Information Processing Lertters 45 (1993) 26{-2587
Elsevier

2 April 1993

The all-pairs quickest path problem

D.T. Lee * and E. Papadopoulou *

Department of Electrical Engineering and Computer Science. Northwesiern University, Evansion, {L 60208, 1/SA

Communicated by F. Dehne
Received 3 November 1991
Revised 9 October 1992

Keywords: Design of algorithms; analysis of algorithms: data structures: graph algorithms: shortest paths

1. Introduction

The quickest path problem, proposed by Chen
and Chin [2], is defined as follows. We have a
communication network N =(V, A4, ¢, 1), whére
G = (V, A) is a directed graph without maltiple
arcs and self-loops, ¢(u,) > 0 is the capacity of
an arc (i, v)e A, and Hu, v) > 0is the lead time
of an arc (u, ¢} €A, For an arc {u, '}, the capac-
ity ¢(u, ¢) denotes the maximum number of data
units which can be transmitted from node u to
node ¢ per unit time, and /{u, r') denotes the
lead time required to send data from node u to
nede ¢. If ¢ =0 units of data are transmitted
from node u« through arc {u, v), then the re-
quired transmission time is

(u, ey +(o/c(u, v)).

Let p={(uy, u,,...,u,) be a path from u, to
tty. Then the lead time /(p) along the path p is

k-1
I{p)= Z [ugb;0)

i=1

Correspondence to: Professor D.T. Lee, Department of Elec-

trical Engingering and Computer Science, Northwestern Uni-

versity, Evanston, 1L 60208, USA.

* Supported in part by the National Science Foundation
under Grant CCR 89-01815.

and the capacity ¢(p) of path p is

c(py= min c(u;,u,,).
[<igh—1

To send o units of data from u, to u, through
path p, the total transmission time required is

T(a)=Il(p)+o/c(p).

Given nodes s and ¢, the quickest path prob-
lem is to find a path p from s to ¢, such that the
total transmission time to send o> 0 units of
data from s to ¢ is minimum among all possible
paths from s to ¢ in the network N. This prob-
lem is a variant of the shortest path problem. But
the optimality property of shortest paths no longer
holds. That is, if p is a shortest path from u to ¢,
then any subpath of p must itself be shorrest. For
examples and more details see [2]. In {2), Chen
and Chin developed an O(m?+ nm log m) algo-
rithm, where m=|A|, and n=|V|, for the
single-pair quickest path problem. In fact their
algorithm is O(rm + m log rn), where 7 is the
number of distinct capacity values of N. They
also studied the single-pair quickest path problem
assuming that the value ¢ is variable and devel-
oped an algerithm of the same complexity to find
the single-pair quickest path as a function of .
In [6], Rosen, Sun, and Xue proposed an alterna-

0020-0150,/93 /306,00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 261

Volume 43, Number 3

tive algorithm of the same time complexity, O(rm
+rn log n). but less additional space require-
ment, for the single-pair problem for a given
amount of data o. A straightforward extension of
this algorithm also solves the single source. ie.,
one-to-ali, quickest path problem. They also de-
veloped a polvnomial algorithm to enumerate the
first & quickest paths to send o units of data
from the source of a network N to the sink.

[t is obvious that the afl-pairs quickest path
problem for a parricular ¢ can be solved in
O(nrm +n~r log n) time by applying the single
source quickest path algorithm # times. As r can
be as large as m, this approach results in O{am?
+ n°m log m) time complexity in the worst case.

In this paper the all-pairs quickest path prob-
lem as a function of o is discussed. That is, we
preprocess the network in such a way that given
any pair of nodes u. r and any amount of data
o> 0, report the quickest path to transmit the
data tfrom « to v, Throughout this paper, n will
denote the number of nodes | V|, m will denote
the number of arcs | 4|, and r will denote the
number of distinct capacities. The preprocessing
time is O(ma?) or Olrmn+rm” log a) if r is
small, space is O(rn*), and query time for a pair
of nodes is O(log r) plus the number of arcs of
the actual path if ir is to be reported.

2. Preliminaries

Let N=({, A. ¢, !) be a network with
V, A, ¢, ! defined as above. An important factor
to determine the quickest path from node u to
node ¢ is the amount of data o to be transmit-
ted. If o is small enough then the guickest path
is the shortest lead time path. f o is rather large
then the guickest path will be some path of
maximurm capacity.

Let (i, ¢} be a pair of nodes, u,e €V, and p
be a path from u to 1. We call an arc of p of
minimum capacity, a critical arc of path p. (A
critical arc of p is not necessarily unique.) The
capacity of p is the capacity of the critical arc.

For some capacity value o, let N(a) be the
subnetwork of V induced by the set of arcs of
capacity greater than or equal to «. That is,

262

INFORMATION PROCESSING LETTERS

2 Apnl 1993

N=(W. A, . c.]} where A, ={(u, t)i{u.t)=A
and clu, t') 2 al.

Property 1. Let g be the quickest path to transmir
o units of data from node u to node v. and clq) be
its capacity. Then g is the shortest path with respect
to lead time from node u to node v in N(c(g)).

Proof. Assume for a contradiction otherwise. Let
p’ be the shortest lead time path in N(c(g)).
Thus {p") <g)and c(p’) = c(g). Then

TLAo)=l(p")+ (o/c(p'))
<l p)+(o/e(q)) <l q)+(a/clq))
=T o).

which is a contradiction. O

This property is also mentioned in {6). It sug-
gests that if we know the capacity ¢, of the
quickest path to send o units of data from node
« to nede v, then the quickest path from i to ¢
is the shortest path with respect to lead time from
t to v. considering only arcs of capacity greater
than or equal to c,.

Property 2. Let p and p’ be two different paths
from node u to node ¢, with c(p') <c(p). p° may
be quicker than p if and only if I(p") < I(p).

Proof. Obvious. 0O

Consider a pair of nodes i, . We call a path
p of capacity c(p) and lead time /(p) useless if
and only if there is a path g of capacity c{g) »
c(p) and lead time (g) < p). It is clear bv
Properties | and 2 that such a path p cannot be
quickest for any value of o, since g is always
quicker than p, nor can it be a subpath of a
quickest path. A path that is not useless is called
useful.

Let p,. p»,.... p, be the useful paths from «
to ¢ ordered in decreasing capacity order. Then

c(pi)>e(p)> - >c(py),
Upy>lpsy> =).

Since there are r distinct capacities, & < r.

Volume 43. Number 3

2,

T

fip}
i, 2,)
ip)

tip,)

0 o4 G, [

Fig. 1. Example to illustrate the partition of the range of &
for a pair of nodes u, ¢.

The transmission time 7,(o) of a path p from
node u to node © is a lingar function of o with
slope (1/c(p). Let T, {c) denote the minimum

transmission time function of o from u to .
T, (o)

£33

= min{Tp(a) | p is a path from u« to ¢ in N}.

Since 7, is linear for any p, T,, is a piecewise
linear function of decreasing slope, each piece
corresponding to a different path. In other words

we have the following lemima,

Lemma 3. For any pair of nodes u, v the range of
o can be partitioned into intervals and for each
interval there is a path p which is quickest for any
o in that interval.

In Fig. 1, the vertical axis denotes the trans-
mission time and the horizontal axis denotes the
amount of data o to be transmitted. p,, p,, p;,
p, are the useful paths from node u to node ¢
ordered in decreasing capacity order. T, (o) is
shown in bold-face and it defines the following
partition of the range of o. For o €[0), oy,] the
quickest path is p,, for & € [o5,, o,;] the quickest
path is p,, and for o €(o;, =] the quickest path
is p,.

3. The algorithm and data structure

For each ordered pair of nodes u, ¢ we want
to identify T (o), or equivalently the partition of

ue

INFORMATION PROCESSING LETTERS

2 April 1993

the range of ¢ into intervals as well as the path
that is quickest for each interval. For this purpose
we construct an a1 X»n matrix M whose entries
M[u, v]contain a list of interval-path nodes. Each
interval-path node contains three fields of infor-
mation:

— sright; contains the right end of a data inter-
val,

- (, L: contain the capacity and lead time of
the quickest path for that interval.

The list M[u,] represents 7, (o) from right to
left, 1.e., it is ordered in decreasing capacity {in-
creasing slope) arder. Since the number of intee-
vals cannot exceed the number of distinct capaci-
ties r, the space requirement for M is O(rn?).

In order to be able to retrieve the actual
quickest path from a node to another we need to
keep a matrix P of useful paths. An entry Plu, ¢]
contains a list of path nodes ordered by decreas-
ing capacity. Each path node represents a useful
path @ from u« to v, and consists of the following
fields:

- C: contains the capacity of the path,

— L: contains the lead time of the path,

—~ (4, J): contains the vertices of an arc (i,)
the path passes through,

~ leftpath: contains the index of (or a pointer
to) a path node in Plu, I} which contains the
shortest lead time path from u to [in N(C),

- rightpath: contains the index of (or a pointer
to) a path node in P[J, ¢] which contains the
shortest lead time path from / to v in N(C).

Path @ is the concatenation of the path in
P, lleftpath], arc (I, J) if I=J, and the path in
Py rightpath]. As the number of useful paths for
any pair of nodes is at most r, the space require-
ment for P is C(a?r).

To fill in matrices A/ and P we can do the
following. We sort the arcs in non-increasing or-
der according to capacity. Starting from the net-
work N'= (¥, §i), we insert arcs in non-increas-
ing capacity order. The insertion of an arc con-
sists of updating three matrices D, M, P, where
matrix D is the usual cost matrix of shortest
paths, ie., D[u, ¢] holds the lead time of the
shortest lead time path from u to ¢ in N', and
matrices M and P are defined on A,

Volume 43, Number 3

T p
Tuv-ald
0 a
Fig. 2. T, e = miniT, urge T,L.
In the beginning Dlu, v]=», My, v]=
(=, 0, =), YureV, u=#r, and D, ¢]=0,

M, v]=1{=, = 0), Y€V, and P is empty.
The following properties hold:

Dle.v]=0 Yeev,
Dlu, cl=min{D[u, x]1+D[x,]} Yursv,
rel

Let (i, j) be the arc to be inserted. Let
d (1,) denote the lead time {cost) of the
shortest lead time path from u to ¢ before the
insertion of {{, /), and d,,,(u, v'} denote the lead
time of the shortest lead time path after the
insertion. It is obvious that if the insertion of the
arc (i. j) to N' introduces a shorter lead time
path for a pair of nodes u, v, this path wiil
consist of the shortest iead time path from u to i,

s STighr | . s

(a)

INFORMATION PROCESSING LETTERS

2 April 1993

the arc (i j), and the shortest lead time path
from ; to ¢. Hence

ducw{“' f‘.) = min{dul‘l(”' ‘,'.)' duhl([t' {) + l,(l. j)

+d, (j.)} Yurel.

Consider a pair of nodes «, . If the insertion
of arc ({. j) does not introduce a shorter lead
time path from u to ¢. it cannot introduce a
useful path from u« to ¢ either because of the
non-increasing capacity order of the insertion,
hence matrices M, P need not be updated. For
the following discussion, suppose that the inser-
tion of arc (/. j) results in a shorter lead time
path p from u to v. Since arcs are inserted in
non-increasing capacity order, arc (i, j) is critical
for p, and p is a useful path from u to ¢ in N,

Let T, wlo) and T, ... (o) denote the mini-
mum transmission time function from u to ¢
before and after the insertion of arc (i,) respec-
tively. Then

Tl’u-rrew((r) = min{’f;u-u!d(o-)' Tp(g)}‘

The transmission time function 7, of the new
useful path p has the smallest intercept so far,
and so it will contribute the leftmost piece to
T nen{o). Unless 7,, ,, is a line of the same
slope as T, in which case T, _,,. = T, T, must
cross T, at some point, because it has at least
as large aslope as T, ;. Thus, to find 7., in
the general case (when T, # 1), we need to

L -new

identify the point where T, crosses T, ., (see

Sright o, 5 o

)

Fig. 3. Example to illustrate the update of marrix M.

264

Volume 43, Number 5

Fig. 2). To achieve this, we can scan the pieces of
T, .o from left to right until the piece intersect-
ing p is found. For this purpose, let fast denote
the last interval-path node in M[u, ¢] and @,
denote the corresponding path from u to ¢, If
cli, /) < Cy,. let 5 denate the intersection on
the axis of o of 7, and T}, . There are two cases
(see Fig. 3).

Case 1: s <sright,,,,. Then (5, T, (s5)) is the
intersection point of 7, and 7, ,,,,. This means
that Oy, remains the quickest path in
[s, sright,,.,] and p becomes the quickest path in
[0, 5] and thus, s, p should be added to Mu, ¢].

Case 2: 5 = sright,,.,. Then (.. is no more a
quickest path for any o and so it should be
deleted. In order to find the place where p crosses
1o 014 this process must be repeated until case 1
occurs. If ¢{i, j} = Cy,,, then path @, ., becomes
useless and the case is equivalent to case 2.

Since p is a useful path, it should be also
added to Plu, v]. If the capacity of arc (i, j)
equals the capacity of the last useful path @,,,, in
Plu, v] before the insertion then Q,,,, becomes
useless and it must be deleted before adding p.
All other paths in Plu, ¢] have larger capacity
than c(p) thus they remain useful.

Let R, denote the set of pairs of nodes whose
lead time decreases with the insertion of arc
G, 0 Ry =y, v)]d,(u,) <d,lu, v
Upon insertion of an arc (i, j), matrices D, M,
and P should be updated for every (u, v) ER;;.
This can easily be done in O(»n?) time by checking
every ordered pair of nodes (u, v). To avoid
unnecessary comparisons, since in general | R,
< n?, we can use Rohnert’s cost decreasing algo-
rithm [5] or the ADD procedure of Even and
Gazit [3] that deal with dynamic arc insertions in
graphs. The only difference here is that when
Dlu, v], an entry of the cost matrix, is updated,
Mlu, v] and Plu,] should also be updated as
explained above.

For simplicity we demonstrate the algorithm
without using any dynamic insertion data struc-
ture here. For the update of M, P two auxiliary
nXn matrices Mlast and Plast are needed.
Miast[u, v], Plast{u, v] hold the index of the last
entry in M[u, v] and Plu, v] respectively, In the
beginning, Mlast{u, v] = Plast{u, v] = 0.

INFORMATION PROCESSING LETTERS

2 April 1993

Algorithm All-Pairs-Quickest-Path
Input: The newwork N=(V, 4, c, .
Qutpur: Matrices M and P.

begin
Sort the arcs in non-increasing capacity order
into arclist:
Initialize D. M, P, Mlast, Plast
while arclist # (do begin
(¢, j1= poplarclist);
if D{i, /1<,) then skip (i,)
eise
for ail pairs of nodes (i, v} do
if Dluw, i]+ (i,))+ D[, 1< Dlu, v] then
begin
Dlu, v}1:=Dlu, i]+ i, j) + D{j, ¢];
Update-M(u, ¢, i, j);
Update-Plu, ¢, i, j);
end;
end;
end.

Procedure Update-M(u, ¢, {, j)
[,] is the entry to be updated.
(i, j}is the inserted arc.
begin
last = Mlast(u, ¢];
newnode. L == D[u, v];
newnode.C = c{i, j);
if (fast > 0) and (M, [last].C = c{i. /)
then last :=last - 1;
while ({zst > 1) and (intersection(newnode,
M, [last]) = M, [last).sright) do
last = last - 1;
if (last = 0) then newnode.sright = =
else newnode,sright := intersection(newnode,
M, last]);
M, Jlast + 1] = newnode;
Milast(u, v) = last + 1;
end;

Precedure Update-P(u, v, i, j)
[u, v] is the entry to be updated.
(i, /) is the inserted arc.
begin
last := Plast[u, vl;
newnode. L = Dlu, v1:
newnode.C = c(i, j);

[
(=33
vy

Volume 43, Number 3

newnode. [=i,
newrode. J =
if 1« = then newnode.lefipath = Plast[u, (]
else newnode.leftpath =,
if v #j then newnode.rightpath = Piastj. 1'};
else newnode. rightpath '= O,
if (fast > 0) and (i, /) =P, [last].C
then last = last — 1:
P, [last + 1}:=newnode:
Plast{w, ¢]=last + 1;
end;

The function intersection(p|, py} returns the
value of o such that 7,{¢) =T, (o).

Lemma 4. Throughou! the algorithm we maintain
the following invariants. Dlu, v] gives the lead
time of the shortest lead time path from u to ¢ in
N’ Mlu, v] gives a partition of the range of o
into imtercals and for each interval the capacity
and lead time of the corresponding quickest path in
N and Plu, v] gives a list of all useful paths from
wilovrin N,

Proof. We prove by induction on the number of
insertions. At the beginning N’ contains no arcs
and D. M, P are initialized appropriately. Thus
the basis of the induction is true,

Suppose that the lemma is true before the
insertion of arc (i, j). Let wer V. Dlu. v}
Mlu, v], Plu.v] are updated if and only if
Dlu, i1+ Ui, jy+ DIy, ¢] < Dlu,], ie., if and
only if the insertion of arc (i, ;) results in a new
useful path from « to v. From the preceding
discussion it is clear that D[u, ¢] is updated to
dpefie v) Mu, el 7T, ,..(o), and Plu, ¢] to
the new list of useful paths, i.e., the lemma re-
mains true after the insertion. Note that D{¢, ¢],
M, ¢]. Ple, ¢] are never updated for any r € I/,
and so they always hold their initial values which
are appropriate. O

Lemma 3. For any pair of nodes u €V, and for
any o >0 there is q guickest path to send o units
of data from u to v in N, which uses only arcs
inserted in N,

266

INFORMATION PROCESSING LETTERS

2 April 1993

Proof. Assume for a contradiction that there is a
pair of nodes w. £V and a value o, > 0 such
that any quickest path ¢ 0 send &, units of data
from « to ¢ uses arc (/. j) which was skipped by
the algorithm. Let D, [/, f] denote the value of
DI[i, j] before arc (i, j) was considered. Then
Doy j1< i,). This means that there is a path
p from i to j with {{p) < {i. j) and because arcs
are inserted in non-increasing capacity order.
c{p) = cli,). Let q' denote the part of g except
arc (4, j). le. g=q V(i). Let p'=q'Up; p’
is a path from « to v in V. Then 7 (o) = {(q) +
oo/elq) = Hq')+ U,)+ ay/min(c(g’), c(i, /).
But min(c{q’), (i, /1) < min(c(g), e(p)). Thus

Ty(ay) =1(q") +I{p) + op/min(c(q’), c(p))
=Tp'(aﬂ)

which is 2 contradiction. O

By Lemmas 4 and 3, at the end of the algo-
rithm matrices M and P are correctly con-
structed for network N.

The time required to update Df[u, r] and
Plu, v] after an arc insertion is constant. Updat-
ing M{u, ¢], a number of deletions may take
place in Case 2. But the paths deleted are all
distinct useful paths in & and there are at most »
distinct useful paths from « to ¢ in A. Thus.
throughout the algorithm updating M{u, ¢] can-
not require more than r deletions.

The time required for the insertion of arc
(i, j), without counting the time required for
possible deletions while updating M, is O(n?).
There are m arcs to insert. thus the total time
requirement to construct matrices M and P is
Of(mn?} plus O(m?) for the deletions while up-
dating M. Since rgm, the time required is
O(mn*). Using the dynamic insertion data struc-
tures will not change the worst case time bound
of the algorithm, but will improve its average
performance.

There may be cases where there is some capac-
ity value ¢, such that the number of -arcs of
capacity ¢, is large, In such a case it may be
preferable to use an all-pairs shortest path algo-
rithm on N(c,) rather than updating D after
considering each arc of capacity ¢,. Let D, be

Volume 43, Number 5

the all-pairs lead time {cost) matrix of ~(c,) and
let P, be a matrix where P.{u, '] holds an inter-
mediate vertex & that the shortest lead time path
from « to v in N(e,) passes through [1]. Any
all-pairs shortest path algorithm gives those ma-
trices or similar ones. Then we can update D, M,
P as follows. For each pair «, ¢ such that D{u. ¢]
D fu, v] (Dlu, ¢]> D,lu, vD update Dlu,)
to D, v], update M{u, ¢]as before for path of
capacity c, and lead time D,[u, ¢], and add to
the end of the list in Plu, ¢} the new useful path
of capacity ¢, and lead time D, [u. r'] with fields
I, J set 1o PJlu, v] and fields lefipath and right-
path set to 0. At the end, for those entries Plu, ¢]
that were changed and {(u, v) is not an edge of
Mc,). assign to fields lefipath and rightpath of
the last entry of Plu, v], the index of the last
entry of Plu, k] and P{k, v] respectively, where
k is the vertex in P.{u, vl It is easy to see that
the update of matrices D, M, P is equivalent to
the one we would get if arcs of capacity ¢, were
inserted one by one in N'.

Using Fibonacci Heaps of Fredman and Tar-
jan {4] the all-pairs shortest path problem in
N(c,) can be solved in O(n? log n +nm) time,
where m, = | 4. |. Hence, the time required to
construct matrices M and £ is Olmin{mn?, m?>-
log n + rmmj}). If r is constant the latter method
will yield the same time complexity as the all-pairs
shortest path problem.

4. Answering queries

Once matrices M and P are available it is easy
to answer quickest path queries. Given a pair of
nodes s, ¢ and an amount of data o, to transmit
from 5 to ¢ we need to do the following to
identify the quickest path.

1. Do binary search in AM[s, t] to identify the
node & such that M [k —1lsright <oy <
M [k)sright. Then the fields C and L of
M, (k] give the capacity and lead time of the
quickest path to send o, units of data from s
to ¢, Le., the transmission time is L + o,/C. If
the actual path is needed then

INFORMATION PROCESSING LETTERS

2 April 1993

2. Do binary search in P[s, t] to determine the
path node of that capacity. {(Path nodes arc
ordered in decreasing capacity order.) Since a
quickest path is certainly useful. there is a
path node in P[5, ¢] with the same capacity.

. By following fields lefiparh and rightpath we
can retrieve the actual path in time propor-
tional to its number of arcs.

L

Thus, the query time is Ollog r + k) where k
is the number of arcs of the actual path. By
Property I, the useful path retrieved is indeed the
quickest path from s to ¢ for that amount of
data.

5. Conclusion

In this paper we discussed the quickest path
problem and proposed an O(m?) space data
structure which allows to answer quickest path
queries in O(log r) time and whose construction
requires Q{min{mn?, ra* log n + nun)) time.

Acknowledgment

The authors would like to thank the anony-
mous referee for the suggestions that have helped
improve the presentation of the paper.

References

[1) A.V. Aho, 1.E. Hoperoft and J.D. Ullman. Data Structures
and Algorithms (Addison-Wesley, Reading, MA, 1983).

i2) Y.L. Chen and Y.H. Chin, The quickest path problem.
Comput. Oper. Res. 17 (1990) 153-161.

(31 S. Even and H. Gazit, Updating distances in dynamic
graphs, Methods Oper. Res. 49 (1985) 371-387.

(4] M.L. Fredman and R.E. Tarfan, Fibonaccei heaps and their
uses in improved network optimization algorithms, /. ACAM
34 (1987) 396-613.

{5] H. Rohnert, A dynamization of the a]| pairs least cost path
problem, in: Proc 2nd Ann. Symp. on ﬁeareu‘calAspeczs of
Computer Science (1985) 279-.286.

[6] I.B. Rosen. 5.Z. Sun and G.L. Xye. The quickest path
problem and the enumeration of quickest paths,
Manuscript.

267

