
DMap: A fault-tolerant and scalable
distributed data structure

Samuel Benz
Università della Svizzera Italiana (USI)

Fernando Pedone
Università della Svizzera Italiana (USI)

Abstract—Major efforts have been spent in recent years to
improve the performance, scalability and reliability of distributed
systems. In order to hide the complexity of designing distributed
applications, many proposals provide efficient high-level commu-
nication abstractions (e.g., atomic multicast). These abstractions,
however, are often unfamiliar to average application designers
and, as a result, implementing distributed applications that toler-
ate failures and scale performance without sacrificing consistency
remains a challenging task. In this paper, we introduce DMap,
a reliable and scalable distributed ordered map. DMap fully
implements the generic Java SortedMap interface and can be
easily used to scale existing Java applications. To substantiate our
claim, we have used DMap to turn H2, a centralized database,
into a scalable and reliable data management system.

I. INTRODUCTION

Most modern cloud services are distributed systems. To-
day’s on-demand computing resources, common in public
cloud environments, provide operators of these systems with
the possibility to provision as many servers as needed by
the service and to react quickly to changes in application
workload. Starting up new servers once increased traffic
is detected and shutting down low utilized servers to save
costs are common operations. While it is relatively easy to
reconfigure stateless components (e.g., application servers),
dynamically provisioning stateful components (e.g., storage) is
complicated. Consequently, major research efforts have been
spent in recent years to improve the performance, scalability
and reliability of distributed data stores. The abstractions
resulting from these efforts, however, are often unfamiliar
to average application designers. As a result, implementing
applications that support strong consistency, elastic scalability
and efficient recovery remains challenging.

Scalable state machine replication has been shown to be a
useful approach to solving the challenges involved in building
reliable distributed data stores (e.g., [1]–[3]). State machine
replication [4], [5] simplifies the problem of implementing
highly available linearizable services by decomposing the
ordering of requests across replicas from the execution of
requests at each replica. Requests can be ordered using atomic
multicast, a communication abstraction, and service developers
can focus on the execution of requests, which is the aspect
most closely related to the service itself. State machine repli-
cation requires the execution of requests to be deterministic,
so that when provided with the same sequence of requests,
every replica will evolve through the same sequence of states
and produce the same results.

Despite the clear separation of concerns provided by state
machine replication (i.e., ordering and execution), designing
and implementing a fully functional system from atomic mul-
ticast primitives is still complex and unnatural to application
designers. In this short paper, we contend that higher-level
abstractions, in the form of distributed data structures, can
hide this complexity. For example, given a distributed B-tree,
services like distributed databases [6] or file systems [7] can be
implemented in a distribution transparent manner. We discuss
the design and some of the main challenges to implement a
distributed ordered map as a ready-to-use data structure.

Existing distributed data structures often rely on transactions
or distributed locking to allow concurrent access. Conse-
quently, operations may abort, a behavior that must be handled
by the application. We implemented a distributed ordered
map (DMap) that does not rely on transactions or locks for
concurrency control. Relying on atomic multicast, all partially
ordered operations succeed without ever aborting. Addition-
ally, DMap is scalable, fault-tolerant and supports consistent
long-running read operations (e.g., to allow background data
analytics).

DMap is a distributed sorted key-value store that imple-
ments the full Java SortedMap and the ConcurrentMap inter-
faces. It is generic in that it allows arbitrary Java objects as
keys and values. For example, one can define a SortedMap that
uses integer objects as keys and string objects as values or a
map that uses string objects as keys and holds other complete
Java maps as values. DMap also supports user generated
objects, as long as they are Java serializable.

DMap achieves scalability through sharding (i.e., hash par-
titioning) and fault tolerance through replication (i.e., each
shard is replicated by a group of replicas using state machine
replication [3]). Moreover, DMap ensures strong consistency
in the form of linearizability.1 Consequently, DMap can be
used to distribute any local Java application that uses a
SortedMap (or Map) by simply replacing the interface im-
plementation.

The paper makes the following contributions. First, we
propose a lock-free distributed ordered map with strong multi-
shard consistency guarantees that implements the Java Sort-
edMap interface. Second, we detail the implementation of

1A concurrent execution is linearizable if there is a sequential way to reorder
the client operations such that: (1) it respects the real-time semantics of the
objects, as determined in their sequential specs, and (2) it respects the order
of non-overlapping operations among all clients [8].



DMap and highlight the underlying replication and ordering
techniques. Finally, we provide a performance assessment of
all these components. DMap is available as opensource.2

II. SYSTEM MODEL AND ASSUMPTIONS

We assume a distributed system composed of a set of
interconnected client and server processes that communicate
by message passing. Processes may fail by crashing and subse-
quently recover, but do not experience arbitrary behavior (i.e.,
no Byzantine failures). Processes are either correct or faulty.
A correct process is eventually operational “forever” and can
reliably exchange messages with other correct processes. In
practice, “forever” means long enough for processes to make
some progress (e.g., terminate one instance of consensus). The
servers are divided into groups of replicas, where in each group
there is a majority of non-faulty processes.

Our protocols ensure safety under both asynchronous and
synchronous execution periods. The FLP impossibility re-
sult [9] states that under asynchronous assumptions consen-
sus cannot be both safe and live. To ensure liveness, we
assume the system is partially synchronous [10]: it is initially
asynchronous and eventually becomes synchronous. The time
when the system becomes synchronous, called the Global
Stabilization Time (GST) [10], is unknown to the processes.
Before GST, there are no bounds on the time it takes for
messages to be transmitted and actions to be executed. After
GST, such bounds exist but are unknown.

III. THE DMAP DISTRIBUTED DATA STRUCTURE

In this section, we present dynamic atomic multicast, a
fundamental abstraction used by DMap (§III-A), detail the
main technical challenges in the design of DMap (§III-B) and
discuss how DMap handles failures (§III-C).

A. Dynamic Atomic Multicast

Dynamic atomic multicast is a communication abstraction
that creates the notion of message streams. There are prim-
itives for a server to multicast a message m to a stream
S, multicast(S,m), and for replicas to deliver a multicast
message, deliver(m). A group of replicas G can subscribe to
and unsubscribe from one or more streams with primitives sub-
scribe_msg(G,S) and unsubscribe_msg(G,S), respectively.
After replicas subscribe to stream S, they will eventually
deliver messages multicast to S. Similarly, if replicas unsub-
scribe from S, they will eventually stop delivering messages
multicast to S.

Dynamic atomic multicast guarantees strong reliability and
order properties. Let relation < be defined such that m < m′

iff there is a server that delivers message m before message
m′. Dynamic atomic multicast ensures that (i) if a server
delivers m, then all non-faulty servers that subscribe to S
deliver m (reliability); (ii) if a non-faulty server multicasts
m in S then all non-faulty servers that subscribe to S deliver
m (liveness); and (iii) relation < is acyclic (order). The order

2https://github.com/sambenz/URingPaxos

property implies that if servers p and q deliver messages m
and m′, then they deliver them in the same order.

Multi-Paxos

Dynamic Atomic Multicast

DMap Service

Client proxy

Application

Client

Server
(Replica)

request reply

Fig. 1. Architecture overview of DMap.

Dynamic atomic multicast is implemented by combining
multiple instances of Multi-Paxos, one Multi-Paxos instance
per message stream [11], [12]. If a group G subscribes to
multiple streams, then replicas in G combine the various mes-
sages multicast to the subscribed streams using a deterministic
merge mechanism. For example, one simple merge consists in
delivering messages from the subscribed streams in round-
robin fashion (i.e., one message from stream S1, one message
from S2, ..., and again one message from S1, and so on).
Moreover, dynamic atomic multicast accounts for different
stream rates by allowing replicas to deterministically skip
messages in a stream [11].

B. Basic execution and challenges

In DMap, there is one group of replicas per shard. A
partition map, stored by all replicas and cached by clients,
stores the mapping of shards to replica groups. Under normal
operation, each replica group subscribes to two message
streams: one stream that is specific to the replica group and one
global stream that is common to all replica groups. The group-
specific stream is used to order commands within a group
of replicas and the global stream is used to order commands
across all groups.

Conceptually, DMap’s execution model is quite simple.
Applications, by means of a client proxy, contact one replica
of the DMap service and then submit commands to this
replica (see Fig. 1). The client proxy finds a DMap replica
by contacting a ZooKeeper3 service. Upon contacting the
replica, the client proxy downloads the current partition map.
Communication between the application and the client proxy
uses the Apache Thrift RPC framework.4

The replica contacted by the client proxy propagates com-
mands for execution to one or more groups of replicas using
atomic multicast. Commands that involve a single shard (e.g.,
put(K,V)) are multicast in the message stream specific to the

3https://zookeeper.apache.org/
4https://thrift.apache.org/



replica group in charge of the involved shard. Commands
that involve multiple shards (e.g., size()) are multicast in
the global message stream. Upon delivering a command, the
replicas execute the command and return the result to the
replica initially contacted by the client proxy. The client proxy
assembles the results and returns them to the application.

Three aspects challenge DMap’s simple design:

a) Coping with outdated partition maps: A replica group
makes progress at the pace of the fastest majority of its servers.
Therefore, a client may contact a replica that is outdated. To
ensure that commands reflect the latest commands executed by
the system (needed for linearizability), despite outdated client
caches and outdated replicas, the partition map is versioned.
Commands include the partition map version. If a server
delivers a command with an outdated partition map version,
it notifies the client, which should install the most recent
partition map returned by the server. Modifications to the
system that lead to changes in the partition map must be
multicast to the global stream, which will be delivered by all
replicas and ordered with respect to all commands.

b) Consistency and performance of iterators: To ensure
the ordered delivery of entries while iterating over sharded
data, DMap clients proceed as follows: First, they request a
globally consistent in-memory snapshot of all shards. Second,
they stream the snapshot in parallel from every shard, a few
entries at a time. Third, they deliver to the application the
lowest entry of all shards until all entries are delivered. This
procedure allows to iterate over a huge amount of data, since
only few entries must be kept in memory simultaneously.

The key to implementing such efficient and consistent
iterators over hash-partitioned data is the ability to create
multi-shard snapshots. Creating such snapshots is complicated
since servers do not share a common clock [13]. DMap relies
on atomic multicast to create in-memory snapshots at the
replicas. Atomic multicast, as described previously, allows to
send partially, or in this case totally, ordered commands to be
executed at every replica.

c) Consistency of multi-shard commands: In the case of
multi-shard commands (e.g., size()), replicas must coordinate
the execution to ensure linearizability [2]. Without coordina-
tion, single-shard and multi-shard commands can interleave in
ways that may violate linearizability, despite the commands
being consistently ordered. We use the technique proposed
in [2] to guarantee linearizable execution of commands. In
brief, to avoid undesired command interleaving, upon execut-
ing a multi-shard command, a replica must exchange signal
messages with at least one replica from every other replication
group involved in the command. For example, when executing
the size() command, each replica determines the local database
size and then forwards a signal to the servers in all replica
groups involved in the command. Every server waits for such
a signal from every involved replication group to finish the
execution of the size command.

C. Recovering from failures

DMap can be configured to use stable storage (e.g.. a
harddisk) or main memory only (e.g., battery-backed DRAM).
With stable storage, each replica periodically checkpoints its
state onto stable storage. Upon resuming from a failure, the
replica retrieves and installs the last stored checkpoint and
recovers the commands missing in this checkpoint (i.e., the
commands executed after the replica’s last checkpoint) from
Paxos.

In main memory mode, a recovering replica will first
subscribe to all required multicast groups. Dynamic Atomic
Multicast ensures that after subscribing to all streams, the
message ordering is guaranteed. Followed by requesting the
most recent partition map and a snapshot of the current data
on all replicas. To download and install these checkpoints, a
recovering replica behaves like a DMap client. The version of
the partition map and the snapshot id are the unique values
of the Paxos instance in which the commands are decided.
Therefore, the recovering replica can skip learned commands
before the snapshot id and start applying commands with ids
right after the snapshot. To finish recovery, a replica adds itself
to the system partition map. After this point, clients will start
sending command to the recovered replica.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally assess some of the main
aspects of DMap: scalable performance (§IV-A), recovery
(§IV-B) and repartitioning (§IV-C). All the experiments were
performed in a cluster of 10 HP SE1102 servers, equipped
with 2x 2.5 GHz Intel Xeon CPUs and 8 GB of main
memory. These servers were interconnected through a HP
ProCurve 2910 switch with 1 Gbps interfaces. The round trip
time between the nodes is 0.1 millisecond (ms). In all the
experiments, clients and servers were deployed on separate
machines, and servers use in-memory storage. We keep the
machines approximately synchronized by running NTP.

A. Scalability

1) Throughput and latency: In this experiment 60 clients
per shard send put() commands to random keys in a closed
loop. The overall system runs on approximately 75% of its
maximum throughput. The values are strings of 380 bytes
each. We use up to three shards. Every shard is served by
three replicas running on one server each.

Results. Figure 2 (left) shows the overall throughput of
single-shard commands as we increase the number of shards.
Throughput is linear in the number of shards, while the
system still has the ability to consistently execute multi-shard
commands. Figure 2 (right) shows the cumulative distribution
function of the latency for all requests. Commands to one
shard show a sharp CDF around the average latency. Increasing
the number of involved shards also increases the coordination
overhead of Dynamic Atomic Multicast: imbalances of client
loads are compensated every ∆ time interval (in this case
5 ms). Adding shards, and consequently message streams,
increases the overhead of the deterministic merge mechanism



(see §III-A). This is visible in the CDF with a bend in the
curve around 5 ms.

1 2 3

Number of partitions

A
v
g
. 
T

h
ro

u
g
h
p
u
t 
(o

p
s
/s

)

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

5 10 15 20
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Latency (ms)

C
D

F

1 partition
2 partitions
3 partitions

Fig. 2. Throughput (left) and latency (rigth) of DMap (1, 2 and 3 partitions).

2) Performance of iterators: In this experiment, an increas-
ing number of clients create an iterator (snapshot) in DMap
with 3 partitions. Clients then iterate over the whole distributed
data set. The data set was previously provisioned with 1.2
million key-value pairs.

Results. As seen in Figure 3, the iterators show a better
performance than the single command throughput. Initially,
creating a snapshot is slow (200 ms), but once a snapshot
(iterator) is created, every client can stream the data in parallel
from every replica in all partitions. A single iterator achieves
50k entries per second while the number of parallel iterators
scales almost linearly up to 50 clients.

1 5 10 20 50 100

Number of concurrent iterators

T
h

ro
u

g
h

p
u

t 
(e

n
tr

ie
s
/s

)

5
0
k

0
.5

M
1
M

1
.5

M
2
M

2
.5

M

Fig. 3. Performance of retrieving entries of DMap iterator (1 to 100 clients).

3) Yahoo! Cloud System Benchmark (YCSB [14]): We
evaluate the performance of DMap using YCSB and compare
it with the performance of a single-server configuration that
uses the Thrift interface only. Both systems are deployed with
3 partitions and we use 180 clients. The data set was previously
provisioned with 1.2 million key-value pairs. All six core
YCSB workloads are considered in our evaluation:
• Workload A (Update heavy workload): This workload has

a mix of 50/50 reads and writes. An application example
is a session store recording recent actions.

• Workload B (Read mostly workload): This workload
has a 95/5 reads/write mix. An application example is
photo tagging where adding a tag is an update, but most
operations are reads.

• Workload C (Read only): This workload is 100% read.
An application example is a user profile cache, where
profiles are constructed elsewhere (e.g., Hadoop).

• Workload D (Read latest workload): In this workload,
new records are inserted, and the most recently inserted
records are the most popular. An application example is
user status updates, where people want to read the latest.

• Workload E (Short ranges): In this workload, short ranges
of records are queried, instead of individual records. An
application example is a threaded conversations, where
each scan is for the posts in a given thread (assumed to
be clustered by thread id).

• Workload F (Read-modify-write): In this workload, the
client will read a record, modify it, and write back
the changes. An application example is a user database,
where user records are read and modified by the user or
the user activities are recorded.

Results. The YCSB throughput of all workloads is shown
in Figure 4. Workloads B, C and D correspond to the baseline
performance of single-partition commands. Workloads A and
F send update and read-modify-write commands. The way
YCSB is implemented in DMap, such commands are com-
posed of a read, followed by a write command. YCSB is a
multi-map which allows to update a single entry in the value.
DMap must first read the value as map, update the field and
put again the whole value.

Workload E shows the performance of small scans. Re-
trieving a scan in DMap creates an iterator and loops over
a small amount of values. Since the cost in DMap is creating
iterators (snapshots) and not looping over iterators, the overall
performance in case E is only 290 scans per second.

In all workloads, except E, the single-server Thrift imple-
mentation is faster. This is obvious, since all partitions run
independent from each other (consistent scans are not possible)
and there is no latency overhead of atomic multicast.

B. Recovery

As in the previous experiments, we use 180 clients to
generate load on three shards, each one replicated on three
replicas. The data set was previously provisioned with 1.2
million key-value pairs. After 20s we kill one replica in one
replica group. At 40s we restart the killed replica, which
immediate starts to recover.

Results. Figure 5 shows the system throughput over time
while recovery is active. Instant (1) indicates the killing of
one replica. At this point, performance drops to almost zero,
since all commands to the failed replica time out. Additionally,
all clients have to update their locally cached partition map.
The partition map gets updated because the killed replica
is removed. At (2), the replica starts recovering. Instant (3)
indicates the end of recovery. The recovered replica updates
the partition map with the information that it is operational.



A B C D E F

DMap

Thrift

YCSB workload (180 threads)

T
h

ro
u

g
h

p
u

t 
(o

p
s
/s

)

0
1

0
k

2
0

k
3

0
k

4
0

k

Fig. 4. Yahoo! Cloud Serving Benchmark for A:update heavy, B:read mostly,
C:read only, D:read latest, E:short ranges, F:read-mod-write workloads.

Clients will install a new partition map, but compared to
(1), no Thrift connections are invalidated. State transfer while
recovering is very fast, since it uses the iterators described in
§III-B.

0 50 100 150 200

0
2
0
0
0
0

4
0
0
0
0

Runtime (sec)

T
h
ro

u
g
h
p
u
t 
(o

p
s
/s

)

Killed Recovery

(1) (2) (3)

0 50 100 150 200

0
5

1
0

1
5

2
0

Runtime (sec)

L
a
te

n
c
y
 (

m
s
)

Fig. 5. Impact of recovery on throughput under full system load.

C. Repartitioning

In this experiment we start with two shards (P1 and P3)
and after 20s we dynamically add a third shard (P2). We use
180 clients to generate load and the data set was previously
provisioned with 1.2 million key-value pairs. The new set of
3 replicas first recover the state from the currently available
shard (not shown in this experiment), reconfigure all involved

atomic multicast message streams and later update the system
partition map.

Results. Subscribing to and unsubscribing from message
streams have no visible impact, as seen in Figure 6. The overall
throughput drops during re-partitioning for a short period to
50% (half of the clients are re-assigned to the new shard).
After re-partitioning, the overall throughput increases. Before
the repartitioning, P1 was responsible for 2/3 of the hash space
and therefore overloaded. After repartitioning, every shard is
responsible for 1/3 of the keys, which explains why the average
latency decreases.

0 50 100 150 200

0
2
0
0
0
0

4
0
0
0
0

Runtime (sec)

T
h
ro

u
g
h
p
u
t 
(o

p
s
/s

)

Overall
P1
P2
P3

0 50 100 150 200

0
5

1
0

1
5

2
0

Runtime (sec)

L
a
te

n
c
y
 (

m
s
)

Fig. 6. Impact or repartitioning on performance.

V. CASE STUDY: H2 DATABASE ON DMAP

To demonstrate the usefulness of DMap, we replaced the
local storage engine of the H25 database (MVStore) by DMap.
H2 has a modular design, which encapsulates the SQL query
processor from the storage layer. By replacing the local storage
engine with DMap, multiple independent H2 query processor
instances can run simultaneous on the same distributed data.

The core of H2 is MVStore. MVStore allows to create multi-
ple independent sorted maps. The whole database relies on this
storage abstraction. All database schema information, primary
and secondary indexes, even the undo log are persisted in this
layer. Therefore, replacing the MVMap used by MVStore with
DMap distributes the whole database.

We needed less than 500 lines of source code to achieve our
goal and run multiple H2 instances on top of DMap. Moreover,
the modular design of H2 and the expressive interface of
DMap allows us to use all special database operations, such

5http://www.h2database.com



as creating or altering tables, creating indexes or transactions,
without further modifications. The new system supports dis-
tributed transactions, based on a distributed undo log, and
online database schema altering (e.g., creating tables) which
are immediately visible to all query processors. However, since
some query optimizations rely on data local to the query
processors, such operations would require additional work to
distribute the required information.

By adding one additional Java class to H2, we could not
only distribute the whole database, but due to the properties
of DMap, we could implement a scalable (sharded) and fault-
tolerant (replicated) system.

We evaluate the performance of H2 on DMap using the
TPC-C benchmark. Our experiments show that H2 on DMap
is largely outperformed by the unmodified H2. Figure 7 shows
all operations the database executes on DMap during the
execution of TPC-C. Single-partition commands run in parallel
and can be scaled by adding new replica sets. The all-partition
commands must be executed by every replica and do not
scale. The create range commands are due to select queries
of a range. H2 executes more than 100 DMap operations
per second. But, the TPC-C throughput of the New-Order
transaction is only about 8 transactions per second. This can be
explained by the large number of operations needed to translate
an SQL statement into DMap operations (Table I). On average,
every SQL statement requires 10 DMap operations to update
the undo log twice and setting the locked and final value to
a table. This is a direct consequence of the fact that H2 was
implemented with a local storage in mind. For example, H2 is
not optimized to use a transaction cache. Such a cache could
possibly reduce the number of DMap operations.

0 100 200 300 400 500 600 700

0
1
0
0

3
0
0

5
0
0

Runtime (sec)

T
h
ro

u
g
h
p
u
t 
(o

p
e
ra

ti
o
n
s
/s

)

PUT
GET
REMOVE
PUTIFABSENT
REPLACE
GETRANGE
PARTITIONSIZE

Single partition command

0 100 200 300 400 500 600 700

0
5

1
0

1
5

2
0

Runtime (sec)

T
h
ro

u
g
h
p
u
t 
(o

p
e
ra

ti
o
n
s
/s

)

CREATERANGE
SIZE

All partition command

Fig. 7. H2 operations on DMap while performing the TPC-C benchmark.

TABLE I
FROM H2 SQL QUERIES TO DMAP OPERATIONS.

H2 : "insert into test values (1,’String’)"
DMap: 4*GET, PUT, PUTIFABSENT, 2*GET, PUT, REMOVE
H2 : "select * from test where id=1"
DMap: GET
H2 : "update test set value name=’XYZ’ where id=1"
DMap: 4*GET, PUT, REPLACE, 3*GET, PUT, REPLACE,

2*GET, PUT, REMOVE, 2*GET, PUT, REMOVE
H2 : "select * from test"
DMap: SIZE, CREATERANGE
H2 : "delete from test where id=1"
DMap: 4*GET, PUT, REPLACE, 2*GET, 2*REMOVE

VI. RELATED WORK

In this section, we review related work on distributed data
structures, atomic multicast, and recovery.

Distributed data structures. There exists a variety of systems
that implement distributed data structures. An overview is
shown in Table II. These systems provide different interfaces,
consistency guarantees or are built for specific optimized use-
cases. To the best of our knowledge, no system implements a
generic Java interface and provides scalable, consistent range
queries.

One of the first distributed data structures similar to our
ordered map was a B-tree algorithm based on a B-link tree pro-
posed in [15]. However, the tree was designed for distributed
memory architectures and not high latency networks. Even
in the modern literature, not many distributed tree structures
exist. SD-RTree [16] is a scalable distributed R-tree designed
for networks. This data structure is based on a binary tree
and optimized for spatial objects. The first distributed B-
tree that tries to address similar requirements to the ones
described in this paper is presented in [17]. The concurrency
control is based on transactions and not locking, which was
common in B-trees for distributed memory. Minuet, a scalable
distributed multiversion B-tree [18] addresses the problem
of long-running data analytics workloads in the context of
short-living transactions. Minuet is based on Sinfonia [19]
but provides an optimistic concurrency control mechanism
to scale parallel inserts and updates. Further, it implements
consistent snapshots and copy-on-write tree branches. Recent
work on distributed data structures also proposes to use skip
lists to implement efficient range queries for dictionaries [20].
Compared to the work presented in this paper, it uses a
hardware level message passing interface (MPI).

Several other publications propose B-trees to build dis-
tributed systems. Boxwood [7] uses a distributed B-tree to
implement a file system. The tree operations are coordinated
by a distributed lock service. Hyder [21] implements an index
structure based on a binary tree on a shared flash log. Similar
to Hyder, Tango [22] generalizes distributed data structures on
append only logs. Both use the log for transaction control and
append a new version of the changed index to the log.

HyperDex [23] and Yesquel [6] are the most related to
the work proposed here. HyperDex implements a partitioned



TABLE II
OVERVIEW OF EXISTING DISTRIBUTED DATA STRUCTURES.

System Generic Java Iface Type Consistency Partitioned
DMap SortedMap SortedMap strong yes
Yesquel no SortedMap strong yes
HBase no SortedMap strong yes
Cassandra no Map weak yes
Redisson ConcurrentMap Map weak yes

SortedSet SortedSet weak yes
Hazlecast ConcurrentMap Map weak yes
Dynamo no Map (w/ Scan) weak yes
Hyperdex no Map (w/ Scan) strong yes
SimpleDB no Map (w/ Scan) consistent reads yes
Ignite JCache Map strong replicated or partitioned
Atomix no Map strong no

key-value store which allows efficient search functions and
secondary indexes based on a novel multi-dimensional hash
function. Yesquel implements a distributed B-tree and pro-
poses several optimizations to use the tree for a distributed
SQL database. The architecture and concurrency control used
in Yesquel are similar to Sinfonias’s mini-transactions. Both
systems implement a rich API. However, compared to DMap,
their interfaces are not compatible to existing well-known Java
interfaces.

Distributed databases. The idea of running multiple inde-
pendent query processors on a distributed data store is not
new. MoSql [24] implements a distributed storage engine
for the MySQL database. Compared to H2/DMap, it uses
deferred update replication to certify concurrent transaction
before commit. Yesquel [6] also replaces the local B-tree
implementation of SQlite with their distributed balanced tree.
F1 [25] is a distributed SQL database which drives the
Google ad-words business. The storage engine used by F1
is Spanner [3].

VII. CONCLUSIONS

Implementing a distributed data store that supports strong
consistency, performance scalability, and fault tolerance is a
challenging task. Some works have responded to this challenge
with powerful communication primitives (i.e., atomic multi-
cast), which encapsulate much of the complexity involved.
Application developers, however, are often unfamiliar with
such primitives.

This paper describes the design of DMap, a distributed
data structure with important characteristics. DMap is scalable,
supports dynamic re-partitioning, and fast recovery. It builds
on atomic multicast to ensure that both single- and multi-shard
commands are strongly consistent. More important, DMap is
easy to use. It fully implements the generic Java SortedMap
interface and is therefore designed to distribute and scale any
existing Java application.

We detailed the system architecture of DMap and explained
the underlying ordering and recovery mechanisms. Further,
we evaluated the performance and demonstrated how system
engineers can benefit from distributed data structures.

While DMap delivers scalable performance at low latency,
our case-study of H2 on top of DMap shows some limitations
of the approach. H2 assumes a non-distributed data store, and
therefore misses optimizations that would be important in a
distributed setting (e.g., transaction cache). This is something
that cannot be solved efficiently in DMap.

VIII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful comments and their suggestions to improve the paper.
This work was supported in part by the Swiss National Science
Foundation under grant number 146714.

REFERENCES

[1] S. Benz, P. J. Marandi, F. Pedone, and B. Garbinato, “Building global
and scalable systems with Atomic Multicast,” in Middleware, 2014.

[2] C. E. Bezerra, F. Pedone, and R. van Renesse, “Scalable State-Machine
Replication,” in DSN, 2014.

[3] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner: Google’s
Globally-Distributed Database,” in OSDI, 2012.

[4] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, no. 7, pp. 558–565,
1978.

[5] F. B. Schneider, “Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[6] M. K. Aguilera, J. B. Leners, and M. Walfish, “Yesquel: scalable SQL
storage for Web applications,” in Proceedings of the 25th Symposium
on Operating Systems Principles. ACM, 2015, pp. 245–262.

[7] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou,
“Boxwood: Abstractions as the Foundation for Storage Infrastructure.”
in OSDI, vol. 4, 2004, pp. 8–8.

[8] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition
for concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, Jul. 1990.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty processor,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[10] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
1988.

[11] S. Benz and F. Pedone, “Elastic Paxos: A Dynamic Atomic Multicast
Protocol,” in ICDCS, 2017.

[12] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[13] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining
Global States of Distributed Systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, Feb. 1985.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.



[15] T. Johnson and A. Colbrook, “A distributed data-balanced dictionary
based on the b-link tree,” in Parallel Processing Symposium, 1992.
Proceedings., Sixth International. IEEE, 1992, pp. 319–324.

[16] C. Du Mouza, W. Litwin, and P. Rigaux, “Sd-rtree: A scalable dis-
tributed rtree,” in 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 2007, pp. 296–305.

[17] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed b-tree,” Proceedings of the VLDB Endowment, vol. 1, no. 1,
pp. 598–609, 2008.

[18] B. Sowell, W. Golab, and M. A. Shah, “Minuet: a scalable distributed
multiversion B-tree,” Proceedings of the VLDB Endowment, vol. 5, no. 9,
pp. 884–895, 2012.

[19] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: a new paradigm for building scalable distributed systems,” in
ACM SIGOPS OSR, vol. 41. ACM, 2007, pp. 159–174.

[20] S. Alam, H. Kamal, and A. Wagner, “A scalable distributed skip list
for range queries,” in Proceedings of the 23rd international symposium
on High-performance parallel and distributed computing. ACM, 2014,
pp. 315–318.

[21] P. A. Bernstein, C. W. Reid, and S. Das, “Hyder-A Transactional Record
Manager for Shared Flash.” in CIDR, vol. 11, 2011, pp. 9–20.

[22] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
data structures over a shared log,” in SOSP, 2013.

[23] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex: A distributed,
searchable key-value store,” Acm sigcomm computer communication
review, vol. 42, no. 4, pp. 25–36, 2012.

[24] A. Tomic, D. Sciascia, and F. Pedone, “MoSQL: An Elastic Storage
Engine for MySQL,” in SAC, 2013.

[25] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner et al., “F1: A
distributed SQL database that scales,” Proceedings of the VLDB En-
dowment, vol. 6, no. 11, pp. 1068–1079, 2013.


