim that atomic(i) is true for every i, where 0 ≤ i ≤ n. We prove our

claim by induction:

• Basis (i = 0): atomic(0) is obviously true, as p0 can only finish executing

z0 after starting to execute z0.

• Induction step: If atomic(i) is true, then atomic(i + 1) is also true.

Proof: Command zi+1 is multicast to both Pi and Pi+1. Since zi+1 is exe-

cution atomic, before any pi+1 ∈ Pi+1 finishes executing zi+1, some pi ∈ Pi

starts executing zi+1. Since zi ≺ zi+1, every pi ∈ Pi starts executing zi+1

only after finishing the execution of zi. As atomic(i) is true, this will only

happen after some p0 ∈ P0 started executing z0.



28 4.5 Implementation

As zn ≺ x , for every pn ∈ Pn, pn executes command x only after the execution

of zn at pn finishes. From the above claim, this happens only after some p0 ∈ P0

starts executing y . This means that y (z0) was issued by a client before any client

received a response for x , which contradicts the assumption that x precedes y

in real-time.

4.5 Implementation

In this section, we describe Eyrie, a library that implements S-SMR, and Volery, a

service that provides Zookeeper’s API. Both Eyrie and Volery were implemented

in Java.

4.5.1 Eyrie

One of the main goals of Eyrie1 is to make the implementation of services

based on S-SMR as easy as possible. To use Eyrie, the developer (i.e., ser-

vice designer) must extend two classes, PRObject and StateMachine. Class

PartitioningOracle has a default implementation, but the developer is encour-

aged to override its methods.

The PRObject class

Eyrie supports partial replication (i.e., some objects may be replicated in some

partitions, not all). Therefore, when executing a command, a replica might not

have local access to some of the objects involved in the execution of the com-

mand. The developer informs to Eyrie which object classes are replicated by

extending the PRObject class. Such class represents any kind of data that is part

of the service state. Each instance of PRObject may be stored locally or remotely,

but the application code is agnostic to that. All calls to methods of such objects

are intercepted by Eyrie, transparently to the developer.

Eyrie uses AspectJ2 to intercept method calls for all subclasses of PRObject.

Internally, the aspect related to such method invocations communicates with the

StateMachine instance in order to (i) determine if the object is stored locally

or remotely and (ii) ensure that the object is up-to-date when each command is

executed. It is worth noting that methods of the subclasses of PRObject must

be intercepted by the aspect, be they field accesses or not: say there is an object

1https://bitbucket.org/kdubezerra/eyrie
2http://eclipse.org/aspectj
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user, of class User, which extends PRObject. When calling a method such as

user.getField() to access a field of user, that method should return the most

up-to-date value of the field. This may require the caller to fetch such recent

value from a remote server. However, this is done only to subclasses of PRObject:

methods of class PRObject itself are not intercepted.

Each replica has a local copy of all PRObject objects. When a remote ob-

ject is received, replicas in the local partition PL must update their local copy

of the object with the received (up-to-date) value. For this purpose, the de-

veloper must provide implementations for the methods getDiff(Partition p)

and updateFromDiff(Object diff). The former is used by the remote partition

PR, which owns the object, to calculate a delta between the old value currently

held by PL and the newest value, held by PR. Such implementations may be as

simple as returning the whole object. However, it also allows the developer to

implement caching mechanisms. Since getDiff takes a partition as parameter,

the developer may keep track of what was the last value received by PL, and

then return a (possibly small) diff, instead of the whole object. The diff is then

applied to the object with the method updateFromDiff, which is also provided

by the application developer.

To avoid unnecessary communication, the developer may optionally mark

some methods of their PRObject subclasses as local, by annotating them with

@LocalMethodCall. Calls to such methods are not intercepted by the library,

sparing communication when the developer sees fit. Although the command that

contains a call to such a method still has to be delivered and executed by all par-

titions that hold objects accessed by the command, that particular local method

does not require an up-to-date object. For example, say a command C accesses

objects O1 and O2, respectively in partitions P1 and P2. C completely overwrites

objects O1 and O2, by calling O1.clear() and O2.clear(). Although C has to be

delivered by both partitions to ensure linearizability, a write method that com-

pletely overwrites an object, regardless of its previous state, does not need an up-

to-date version of the object before executing. Because of this, method clear()

can be safely annotated as local, avoiding unnecessary communication between

P1 and P2.

The StateMachine class

Linearizability is ensured by the StateMachine class: it executes commands one

by one, in the order defined by atomic multicast, and implements the exchange of

signals as described in Section 4.1. This class is abstract and must be extended by

the application server class. To execute commands, the developer must provide
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an implementation for the method executeCommand(Command c). The code for

such a method is agnostic to the existence of partitions. In other words, it can

be exactly the same as the code used to execute commands with classical state

machine replication (i.e., full replication). Eyrie is responsible for handling all

communication between partitions transparently. To start the server, method

runStateMachine() is called.

The PartitioningOracle class

Clients multicast each command directly to the partitions affected by the com-

mand, i.e., those that contain objects accessed by the command. Although Eyrie

encapsulates most details regarding partitioning, the developer must provide an

oracle that tells, for each command, which partitions are affected by the com-

mand. The set of partitions returned by the oracle needs to contain all partitions

involved, but does not need to be minimal. In fact, the default implementation

of the oracle simply returns all partitions for every command, which although

correct, is not efficient. For best performance, the partition set returned by the

oracle should be as small as possible, which requires the developer to extend

PartitioningOracle and override its methods.

Method getDestinations(Command c) is used by the clients to ask the ora-

cle which partitions should receive each command. It returns a list of Partition

objects and can be overridden with an implementation provided by the ap-

plication developer. Such an implementation must return a list containing

all partitions involved in the execution of c. Another important method of

the PartitioningOracle class is the getLocalObjects(Command c) method,

which allows servers to send objects as soon as the execution of the command

that accesses these objects starts. This method returns a list of local objects (i.e.,

objects in the server’s partition) that will be accessed by c. It may not be possible

to determine in advance which objects are accessed by every command, but the

list of accessed objects does not need to be complete. Any kind of early knowl-

edge about which objects need to be updated in other partitions helps decrease

execution time. The default implementation of this method returns an empty

list, which means that objects are exchanged among partitions as their methods

are invoked during execution.

Other classes

In the following, we briefly describe a few other classes provided by Eyrie.

The Partition class has two relevant methods, getId() and
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getPartitionList(), which return respectively the partition’s unique

identifier and the list of all partitions in the system. When extending

PartitioningOracle, the developer can use this information to map com-

mands to partitions.

To issue a command (i.e., a request), a client must create a Command object

containing the command’s parameters. The Command object is then multicast to

the partitions determined by the partitioning oracle at the client. The Command

class offers methods addItems(Objects... objs), getNext(), hasNext() and

so on. How the server will process such parameters is application-dependent and

determined by how the method executeCommand of the StateMachine class is

implemented.

Eyrie uses atomic multicast to disseminate commands from clients and handle

communication between partitions. This is done by configuring a LocalReplica

object, which is created by parsing a configuration file provided by the devel-

oper, in both clients and servers. Eyrie is built on top of a multicast adaptor

library,3 being able to easily switch between different implementations of atomic

multicast.

4.5.2 Volery

We implemented the Volery service on top of Eyrie, providing an API similar to

that of Zookeeper [36]. Zookeeper implements a hierarchical key-value store,

where each value is stored in a znode, and each znode can have other znodes

as children. The abstraction implemented by Zookeeper resembles a file system,

where each path is a unique string (i.e., a key) that identifies a znode in the

hierarchy. We implemented the following Volery client API:

– create(String path, byte[] data): creates a znode with the given

path, holding data as content, if there was no znode with that path previ-

ously and there is a znode with the parent path.

– delete(String path): deletes the znode that has the given path, if there

is one and it has no children.

– exists(String path): returns True if there exists a znode with the given

path, or False, otherwise.

– getChildren(String path): returns the list of znodes that have path as

their parent.

3https://bitbucket.org/kdubezerra/libmcad
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– getData(String path): returns the data held by the znode identified by

path.

– setData(String path, byte[] data): sets the contents of the znode

identified by path to data.

Zookeeper ensures a mix of linearizability (for write commands) and ses-

sion consistency (for read commands). Every reply to a read command (e.g.,

getData) issued by a client is consistent with all write commands (e.g., create

or setData) issued previously by the same client. With this consistency model

and with workloads mainly composed of read-only commands, Zookeeper is able

to scale throughput with the number of replicas. Volery ensures linearizability

for every command. In order to scale, Volery makes use of partitioning, done

with Eyrie.

Distributing Volery’s znodes among partitions was done based on each zn-

ode’s path: Volery’s partitioning oracle uses a hash function h(path) that returns

the id of the partition responsible for holding the znode at path. Each command

getData, setData, exists and getChildren is multicast to a single partition,

thus being called a local command. Commands create and delete are multi-

cast to all partitions and are called global commands; they are multicast to all

partitions to guarantee that every (correct) replica has a full copy of the znodes

hierarchy, even though only the partition that owns each given znode is guaran-

teed to have its contents up-to-date.

4.6 Performance evaluation

In this section, we assess the performance of S-SMR, in terms of throughput scal-

ability and latency. For this purpose, we conducted experiments with Volery. We

evaluated S-SMR’s throughput scalability by deploying the system with differ-

ent numbers of partitions, message sizes, both with on-disk storage and with

in-memory storage. Our goal was also to find the limits of S-SMR, showing the

performance of the technique as the percentage of global commands in the work-

load increases. We compare Volery results with Zookeeper and ZKsmr, which is

an implementation of Zookeeper with traditional SMR.

4.6.1 Environment setup and configuration parameters

We ran all our experiments on a cluster that had two types of nodes: (a)

HP SE1102 nodes, equipped with two Intel Xeon L5420 processors running at
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2.5 GHz and with 8 GB of main memory, and (b) Dell SC1435 nodes, equipped

with two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB

of main memory. The HP nodes were connected to an HP ProCurve Switch

2910al-48G gigabit network switch, and the Dell nodes were connected to an

HP ProCurve 2900-48G gigabit network switch. Those switches were intercon-

nected by a 20 Gbps link. All nodes ran CentOS Linux 6.3 with kernel 2.6.32

and had the Oracle Java SE Runtime Environment 7. Before each experiment,

we synchronize the clocks of the nodes using NTP. This is done to obtain accu-

rate values in the measurements of the latency breakdown involving events in

different servers.

In all our experiments with Volery and Zookeeper, clients submit commands

asynchronously, that is, each client can keep submitting commands even if replies

to previous commands have not been received yet, up to a certain number of out-

standing commands. Trying to issue new commands when this limit is reached

makes the client block until some reply is received. Replies are processed by call-

back handlers registered by clients when submitting commands asynchronously.

We allowed every client to have up to 25 outstanding commands at any time. By

submitting commands asynchronously, the load on the service can be increased

without instantiating new client processes. Local commands consisted of calls

to setData, while global commands were invocations to create and delete.

“Message size” and “command size”, in the next sections, refer to the size of the

byte array passed to such commands.

We compared Volery with the original Zookeeper and with ZKsmr, which is

an implementation of the Zookeeper API using traditional state machine repli-

cation. For the Zookeeper experiments, we used an ensemble of 3 servers. For

the other approaches, we used Multi-Ring Paxos for atomic multicast, having 3

acceptors per ring: ZKsmr had 3 replicas that used one Paxos ring to handle all

communication, while Volery had 3 replicas per partition, with one Paxos ring

per partition, plus one extra ring for commands that accessed multiple partitions.

Each server replica was in a different cluster node. Also, since Zookeeper runs

the service and the broadcast protocol (i.e., Zab [38]) in the same machines, each

ZKsmr/Volery replica was colocated with a Paxos acceptor in the same node of

the cluster. We had workloads with three different message sizes: 100, 1000

and 10000 bytes. Volery was run with 1, 2, 4 and 8 partitions. We conducted all

experiments using disk for storage, then using memory (for Zookeeper, we used

a ramdisk at each server). For on-disk experiments, we configured Multi-Ring

Paxos with ∆ of 40 ms [55], batching timeout of 50 ms and batch size threshold

of 250 kilobytes; for in-memory experiments, these parameters were 5 ms, 50 ms

and 30 kilobytes, respectively.
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Figure 4.2. Results for Zookeeper, ZKsmr and Volery with 1, 2, 4 and 8 partitions,
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Figure 4.3. Cumulative distribution function (CDF) of latency for different com-

mand sizes (on-disk storage).

4.6.2 Experiments using on-disk storage

In Figure 4.2, we show results for local commands only. Each Paxos acceptor

wrote its vote synchronously to disk before accepting each proposal. Zookeeper

also persisted data to disk. In Figure 4.2 (top left), we can see the maximum

throughput for each replication scheme and message size, normalized by the

throughput of Volery with a single partition. Each bar represents the maximum

throughput found in that configuration after many runs of the same experiment

with different loads. In all cases, the maximum throughput of Volery scaled with

the number of partitions and, for message sizes of 1000 and 10000 bytes, it

scaled linearly (ideal case). For small messages (100 bytes), Zookeeper has sim-

ilar performance to Volery with a single partition. As messages increase in size,

Zookeeper’s throughput improves with respect to Volery: with 1000-byte mes-

sages, Zookeeper’s throughput is similar to Volery’s throughput with two parti-
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tions. For large messages (10000 bytes), Zookeeper is outperformed by Volery

with four partitions. Comparing S-SMR with traditional SMR, we can see that

for small messages (100 bytes), ZKsmr performed better than Volery with one

partition. This is due to the additional complexity added by Eyrie in order to

ensure linearizability when data is partitioned. Such difference in throughput is

less significant with bigger commands (1000 and 10000 bytes).

We can also see in Figure 4.2 (bottom left) the latency values for the dif-

ferent implementations tested. Latency values correspond to 75% of the max-

imum throughput. Zookeeper has the lowest latency for 100- and 1000-byte

command sizes. For 10000-byte commands, Volery had similar or lower latency

than Zookeeper. Such lower latency of Volery with 10000-byte commands is due

to a shorter time spent with batching: as message sizes increase, the size thresh-

old of the batch (250 kilobytes for on-disk storage) is reached faster, resulting in

lower latency.

Figure 4.2 (right) shows the latency breakdown of commands executed by

Volery. For the experiments with Volery, we used Multi-Ring Paxos to implement

atomic multicast: to multicast a message, a process sends the message to a ring

coordinator, which then proposes the message for consensus. Batching is the time

elapsed from the moment the client sends command C to a ring coordinator until

the moment when a batch of messages containing C is proposed. Multicasting

is the time from when the command is proposed until when the batch that con-

tains C is delivered by a server replica. Waiting represents the time between

the delivery of C and the moment when C starts executing. Executing measures

the delay between the start of the execution of command C until the client re-

ceives C ’s response. We can see that more than half of the latency time is due

to multicasting, which includes saving Multi-Ring Paxos instances synchronously

to disk. There is also a significant amount of time spent with batching, done to

reduce the number of disk operations and allow higher throughput: each Paxos

proposal is saved to disk synchronously, so increasing the number of commands

per proposal (i.e., per batch) reduces the number of times the disk is accessed.

This improves throughput, but increases latency.

In Figure 4.3, we show the cumulative distribution functions (CDFs) of la-

tency for all experiments where disk was used for storage. The results show

that the latency distributions for ZKsmr and Volery with a single partition are

similar, while latency had more variation for 2, 4 and 8 partitions. An impor-

tant difference between deployments with a single and with multiple partitions

is related to how Multi-Ring Paxos is used. In ZKsmr and in Volery with a sin-

gle partition, there is only one Paxos ring, which orders all commands from all

clients and delivers them to all replicas. When there are multiple partitions, each
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Figure 4.4. Results for Zookeeper, ZKsmr and Volery with 1, 2, 4 and 8 partitions,

using in-memory storage. Throughput was normalized by that of Volery with a

single partition (absolute values in thousands of commands per second, or kcps,

are shown). Latencies reported correspond to 75% of the maximum throughput.
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Figure 4.5. Cumulative distribution function (CDF) of latency for different com-

mand sizes (in-memory storage).

replica delivers messages from two rings: one ring that orders messages related

to the replica’s partition only, and another ring that orders messages addressed to

more than one partition—each replica deterministically merges deliveries from

multiple rings. As the time necessary to perform such deterministic merge is in-

fluenced by the level of synchrony of the rings, latency is expected to fluctuate

more when merging is involved.

4.6.3 Experiments using in-memory storage

In Figure 4.4, we show the results for local commands when storing data in

memory only. Volery’s throughput scales with the number of partitions (Figure

4.4 (top left)), specially for large messages, in which case throughput grows

linearly with the number of partitions (i.e., ideal case). We can also see that

latency values for Volery and ZKsmr are less than half of what they are for on-
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the maximum throughput.
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of create/delete commands (in-memory storage, 1000-bytes commands).

disk storage (Figure 4.4 (bottom left)), while Zookeeper’s latency decreased by

an order of magnitude.

Figure 4.4 (right) shows the latency breakdown. Even though no data is

saved to disk, multicasting is still responsible for most of the latency, followed

by batching. In these experiments, although there are no disk writes, batching is

still used because it reduces the number of Paxos proposals and the number of

messages sent through the network, which allows higher throughput. Figure 4.5

shows the latency CDFs for the in-memory experiments, where we can see that

Volery with multiple partitions (i.e., deployments where Multi-Ring Paxos uses

multiple rings) tends to have more variation in latency.



38 4.7 Related work

4.6.4 Experiments with global commands

In this section, we analyze how Volery performs when the workload includes

commands that are multicast to all partitions (global commands), which is the

least favorable scenario for S-SMR. Having commands multicast to all partitions

effectively limits throughput scalability: if all commands go to all partitions,

adding more partitions will not increase throughput.

We ran experiments with different rates of global commands (i.e., create and

delete operations): 0%, 1%, 5% and 10% of all commands. We chose such rates

for two reasons: (i) it is obvious that high rates of global commands will prevent

the system from scaling, plus (ii) it is common for large scale services to have a

high rate of read requests (which are local commands in Volery). An example of

such a service is Facebook’s TAO [19], which handles requests to a social graph;

it allows, for instance, pages to be generated based on the user’s connections in

the social network. In Facebook’s TAO, 99.8% of all requests are read-only [19].

We can see in Figure 4.6 (top left) that Volery scales throughput with the num-

ber of partitions for all configurations but the exceptional case of 10% of global

commands when augmenting the number of partitions from 4 to 8. Moreover,

Volery with two partitions outperforms Zookeeper in all experiments. The major

drawback of Volery under global commands is that to ensure linearizability, par-

titions must exchange signals: as create and delete commands are multicast to

all partitions, no server can send a reply to a client before receiving a signal from

all other partitions when executing such a command. This explains the signifi-

cant increase in latency shown in Figure 4.6 (bottom left), as global commands

are added to the workload: as the number of partitions increases, so does the

average latency. As we can see in Figure 4.6 (right), this extra latency comes

from the servers waiting for signals from other partitions.

Figure 4.7 shows the latency CDFs for the workloads with global commands.

For experiments with more than one partition, the rate of messages with high

latency is much higher than the rate of global commands. This happens due

to a “convoy effect”: local commands may be delivered after global commands,

having to wait for the latter to finish.

4.7 Related work

State machine replication is a well-known approach to replication and has been

extensively studied (e.g., [40, 43, 46, 61, 64]). State machine replication re-

quires replicas to execute commands deterministically, which implies sequential
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execution. Even though increasing the performance of state machine replication

is non-trivial, different techniques have been proposed for achieving scalable sys-

tems, such as optimizing the propagation and ordering of commands (i.e., the

underlying atomic broadcast algorithm). In [39], the authors propose to have

clients send their requests to multiple computer clusters, where each such clus-

ter executes the ordering protocol only for the requests it received, and then for-

wards this partial order to every server replica. The server replicas, then, must

deterministically merge all different partial orders received from the ordering

clusters. In [16], Paxos [48] is used to order commands, but it is implemented

in a way such that the task of ordering messages is evenly distributed among

replicas, as opposed to having a leader process that performs more work than

the others and may eventually become a bottleneck.

State machine replication seems at first to prevent multi-threaded execution

since it may lead to non-determinism. However, some works have proposed

multi-threaded implementations of state machine replication, circumventing the

non-determinism caused by concurrency in some way. In [61], for instance, the

authors propose organizing each replica in multiple modules that perform dif-

ferent tasks concurrently, such as receiving messages, batching, and dispatching

commands to be executed. The execution of commands is still sequential, but

the replica performs all other tasks in parallel. We also implemented this kind of

parallelism in Eyrie.

Some works have proposed to parallelize the execution of commands in SMR.

In [43], application semantics is used to determine which commands can be ex-

ecuted concurrently without reducing determinism (e.g., read-only commands

can be executed in any order relative to one another). Upon delivery, commands

are directed to a parallelizer thread that uses application-supplied rules to sched-

ule multi-threaded execution. Another way of dealing with non-determinism is

proposed in [40], where commands are speculatively executed concurrently. Af-

ter a batch of commands is executed, replicas verify whether they reached a

consistent state; if not, commands are rolled back and re-executed sequentially.

Both [43] and [40] assume a Byzantine failure model and in both cases, a sin-

gle thread is responsible for receiving and scheduling commands to be executed.

In the Byzantine failure model, command execution typically includes signature

handling, which can result in expensive commands. Under benign failures, com-

mand execution is less expensive and the thread responsible for command recep-

tion and scheduling may become a performance bottleneck.

Many database replication schemes also aim at improving the system

throughput, although commonly they do not ensure strong consistency as we de-

fine it here (i.e., as linearizability). Many works (e.g., [23, 42, 67, 69]) are based
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on the deferred-update replication scheme, in which replicas commit read-only

transactions immediately, not necessarily synchronizing with each other. This

provides a significant improvement in performance, but allows non-linearizable

executions to take place. The consistency criteria usually ensured by database

systems are serializability [10] or snapshot isolation [51]. Those criteria can be

considered weaker than linearizability, in the sense that they do not take into ac-

count real-time precedence of different commands among different clients. For

some applications, this kind of consistency is good enough, allowing the system

to scale better, but services that require linearizability cannot be implemented

with such techniques.

Other works have tried to make linearizable systems scalable [24, 31, 54].

In [31], the authors propose a scalable key-value store based on DHTs, ensur-

ing linearizability, but only for requests that access the same key. In [54], a

partitioned variant of SMR is proposed, supporting single-partition updates and

multi-partition read operations. It relies on total order: all commands have to

be ordered by a single sequencer (e.g., a Paxos group of acceptors), so that lin-

earizability is ensured. The replication scheme proposed in [54] does not allow

multi-partition update commands. Spanner [24] uses a separate Paxos group per

partition. To ensure strong consistency across partitions, it assumes that clocks

are synchronized within a certain bound that may change over time. The authors

say that Spanner works well with GPS and atomic clocks.

Scalable State Machine Replication employs state partitioning and ensures

linearizability for any possible execution, while allowing throughput to scale as

partitions are added, even in the presence of multi-partition commands and un-

synchronized clocks.

4.8 Conclusion

This chapter introduced S-SMR, a scalable variant of the well-known state ma-

chine replication technique. S-SMR differs from previous related works in that it

allows throughput to scale with the number of partitions without weakening con-

sistency. To evaluate S-SMR, we developed the Eyrie library and implemented

Volery, a Zookeeper clone, with Eyrie. Our experiments demonstrate that in de-

ployments with 8 partitions and under certain workloads, throughput experi-

enced an 8-time improvement, resulting in ideal scalability. Moreover, Volery’s

throughput proved to be significantly higher than Zookeeper’s.

One problem that we faced was that the time spent ordering client requests

(i.e., the multicast component of latency) was a significant part of the response
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time in our experiments. To address this issue, we designed an atomic multicast

protocol that optimizes for latency without sacrificing throughput. The resulting

protocol is presented in the next chapter.

F f
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Chapter 5

Optimistic Atomic Multicast

Optimism is an essential ingredient of innovation.

How else can the individual welcome change over

security, adventure over staying in safe places?

Robert Noyce

In [34], it has been shown that the maximum throughput in a point-to-point

network may be achieved by disposing processes in a ring overlay. The prospects

of achieving throughput optimality with a ring overlay have motivated the design

of several protocols such as LCR [34], Ring Paxos [53], Multi-Ring Paxos [55,

9], and Spread [7] (some of which coupled with ip-multicast communication).

All these protocols achieve very high throughput, but are subject to an inherent

limitation of ring overlays: the latency to deliver messages is proportional to the

number of processes in the system.

In this chapter, we set out to investigate whether more latency efficient mes-

sage dissemination techniques can promise the same throughput optimality of a

ring overlay. We show here that it is possible to reach optimal throughput with-

out resorting to a ring topology or to ip-multicast, which is usually unavailable

in wide-area networks. Based on this result, we introduce Ridge, a Paxos-based

atomic multicast protocol where each message is initially forwarded to a single

destination, the distributor, whose responsibility is to propagate the message to

all other destinations. To use all bandwidth available in the system, processes

alternate in the role of distributor. As a result, Ridge’s maximum throughput

matches the throughput of ring-based protocols, with a latency that does not

significantly depend on the system size.

43
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To further reduce latency, Ridge performs two deliveries for each message:

an optimistic delivery, which is fast (one communication step) but has a chance

of violating order, and a conservative delivery, which always guarantees consis-

tent delivery order across all destinations, but takes longer than the optimistic

one. To deliver messages optimistically, a process estimates a wait time based

on expected message transmission delays and skews between node clocks. If the

process’ estimate holds, the optimistic order (i.e., the order in which messages

are delivered optimistically) will match the conservative order (i.e., the order

in which messages are delivered conservatively). We define here the optimistic

atomic multicast class of protocols, which are the atomic multicast protocols that

perform both conservative and optimistic deliveries, as described above.

This chapter presents the following contributions: (a) we introduce Ridge,

a high-throughput, latency-efficient optimistic atomic multicast protocol; (b) we

reason about Ridge’s theoretical maximum performance; (c) we detail how opti-

mistic delivery is implemented in Ridge; (d) we provide a detailed experimental

evaluation of Ridge’s performance and compare it to the performance of other

ordering protocols.

The remainder of this chapter is structured as follows. Section 5.1 defines

optimistic atomic multicast. Section 5.2 recalls the Paxos protocol, which is used

by Ridge. Sections 5.3 and 5.4 describe Ridge and analyze its performance an-

alytically. Section 5.5 assesses Ridge’s performance experimentally. Section 5.6

surveys related work and Section 5.7 concludes the chapter.

5.1 Problem definition

In this section, we define the optimistic atomic multicast class of message or-

dering protocols. Later in this chapter, we show how Ridge implements such a

protocol.

Optimistic atomic multicast performs two deliveries for each multicast mes-

sage m: an optimistic delivery and a conservative delivery. It is defined by primi-

tives opt-amcast(γ, m), opt-deliver(m) and cons-deliver(m).

The conservative delivery has the same properties as atomic multicast, i.e.,

validity, uniform agreement, integrity and atomic order (defined by relation ≺).

Let relation ≺opt be such that m ≺opt m′ iff a process opt-delivers m before m′.

The optimistic delivery has the same properties as reliable multicast, i.e., validity,

agreement, and integrity, in addition to the following:
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• If the given optimistic assumptions1 hold, the order relation ≺opt does not

contradict the relation ≺ (optimistic order).

Finally, optimistic atomic multicast ensures the following:

• If a correct process p delivers m optimistically, p also delivers m conserva-

tively, and vice-versa (equivalence).

The optimistic order is probabilistic: with high probability processes deliver

messages optimistically and conservatively in the same order. If the i-th opti-

mistic delivery made at a process p matches the i-th conservative delivery at p,

we say that the order of the i-th message was correct; otherwise, we say that the

optimistic delivery made a mistake.

5.2 Paxos

Paxos [48] is a fault-tolerant consensus algorithm and the basis for Ridge. We

describe next how a value is decided in a single consensus instance. Paxos dis-

tinguishes three roles: proposers, acceptors, and learners. Each process can play

one or more of these roles simultaneously. Proposers propose values, acceptors

choose values, and learners learn what value was decided. Hereafter, A denotes

the set of acceptors, L the set of learners, and Q a majority quorum of acceptors,

that is, a subset of A of size ⌈(|A|+ 1)/2⌉.

The execution of one consensus instance proceeds in a sequence of rounds,

each identified by a number. For each round, one process (typically one of the

proposers) acts as coordinator of the round. To propose a value, proposers send

the value to the coordinator. The coordinator maintains two variables: (a) c-rnd

is the highest-numbered round that the coordinator has started; and (b) c-val is

the value that the coordinator has picked for round c-rnd. Acceptors maintain

three variables: (a) rnd is the highest-numbered round in which the acceptor has

participated; (b) v-rnd is the highest-numbered round in which the acceptor has

cast a vote—it follows that rnd ≤ v-rnd always holds; and (c) v-val is the value

voted by the acceptor in round v-rnd.

Algorithm 2 provides an overview of Paxos. The algorithm has two phases.

To execute Phase 1, the coordinator picks a round number c-rnd greater than any

value it has picked so far, and sends it to the acceptors (Task 1). Upon receiving

1The optimistic assumptions depend on the implementation of optimistic atomic multicast.

We explain Ridge’s optimistic assumptions later.
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Algorithm 2 Paxos

1: Initialization:

2: c-rnd← 0; rnd← 0; v-rnd← 0

3: c-val← null; v-val← null

4: Task 1 (coordinator)

5: when receiving value v from proposer

6: c-rnd← unique value higher than current c-rnd

7: for all acc ∈ A do send (acc, 〈PHASE 1A, c-rnd〉)

8: Task 2 (acceptor)

9: when receiving 〈PHASE 1A, c-rnd〉 from coordinator

10: if c-rnd> rnd then

11: rnd← c-rnd

12: send (coordinator, 〈PHASE 1B, rnd, v-rnd, v-val〉)

13: Task 3 (coordinator)

14: when receiving 〈PHASE 1B, rnd, v-rnd, v-val〉 from Q, such that rnd= c-rnd

15: h← highest v-rnd value received

16: V ← set of 〈v-rnd, v-val〉 received with v-rnd=h

17: if h= 0 then c-val← v

18: else c-val← the only v-val in V

19: for all acc ∈ A do send (acc, 〈PHASE 2A, c-rnd, c-val〉)

20: Task 4 (acceptor)

21: when receiving 〈PHASE 2A, c-rnd, c-val〉 from coordinator

22: if c-rnd≥ rnd then

23: v-rnd← c-rnd

24: v-val← c-val

25: send (coordinator, 〈PHASE 2B, v-rnd, v-val〉)

26: Task 5 (coordinator)

27: when receiving 〈PHASE 2B, v-rnd, v-val〉 from Q

28: if for all received messages: v-rnd= c-rnd then

29: for all learner ∈ L do send (learner, 〈DECISION, v-val〉)
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such a message (Task 2), an acceptor checks whether the round number received

from the coordinator is greater than any round number it has received so far; if

that is the case, the acceptor “promises” not to accept any future message with a

round smaller than c-rnd. The acceptor then replies to the coordinator with the

highest-numbered round in which it has cast a vote, if any, and the value it voted

for. Notice that no value is proposed to the acceptors in Phase 1.

The coordinator starts Phase 2 after receiving a reply from a quorum (Task 3).

Before proposing a value in Phase 2, the coordinator checks whether some ac-

ceptor has already cast a vote in a previous round. If not, the coordinator can

use the value received from the proposer. If one or more acceptors have cast

votes in previous rounds, the coordinator picks the value that was voted for in

the highest-numbered round.

An acceptor will vote for a value c-val with corresponding round c-rnd in

Phase 2 if the acceptor has not received any Phase 1 message for a higher-

numbered round (Task 4). Voting for a value means setting the acceptor’s vari-

ables v-rnd and v-val to the values sent by the coordinator. If the acceptor votes

for the value received, it replies to the coordinator. When the coordinator re-

ceives replies from a quorum (Task 5), it knows that a value has been decided

and notifies the learners.

Algorithm 2 can be optimized in a number of ways [48]. For instance, the

coordinator can execute Phase 1 before values are received from proposers. This

way, decisions can be faster: when a proposer sends a value to the coordinator,

the coordinator can immediately start Phase 2, as Phase 1 has already been exe-

cuted. In the next section, we describe Ridge in detail, including its optimization

to Paxos Phase 2.

5.3 Ridge

Ridge is an optimistic atomic multicast protocol that can deliver messages to

groups of processes. In this section, we describe the general idea of Ridge (Sec-

tion 5.3.1), detail its operation (Section 5.3.2), explain how it tolerates failures

(Section 5.3.3), and how it performs optimistic deliveries (Section 5.3.4). At the

end of this section, we discuss the correctness of Ridge (Section 5.3.5).

5.3.1 Overview of the protocol

Ridge makes use of Paxos, executing Phase 1 similarly to Algorithm 2, while op-

timizing Phase 2 for high throughput and low latency. Ridge utilizes a collection
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of ensembles, where an ensemble is a set of processes capable of executing a se-

quence of Paxos instances. Each ensemble contains 2 f +1 acceptors, where f

is the maximum number of failures tolerated by the ensemble. For each run of

Paxos, Ridge defines a majority quorum Q with f +1 acceptors. To decide on

message m in an ensemble, the ensemble’s coordinator (which has previously

run Phase 1 of Paxos for multiple consensus instances) starts Phase 2 by send-

ing m to an acceptor, which forwards it to another acceptor, and so on, until

f +1 acceptors have received the message. Unless something abnormal occurs

(e.g., a failure or multiple coordinators proposing messages in the same Paxos

instance), the last acceptor (i.e., the f +1-th acceptor to receive m) will know

that a majority of acceptors have received m, configuring a quorum. Then, the

last acceptor sends m to a learner. Such a learner, called the distributing learner

(or distributor) for m, then sends m to all other learners directly, completing

Phase 2 of Paxos. Learners take turns as the distributing learners for different

messages. By doing this, Ridge achieves high throughput, assuming that each

learner distributes the same amount of data. To approximate this assumption,

a load balancing procedure is used: the last acceptor keeps track of how much

data each learner has distributed so far and chooses the distributing learner for

the next message accordingly.

Ridge allows learners to receive messages from different ensembles; here-

after, we denote messages decided in an ensemble a message stream. If a learner

subscribes to multiple ensembles, a deterministic procedure is used to merge the

corresponding message streams, as we explain next.

To merge message streams, Ridge employs Paxos instance ids to ensure a gap-

free sequence of decisions from each ensemble. It also employs timestamps to

determine the position of each message in the resulting merged sequence. For

this to be possible, each ensemble must ensure that the timestamp order of de-

cided messages follow the messages’ decision order (for messages of the same

ensemble). More formally, let m be a message with timestamp m.ts decided in

consensus instance k by ensemble e, and let m′ be a message with timestamp

m′.ts decided in instance k′ also by ensemble e. We need that, if k < k′, then

m.ts< m′.ts. When a message m is created, an initial timestamp is assigned to it

by its sender. When m is decided and received by a learner, it is only delivered

when the learner knows that there will be no message m′ with a lower times-

tamp than that of m to be received from any ensemble the learner subscribes

to. To ensure that the timestamp order and the instance order agree for each

ensemble, each learner follows a deterministic procedure: upon delivery, if mes-

sages m and m′ are decided in the same ensemble, k < k′, but m.ts > m′.ts,

then the timestamp of m′ is adjusted to be higher than that of m, being its final
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timestamp. Once the learner has determined the final timestamp of a message,

it proceeds with deterministic merge. Every timestamp is assumed to be unique

across the system and the final message sequence follows the timestamp order

of the merged message streams.

The way Ridge merges multiple message sequences raises a liveness concern:

what if a learner never receives a message from one of the ensembles it subscribes

to (i.e., because no process multicasts a message to this ensemble)? To ensure

liveness, Ridge uses null messages: if no message is multicast to an ensemble for

a predefined time ∆, the coordinator of the ensemble generates a null message

(i.e., a message with no payload), with the sole purpose of preventing learners

from blocking while waiting for ensembles with low or no traffic.

Finally, in Ridge processes can propagate a message to a single ensemble

only, which is at odds with the definition of atomic multicast, where a message

can be multicast to multiple groups. To implement the abstraction of groups,

Ridge maps groups to ensembles, as we describe next. Suppose a system in

which messages can be multicast to any combination of groups g1, ..., gn. This

abstraction can be implemented in Ridge with n+1 ensembles, e1, ..., en, eall. For

every group gi that contains process p, p becomes a learner of ensembles ei and

eall. If m is multicast to a single group gi, it is propagated to ei; if m is multicast to

multiple groups, it is sent to eall, with non-addressee processes simply discarding

m—that is, the ensemble’s learners that have not subscribed to any of the groups

that m was multicast to will just disregard m.

5.3.2 Detailed algorithms

We detail here the algorithms executed during normal operation, i.e., when there

are no failures or failure suspicions; we discuss abnormal cases in Section 5.3.3.

Algorithm 3 shows how Ridge optimizes Paxos Phase 2 for both throughput and

latency (unchanged code from original Paxos is grayed out). For Algorithm 4,

which details Ridge’s deterministic merge procedure, we assume that each en-

semble uses consensus as a black box, with primitives proposee(k, v) and de-

cidee(k, v) to respectively propose and decide a value v for consensus instance

k of ensemble e. Finally, Algorithm 5 shows a simple way of mapping Paxos

ensembles to multicast groups, allowing messages to be multicast to multiple

process groups.

To solve consensus in Ridge, we assume that each ensemble eventually has a

single and correct coordinator [48]. To execute Phase 1 (Task 1), the coordinator

defines a quorum Q for the proposed round of Paxos containing a majority of the

acceptors in A, arranged in a sequence a1; a2; . . . ; a( f +1). When starting Phase 2
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Algorithm 3 Ridge: executing Paxos in one ensemble

1: Initialization:

2: c-rnd← 0; rnd← 0; v-rnd← 0

3: c-val← null; v-val← null

4: Task 1 (coordinator)

5: when receiving value v from proposer

6: c-rnd← unique value higher than current c-rnd

7: // define a quorum Q as an acceptor sequence for round c-rnd

8: Q← {a1, a2, . . . , a( f +1)} // majority of the 2 f +1 acceptors

9: for all acc ∈ A do send (acc, 〈PHASE 1A, c-rnd〉)

10: Task 2 (acceptor)

11: when receiving 〈PHASE 1A, c-rnd〉 from coordinator

12: if c-rnd> rnd then

13: rnd← c-rnd

14: send (coordinator, 〈PHASE 1B, rnd, v-rnd, v-val〉)

15: Task 3 (coordinator)

16: when receiving 〈PHASE 1B, rnd, v-rnd, v-val〉 from Q, such that rnd= c-rnd

17: h← highest v-rnd value received

18: V ← set of 〈v-rnd, v-val〉 received with v-rnd=h

19: if h= 0 then c-val← v

20: else c-val← the only v-val in V

21: send (acceptor a1, 〈PHASE 2, c-rnd, c-val, Q, 0〉)

22: Task 4 (acceptor ai)

23: when receiving 〈PHASE 2, c-rnd, c-val, Q, count〉

24: if c-rnd≥ rnd then

25: v-rnd← c-rnd

26: v-val← c-val

27: if count+ 1< |Q| then

28: send (a(i+1), 〈PHASE 2, v-rnd, v-val, Q, count+1〉)

29: else

30: for all l ∈ L do send (l, 〈DECISION, id(v-val)〉)

31: ld ← a learner in L \Q

32: send (ld , 〈DISTRIBUTE, v-val〉)

33: Task 5 (learner)

34: when receiving 〈DISTRIBUTE, v-val〉

35: for all l ∈ L \Q do send (l, 〈VALUE, v-val〉)
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of Paxos (Task 3), the coordinator sends message 〈PHASE 2, c-rnd, c-val, Q, 0〉 to

acceptor a1. This tuple means that it is a message concerning Phase 2 of Paxos,

for round c-rnd, proposing value c-val, the acceptor sequence in Q is the quorum,

and no votes have been cast by the acceptors yet.

Upon receiving a message 〈PHASE 2, c-rnd, c-val, Q, count〉 (Task 4), acceptor

ai knows that count votes have been cast so far to decide value c-val in consensus.

If the number of votes, plus ai ’s own vote, is still not enough to reach a quorum,

ai increments the vote count and forwards the message to the next acceptor in Q,

a(i+1). When the |Q| votes necessary to decide c-val have been cast, the acceptor

that completed the quorum will choose a distributing learner and ask for it to

distribute the value decided to the other learners (Task 5). We want to divide

equally the amount of data distributed by each of the learners. For simplicity,

Algorithm 3 assumes that all learners are chosen uniformly by the last acceptor

to be the distributors and that all messages have the same size. Ridge’s actual

implementation uses a load balancer at each acceptor to help choose distributing

learners.

It is possible that some of the learners are also acceptors in the majority quo-

rum Q. An acceptor from Q should not be a distributing learner, as such an

acceptor already receives and forwards proposed values (in Task 4). Adding the

burden of distributing decided values would likely overload the acceptor and de-

feat the purpose of Ridge, which is to maximize throughput. For this reason,

the distributing learner is chosen from L \Q. For learners in Q, which in normal

cases have already received the value decided, to be notified about decisions,

two separate messages are sent: VALUE, which contains the decided value v-val,

and DECISION, which contains only id(v-val), a unique identifier of v-val. The

last acceptor of Q sends DECISION to all learners, while the distributing learner

sends VALUE only to learners that haven’t received v-val yet. By doing this, and

assuming that the size of id(v-val) is negligible, Ridge’s throughput efficiency is

maintained even when processes are both learners and acceptors.

Ridge implements atomic multicast with the help of an intermediate layer,

called ensemble-multicast, which allows processes do deterministically merge

messages decided in multiple ensembles. If we consider the set of learners of

each ensemble as an ensemble-group, the properties of ensemble-multicast (i.e.,

ensemble-delivery) are the ones of atomic multicast, described in Chapter 2, ex-

cept that each message can be ensemble-multicast to only one single ensemble-

group.

Algorithm 4 shows how ensemble-multicast operates. To multicast a message

m to an ensemble-group of learners of ensemble e, the proposer p first assigns a

unique timestamp m.ts to m, which is based on p’s system clock. Then, p sends
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m to e’s coordinator (lines 2–4). Upon receiving m, the coordinator proceeds

with proposing m in the next consensus instance k (lines 10 and 11). When a

learner becomes aware that m is the next decided message in ensemble e (line

30), it checks if m has a timestamp higher than last_tse (the timestamp of the

last message from e); if not, m.ts is adjusted to last_tse + 1, ensuring that the

timestamp and instance id orders agree in every ensemble. After checking this,

the learner sets last_tse to m.ts and puts 〈e, m〉 in a queue to be delivered when

possible (lines 31–34). This queue contains a gap-free sequence of decisions

from each ensemble; ke is incremented each time a decision is received from an

ensemble e, ensuring that the learner will be notified about decisions from e in

the correct order (line 35).

When the gap_free queue contains at least one decision from every ensemble

the learner subscribes to, the learner removes the message with lowest timestamp

from the gap_free queue and ensemble-delivers the message (lines 36–40). This

can be done because the learner processes consensus decisions from each en-

semble in order; since final timestamps are adjusted to agree with the consensus

decision order, any new decisions will contain a message with higher timestamp.

Algorithm 4 also shows how Ridge ensures liveness. At the initialization, and

whenever a proposal is made, a timer is set to expire in ∆ time units (lines 8,

13 and 19). This makes sure that, if a learner has a message m enqueued for

delivery, it will eventually be able to deliver it, because it will receive messages

with increasing timestamps from every ensemble at least every ∆ (line 36).

Finally, Algorithm 5 shows how Ridge implements atomic multicast on top of

ensemble-multicast. The ensemble-multicast protocol does not allow a message

to be multicast to multiple ensembles. To allow each message to be multicast

to multiple groups, we can have an ensemble eγ for each combination γ of des-

tination groups. If a message is multicast to γ, then it is implemented as an

ensemble-multicast to eγ. To avoid requiring 2n ensembles to accommodate all

possible combinations of up to n groups, we decided to have n+1 ensembles: if

a message m is multicast only to gi, then it is ensemble-multicast to ei; if m is

multicast to multiple groups, it is ensemble-multicast to eall (lines 4–7). Using

this simple mapping, m will be ensemble-delivered by all processes if it has been

multicast to more than one group; for this reason, m receives a tag m.dests that

contains m’s actual destination groups (line 3). Upon ensemble-delivery of m,

each process p checks if m is actually addressed to p, by comparing the set of m’s

destination groups with the set σ of groups that p subscribed to; if that is the

case, m is delivered to p.
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Algorithm 4 Ensemble-multicast with deterministic merging

1: Task 1 (proposer)

2: To ensemble-multicast message m to ensemble e

3: m.ts← unique timestamp based on local clock

4: send m to the coordinator of e

5: Task 2 (coordinator of ensemble e)

6: Initialization:

7: k← 0

8: set timer to expire in ∆

9: when receiving m from a proposer

10: proposee(k, m)

11: k← k+ 1

12: stop timer

13: set timer to expire in ∆

14: when timer expires

15: create empty null message

16: null.ts← unique timestamp based on local clock

17: proposee(k, null)

18: k← k+ 1

19: set timer to expire in ∆

20: Task 3 (acceptor)

21: execute consensus (follow Algorithm 3)

22: Task 4 (learner)

23: Initialization

24: ∀e : ke← 0

25: ∀e : last_tse← 0

26: all_decisions← ;

27: gap_free← ;

28: when decidee(k, m)

29: all_decisions← all_decisions∪ {〈e, k, m〉}

30: when ∃e : 〈e, ke, m〉 ∈ all_decisions

31: if m.ts< last_tse then

32: m.ts← last_tse + 1

33: last_tse← m.ts

34: gap_free← gap_free∪ {〈e, m〉}

35: ke← ke + 1

36: when ∀e : l receives from e, ∃m : 〈e, m〉 ∈ gap_free

37: take 〈ed , md〉, where md .ts is the lowest in gap_free

38: gap_free← gap_free \ {〈ed , md〉}

39: if md 6= null then

40: ensemble-deliver(md)
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Algorithm 5 Ridge - multicasting messages to multiple groups

1: Task 1 (multicaster)

2: To multicast m to set of groups γ

3: m.dests← γ

4: if |γ|= 1∧ γ= {gi} then

5: ensemble-multicast m to ei

6: else

7: ensemble-multicast m to eall

8: Task 2 (destination)

9: Initialization

10: Destination p subscribes to set of groups σ

11: delivered← ;

12: for each gi ∈ σ do

13: become a learner of ensemble ei

14: if |σ|> 1 then

15: become a learner of ensemble eall

16: when ensemble-deliver m

17: if m.dests∩σ 6= ; ∧m 6∈ delivered then

18: deliver m

19: delivered← delivered∪ {m}

5.3.3 Tolerating failures

Each Ridge ensemble is an implementation of Paxos, so leader election, failure

detection and fault-tolerance are handled in the same way as the original pro-

tocol. What changes is the way messages are routed. Because of that, Ridge is

sensitive not only to the failure of the coordinator, but also to the failure of the

acceptors in Q and to the failure of distributing learners.

Coordinator failure

If the coordinator is suspected of failing [21], another process will take its place,

and (eventually) run Phase 1 of Paxos with a round number higher than that

used by the suspected coordinator [48].

Acceptor failure

In case the coordinator suspects that an acceptor of Q has failed during the ex-

ecution of a consensus instance k, the coordinator falls back to original Paxos
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(Algorithm 2). It re-executes the consensus instance k, including Phase 1 and

Phase 2 of original Paxos, with a higher round number.

Learner failure

If the last acceptor of Q suspects of a failure of the distributing learner, the accep-

tor will forward the message to a different learner. In any case, learner failures

may cause other learners not to receive some consensus decisions. When sus-

pecting that decisions were not received, learners can check with the acceptors

what has been decided so far and fill any possible gaps.

5.3.4 Optimistic deliveries

Ridge allows messages to be delivered optimistically, with the optimistic order

likely matching the conservative order. For messages to be delivered optimisti-

cally and conservatively in the same order, the protocol relies on a few optimistic

assumptions; if they do not hold, the orders may differ, but the correctness of

the conservative delivery is not affected. The optimistic assumptions are the

following: (a) there are no message losses between correct processes, (b) mes-

sages from each ensemble are decided in the order of their initial timestamps

(thus their final timestamps will be the same as their initial ones) and (c) when a

learner delivers a message m optimistically, it has already received all messages

that could possibly have a timestamp lower than that of m.

Condition (a) is eventually guaranteed in our system model (Section 2.1),

and it can be approximated in practice with a reliable communication protocol

(e.g., TCP). We satisfy conditions (b) and (c) by having each process wait “long

enough” before proposing a message or delivering a message optimistically. In

the case of (b), the coordinator waits for a certain amount of time before propos-

ing messages, allowing messages received out of order to be proposed in the

correct (initial timestamp) order; as for (c), the wait time allows the learner to

deliver optimistically in the correct order.

To perform optimistic deliveries, when a process p ensemble-multicasts a

message m to an ensemble e, p first sends2 m directly to all learners of e. After

receiving m directly from p, each learner delivers m optimistically after waiting

a certain time, which is based on the estimated latency and clock skews of the

system. Besides sending m to the learners, p sends m also to the coordinator

of e, which proceeds with Phase 2 of Paxos for m. Once the ( f +1)-th acceptor

2The process multicasting m uses reliable multicast [30] to send the value to the learners and

to the coordinator.
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is reached, it only notifies the learners about the decision, by sending id(m) to

them. At this point, learners are expected to have already received m directly

from p; if that is the case, they can deliver m conservatively. If a learner still

hasn’t received m when receiving id(m), the learner asks the acceptors for m.

Note that the optimistic delivery does not guarantee uniformity: if both p and

a learner l f are faulty, it is possible that l f delivers m optimistically, when no

other process delivers m. However, this does not affect the correctness of the

conservative delivery.

One question is how exactly to define the wait time mentioned above. Say

process p sends a message m to process q. The wait time w should be such that,

if p creates m at time t (i.e., m has timestamp t), m is received by q before

instant t+w. The wait time at each process q should take into account the clock

skew between q and other processes in the system. The reason for this is that

the timestamp of each message is given based on the clock at the process that

created the message. Clock skews may differ for different pairs of processes; we

denote the difference between the clocks at p and q as ε(p, q). As for latency,

we denote the time it takes for a message from p to arrive at q as δ(p, q). Let

Π be the set of all processes in the system. If we take into account that clock

skew and latency differs for each pair of processes, we have that the wait time

at q, denoted as wq, is an estimate of maxp∈Π(δ(p, q)+ε(p, q)). Such estimate is

updated as different messages are received by q.

An interesting observation is that we do not need to know either the latency or

the clock skew individually. Instead, we only need the sum of those two values.

Finding such a sum for any given message m is as simple as subtracting the

message’s timestamp from the clock value at the destination when the message

is received. One problem is that there might be a process that has much higher

latency to communicate with the others, increasing the wait time for all processes

in the system. To mitigate this problem, a maximum value can be set for wq,

for every process q. This may increase the number of mistakes when messages

from a slow process are involved, but allows the wait time to stay under control,

lowering the latency of optimistic deliveries.

Finally, Ridge must ensure the equivalence property, that is, that a correct

process opt-delivers a message if, and only if, it also cons-delivers the same mes-

sage. A simple way to provide equivalence is by keeping track of which mes-

sages were opt-delivered and which were cons-delivered. If, when a message m

is cons-delivered at a process p, p has never opt-delivered m, p opt-delivers m

immediately. Likewise, if a message is opt-delivered at a process p, but it is not

cons-delivered after some time t, p sends m to the coordinator of the appropriate

ensemble so that it can be decided and cons-delivered. Duplicate deliveries can-
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not happen because each process keeps track of what has already been delivered,

optimistically and conservatively.

5.3.5 Correctness

In this section, we provide a proof for the correctness of Ridge. At its core, the

protocol optimizes Paxos for high throughput, and then optimistic atomic mul-

ticast is implemented on top of Paxos. For this reason, we first show that the

properties expected from consensus are guaranteed. Then, we prove that Ridge

guarantees the properties that we defined for optimistic atomic multicast.

As described in Chapter 2, we assume a partially synchronous system: it is

initially asynchronous and eventually becomes synchronous. The time when the

system becomes synchronous is called GST (Global Stabilization Time). Before

GST, there are no bounds on message delay or relative process speed. After GST,

such bounds exist but are unknown. We assume that after GST, all remaining

processes are correct.

Properties of consensus

We prove here that the optimized version of Paxos implemented by Ridge (Al-

gorithm 3) ensures the properties of consensus, namely uniform agreement and

termination; uniform integrity holds trivially from the algorithm.

Proposition 2. (UNIFORM AGREEMENT) No two processes decide different values.

Proof. Let v and v′ be two decided values, with unique identifiers id(v) and

id(v′), and proposed by coordinators c and c′, respectively. We prove that

id(v)= id(v′).

Let r be the round, with quorum Q, in which some acceptor a sent a DECISION

message with id(v) to all learners, and let r ′ be the round, with quorum Q′, in

which some acceptor a′ sent a DECISION message with id(v′) to all learners.

In Ridge, a sends the DECISION message with id(v) after: (a) c receives f +1

messages of the form 〈PHASE 1B, r, *, *〉; (b) c selects value v-val = v with the

highest round number v-rnd among the set M1B of PHASE 1B messages received,

or picking a value v-val if v-rnd = 0; (c) f +1 different acceptors (a majority of

the acceptors) have cast a vote for value v in round r.

When acceptor a receives a message of the form 〈PHASE 2, r, v,Q, f 〉, it is

equivalent to a receiving a message 〈PHASE 2B, r, v〉 (as in Algorithm 2) from

f other acceptors. That’s because each acceptor forwards a message of form

〈PHASE 2, r, v,Q, count〉 to the next acceptor in Q only if r is higher than or equal
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to the previous v-rnd held by that acceptor. If a also casts a vote for 〈r, v〉,

this is equivalent to a sending a message 〈PHASE 2, r, v,Q, f + 1〉 to itself, so

a knows that v was decided in round r, equivalently to coordinator c receiving

f +1 〈PHASE 2B, r, v〉messages in the original Paxos algorithm. That’s why a can

safely send a 〈DECISION, id(v)〉 message to all learners. Let M2B be the set of

such equivalent f +1 Phase 2B messages. Now consider a system running orig-

inal Paxos where the coordinator c received the same sets of messages M1B and

M2B. In this case, c would send a DECIDE message with id(v) as well. Since the

same reasoning can be applied to coordinator c′, and Paxos implements consen-

sus, we have that id(v)= id(v′).

Proposition 3. (TERMINATION) If one (or more) correct process proposes a value

then eventually some value is decided by all correct processes.

Proof. After GST, processes eventually select a correct coordinator c. Coordi-

nator c considers a quorum Q of acceptors, and c sends a Phase 1A message

to all acceptors in the ensemble. If all acceptors in the majority quorum Q are

correct and c does not suspect that any of them has failed, then all messages

exchanged between coordinator and acceptors in Q are received and all correct

processes eventually decide some value. If c suspects that any acceptor in Q has

failed [21], the protocol falls back to the original Paxos algorithm, which guar-

antees property (iii) of consensus.

Properties of optimistic atomic multicast

We prove here that Ridge ensures the following properties of the conservative

delivery of optimistic atomic multicast: validity, integrity, uniform agreement,

and atomic order. We also prove that Ridge ensures the equivalence and opti-

mistic order properties. Ridge implements the optimistic delivery with reliable

multicast, so the validity, integrity and agreement properties of the optimistic

delivery are ensured by reliable multicast [30]. The following proof applies to

Algorithm 4 and can be trivially extended to Algorithm 5.

Lemma 1. Let t be a timestamp, and ǫ a set of ensembles. Each correct process

p that is a learner in every ensemble e ∈ ǫ eventually decides a message m with

timestamp m.ts> t, where m was decided by e, for every e ∈ ǫ.

Proof. Each ensemble e ∈ ǫ eventually elects a correct coordinator c after GST

and proposes messages (possibly null) at least every ∆ time units. Decided mes-

sages from an ensemble are assigned monotonically increasing final timestamps,

so p eventually decides a message m with timestamp m.ts> t, for every ensemble

e in ǫ.
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Proposition 4. (VALIDITY) If a correct process multicasts m, then every correct

process in γ delivers m.

Proof. To multicast m, a correct process p sends m to the coordinator c of an

ensemble e, and p keeps sending m until it reaches the correct coordinator. After

GST, a correct process c is eventually elected as coordinator of e. Since both p

and c are correct, c delivers m and proposes it. From the properties of consensus,

all correct learners of e decide m. Therefore, and from Lemma 1, l eventually

delivers m.

Proposition 5. (INTEGRITY) For any message m, every process p in γ delivers m at

most once, and only if some process has multicast m previously.

Proof. For m to be delivered, it must have been proposed by the coordinator c

of an ensemble e. The proof that m was multicast by some process is immediate

from Algorithm 4: c only proposes m after receiving m from a process q that mul-

ticast m. In Algorithm 5, each destinations keeps track of which messages were

delivered already in set delivered. When a message is delivered, it is added to the

delivered set, so that delivering the same message twice is impossible (lines 17–19

of Algorithm 5).

Proposition 6. (UNIFORM AGREEMENT) If a process delivers m, then every correct

process in γ delivers m.

Proof. For a process p, which subscribes to a set of ensembles ǫ, to deliver a

message m, p must be a learner that decided m after m was accepted by a majority

of acceptors in some ensemble e ∈ ǫ. Since e has a majority of correct acceptors,

at least one correct acceptor a knows that m was decided at an instance k. After

GST, eventually a correct coordinator c is elected for e, proposing messages every

∆ time units at least. From the properties of consensus, every correct learner of

e will decide such messages, knowing if there is any gap in the message stream

from e. In other words, there will eventually be a message decided in instance k′,

where k′ > k, in ensemble e. Since at least the correct acceptor a knows about

m, m can be recovered by any correct learner l that missed m. This way, l is sure

to eventually know about m, being able to deliver it once a message m′, where

m′.ts > m.ts, has been decided in each ensemble in ǫ, which is guaranteed to

eventually happen after GST (Lemma 1).

Proposition 7. (ATOMIC ORDER) The order relation ≺ is acyclic. Also, for any

two messages m and m′ and any two processes p and q such that ∃{g, h} ⊆ γ ∩

γ′ : {p, q} ⊆ g ∪ h, if p atomic-delivers m and q atomic-delivers m′, then either p

atomic-delivers m′ before m or q atomic-delivers m before m′.
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Proof. The message stream from each ensemble is decided by consensus. There-

fore, every process delivers messages from the same ensemble in the same order,

or in a prefix of such an order. Moreover, the final timestamp of each message

m is deterministically defined based only on previously decided messages from

the same ensemble that decided m (lines 30–35 of Algorithm 4). Because of this,

each message is assigned the same final timestamp in every destination. Since

delivery is done in the order of final timestamps, there can be no cycle in the

delivery order, even when messages come from different ensembles. Finally, the

deterministic merge procedure in Ridge happens when there is at least one mes-

sage from every ensemble in the gap_free queue. Since there is no gap in the

message stream of any ensemble, and merge is done in the order of the deter-

ministically defined final timestamps of messages, there is no gap in the merged

sequence either.

Proposition 8. (EQUIVALENCE) If a correct process p delivers m optimistically, p

also delivers m conservatively, and vice-versa.

Proof. To ensure equivalence, Ridge does two things: (i) if, when a correct pro-

cess p cons-delivers a message m, p hasn’t opt-delivered m yet, p opt-delivers m

immediately, and (ii) if t time units have elapsed since p opt-delivered a mes-

sage m, and m has not been cons-delivered yet, p opt-amcasts m again, on its

sender’s behalf. Moreover, every process p keeps track of which messages it has

opt-delivered and which messages it has cons-delivered.

It is trivial to see that the equivalence property is ensured in case (i); for case

(ii), it comes from the validity property of optimistic atomic multicast (Propo-

sition 4) and from the fact that p is correct. In case m is decided twice (e.g.,

because p wrongly inferred that m’s source process q failed and decided to mul-

ticast it again on q’s behalf), every destination will consider only the the first time

m is decided, thus not violating atomic order.

Proposition 9. (OPTIMISTIC ORDER) If the given optimistic assumptions hold, the

optimistic order does not contradict the conservative order.

Proof. We prove here that the optimistic order matches the conservative order,

given the following optimistic assumptions: there are no failures nor suspicions

of failures, no message is cons-delivered before it is opt-delivered, and every

process p has estimated a wait time wp that is long enough. By “long enough”,

we mean that every message m sent to p with timestamp m.ts is received by p

before the clock at p reaches m.ts+ wp.

While there are no failures, every ensemble coordinator c will receive and

propose all messages addressed to that ensemble. Since wc is large enough,
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c will be able to propose all messages for that ensemble in the same order of

their initial timestamps; also, as we assume no failures or failure suspicions,

those messages will be decided in the same order in which they were proposed,

so the final timestamp of each of these messages will be the same as its initial

timestamp. The conservative delivery order in Ridge follows the final timestamp

order. As every process p has its wp large enough, no message will arrive late

at p for its optimistic delivery, so p will be able to opt-deliver all messages in

the correct initial timestamp order, which will be the same as the conservative

order.

5.4 Performance analysis

In this section, we show that Ridge achieves high throughput in a point-to-point

network. We first describe the performance model used here, then show that

having a distributor for each different message can lead to optimal throughput,

and then explain why it achieves low latency.

5.4.1 Performance model

Our performance model is based on the one used in [33] and [34]. In that

model, each process can send one message per round and receive one message

per round: if a single process p sends one message to a destination q, it will take

a single round for q to receive the message. Likewise, if q has n messages to re-

ceive, it will finish receiving after n rounds. Although this is a very good model

for throughput, it predicts latency as a function of throughput, which is not al-

ways realistic. For instance, in a 1 Gbps network with 50 µs average latency, a

process can send up to 125 megabytes per second, or approximately 125 bytes

per microsecond. If we consider 125-byte messages, the round length (time nec-

essary to send one message) would be 1 µs. This model predicts that the message

would take only 1 round (1 µs) to arrive at the destination. However, in reality

it would take around 50 µs (or 50 rounds) in such a network.

We extend this performance model to decouple latency from throughput as

follows. At each round k, every process can send only one message (we assume

that the underlying network provides only one-to-one communication) and can

also receive only one message. We define δ as the latency, in number of rounds,

for a message to arrive from a process p at a process q, where δ > 0. In more de-

tail, at each round k, every process pi can execute all or a subset of the following

steps:
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(1) compute a message for round k, m(i, k),

(2) send m(i, k) to one process,

(3) receive at most one message sent at round k−δ.

5.4.2 Throughput

We consider a system with n processes: p0, p1, ..., p(n−1). To simplify the expla-

nation, let pi be the same process as p(i mod n), so pn represents the same process

as p0, p(n+1) refers to p1, and so on. Say all processes broadcast a message at

the same time. Each process pi broadcasts mi to p0, ..., p(n−1). At the beginning,

process pi already has its own message mi, so at round 1, each pi sends mi to

p(i+1); at round 2, pi sends mi to p(i+2), and so on. At the (n−1)-th round, pi will

send mi to the last destination p(i+n−1). So, we have that, after n− 1 rounds, the

n processes will have each finished sending their messages to all n destinations,

resulting in a throughput of n/(n−1) messages sent per round. This shows that

each process sending its own message directly to all other processes achieves the

optimal throughput found in [34].

In the case of Ridge, we assume that Phase 1 of Paxos was pre-executed, so

we focus on Phase 2. We consider that all n processes in the system are learners,

so L = {p0, p1, ..., p(n−1)}. For this analysis, we also assume that no failures hap-

pen nor are suspected to happen, so the majority quorum Q = {a1, a2, ..., a( f +1)}

never changes, where a1 is the coordinator. We show that, if the coordinator a1

proposes one message per round, the throughput of the system is one message

decided per round, which is the maximum rate of messages any process can re-

ceive from the network. With Ridge, Paxos Phase 2 is executed by having each

acceptor ai, where 1 ≤ i ≤ f , receive one message m at each round and for-

ward it to a(i+1), along with id(m). Acceptor a( f +1) then sends m to ld , which is a

learner picked from L \Q at random (following a uniform distribution). Process

ld sends the message |L \Q| times, one for each of the remaining learners that

have not received the message yet.3 Each learner in L\Q is chosen to be a distrib-

utor 1/|L \Q| times, so each learner sends one message per round on average.

As every process receives one message and sends one message per round, we

conclude that the throughput of the system is one message decided per round.

3Since ld already has the message, it only sends it |L \Q|−1 times, but it is simpler to approx-

imate to |L \Q|. On the other hand, a( f +1) sends id(m) to all |L| learners of the system, letting

them know that m was decided, but we consider that the size of id(m) is negligible.
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5.4.3 Latency

Note that, following our modified performance model, the theoretical analysis

of maximum system throughput using a ring and using a different process as

distributor for each message remain both as n/(n− 1) messages per round. The

theoretical latency, though, is different. In the case of a ring, the first process after

the sender pi in the ring will receive mi after δ rounds, while the last process in

the ring will receive mi after δ(n− 1), which is the time necessary to complete

the broadcast. When using distributors, each process pi sends its message mi to

all others, one destination after the other, in n− 1 rounds. The first destination,

p(i+1) will receive mi in δ rounds. Process p(i+2), in δ + 1, and so on. The last

destination, p(i+n−1), will receive mi in δ+n−2 rounds, which is the time needed

to finish the broadcast. (This means a single communication step if we consider

only the network latency between processes, i.e., if we assume that the time

necessary to send a message is negligible.)

To give an example, suppose a wide-area system with 100 processes,

where each has a 1 megabyte/s connection, both for sending and receiv-

ing, in full-duplex. The average latency of the system is 100 ms and ev-

ery message has 1 kilobyte length. Following our model, n is 100, the

round length is 1 ms (since each process can send roughly one thousand mes-

sages per second), and δ is 100 rounds. Using distributors, we have latency

δ+ n− 2= 100+ 100− 2= 198 ms. Using a ring, we would have δ(n − 1) =

100× (100− 1) = 9900 ms.

With Ridge, it takes |Q|δ rounds for a message to pass through all the accep-

tors in the quorum Q and arrive at the distributing learner. From that point on,

the learners in L \ Q (i.e., the learners that are not acceptors in Q) take turns

being the distributor, so (δ + |L \Q| − 2) extra rounds are necessary for all re-

maining processes to receive the message. Therefore, the latency of Ridge is:

(|Q|+ 1)δ+ |L \Q| − 2.4

5.5 Experimental evaluation

We present here the results of experiments with Ridge, (Multi-)Ring Paxos [53,

55], LibPaxos5 and Spread [7]. In Section 5.5.1, we detail the environment used

and the parameters given to the different protocols. In Section 5.5.2, we show

4If learners are delivering messages from multiple ensembles, it may be necessary to wait for

∆ (maximum time between two consecutive null messages) more rounds.
5https://bitbucket.org/sciascid/libpaxos
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the results for broadcast (i.e., multicast with a single group). In Section 5.5.3,

we show how throughput scales with the number of multicast groups, for each

protocol. Finally, in Section 5.5.4, we show results for optimistic deliveries.

5.5.1 Environment setup and configuration parameters

We conducted all experiments on a cluster that had two types of nodes: (a) HP

SE1102 nodes, equipped with two Intel Xeon L5420 processors running at 2.5

GHz and with 8 GB of main memory, and (b) Dell SC1435 nodes, equipped with

two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB of main

memory. The HP nodes were connected to an HP ProCurve 2920-48G gigabit

network switch, and the Dell nodes were connected to another, identical switch.

Those switches were interconnected by a 20 Gbps link. The average round-trip

latency measured with ping was 133 µs. All nodes ran CentOS Linux 6.5 with

kernel 2.6.32 and had the Oracle Java SE Runtime Environment 8. Clocks were

kept synchronized with NTP for better results with Ridge and Multi-Ring Paxos

with multiple groups and to collect consistent measurements from different pro-

cesses in the system.

In all our experiments, there are clients and servers: each client multicasts a

message to a group of servers, receives a reply from one of the servers, then sends

another message, and so on. In all experiments with Paxos-based protocols, each

Paxos group had 3 acceptors, with in-memory storage. One of the acceptors was

also a proposer acting as coordinator and the servers were pure learners (i.e.,

being neither acceptors nor proposers). Each client message was sent to a coor-

dinator, which proposed the message in the next consensus instance. In the case

of Multi-Ring Paxos, we used a scheme similar to that of Ridge: there was a ring

ri for each multicast group gi and a ring rall for messages for multiple groups.

Each process subscribing to messages from gi would learn decision from ri and

rall. Null and skip messages were sent every ∆ = 1 ms. LibPaxos implements

Paxos in C. In LibPaxos, the coordinator sends each proposal directly to all ac-

ceptors, which then send their Phase 2B messages directly to the the learners.

Upon receiving a Phase 2B message from a majority of acceptors, the learners

declare the value as decided. This is done to minimize latency, although it may

be detrimental to the maximum throughput. All Paxos-based protocols used TCP

for communication.

As a reference, we included experiments with Spread [7], version 4.4.0. In

our Spread deployments, each server had a local Spread daemon, and all dae-

mons belonged to the same Spread segment (within a segment, daemons are

arranged in a ring and send message payloads using ip-multicast). Each server
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joined one multicast group and had clients connected to it. The message service

type used was “safe”, which is equivalent to uniform total order [25].

5.5.2 Broadcast: performance vs. number of destinations

We show here the results of experiments with a single multicast group (i.e.,

broadcast). The throughput we report is the maximum, which we find by in-

creasing the system load as long as the throughput increases. To report latency,

we look for the load that leads the system to its maximum power, which we de-

fine as the ratio between throughput and latency. As load increases, power tends

to increase as well, until latency increases faster than throughput, indicating that

the system is overloaded and that latency values are no longer reliable.
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Figure 5.1. Throughput (maximum) and latency (with the system at maximum

power) as the number of destinations increases. In the right-side graphs, bars and

dashes represent the 95th percentile and average latency values, respectively.

Ridge has roughly the same throughput achieved by Ring Paxos. Figure 5.1

(left) shows that, for 64 kB messages, both algorithms reach 0.8 Gbps in a 1 Gbps

network, with very little variation as the number of destinations increases. This

comes from the fact that both algorithms use throughput-optimal dissemination

techniques: a ring (Ring Paxos) and alternating distributors (Ridge). For 8 kB

and 200 B messages, there is a throughput drop as the number of destinations

increases. LibPaxos, which is implemented in C and is optimized for latency in

detriment of throughput, has the lowest throughput of all algorithms, except for

very small messages, where CPU is more likely to be the bottleneck than net-

work. Spread uses ip-multicast for disseminating messages, having a somewhat

constant throughput of 0.4–0.5 Gbps for 64 kB and 8 kB messages, and around
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40 Mbps for 200 B messages. With 64 kB messages and a single destination,

Spread had the same 0.8 Gbps throughput of Ridge. This is a special case for

Spread, as there is a single server, i.e., a ring with a single Spread daemon.

Figure 5.1 (right) shows latency results. Bars and dashes represent the 95th

percentile and average latencies, respectively. Among the protocols that use

Paxos, LibPaxos had the lowest latency in most cases. However, Ridge’s latency

was comparable to that of LibPaxos. The latency of Spread was not as sensitive

to message size as the latency of the other protocols tested, since Spread uses

ip-multicast to disseminate payloads. Still, Ridge has lower latency than Spread

in many cases. This happens because Spread uses a ring topology: although it

uses ip-multicast to disseminate the payload of each message, such a message

can only be safely delivered after relevant data has traversed the whole ring.

5.5.3 Multicast: performance vs. number of groups

In this section, we show how throughput scales with the number of groups in

the system. In our experiments, each group had four servers, and each message

was sent to a single group. Ideally, the aggregate throughput would scale lin-

early with the number of groups. We do not show multicast results for LibPaxos

because it only offers a broadcast API (by means of consensus with Paxos).

Figure 5.2 (left) shows the scalability of maximum throughput for each pro-
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power) for each multicast protocol as the number of groups increases. The

throughput of each protocol was normalized by the protocol’s throughput with
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95th percentile and average latency values, respectively.
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tocol, while latency is reported on Figure 5.2 (right). The maximum throughput

of each protocol is normalized by its absolute value with a single group, which

is shown in the graph. We can see that both Ridge and Multi-Ring Paxos have

very similar throughput scalability in all cases. This is expected, since both algo-

rithms use one separate group of Paxos acceptors for each multicast group. By

doing this, these protocols are able to scale the aggregate throughput by adding

independent sets of Paxos acceptors. This scheme allows Ridge and Multi-Ring

Paxos to have nearly ideal scalability for 64 kB messages. Ridge’s throughput

scaled 8 times, proportionally to the number of groups. These algorithms had

good scalability for 8 kB and 200 B messages, with throughput scaling 4 times

with 8 groups. Spread uses a single ring for all servers in the system, even if

they subscribe to different groups. Because of that, network was a bottleneck

and Spread’s throughput did not scale much beyond 0.5 Gbps with 64 kB and

8 kB messages. This result is similar to what Spread achieved for broadcast with

multiple destinations (here, each group has four destinations). Spread scaled

better with small messages, as network was likely not the bottleneck, and having

more groups allowed Spread’s throughput to increase.

5.5.4 Results for optimistic deliveries

We also benchmarked Ridge with optimistic deliveries enabled. We had a number

of clients sending 64 kB messages to a multicast group, where a server delivered

messages both conservatively and optimistically, comparing the sequences. A

mistake happened whenever the i-th conservative delivery in the server did not

match the i-th optimistic delivery. The results we found are displayed in Fig-

ure 5.3, where we show mistakes as a percentage of the optimistic deliveries.

We also highlight the load with which the system had maximum power, i.e., the

maximum ratio between throughput and latency (of the conservative delivery).

Figure 5.3 (top) shows that the optimistic delivery has significantly lower la-

tency than the conservative delivery, and this difference tends to increase with the

load on the system. This happens because each message is delivered optimisti-

cally after being received directly from its origin, while the conservative delivery

of a message only happens after the message has been decided in consensus.

In Figure 5.3 (bottom), we can see that the rate of mistakes tends to increase

with the load, which is expected: more messages lead to higher chance of out-

of-order optimistic deliveries. However, even with the system heavily loaded, the

percentage of mistakes never reached 3%.

We can see that delivering every message twice did not hurt throughput.

Ridge’s maximum throughput of 0.8 Gbps was the same found previously (Sec-
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tion 5.5.2) without optimistic deliveries. With optimistic deliveries enabled,

Ridge relies on the process multicasting a message to send (with reliable mul-

ticast [30]) the actual message payload to each Paxos learner directly. This is

done to create a route that bypasses consensus, allowing optimistic deliveries to

happen. When this happens, the acceptors do not send the message payload to

the learners, but only its id, so that the learners do not waste downstream band-

width to receive the same message twice. Although each individual client sends

messages multiple times (to the learners directly, then to the Paxos coordinator),

the throughput of the system remains unaltered.

5.6 Related work

In [34], the authors proved that ring topologies allow systems to achieve opti-

mal throughput. Some protocols that benefit from such topologies are LCR [34],

Totem [6], Spread [7] and Ring Paxos [53]. LCR arranges processes in a ring and

uses vector clocks to ensure total order. One disadvantage of LCR in comparison

to Ridge is that it requires perfect failure detection: suspecting that a correct pro-

cess failed is not tolerated. Totem is a ring-based protocol based on Transis [5]

that provides total order for messages. Spread, which is based on Totem, relies

on daemons interconnected as a ring to order messages, while message payloads

are disseminated using ip-multicast. Finally, Ring-Paxos deploys Paxos [48] pro-

cesses in a ring to maximize throughput. A problem of all such ring-based proto-

cols is that their latency is proportional to the size of the system times the network

point-to-point latency. S-Paxos [16] is an atomic broadcast protocol that achieves

high throughput by offloading the coordinator. Unlike Ridge, S-Paxos does not

implement atomic multicast and does not optimize for latency.
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Skeen’s algorithm (presented in [17]) is possibly the first atomic multicast

algorithm. Even though it is not fault-tolerant, it is genuine: processes communi-

cate only if they actually have application messages to exchange [32]. In Skeen’s

algorithm, the destination processes of a message m exchange timestamps and

eventually decide on m’s final timestamp. Messages are then delivered based

on their final timestamps. Several extensions have been proposed to Skeen’s

protocol, aiming to provide fault-tolerance [29, 32, 60, 63]. The basic idea of

such extensions is to replace each process with a fault-tolerant group of pro-

cesses that act as one single entity by means of consensus, as in state-machine

replication [46].

Multi-Ring Paxos [9, 55] achieves very high throughput by increasing the

number of multicast groups. Each group uses Ring Paxos to solve consensus and

message streams from different groups are merged as proposed in [4]. Ridge also

uses Paxos and deterministic merge, but it does not use a ring overlay. Instead,

Ridge employs alternating distributors, being also capable of reaching very high

throughput. Multi-Ring Paxos merges messages from multiple rings in a round-

robin fashion, assuming that all rings produce the same number λ of decisions

per time unit; if a ring does not have enough application messages to reach λ,

skip-messages are created. If a ring produces more than λ decisions per time

unit, performance likely deteriorates. Ridge’s merge function is different, using

timestamps taken from the processes’ system clocks; these timestamps are also

used to deliver messages optimistically. The merge functions of both Ridge and

Multi-Ring Paxos are sensitive to clock synchronization: the better the clocks are

synchronized, the lower the average latency is. Moreover, both the theoretical

analysis and our experiments show that Ridge has throughput similar to that of

Multi-Ring Paxos, with significantly lower latency for the conservative delivery,

and even lower latency for the optimistic delivery.

Regarding optimistic deliveries, optimistic atomic broadcast [58] relies on

messages being spontaneously delivered through the network in the same or-

der at all destinations. If this does not happen, the algorithm runs consensus

to ensure that a final, totally-ordered delivery is also done. In [70], the authors

propose a technique that approximates spontaneous ordering in a wide-area set-

ting. The idea is for each process to insert artificial delays in incoming mes-

sages, so that the resulting artificial latency between each process and a given

sequencer is the same. Fast Paxos [50] allows messages to be sent directly to

the acceptors (bypassing the coordinator), saving time. However, if the accep-

tors receive those messages in different orders, classic Paxos is run to ensure total

order. In [11], we proposed an optimistic atomic multicast algorithm. Such algo-

rithm is quasi-genuine, in the sense that processes only communicate if they “are
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able to” multicast messages to each other. The system’s configuration determines

which processes can communicate with one another, and the configuration can

change dynamically. Such optimistic atomic multicast protocol does not optimize

throughput, unlike Ridge.

5.7 Conclusion

This chapter introduced the optimistic atomic multicast class of ordering proto-

cols, and presented Ridge, an optimistic atomic multicast protocol that combines

high throughput, low latency, scalability and optimistic deliveries. Unlike previ-

ous works, Ridge achieves high throughput without resorting to ring topologies

nor to ip-multicast. Instead, it makes use of alternating distributors, which is

a technique capable in theory of achieving optimal throughput, while having

lower latency than a ring. We conducted a number of experiments that prove

that this also holds in practice, with different numbers of destinations and multi-

cast groups. Finally, we demonstrated that enabling optimistic deliveries allows

messages to be delivered faster with even lower latency than that of the con-

servative delivery. Despite the fact that each message is sent through different

routes and delivered twice, enabling optimistic deliveries does not reduce the

maximum throughput of the system.

In the next chapter, we show how optimistic atomic multicast can be used to

provide fast replies to client requests. Also, we show how the optimistic delivery

can be used to produce even faster replies, at the cost of server replicas possibly

making mistakes.

F f



Chapter 6

Fast Scalable State Machine

Replication

Anyone can build a fast CPU.

The trick is to build a fast system.

Seymour Cray

As we have seen in Chapter 4, the time spent with request ordering (e.g.,

atomic multicast) is a significant component of the response time in S-SMR. Low-

latency atomic multicast protocols, such as Ridge (described in Chapter 5), can

lower such a latency by reducing the time spent ordering requests. However,

it should be possible to provide even faster replies by relaxing the consistency

level. Such a faster, possibly inconsistent reply, could be provided in addition

to the final reply, so that clients could see the likely result of their requests in a

shorter time.

This chapter introduces Fast-SSMR, a state machine replication technique

that uses optimistic atomic multicast and provides an optimistic reply, which

is potentially inconsistent, while the client waits for the final, conservative re-

ply. Conservative replies can be used by clients to confirm optimistic replies.

Fast-SSMR extends S-SMR, providing the same guarantees of its predecessor, that

is, high availability combined with strong consistency and scalability. Conser-

vative replies are always guaranteed to be strongly consistent, while optimistic

replies rely on the underlying optimistic atomic multicast protocol not making

mistakes in the optimistic delivery.

Fast-SSMR implements two state machines at each server replica: an opti-

mistic state machine, which executes commands as they are optimistically de-

livered, and a conservative state machine, which waits for the conservative de-
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livery to execute each command. Previous optimistic replicated designs (e.g.,

[37, 41, 44, 54]) require replicas to recover from commands executed in the

wrong order, when the optimistic and the conservative orders do not match.

Fast-SSMR does not have this constraint: in case of order mismatches, a correct

state is copied from the conservative state machine to the optimistic one. More-

over, our technique generalizes optimistic execution to partitioned-state systems,

dealing with problems not faced in fully replicated optimistic approaches, such as

handling dependencies between states of different partitions and the exchange

of optimistic state.

In S-SMR, state machines of different partitions may have to exchange state

when executing commands that access multiple partitions. In Fast-SSMR, both

conservative and optimistic state machines execute each command, so Fast-SSMR

can operate in two modes: with and without optimistic state exchange. Without

exchanging optimistic state, the optimistic state machine waits for the conserva-

tive state machine to execute the command and receive the remote state; then,

the received conservative state is used by the optimistic state machines when

executing the command. Since the received conservative state is guaranteed to

be correct, this significantly simplifies the optimistic execution of multi-partition

commands. However, it may increase latency, as the optimistic state machines

wait for the conservative ones to execute the command. If optimistic state ex-

change is enabled, execution time is likely shorter, but the possibility of the re-

ceived state being invalid must be taken into account. An invalid optimistic state

can be received even if the local optimistic delivery order of optimistic atomic

multicast was correct, making the verification of the optimistic execution signif-

icantly more complex.

Applications that involve user interaction (e.g., social networks) are well-

suited for Fast-SSMR: before the conservative execution finishes, the client can

receive the likely result of the computation, based on the optimistic reply. Al-

though this may expose clients to temporary inconsistencies, we made this de-

sign choice based on the importance of response time for user experience and

business revenues [15, 18, 74]. Alternatively, Fast-SSMR could be configured in

a less aggressive way, providing only consistent replies. In such a case, servers

would execute commands as soon as they were optimistically delivered, but the

reply would be sent only if the optimistic delivery order was confirmed by the

conservative one. Latency would still be lower than the original S-SMR because

the reply to each command would be sent immediately after its conservative de-

livery. This would be possible because such a reply would have been already

precomputed, based on the (earlier) optimistic delivery.
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The dual state machine approach used by Fast-SSMR is service-independent

and does not require an environment that supports recoverable actions (e.g.,

transactions) or the implementation of service-specific recovery. Running two

state machines, however, requires additional processing and memory resources.

We judge that this cost in resources is offset by the flexibility of the approach

and the resulting simplification it brings in the design of applications. Moreover,

one could argue that running two state machines as separate threads makes bet-

ter use of multi-core architectures than SMR or S-SMR, which typically have a

single execution thread per replica. As for memory overhead, widely deployed

techniques, such as copy-on-write [68], can mitigate the effects of maintaining

two state machines. Finally, to minimize the cost of copying the conservative

state onto the optimistic one, Fast-SSMR copies only the divergent portion of the

state.

To assess the performance of Fast-SSMR, we extended Eyrie, our Java library

that implements S-SMR, and developed Chirper, which is a scalable Twitter-

like social-network application. In the experiments we conducted with Chirper,

throughput scaled with the number of partitions, in some cases linearly. These

experiments also demonstrated that the optimistic replies of Fast-SSMR have sig-

nificantly lower latency than the conservative replies. This comes at the cost of

a low number of inconsistent optimistic replies.

The remainder of this chapter is organized as follows. In Section 6.1, we

present baseline Fast-SSMR, a basic version of our optimistic technique. We

provide a detailed algorithm in Section 6.2. In Section 6.3, we extend the

baseline Fast-SSMR algorithm with a technique to speed up the execution of

multi-partition commands, by allowing partitions to exchange optimistic state

when executing multi-partition commands. Section 6.4 argues for the correct-

ness of the algorithm. Section 6.5 shows how Eyrie was extended to imple-

ment Fast-SSMR and describes Chirper, our scalable social network application.

Section 6.6 presents the results we have found with Chirper, also comparing

Fast-SSMR to S-SMR. Section 6.7 surveys related works in the area of optimistic

replication techniques. The chapter is concluded in Section 6.8.

6.1 Baseline Fast-SSMR

The baseline Fast-SSMR is inspired by previous optimistic designs to reduce the

latency of replication (e.g., [37, 41, 44, 54]). Some replicated systems share a

similar execution pattern to exploit optimistic message ordering: (a) commands

are exposed to the service before their order is final (i.e., optimistically deliv-
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ered); (b) commands are optimistically executed by the service while the or-

dering protocol determines the final order of the commands (i.e., conservative

delivery); (c) if the optimistic and the conservative orders do not match, com-

mands must be re-executed in the order established by the conservative delivery.

Like other optimistic replicated systems, baseline Fast-SSMR reduces latency by

overlapping the execution of commands with their ordering. Differently from

previous techniques, Fast-SSMR generalizes optimistic execution to partitioned-

state systems, while providing linearizability.

Optimistic replicated designs require the ability to recover from commands

executed in the wrong order. Previous approaches have tackled this issue by re-

lying on the recoverability of the environment in which the service is deployed

(e.g., transaction support [37, 41]) or by explicitly implementing a recovery pro-

cedure, either “physical recovery” (e.g., checkpoints [44]) or “logical recovery”

(e.g., application-dependent recovery [54]). We propose a different technique,

consisting of two state machines that run concurrently: a conservative state ma-

chine, which implements S-SMR and whose execution is always correct, and an

optimistic state machine, which relies on optimistic delivery to speed up the ex-

ecution. Repairing the state of the optimistic state machine, in case of com-

mands delivered out-of-order, boils down to copying the conservative state (or

part of it) over the optimistic state. This dual state machine approach is service-

independent and does not require an environment that supports recoverable

actions or the implementation of service-specific recovery, although it requires

additional processing and memory resources. Since current servers are typically

multi-processor, each state machine can be assigned to a different processor, less-

ening the processing overhead. The memory overhead is mitigated by widely de-

ployed OS techniques like copy-on-write [68]. Finally, we note that Fast-SSMR

only copies the divergent portion of the state when performing a repair.

Most of the complexity of the Fast-SSMR algorithm lies in repairing the op-

timistic state in case of order violations. When an order violation is detected,

the optimistic state machine pauses the execution of commands. To repair the

optimistic state, the conservative state machine needs to “catch up” with the op-

timistic state machine. From the equivalence property of optimistic atomic mul-

ticast (defined in Chapter 5), eventually every command delivered optimistically

by a correct process will be delivered conservatively by the same process. There-

fore, once the optimistic execution pauses, eventually the conservative state ma-

chine will catch up. After the optimistic state is repaired, any optimistically de-

livered command that is already included in the copied state is discarded.

Besides the repair procedure, the two state machines differ in another im-

portant aspect. Instead of exchanging optimistic state when executing a read(v)
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operation for a remote variable v, the optimistic state machine waits for the con-

servative state machine to execute the command and receive the conservative

state of v from the remote partition; the received conservative state of v is then

used by the optimistic state machine. This procedure simplifies the optimistic

state machine as only valid state is exchanged across partitions—we introduce

optimistic state exchange in Section 6.3. Both the optimistic and the conservative

state machines send replies to clients; the conservative reply for a command al-

lows the client to confirm the optimistic reply, likely to have been received earlier.

6.2 Detailed baseline algorithm

Algorithm 6 is executed by the conservative state machine. It is essentially the

same as that of S-SMR (Algorithm 1), except that it uses optimistic atomic mul-

ticast and it keeps track of the conservative execution order. Algorithm 7 details

the execution of the optimistic state machine, which shares variables of the con-

servative state machine’s algorithm. For brevity, we say that a command is “opt-

executed” and “cons-executed” meaning that it was executed by the optimistic

and the conservative state machines, respectively.

The core idea behind Algorithm 6 and Algorithm 7 is to compare the sequence

of commands executed by the optimistic state machine to the sequence of com-

mands executed by the conservative state machine, one by one. Those sequences

are kept in the ordered sets opt_executed and cons_executed, respectively. Com-

mands are appended to those sets as they are executed by the different state

machines, and are removed as the optimistic execution order is confirmed (or

a mistake is detected and the optimistic state is repaired). If the optimistic ex-

ecution order at a server was the same as the conservative one, the optimistic

state is correct. This condition suffices to determine that the optimistic state at a

server is correct because mistaken optimistic deliveries at a server cannot cause

the optimistic state of other servers to be incorrect—baseline Fast-SSMR does

not exchange optimistic state between servers when executing multi-partition

commands; instead, it uses the conservative state exchanged by the conserva-

tive state machines. This way, when the first element of both opt_executed and

cons_executed is the same, this means that both state machines reached the same

state after executing that command, which is removed from both sets. On the

other hand, if the first element of opt_executed differs from that of cons_executed,

this means that there was an ordering mistake and the repairing flag is set to True,

signaling that the optimistic state machine is under repair and no command will

be opt-executed before the repair is finished. To repair its state, the optimistic
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Algorithm 6 Conservative State Machine (Fast-SSMR)

1: Initialization:

2: cons_executed← empty ordered set

3: ∀C ∈K : rcvd_signals(C)← ;

4: ∀C ∈K : rcvd_variables(C)← ;

5: Command C is submitted by a client as follows:

6: C .dests← oracle(C)

7: opt-amcast(C .dests, C)

8: wait for reply

9: Server s of partition P executes command C as follows:

10: when cons-deliver(C)

11: reliable-multicast(C .dests, signal(C))

12: for each operation op in C do

13: if op is read(v) then

14: if v ∈ P then

15: reliable-multicast(C .dests, 〈v, C .id〉)

16: else

17: wait until v ∈ rcvd_variables(C)

18: update v with the value in rcvd_variables(C)

19: execute op

20: wait until rcvd_signals(C) = C .dests

21: send reply to client

22: append C to cons_executed

23: when reliable-deliver(signal(C)) from partition P
′

24: rcvd_signals(C)← rcvd_signals(C)∪ {P ′}

25: when reliable-deliver(〈v, C .id〉)

26: rcvd_variables(C)← rcvd_variables(C)∪ {v}

Algorithm variables:

K: the set of all possible commands

C .id: unique identifier of command C

oracle(C): function that returns a superset of the partitions accessed by C

C .dests: set of partitions to which C is multicast

signal(C): signal exchanged to ensure linearizability

rcvd_signals(C): set of all partitions that already signaled P regarding C

rcvd_variables(C): set of all variables received from other partitions in order to exe-

cute C

cons_executed: commands conservatively executed, in order of execution
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Algorithm 7 Optimistic State Machine (Fast-SSMR) (part 1)

1: Initialization:

2: opt_queue← opt_executed← empty ordered set

3: repairing← False, skip_opt← ;

4: ∀C ∈K : rcvd_opt_signals(C)← ;

5: Server s of partition P executes command C as follows:

6: when opt-deliver(C)

7: reliable-multicast(C .dests, opt_signal(C))

8: append C to opt_queue

9: when opt_queue 6= ; ∧ not repairing

10: remove first element C of opt_queue

11: if C 6∈ skip_opt then

12: append C to opt_executed

13: execute-opt(C)

14: when opt_executed 6= ; ∧ not repairing

15: C ← first element of opt_executed

16: if C is the first element of cons_executed then

17: // C was correctly opt-executed

18: remove C from opt_executed

19: remove C from cons_executed

20: else if cons_executed 6= ; then

21: repairing← True

22: when repairing ∧ ∃C : C ∈ opt_executed∩ cons_executed

23: remove C from opt_executed

24: remove C from cons_executed

25: when repairing∧ opt_executed= ;

26: copy conservative state onto optimistic state

27: skip_opt← skip_opt∪ cons_executed

28: cons_executed← ;

29: repairing← False

30: when reliable-deliver(opt_signal(C)) from partition P
′

31: rcvd_opt_signals(C)← rcvd_opt_signals(C)∪ {P ′}
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Algorithm 7 Optimistic State Machine (Fast-SSMR) (part 2)

32: Server s of partition P executes command C as follows:

33: function execute-opt(C)

34: for each operation op in C do

35: if op is read(v) then

36: if v 6∈ P then

37: wait until v ∈ rcvd_variables(C)∨ repairing

38: if repairing then

39: exit function

40: vopt← v : v ∈ rcvd_variables(C)

41: execute read(vopt)

42: else if op is write(v, val) then

43: execute write(vopt, val)

44: else

45: execute op

46: wait until rcvd_opt_signals(C) = C .dests

47: send optimistic reply to client

Additional variables:

vopt: the optimistic copy of variable v

repairing: tells whether the optimistic state is under repair

opt_queue: commands waiting to be opt-executed

opt_executed: commands whose optimistic execution has not been confirmed yet

opt_signal(C): signal exchanged to provide linearizability

rcvd_opt_signals(C): partitions that signaled P about C

skip_opt: commands to be skipped

state machine first waits until the conservative state machine has caught up with

the optimistic execution, that is, until opt_executed= ; (commands are removed

from that set as they are executed by the conservative state machine). This is sure

to eventually happen at any correct replica thanks to the equivalence property

of optimistic atomic multicast: any command that is opt-delivered is also cons-

delivered, and vice-versa. Once the command is cons-delivered, it is executed by

the conservative state machine.

Once the conservative state machine has caught up with the optimistic exe-

cution during a repair (i.e., opt_executed= ;), there are two possibilities:

(i) All commands that were cons-executed were also opt-executed, i.e.,

cons_executed= ;.
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(ii) Some command that was not executed by the optimistic state machine was

cons-executed, i.e., cons_executed 6= ;.

In case (i), both state machines executed the same commands, although in

different orders. The optimistic state machine then simply copies the conserva-

tive state and resumes execution with the next command opt-delivered. In case

(ii), not only the order was different, but also the set of commands executed.

To deal with this, those commands that were not opt-executed yet, but already

cons-executed, are put in a set to be skipped by the optimistic state machine. If

one of these commands changes the state of the service, the state copied from

the conservative state machine already contains any such changes. Reexecuting

them might cause the optimistic state to become incorrect. To illustrate how Al-

gorithm 7 works, suppose the following events happen at a replica (the command

execution sequences after each event are shown):

1. Command C3 is opt-executed.

opt_executed= (C3), cons_executed= ;

2. Command C1 is opt-executed.

opt_executed= (C3, C1), cons_executed= ;

3. Command C1 is cons-executed.

opt_executed= (C3, C1), cons_executed= (C1)

At this point, the first element of opt_executed (C3) is different from that

of cons_executed (C1). This triggers a repair and the optimistic state ma-

chine will pause, waiting until every command in opt_executed has also

been cons-executed. This is already the case for C1, which is removed from

both sets.

4. Command C2 is cons-executed.

opt_executed= (C3), cons_executed= (C2)

5. Command C3 is cons-executed.

opt_executed= ;, cons_executed= (C2)

As soon as C3 is executed, it is removed from both ordered sets, leaving

opt_executed empty. This means that the conservative state machine has

caught up with the optimistic one. However, C2 was not opt-delivered yet.

The conservative state is copied to the optimistic one, but C2 was already

executed (by the conservative state machine) against this state, so the op-

timistic state machine must skip C2 once it is delivered. For this reason,
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C2 is put in the skip_opt set, so that the optimistic state machine does not

execute it.

We now give an “operational” description of baseline Fast-SSMR. In Algo-

rithm 7, when a server opt-delivers a command (line 6) it appends the com-

mand to a queue (line 8) from which commands are later removed to be exe-

cuted (lines 10–13). For every read(v) operation during the execution of a com-

mand (line 34), the server checks whether v is local (line 36); if not, the server

waits until the value of v is received from a remote conservative state machine.

Once v has arrived, its value is used to update vopt, the optimistic copy of v (line

40). When reading (or writing) a variable v, the optimistic state machine reads

(or writes) vopt instead, thus accessing only the optimistic state (lines 41–43).

After all operations have been executed, the optimistic reply is sent to the client

that issued the command (line 47).

The rest of the algorithm deals with checking for order violations (lines 14–

21) and with repairing the optimistic execution (lines 22–29). The repairing flag

indicates whether the optimistic state machine is in normal operation or in re-

pair mode. During normal operation, the algorithm keeps verifying the optimistic

execution order, saved in opt_executed, by comparing it with the conservative ex-

ecution order, kept by the conservative state machine in cons_executed. To verify

that the optimistic and the conservative orders match, the first command of those

sequences are compared: if they are the same, the command is removed from

both sequences (lines 16–19); if not, the repair procedure is initiated by setting

the repairing flag to True (lines 20 and 21), which also pauses the optimistic

execution (line 9).

The repair procedure consists of waiting until all opt-executed commands

have been cons-executed. Until then, there are two possibilities for each com-

mand C: (i) C was opt-executed out-of-order, or (ii) C was cons-executed and

not opt-executed yet. Case (i) is handled by removing C from both opt_executed

and cons_executed (lines 22–24). In case (ii), at the end of the repair procedure

(line 25), that is, when opt_executed is empty, C remains in cons_executed, since

it was never opt-executed. C is then moved to skip_opt (line 27), so that it will

not be opt-executed after the repair is complete. This is done because at the end

of a repair, the optimistic state is overwritten with the conservative state (line

26), which is already based on C . Finally, the repairing flag is set to False so that

the optimistic execution can resume.

One observation is that the repair algorithm presented here could be refined,

by taking into account that some order violations do not cause inconsistencies.

For instance, commands that access different sets of variables could be executed
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in any order. However, accounting for such fine-grained checks would increase

the complexity of the algorithm. The algorithm we presented works for any kind

of commands and is fairly easy to understand.

6.3 Optimistic state exchange

In the baseline Fast-SSMR, partitions exchange only conservative state when ex-

ecuting multi-partition commands. This simplifies the optimistic state machine

since no provision is needed to cope with invalid state received from another par-

tition. Optimistic state exchange speeds up the execution, at the cost of a more

complex design, needed to detect and handle invalid state exchanged among

partitions due to the possibility of messages delivered out of order.

Figure 6.1 illustrates how exchanging optimistic state increases the complex-

ity of the optimistic execution. The figure shows servers s1, s2 and s3, respec-

tively of partitions P1, P2 and P3, as they execute optimistically and conserva-

tively commands C1, C2 and C3. Server s1 optimistically delivers and executes C2

before C1, but s1 conservatively delivers and executes commands C1 before C2.

Because of this, s1 sends invalid state to s2, which also executes C2. Even though

the optimistic and conservative delivery orders match at s2, s2 reaches an invalid

state after executing C2. Even commands that were optimistically delivered in

the correct order in all replicas can be “contaminated” by remote invalid states.

Consider, for example, command C3, which involves s2 and s3. As we can see, the

optimistic and conservative delivery orders match in both servers. The problem

is that C3 was executed by s2 after C2, which in turn was executed based on an

invalid state received from s1. This may cause the state read by C3 from P2 (and

sent to s3) to be invalid.
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Figure 6.1. Invalid optimistic states propagated across partitions.

For a server s to determine that the optimistic execution of a command C is

correct, s must (i) optimistically deliver C in the correct order and (ii) receive a



82 6.4 Correctness

confirmation from each remote partition involved in the command that the state

s received from the partition is valid. Moreover, to handle contaminated states,

commands that precede C must be confirmed as well. For this reason, a server s

only sends a confirmation regarding the local execution of command C to other

partitions after the execution of every command C ′ executed by s before C is

confirmed. If a server detects that the optimistic execution of a command was

based on invalid state, the server switches to repairing mode and proceeds as

described in Section 6.2.

6.4 Correctness

In this section, we argue that the Fast-SSMR algorithm ensures linearizability

and is deadlock-free.

Proposition 10. Fast-SSMR ensures linearizability.

Proof. The conservative state machine guarantees linearizable executions since it

implements S-SMR. The optimistic state machine (Algorithm 7) ensures lineariz-

ability for optimistic replies, as long as the optimistic delivery order matches the

conservative one. Both the conservative and optimistic state machines exchange

signals in order to provide linearizability, as explained in detail in Chapter 4.

Proposition 11. Fast-SSMR is deadlock-free.

Proof. There are two situations in which a state machine pauses and waits for

some event: (i) when waiting for a signal and (ii) when waiting for the value of

a variable to execute a multi-partition command.

Both optimistic and conservative deliveries have the agreement property (as

described in Chapter 5). Therefore, when executing a command C , all correct

replicas of all partitions in C .dests deliver C . Each replica will reliable-multicast

a signal to all servers in C .dests as soon as C is delivered. Therefore, from the

validity property, every replica will reliable-deliver at least one signal from each

partition in C .dests. This means that no replica will block forever waiting for a

signal. This argument is valid for both the optimistic and the conservative state

machines in case (i).

As for case (ii), let us first assume that the optimistic order matches the con-

servative order, as the argument is the same for both state machines. Every

multi-partition command C delivered by some server is delivered by all correct

servers in C .dests. Each variable v accessed by C will be reliable-multicast by at
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least one server of the partition that contains v. Now, say command C accesses

variables in multiple partitions. It is impossible to have servers s1, ..., sn, such

that each server si (of partition Pi) waits for a variable stored in Pi+1, where

i ∈ {1, ..., n − 1}, while sn waits for a variable stored in P1. This follows from

the fact that C is deterministic and all servers execute the same operations in

the same order: for each such operation, if the operation is read(v), at least

one server of v’s partition will send its value to the other servers executing C .

Therefore, there is no deadlock in the conservative state machine. Also, there

is no deadlock in the optimistic state machine when the conservative and the

optimistic delivery orders match.

If the optimistic delivery order does not match the conservative delivery order,

it is possible that an optimistic state machine sopt (at server s) waits for a variable

that will never be sent from a remote partition. For example, say sopt, due to a

previous optimistic ordering mistake, has a variable index with value i, while its

correct value is j, where j 6= i. Then, sopt delivers C , which reads index and, then,

reads vindex. Since index is i, sopt tries to access vi, which belongs to partition Pi,

thus waiting for its value to be received from a server in Pi. However, this value

will never be sent: no conservative state machine executes C with index equal to

i. Therefore, sopt never receives vi. To circumvent this problem, Algorithm 7 stops

waiting if an ordering mistake is detected (i.e., when repairing is set to True).

When a mistake is detected, the optimistic state machine stops the execution of

C (i.e., it exits the execute-opt function) and the optimistic state is repaired. This

prevents deadlocks from happening in case (ii), even when optimistic delivery

mistakes happen. In this case, s will not produce an optimistic reply for C , but

only a conservative one.

6.5 Implementation

In this section, we describe how Eyrie was extended to implement Fast-SSMR,

then we detail Chirper, our social network application built on Eyrie. Eyrie and

Chirper were implemented in Java.

6.5.1 Extending Eyrie

To implement Fast-SSMR, Eyrie creates an optimistic copy of every PRObject

instance. When a command is optimistically delivered, it is executed against

the optimistic copy of the objects, i.e., against the optimistic state. Also, there
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are now two threads in Eyrie that call the executeCommand method of the

StateMachine class: the conservative state machine thread, and the optimistic

state machine thread. This is transparent to the service designer, who simply

writes one implementation of the method executeCommand, accessing objects

as if there was a single copy of each of them. Internally, when Eyrie intercepts

the method call to PRObject instances, it determines which thread (conservative

or optimistic) made the call and redirects the method invocation to the proper

(conservative or optimistic) copy of the object. This was implemented with the

Java reflection API. Class OptimisticStateMachine is responsible for perform-

ing and verifying the optimistic execution, and also repairing the optimistic state

when necessary. To repair the optimistic state, only objects that might have been

affected by the ordering mistake are copied from the conservative state.

6.5.2 Chirper

We implemented the Chirper service on top of Eyrie, providing an API similar to

that of Twitter. Twitter is an online social networking service in which users can

post 140-character messages and read posted messages of other users. The API

consists basically of:

• post(long uid, String msg): user with id uid publishes message msg.

• follow(long uid, long fid): user with id uid starts following user with

id fid.

• unfollow(long uid, long fid): user with id uid stops following user

with id fid.

• getTimeline(long uid): user with id uid requests messages of all people

the user follows.

Chirper makes use of Fast-SSMR, so each command can have two replies: an

optimistic reply (fast, but possibly inconsistent) and a conservative reply (slower,

but always correct). Any execution of Chirper is linearizable with respect to

conservative replies. With respect to optimistic replies, the execution may violate

linearizability if the optimistic delivery order of a message does not match its

conservative delivery. This means that a client of the service may observe an

inconsistent state until the conservative reply arrives and rectifies the state seen

by the client. An online social networking service is well-suited for Fast-SSMR,

since this kind of application can tolerate brief inconsistencies in exchange for

faster replies.
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State partitioning in Chirper is based on user id. Chirper’s oracle uses a

hash function h(uid) that returns the partition that contains all up-to-date in-

formation regarding user with id uid. Taking into account that a typical user

probably spends more time reading messages (i.e., issuing getTimeline) than

writing them (i.e., issuing post), we decided to optimize getTimeline to be

single-partition. This means that, when a user requests her timeline, all mes-

sages should be available in the partition that stores that user’s data, in the form

of a materialized timeline (similar to a materialized view in a database). To make

this possible, whenever a post command is executed, the message is inserted into

the materialized timeline of all users that follow the one that is posting. Also,

when a user starts following another user, the messages of the followed user are

inserted into the follower’s materialized timeline as part of the command execu-

tion; likewise, they are removed when a user stops following someone. Because

of this design decision, every getTimeline command accesses only one parti-

tion, follow and unfollow commands access at most two partitions, and post

commands access up to all partitions.

One detail about the post command is that it must be multicast to all par-

titions that contain a follower of the user issuing the post. The Chirper client

cannot know for sure who follows the user: it keeps a cache of followers, but

such a cache can become stale if a different user starts following the poster. To

ensure linearizability, when executing the post command, the Chirper server

checks if the corresponding command was multicast to the proper set of parti-

tions. If that was the case, the command is executed. Otherwise, the server sends

a retry(γ) message to the client and proceeds to the next command. Upon re-

ceiving the retry message, the client multicasts the command again, now adding

all partitions in γ (a set of partitions) as destinations for the next attempt. This

repeats until all partitions that contain followers of the poster deliver the com-

mand. This is guaranteed to terminate because partitions are only added to the

set of destinations for retries, never removed. Therefore, in the worst case sce-

nario, the client will retry until it multicasts the post command to all partitions

of the system. Note that the optimistic state machine may wrongly infer, based

on an incorrect optimistic state, that the destination set of the command is in-

complete. Because of that, only the conservative state machine tells the client to

retry a command: if the command is not multicast to all accessed partitions, the

optimistic state machine skips the command, but does not send a retry message.
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We compared Chirper to Retwis,1 which is another Twitter clone. Retwis

relies on Redis,2 a key-value store well-known for its performance. Redis offers

asynchronous replication, which does not ensure linearizability. The Twitter API

is implemented in the Retwis client as follows. The post commands update the

list of all messages ever posted, the list of message ids of the user who is posting,

and the materialized timeline (a list of message ids) of each follower of the poster.

The follow and unfollow commands update the list of people followed by the

user issuing the command, and the list of followers of another user. Finally, the

getTimeline command accesses only the materialized timeline of the user who

issued the command.

Retwis is similar to Chirper in that both applications precompute each user’s

timeline, executing getTimeline commands as fast as possible, at the expense of

other commands. However, even with a single server, Retwis does not ensure the

same level of consistency as Chirper: when executing a post command, getting

the followers of a poster and adding the message to each of their materialized

timelines are completely separate requests to Redis, and they can be interleaved

with follow and unfollow commands. This means that a user may have, in her

timeline, a message posted by someone who she does not follow anymore, or

vice-versa. Each post command in Chirper is a single, atomic operation, and

such interleaves are impossible to happen in the conservative state. Even if such

an inconsistency happens in the optimistic state, it will be due to an ordering

mistake, and the optimistic state will be repaired as soon as the mistake is de-

tected. Moreover, the client will always receive consistent conservative replies

from the Chirper servers.

6.6 Performance evaluation

In this section, we assess the performance of Fast-SSMR, in terms of through-

put scalability and latency. For this purpose, we conducted experiments with

Chirper. We evaluated Fast-SSMR’s latency improvement over S-SMR and the

corresponding rate of mistaken replies received by clients. We also compared

the throughput scalability of both techniques to show that Fast-SSMR does not

need to sacrifice throughput in order to reduce latency. For this reason, Chirper

was deployed using both S-SMR and Fast-SSMR. We compare Chirper results to

Retwis, a Twitter-clone application backed by a Redis key-value store.

1http://retwis.antirez.com
2http://redis.io
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6.6.1 Environment setup and configuration parameters

We ran all our experiments on a cluster that had two types of nodes: (a) HP

SE1102 nodes, equipped with two Intel Xeon L5420 processors running at 2.5

GHz and with 8 GB of main memory, and (b) Dell SC1435 nodes, equipped with

two AMD Opteron 2212 processors running at 2.0 GHz and with 4 GB of main

memory. The HP nodes were connected to an HP ProCurve Switch 2910al-48G

gigabit network switch, and the Dell nodes were connected to an HP ProCurve

2900-48G gigabit network switch. Those switches were interconnected by a 20

Gbps link. All nodes ran CentOS Linux 6.3 with kernel 2.6.32 and had the Or-

acle Java SE Runtime Environment 7. Before each experiment, we synchronize

the clocks of the nodes using NTP. This is done to obtain accurate values in the

measurements of the latency breakdown involving events in different servers.

In all our experiments, clients submit commands asynchronously, that is, each

client can keep submitting commands even if replies to previous commands have

not been received yet, up to a certain number of outstanding commands. Trying

to issue new commands when this limit is reached makes the client block until

some reply is received. Replies are processed by callback handlers registered by

clients when submitting commands asynchronously. In the case of Fast-SSMR,

there were two callback handlers for each request: one for the conservative reply,

and one for the optimistic reply. We allowed every client to have up to 25 out-

standing commands at any time. By submitting commands asynchronously, the

load on the service can be increased without instantiating new client processes.

We used two kinds of workloads: Timeline (all issued requests are

getTimeline) and Mix (7.5% post, 3.75% follow, 3.75% unfollow, and 85%

getTimeline). We compared Chirper deployed with Fast-SSMR and with S-SMR.

We deployed Retwis with a single Redis server, while Chirper was run with

1, 2, 4 and 8 partitions, with 3 replicas per partition. In our experiments

with Chirper, we use Ridge for multicast in experiments with both S-SMR and

Fast-SSMR. We use 3 acceptors per Ridge ensemble, with in-memory storage.

6.6.2 Latency improvement

In this section we evaluate the latency improvement brought by Fast-SSMR. We

report latency for five algorithms: S-SMR, Conservative, Baseline Optimistic,

Fully Optimistic (i.e., with optimistic state exchange enabled), and Retwis as

reference. Retwis relied on a non-fault-tolerant stand-alone Redis server. Since

we are interested in measuring latency in the absence of contention, we run these

experiments with a low load.
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Figure 6.2. Latency components for different workloads, partitionings and levels

of optimism.
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Figure 6.3. Cumulative distribution function (CDF) of latency for different work-

loads, partitionings and levels of optimism.

Figure 6.2 shows the latency components for each algorithm tested. For each

command C , the Multicasting component is the time between the moment when

the client multicasts C and the moment when the server s that replies to C cons-
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or opt-delivers the command and puts it in an execution queue; Waiting is the

time from when s delivers C until when s starts executing it; Executing is the

time from when s starts to execute C to when the client receives the reply. We

can see that the multicast time of the optimistic approaches (i.e., Baseline and

Fully Optimistic) is significantly lower (in proportion) than that of S-SMR and

the conservative one of Fast-SSMR, which happens thanks to the lower latency of

the optimistic delivery. The Waiting component is nearly zero because the system

is not saturated, so commands do not have to wait very long to be executed—

when there are too many commands, they are put in a queue to be executed

later. The execution time comprises the time it takes to execute the command it-

self, including any coordination across partitions. We can see that the Executing

component is shorter for the Timeline workload, which happens because all re-

quests are single-partition, requiring no cross-partition coordination. In the Mix

workload, many requests are multi-partition, requiring exchange of both signals

and state between servers.

The optimistic state exchange optimization (Fully Optimistic) shows some la-

tency improvement over the Baseline approach, although this is visible only as

the number of partitions increases (i.e., eight partitions, in Figure 6.2, bottom

right). In Figure 6.3, we can see the cumulative distribution functions (CDFs) of

latency for each workload and partitioning. The latency difference between the

different techniques becomes more evident, as both optimistic latencies are sig-

nificantly lower than those of S-SMR and Conservative. As for the optimistic state

exchange, it is expected to reduce latency only for the Mix workload with more

than one partition, and we see improvements with eight partitions. Neverthe-

less, the Fully Optimistic latency is roughly the same as the Baseline Optimistic

latency in the worst case.

6.6.3 Throughput scalability

In this section, we evaluate the throughput scalability of Fast-SSMR, whose goal

is to scale throughput while providing low-latency replies, and we compare it

to the original S-SMR. For this purpose, we implemented Chirper with both

replication techniques, using the baseline algorithm for Fast-SSMR.

Figure 6.4 (left) shows throughput and latency results for Chirper when de-

ployed with S-SMR. Throughput values for each workload are normalized by

the throughput of Chirper with a single partition, whose absolute value (in thou-

sands of commands per second, or kcps) is shown in the graph. Figure 6.4 (right)

presents the corresponding results for Chirper deployed with Fast-SSMR. Both

optimistic and conservative latencies are shown: the solid bottom of each bar
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Figure 6.4. Scalability results for Chirper, implemented with S-SMR and Fast-

SSMR, with 1, 2, 4 and 8 partitions. Retwis results are also shown. For each work-

load, the throughput was normalized by that of Chirper with a single partition

(absolute values in thousands of commands per second, or kcps, are shown).

Latencies reported correspond to 75% of the maximum throughput.

represents the latency of the optimistic replies, while the hatched top represents

the difference between the two latencies; the sum of the two is the conservative

latency.

We can see that having two state machine threads (one conservative and one

optimistic) running on each of our multi-core servers had very little impact on the

maximum throughput of the system, in comparison to S-SMR. The slight decrease

in throughput observed may be explained by the fact that, when the optimistic

state machine performs a repair and copies the state from the conservative state

machine, the latter is locked for a brief period to allow a consistent state to be

copied from it. The figure also shows that the conservative latency of Fast-SSMR

is roughly the same as S-SMR, which means that both approaches are able to

provide consistent replies within the same time. Moreover, we can see that there

is a significant latency reduction by having optimistic execution, at the cost of

possibly having some mistaken optimistic replies. There are no mistaken replies

for the Timeline workload because getTimeline requests are read-only. Thus, if

there are no other requests, getTimeline requests can be executed in any order

without affecting the final state of the service or the replies sent back to clients.

For an incorrect reply to be received, the workload must contain both requests

that read and requests that update the service state, as in the Mix workload. Fi-

nally, the figure shows that, with both replication techniques, Chirper scales with

the number of partitions, reaching a higher throughput than Retwis already with

two partitions for the Timeline workload and with eight partitions for the Mix
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workload. It is worth noting that Chirper ensures linearizability, unlike Retwis.

The optimistic latency of Chirper, for the Timeline workload, is significantly

lower than the conservative one (between 30 and 50 percent). This happens

because the Timeline workload is composed solely of single-partition requests,

not requiring coordination between partitions. This is not the case for the Mix

workload, which contains requests that require state exchange. When executing

such a request, the (Baseline) optimistic state machine has to wait until a re-

mote state arrives from a remote conservative state machine. This extra waiting

reduces the difference between the optimistic and conservative latencies. Even

then, the optimistic latency is still lower (between 20 and 45 percent) than the

conservative one.

The rate of mistakes is calculated by dividing the number of mistakes (opti-

mistic replies that differed from the conservative replies) by the total number of

optimistic replies received. We can see that, in all experiments, the percentage

of mistaken replies was fairly low. The percentage of mistakes can be controlled

by setting more or less aggressive parameters for the optimistic atomic multicast

algorithm, with a trade-off between latency improvement and number of correct

replies. For instance, increasing the wait time of optimistic atomic multicast (ex-

plained in Chapter 5) would decrease the rate of mistakes at the cost of higher

optimistic latency.

6.7 Related work

Fast-SSMR uses optimism to provide faster replies, but other works have used

optimistic execution before. In [27, 54], optimism is implemented in the com-

munication layer, which allows replicas to deliver messages early. In Eve [40],

replicas execute commands following a partial order that should result in an

identical final state for all replicas. After execution, the states are compared and,

if they differ, commands are re-executed sequentially. The approach proposed

in [52] uses speculative execution in the context of fully replicated state ma-

chines. It assumes that commands are independent (i.e., they do not access the

same data item) to accelerate execution; when this assumption does not hold,

the execution is rolled back and the command has to be multicast for execution

again. An optimistic atomic broadcast protocol [58] is used in [37, 41] to certify

update transactions. In [37], the system ensures snapshot isolation [51] in a par-

titioned database. Out-of-order optimistic deliveries may cause transactions to

abort, but only if the out-of-order transactions conflict and one of them already

started executing.
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In Zyzzyva [44], each command is sent to a primary replica, which forwards

it to a number of replicas. Those replicas immediately execute the command and

send a reply to the client, along with an execution history. If the client receives

enough replies with the same history, the order is guaranteed to be correct; oth-

erwise, the client informs the replicas about the inconsistency, forcing them to

execute a conservative total order protocol. MDCC [45] makes uses of General-

ized Paxos [49] to reduce the number of round-trips between data centers when

executing transactions. Generalized Paxos extends Fast Paxos [50], and both are

optimistic consensus protocols that may achieve consensus in fewer communi-

cation rounds than Paxos. MDCC performs well with commutative operations

and provides read-committed isolation [3]. The authors argue that the protocol

could be extended to provide stronger consistency levels, up to serializability.

There are three main differences between these previous works that use spec-

ulative execution and what we propose here. First, Fast-SSMR accommodates

any kind of (deterministic) multi-partition commands, which requires a fairly

sophisticated repair procedure in case of mistakes of the optimistic delivery. Sec-

ond, in our dual state machine approach, the replica never stops executing com-

mands or sending replies to clients; only the optimistic state machine may pause

and not reply to some commands in case of an ordering mistake. Third, no roll-

back is necessary when repairing the optimistic state: it is simply copied from

the conservative one; most complexity lies in determining which commands the

optimistic state machine will execute after the repair is done.

6.8 Conclusion

This chapter introduced Fast Scalable State Machine Replication (Fast-SSMR), a

technique that adds optimistic execution to S-SMR. Fast-SSMR differs from pre-

vious works because (i) it does not require the application to be able to rollback

executions, (ii) it allows any kind of workload (composed of deterministic com-

mands) and any kind of partitioning of the state, and (iii) when a mistake is

detected, the conservative state machine keeps handling commands and sending

replies. The cost of this technique is to have two state machines running in par-

allel at each replica: a conservative one and an optimistic one. Our experiments

show that the optimistic replies have significantly lower latency than the con-

servative replies, while throughput and latency of the conservative replies were

roughly the same as S-SMR.

F f



Chapter 7

Conclusion

At the end, if you fail, at least you did something interesting,

rather than doing something boring and also failing.

Barbara Liskov

Online services have recently reached scales never seen before. For instance,

Facebook has over a billion users [1], while Google has reported to have nine

hundred million active users for its Gmail service alone [2]. There is a clear

demand for systems that are designed to scale. A system that ensures strong

consistency while being able to scale would be ideal. Such a system would make

designing services and clients simpler.

Previous techniques provide interesting solutions that allow systems to scale

largely, but they do not ensure linearizability. Granted, in many cases lower

levels of consistency can be tolerated, but there are services that require the

strongest level of consistency. Even if they do not, designing applications to run

on a linearizable system is significantly simpler than dealing with locking, abort-

ing, retrying and so on, which is done to cope with less consistent underlying

replication techniques.

In this work, we combine scalability with linearizability by introducing state

partitioning to state machine replication. This way, servers of different partitions

can execute independently. State machine replication relies on atomic broadcast,

which does not scale. For this reason, we chose to build our scalable state ma-

chine replication approach on top of atomic multicast instead. Although scalable,

atomic multicast has higher latency than atomic broadcast [63]. To improve la-

tency without sacrificing throughput, we developed a novel atomic multicast pro-

tocol. To further reduce response time, we provide additional, optimistic replies

to client requests.

93
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7.1 Research assessment

This thesis presents four contributions: (i) Scalable State Machine Replication

(S-SMR), (ii) Optimistic Atomic Multicast (Opt-amcast), (iii) Ridge, an opti-

mistic atomic multicast protocol, and (iv) Fast Scalable State Machine Replication

(Fast-SSMR). These contributions can be divided in two categories: (i) and (iv)

are replication techniques, while (ii) and (iii) deal with message ordering.

Scalable State Machine Replication. S-SMR [12] is a replication technique

built around the idea of partitioning state, while ensuring that every execution,

regardless of the number of partitions accessed by each command, is lineariz-

able. The goal of S-SMR is to increase throughput linearly with the number of

partitions, provided that commands are independent (and are equally distributed

among partitions). In order to achieve this, S-SMR uses atomic multicast to guar-

antee consistent command ordering, while additional synchronization is done to

prevent non-linearizable executions.1 For commands that access multiple par-

titions, servers may have to exchange data items. To minimize the complexity

of designing such a partitioned service, Eyrie was implemented allowing devel-

opers to abstract away state partitioning and synchronization among servers of

different partitions. Our experiments show that, for workloads composed mostly

of independent commands, throughput does scale with the number of partitions.

Optimistic Atomic Multicast. Opt-amcast [11] is a class of atomic multicast

protocols that deliver messages with probabilistic atomic order, which is faster

to ensure than proper atomic order. For every message multicast, there are two

deliveries: a conservative one, with the same properties of atomic multicast,

and an optimistic one, which is faster, but may violate order. If the optimistic

assumptions (which depend on the specific implementation of Opt-amcast) hold,

the optimistic delivery order is the same as the conservative order; if not, they

may contradict each other, in which case we say that the optimistic delivery made

a “mistake”. Such a class of protocols allows some computation to be done based

on the optimistic delivery, which can lower response time.

Ridge. To improve the latency of atomic multicast, while preserving high

throughput and also implementing optimistic atomic multicast, we developed

Ridge [13]. It is based on the observation that a ring overlay is not necessary

1In P-SMR [56], we also used atomic multicast, but to allow multi-threaded execution of

commands in state machine replication, with no state partitioning.
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to achieve optimal theoretical throughput in a network. Instead, one can use

alternating distributors to maximize throughput. Ridge proposes to optimize

Phase 2 of Paxos, by disseminating proposed values with alternating distributors.

To implement atomic multicast on top of Paxos, Ridge uses a deterministic merge

procedure [4], similarly to what is done with Multi-Ring Paxos [55]. Optimistic

deliveries are done with a scheme similar to the one we proposed in [11]. Both

with a theoretical analysis and an experimental evaluation, we demonstrated that

Ridge has high throughput (as high as that of previous techniques optimized for

throughput), and low latency.

Fast Scalable State Machine Replication. To make use of the optimistic de-

liveries of optimistic atomic multicast, we devised Fast Scalable State Machine

Replication, or Fast-SSMR [14]. It allows potentially inconsistent, albeit faster

replies to be seen by clients. Such fast replies are given in addition to the final

replies, which are guaranteed to be always correct. Fast-SSMR consists of run-

ning two state machines at each replica: an optimistic one and a conservative

one. The technique relies on Opt-amcast: when a command is optimistically de-

livered, it is immediately executed by the optimistic state machine, which sends

an optimistic reply back to the client. The conservative state machine executes

the same command only when it is conservatively delivered, likely to happen

later. If the conservative and optimistic delivery orders match, the optimistic re-

ply seen by the client is correct; otherwise, the client will be aware of the mistake

when it notices the difference between the two replies, while the optimistic state

machine at the server repairs its state based on the conservative state machine.

We extended Eyrie to implement Fast-SSMR, and implemented a social network

application on top of it. The results we found demonstrate that the latency of

the conservative replies of Fast-SSMR are roughly the same as those of S-SMR,

and that the optimistic replies are significantly faster than the conservative ones.

7.2 Future directions

The aim of this thesis was to explore the space of techniques for scalable, strongly

consistent replication and communication primitives. However, many questions

remain open, so we point here at possible research directions.

Recovery in S-SMR. For this work, we have assumed a crash-stop model, that is,

we assumed that once a process fails, it does not come back online. Although this

assumption makes replicating services simpler, ideally a service should be able to
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accommodate the recovery of a crashed server. To efficiently implement recovery

in the context of S-SMR, one should deal with checkpointing, that is, saving to

stable storage the state of a server at a given point in time. How to implement

a checkpoint in the context of partitioned-state state machine replication is a

question that requires further investigation.

Trimming in atomic multicast. By restoring a checkpoint, a server would not

need to atomically deliver again commands that had been delivered before the

checkpoint was taken. Those commands could then be safely discarded—i.e.,

trimmed—from any logs kept in the ordering layer (e.g., the Paxos acceptors for

Paxos-based atomic multicast protocols). For broadcast protocols, where there

is a single totally ordered sequence of delivered messages, trimming is relatively

simple: given a certain message (e.g., a command that started a checkpoint in

SMR), all messages that precede it can be trimmed. However, such a total order

does not necessarily exist with atomic multicast, and deciding which messages to

discard is not as simple. This has been discussed in [9], but trimming in genuine

atomic multicast [32] remains an open question.

Dynamic partitioning. This thesis assumes that each variable that composes

the service state is statically assigned to a partition. With Chirper, the partitions

accessed by a post command issued by a user depend on who follows that user

when the command is executed, and this can change dynamically. However, even

in the case of Chirper, the partition that contained each variable was still statically

defined. Letting variables move around partitions allows interesting features to

be implemented, such as load balancing and optimizing data locality for users as

access patterns change. For instance, if two users start interacting a lot, it would

make sense to move their data to the same partition to reduce response time.

Optimal-throughput, optimal-latency, genuine atomic multicast. An atomic

multicast protocol that had optimal latency, while providing optimal throughput,

would be the ideal primitive for S-SMR to build on, assuming such a protocol

exists. Moreover, when using genuine atomic multicast, processes would only

communicate if they actually had messages to exchange, so such a protocol would

scale as much as the messages were independent.
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