
International Journal of Computational Geometry & Applicationsc World Scienti�c Publishing Companyk-PAIRS NON-CROSSING SHORTEST PATHS IN A SIMPLEPOLYGON�EVANTHIA PAPADOPOULOUyIBM TJ Watson Research CenterP.O. Box 218, Yorktown Heights, NY 10598, USAE-mail: evanthia@watson.ibm.comReceived 26 August 1997Revised 5 May 1999Communicated by M. J. AtallahABSTRACTThis paper presents a simple O(n+ k) time algorithm to compute the set of k non-crossing shortest paths between k source-destination pairs of points on the boundary ofa simple polygon of n vertices. Paths are allowed to overlap but are not allowed to crossin the plane. A byproduct of this result is anO(n) time algorithm to compute a balancedgeodesic triangulation which is easy to implement. The algorithm extends to a simplepolygon with one hole where source-destination pairs may appear on both the inner andouter boundary of the polygon. In the latter case, the goal is to compute a collection ofnon-crossing paths of minimum total cost. The case of a rectangular polygonal domainwhere source-destination pairs appear on the outer and one inner boundary12 is brieydiscussed.Keywords: non-crossing paths, simple polygon, polygon decomposition, geodesic trian-gulation, axis-parallel paths.1. IntroductionThe k-pairs non-crossing shortest path problem in a simple polygon is de�nedas follows. Given a simple polygon P of n vertices and k source-destination pairsof points (si; ti); i = 1; : : : ; k, along the boundary of P , �nd the collection of k non-crossing shortest paths connecting every pair (si; ti) that lie entirely in P . Non-crossing paths are allowed to overlap i.e., share vertices or edges, but they are notallowed to cross each other. Note that if the source-destination pairs are arbitrarilylocated on the polygon boundary there need not be any set of non-crossing pathsbetween them. In the case where P contains a hole and the k source-destinationpairs of points may appear in both the outer and the inner boundary of P the�An extended abstract appeared in the proceedings of the 7th International Symposium onAlgorithms and Computation, December 1996, LNCS 1178, 305-314.yThis research was conductedwhile the author was at the Department of Electrical Engineeringand Computer Science, Northwestern University, Evanston, IL 60208, USA.1

problem is to compute the collection of k non-crossing paths whose total length isminimum.The non-crossing shortest path problem was introduced by D.T. Lee.7 Taka-hashi et al.11 considered the following problem: Given an undirected plane graphwith nonnegative edge lengths, and k terminal pairs on two speci�ed face bound-aries, �nd k non-crossing paths in G, each connecting a terminal pair, whose totallength is minimum. They presented an O(n logn) time algorithm, where n is thetotal number of vertices in the graph (including terminal pairs), using divide andconquer. In a subsequent paper,12 Takahashi et al. considered the non-crossingshortest path problem in a polygonal domain of n rectangular obstacles and the L1metric. Given a set of n rectangular obstacles inside an outer rectangle and a set of2k terminals (points) located on the boundaries of the outer rectangle and one ofthe obstacles, the problem asks for a set of non-crossing paths, each one connectinga set of terminal pairs without passing through any of the obstacles, and whosetotal length is minimum. Using a divide and conquer approach they provided anO((n + k) log(n + k)) time algorithm.12 Motivation for non-crossing shortest pathproblems comes from VLSI layout design.7;11;12In the case of a simple polygon or a simple polygon with one hole, we can obtainan O(k + n logk) time algorithm using a divide and conquer approach similar toRefs. [11,12] and the O(n) time algorithm of Lee and Preparata8 for the singlepair shortest path problem in a simple polygon. Alternatively, the problem can besolved by answering k shortest path queries using the data structure of Guibas andHershberger.4 This data structure can be constructed in O(n) time and space andcan answer shortest path queries between pairs of points in a simple polygon inO(logn + l) time where l is the number of links of the shortest path.In this paper we present an O(n+k) time algorithm for the k pairs non-crossingshortest path problem in a simple polygon and a polygon with one hole. Sources areassumed to be sorted around the polygon boundary. The collection of non-crossingshortest paths is organized in a forest that allows shortest path queries between anygiven pair to be answered in time proportional to the size of the path. In section 6,we make an observation that can slightly improve to O(k+n logn) the time complex-ity of the algorithm of Takahashi et al.12 for a rectangular polygonal domain whensources are given sorted around the boundary. A byproduct of our algorithm for asimple polygon is a simple O(n) method for computing a balanced geodesic triangu-lation of a simple polygon. A balanced geodesic triangulation is a decomposition of asimple polygon into triangle-like regions, called geodesic triangles, with the propertythat any line segment interior to P crosses only O(logn) geodesic triangles.2;3 Sucha decomposition �nds often applications in problems involving simple polygons e.g.,ray shooting or shortest path queries2;3 and can be computed in O(n) time2. Theidea is to compute the collection of shortest paths between the following pairs of ver-tices (v1; vn=3); (vn=3; v2n=3); (v2n=3; v1); (v1; vn=6); (vn=6; vn=3); (vn=3; vn=2), etc. un-til a pair consists of consecutive vertices. Our O(n) time algorithm for computingthe collection of non-crossing shortest paths among the above O(n) pairs of verticesgives an alternative method for computing a balanced geodesic triangulation which2

is simple to implement. In general, a collection of non-crossing shortest paths be-tween pairs of points on the boundary of a simple polygon can be used to obtaina useful polygon decomposition by including in the decomposition shortest pathsbetween certain boundary points.2. PreliminariesLet P be a simple polygon and let @P be its boundary. Given two pointsx; y 2 P , �(x; y) denotes the shortest path from x to y that lies entirely in P . �(x; y)is assumed to be directed from x to y. We are given a set of k source-destinationpairs along @P , ST = f(si; ti); 1 � i � kg. We shall adopt the convention thatsources si; 1 � i � k, are ordered clockwise along @P and that for any pair, siappears before ti when we traverse @P clockwise starting at s1. Source s1 is regardedas the starting point along @P . Unless otherwise noted, we assume a clockwisetraversal of @P starting at s1.Let @P be mapped onto a unit circle. Then the k source-destination pairs ofpoints get mapped to k circle chords, siti; i = 1; : : : ; k. Fig. 1 shows the mapping.If chord siti intersects sjtj then clearly �(si; ti) and �(sj ; tj) must cross each other.We say that pairs (si; ti) and (sj ; tj) are non-crossing, if and only if the corre-sponding chords in the unit circle, siti and sjtj , do not intersect. For example, inFig. 1, pairs (s1; t1); (s2; t2); (s3; t3), and (s5; t5) are non-crossing while pairs (s4; t4)and (s5; t5) are crossing. It is easy to see that shortest paths between two pairs ofpoints in ST are non-crossing if and only if the pairs are themselves non-crossing.We therfore have the following lemma.
12

s
s

t

t

s

t

1

3

ts4

s

3

3

s2
1t

s

5
t

s5

4
2

4

4

3

s

t2
s5 t

t
5

1

t sliceFig. 1. Mapping of k source-destination pairs of vertices into k chords on theunit circle.Lemma 1 Given a simple polygon P of n vertices and k source-destination pairsalong @P , (si; ti); 1; : : : ; k, detecting if any two shortest paths connecting si to ticross each other can be done in O(n + k) time.Given the unit circle representing @P and a pair (si; ti), the region of the unitcircle enclosed by the chord siti and the arc from si to ti is referred to as a sliceand is denoted as sl(si; ti). (A clockwise traversal is assumed). For the pair (s1; t1)we de�ne two slices, sl(s1; t1) and sl0(s1; t1), where sl0(s1; t1) is the complementof sl(s1; t1) i.e., the region of the unit circle enclosed by the chord s1t1 and thearc from t1 to s1. In Fig. 1, sl(s1; t1) is shown shaded. Note that paths �(si; ti)and �(sj ; tj) are non-crossing if and only if the corresponding slices, sl(si; ti) andsl(sj ; tj), do not intersect or one of them totally contains the other. In the formercase, the two non-crossing pairs are said to be in series, and in the latter, they are3

said to be in parallel. The destination points of pairs that are in parallel are inreverse order as the source points. Fig. 2 shows an example of a set of non-crossingslices; slices sl(s1; t1); sl(s3; t3); sl(s6; t6) are in series while sl(s1; t1); sl(s2; t2) arein parallel.Consider now a tree, Tsl, representing the set of non-crossing slices where theroot corresponds to the unit disk and each node represents a slice. The children ofthe root are sl(s1; t1) and sl0(s1; t1). Slices that are totally contained in sl(si; ti)are descendants of sl(si; ti) in the tree. The immediate children of sl(si; ti) (resp.sl0(s1; t1)) are those slices in series that are totally contained in sl(si; ti) (resp.sl0(s1; t1)) but are not contained in any other descendent of sl(si; ti). Fig. 2 showsthe tree representation of the corresponding slices. The nodes are labeled by theslice number; slice 0 refers to the unit disk. Note that Tsl may be balanced orcompletely unbalanced.
5

2

s

1
3

t

s

4t

tt

2s
1s

t

s
s
4

t

3
5

6

1

263

5

1 ’

0

4

6Fig. 2. Non-crossing slices and the tree representation.Let R = fr1; r2; : : : ; r2kg be the set of all points in ST . We assume that R isordered according to a clockwise traversal of @P starting at r1 = s1. Given any twopoints x; y along @P , we say that y follows x, and denote as x < y, if and only ify follows x in a clockwise traversal of the polygon boundary starting at s1. GivenR0 � R and rj 2 R0, let nR0(rj) denote the point in R0 following rj and pR0(rj)denote the point in R0 preceding rj. For R0 = R, nR(rj) = rj+1 and pR(rj) = rj�1.Let R0 � R be such that the shortest paths between any two pairs of distinct pointsare disjoint. The area enclosed by the collection of shortest paths �(rj; nR0(rj)) forevery rj 2 R0 is called the geodesic polygon induced by R0. In Fig. 3, the shadedarea is the geodesic polygon induced by R0 = fr1; r4; r6; r7; r10g. The last commonvertex along the paths emanating from rj, �(rj; nR0(rj)) and �(rj; pR0(rj)), is anapex of the geodesic polygon and is denoted as �(rj). �(rj) is also referred to asthe apex of rj. If rj is the only common point of �(rj ; nR0(rj)) and �(rj ; pR0(rj))then �(rj) = rj. In Fig. 3, �(r4) = a and �(r1) = r1. The common part of�(rj ; nR0(rj)) and �(rj ; pR0(rj)) (i.e., �(rj; �(rj))) is referred to as the geodesic linkof rj. Two consecutive apexes of the geodesic polygon, �(rj) and �(nR0(rj)), arejoined by their shortest path, �(�(rj); �(rj+1)), which is clearly a convex chain withconvexity facing towards the interior of the geodesic polygon.If R0 contains pairs of distinct points whose shortest paths share some commonpart, the collection of shortest paths �(rj; nR0(rj)) induces more than one geodesicpolygon in P . In Fig. 4, set R = fr1; : : : ; r10g induces four geodesic polygonsg1; g2; g3; g4, where g1 = fr1; a; r5; r6; c; r10g, g2 = fa; r2; r3; bg, g3 = fd; e; r9g, andg4 = fe; r7; r8g. Two paths �(ri; nR0(ri)) and �(rj; nR0(rj)), j > i+ 1, that are not4

r

r

r

r

r r r

r

r
r

10
1

2 3

4

5

a

9

8

6

7Fig. 3. The geodesic polygon induced by R0 = fr1; r4; r6; r7; r10g.
1

2

4g

g

g

g

3
9

8

10
1

r

2 3

4

5

6

7

e

r

a

r

b

r

r

r

r

r

r

r

cdFig. 4. The geodesic decomposition of R = fr1; : : : ; r10g.disjoint share a subpath of at least one vertex which is referred to as a geodesic link.For example, in Fig. 4, segment cd is common to �(r6; r7) and �(r9; r10) i.e., cd isa geodesic link. Note that a geodesic link may consist of a single vertex in whichcase the incident geodesic polygons have a common apex (e.g., vertex a in Fig. 4).The collection of geodesic polygons and links induced by �(ri; nR0(ri)), for everyri 2 R0, is called the geodesic decomposition of P induced by R0 and is denoted as(R0). In Fig. 4, the geodesic decomposition of R consists of four geodesic polygonsg1; g2; g3; g4. The geodesic link joining g1 and g2 is vertex a, the geodesic link joiningg1 and g3 is �(c; d) = cd, and the geodesic link joining g3 and g4 is vertex e. Thegeodesic link of r4 is �(r4; b). For every rj; j 6= 4, �(rj) = rj, and �(r4) = b.The root of the geodesic decomposition is considered to be point r1. This inducesa unique directed path from the root to every geodesic polygon which de�nes aparent-child relation between the geodesic polygons. The apex of a geodesic polygong incident to its parent is called the main apex of g and is denoted as �(g). Given ageodesic polygon g and a point rj 2 R0, let �(rj; g) denote the �rst apex of g along�(rj ; �(g)). (If g contains �(rj) then �(rj; g) = �(rj)). In Fig. 4, �(r4; g1) = a and�(r4; g3) = d.Given a vertex v along a convex chainC and a point p, we say that v is supporting(with respect to pv) or that segment pv is supporting to C if the line containing pvis tangent to C.3. Overview and Data StructuresThe collection of shortest paths between every pair of points in ST (given thatST is non-crossing) forms a forest denoted as E . Our algorithm computes E in5

O(n + k) time and processes it to answer shortest path queries between any pairin ST in time proportional to the length of the path. In particular, any tree of Ecan be transformed into a rooted tree by assigning the source of minimum indexas the root. Let ncaE (si; ti); (si; ti) 2 ST , denote the nearest common ancestor ofsi and ti in E . (Note that si and ti must belong to the same tree of E). Then�(si; ti) = �(si; ncaE(si; ti)) [�(ncaE (si; ti); ti). Computing the nearest commonancestor in E for every pair (si; ti) 2 ST can be easily done in linear time in abottom-up fashion using Tsl as a guide. In the case where all source-destinationpairs are in series, we can compute the collection of shortest paths between them inlinear time using any ordinary shortest path algorithm for a single pair of points.8;1;5In particular, we can use the Lee-Preparata algorithm8 for each pair independently.The following lemma assures that the time complexity remains linear.Lemma 2 The collection of non-crossing shortest paths between k source-destinationpairs of points on @P can be found in linear time if the pairs are in series.Proof. Assuming that P is arbitrarily triangulated, the sleeve of a pair (si; ti)is the subpolygon of P consisting of the triangles that �(si; ti) passes through.8 Ithas been shown that the total time required to compute �(si; ti) is proportionalto the size of the sleeve.8 The sleeves associated with the given source-destinationpairs (si; ti); 1; : : : ; k are either disjoint, or they share some triangles. Since thesource-destination pairs are in series, a triangle can be intersected by the shortestpaths of at most three such pairs (otherwise some pairs would be in parallel, seeFig. 5). Thus, each triangle can be shared by at most 3 sleeves. Therefore, the totalnumber of triangles in all k sleeves is O(n+ k). 2
∆Fig. 5. Triangle � may be intersected by at most three paths between pairs inseries.In the general case, where pairs are both in series and in parallel, we computethe collection of shortest paths, E , in a bottom-up fashion using the tree of slices,Tsl, as a guide. In phase 1, we compute the geodesic decomposition of P induced byR. This reveals the collection of shortest paths for every pair at a leaf node of Tsl.For any pair (si; ti) at the bottom level of Tsl, we add �(si; ti) to E and we colorall edges along �(si; ti) red. The remaining edges of the geodesic decomposition arenot colored and are said to be white. Let Rq, for 1 � q � h, where h is the heightof Tsl, denote the set of points appearing at levels 1 to (h � q + 1) in Tsl. Notethat R1 = R and Rh = fs1; t1g. In phase q, 1 < q � h, we compute the geodesicdecomposition of P induced by Rq which reveals the collection of shortest paths forevery pair (si; ti) at level (h � q + 1) of Tsl. Edges of the decomposition at phaseq are either red or white; red edges are those that have been output to E in someprevious phase. At the end of phase q, we output to E all white edges along �(si; ti)6

for every pair (si; ti) at level (h� q + 1) of Tsl and color them red.At every phase q; 1 � q � h, the geodesic decomposition of Rq is maintained.Geodesic polygons and links are kept as doubly linked lists of their vertices. Ingeneral, an apex is adjacent to two vertices in its geodesic polygon and one vertexin the incident geodesic link. An exception are apexes that are common to twogeodesic polygons (e.g., apex a in Fig. 4) which are incident to two vertices in eachof the incident geodesic polygons. Edges of geodesic polygons and geodesic links aremarked as red or white, where red edges have been output to E . In more detail, thegeodesic decomposition is kept as follows: Every vertex v along a geodesic polygong has a pointer next(v) and a pointer prev(v) to the vertex following and precedingv in g respectively. Every apex �, other than a main apex, has an additionalpointer nlink(�) to the vertex following � along the incident geodesic link. Themain apex of g, �(g), has a pointer plink(�(g)) to the vertex preceding �(g) alongthe incident geodesic link. In other words, every apex has a total of three pointers.Every vertex u along a geodesic link has a pointer nlink(u) and a pointer plink(u)to the vertex following and preceding u respectively along the geodesic link. Forconsistency, if a geodesic link consists of a single vertex u we can introduce a dummyvertex u0 representing u in the incident geodesic polygon, and let nlink(u) = u0 andplink(u0) = u.To achieve linear time complexity we need the ability to extract the white edgesof �(si; ti) for some pair (si; ti) at level (h � q + 1) of Tsl without visiting thered edges along �(si; ti). For this purpose we maintain a doubly linked list of thepolygon vertices incident to white edges, referred to as the white-list. The white-listincludes �(rj) for every rj 2 Rq. Two vertices v and u are joined by a link in thewhite-list if and only if v and u belong to the shortest path between two consecutiveapexes �(rj) and �(nRq (rj)) and either vu is a white edge or �(v; u) is a maximalred subpath of �(�(rj); �(nRq (rj))). Every link of the white-list corresponds eitherto a white edge of the decomposition, referred to as a white link, or to a maximalsequence of red edges, referred to as a red link. Note that a white edge along ageodesic link appears twice in the white-list and thus each of the incident verticesalso appears twice.4. The AlgorithmLet's �rst consider the geodesic decomposition at phase 1, i.e., the geodesicdecomposition of R. Pairs (ri; ri+1); 1 � i � 2k, are clearly in series and thereforethe collection of �(ri; ri+1) can be computed in O(n + k) time (Lemma 2). Once�(ri; ri+1) for every i; 1 � i � 2k, have been computed, the geodesic decompositionof P can be easily obtained in linear time. For every pair of points (si; ti) at thebottom level of Tsl, we color edges along �(si; ti) red and output them to E . Wealso build the white list by a simple scan starting at �(r1).To compute the geodesic decomposition of Rq; q > 1, we use the geodesic de-composition of Rq�1. To facilitate updating we use the shortest path tree from s1to all points in R. Computing the shortest path tree from s1 can be done in lineartime using the algorithm of Guibas et al.5 or the simpler to implement algorithm7

j

α

α

α

α

b

c

(g)

a

l

iFig. 6. (�(g); �j; �i; �l)of Hershberger and Snoeyink.6 Given two points ri; rj 2 R, the nearest commonancestor of ri and rj in the shortest path tree from s1 is denoted as nca(ri; rj). Inthe following, we will use the term nearest common ancestor of ri and rj to denotenca(ri; rj) without explicitly referring to the shortest path tree from s1.Suppose that the geodesic decomposition of P induced by Rq�1 has been com-puted, and that we wish to compute the geodesic decomposition induced by Rq. Forbrevity, we will use to denote the geodesic decomposition during phase q, n(rj)to denote nRq(rj), the point following rj in Rq, and p(rj) to denote pRq(rj), thepoint preceding rj in Rq. At the end of phase q, = (Rq).Consider a point rj 2 Rq such that n(rj) 6= nRq�1(rj). In phase q, every pointri 2 Rq�1 between rj and n(rj) must be deleted from the geodesic decomposition.For this purpose, we incrementally compute �(�(rj); �(ri)) for every ri 2 Rq�1between rj and n(rj) (including n(rj)), updating at the same time the geodesicdecomposition. At the end, we have the geodesic decomposition updated accordingto �(�(rj); �(n(rj))).Suppose now that �(�(rj); �(ri)) has been computed for some ri 2 Rq�1; rj <ri < n(rj). Suppose also that the geodesic decomposition has been updated accord-ingly i.e., = (Rq [fr 2 Rq�1; r � rig). Let rl be the point following ri in Rq�1i.e., rl = nRq�1(ri). Note that rj; ri, and rl are currently consecutive points. Let gbe the geodesic polygon containing �(ri), the apex of ri. For brevity, let �j; �i, and�l denote �(rj; g); �(ri), and �(rl; g) respectively. Note that �j or �l may coincidewith the main apex of g. To update the geodesic decomposition, it is enough toupdate the geodesic polygon g according to �(�j ; �l).Consider the geodesic decomposition induced by f�(g); �j; �i; �lg, denoted as(�(g); �j ; �i; �l) (see Figs. 6, 7). If �(g) coincides with �j or �l, (�(g); �j; �i; �l)must form a geodesic triangle (i.e., have three apexes). Otherwise, (�(g); �j; �i; �l)forms either a geodesic quadrilateral (a geodesic polygon of four apexes, see Fig. 6)or two geodesic triangles (see Fig. 7). In any case, let g(ai) denote the geodesicpolygon of (�(g); �j ; �i; �l) containing �i. Let a; b and c denote the apexes of(�(g); �j ; �i; �l), other than �i, such that a is the last common vertex along�(�(g); �j) and �(�(g); �l), b is the last common vertex along �(�j ; �(g)) and�(�j; �i), and c is the last common vertex along �(�l; �i) and �(�l; �(g)) (seeFig. 6). If the main apex of g coincides with aj (resp. al) then a coincides with b(resp. c). Note that a is the nearest common ancestor of rj and rl. If g(�i) is ageodesic triangle, let a0 denote the main apex of g(�i) (see Fig. 7). Note that a0 is8

either the nearest common ancestor of rj and ri or the nearest common ancestor ofri and rl. To update the geodesic polygon g, we need to compute �(�j; �l) i.e., itis enough to compute �(b; c).Suppose g(�i) is a geodesic quadrilateral (see Fig. 6). To compute �(b; c) webasically need to compute segment yz where y 2 �(�i; b)[�(b; a) and z 2 �(�i; c)[�(c; a) such that y and z are supporting and yz lies entirely in P (see Fig. 8). Then�(b; c) consists of �(b; y), segment yz, and �(z; c). Since �(b; y) and �(z; c) areboth known we only need to compute segment yz. There are four possible cases forsegment yz:Case 1: y 2 �(�i; b) and z 2 �(�i; c) (Fig. 8(a)).Case 2: y 2 �(b; a) and z 2 �(�i; c), y 6= b (Fig. 8(b)).Case 3: y 2 �(�i; b) and z 2 �(c; a), z 6= c (Fig. 8(c)).Case 4: y 2 �(b; a) and z 2 �(c; a), y 6= b, z 6= c (Fig. 8(d)).If g(�i) is a geodesic triangle then �(�j ; �l) is known (see Fig. 7). (Recall that�(�(g); aj) and �(�(g); al) belong to the shortest path tree from s1). If a0, themain apex of g(�i), is the nearest common ancestor of rj and ri (see Fig. 7(a)), letz be a0 and let y be the vertex following z along �(a0; b). Segment yz is supporting toboth �(a0; b) and �(a0; �i). Since y 2 �(a; b) and z 2 �(�i; c), this can be regardedas case (2) for y 6= b or case (1) for y = b. If a0 is the nearest common ancestorof ri and rl (see Fig. 7(b)) let y be a0 and z be the following vertex along �(a0; c).Since y 2 �(�i; b) and z 2 �(c; a) this can be regarded as case (3) for z 6= c or case(1) for z = c. Thus, there is no need to di�erentiate between updating a geodesicquadrilateral and a geodesic triangle.
’

(b)(a)

a

c

b

z y

a

b

a
y

c

z

l

i

j

j

i

l

α

α

α

α

α

α

α

α

(g)
(g)

a’ Fig. 7. g(�i) is a geodesic triangle.To determine which of the four cases is the one occurring and determine verticesy and z, we advance a variable vertex v along �(�i; b)[�(b; a) and a variable vertexu along �(�i; c) [�(c; a) until v and u reach y and z respectively (v and u startat �i). The problem is that vertices a; b and c as well as apexes �j and �l are notknown in advance. However, useful information can be obtained while advancing vand u using the shortest path tree from s1. The following properties which can beeasily derived from the de�nitions, simplify the advancement of v and u.Property 1: For any vertex v along �(�i; �j), v coincides with b if and only if thepredecessor of v on the shortest path from s1, denoted as pred(v), is supporting9

α
j

α i

α l

α
j

(g)α

α l

α i

z

a

c

y

b

(g)α

α l

α
j

α i

α
j

α l

(g)α

α i

(g)

y

α

a

b

y

c

z

(d)(b)

a

b

y

z

c

(a) (c)

c

z

a

bFig. 8. The four cases for segment yz.with respect to pred(v)v and pred(v) 62 �(�i; �j). Similarly, for any vertex u along�(�i; �l), u coincides with c if and only if pred(u) is supporting with respect topred(u)u and pred(u) 62 �(�i; �l).Property 2: Segment vu intersects �(a; c) (resp. �(a; b)) if and only if pred(u)(resp. pred(v)) lie at the same side of vu as �i.Due to property 1 we can easily determine when v and u reach b and c respec-tively during the advancement. Furthermore, due to property 2, segment vu canbe advanced so that it always lies entirely in the interior of g(�i). If at any pointduring the advancement it is determined that vu intersects �(a; c) (resp. �(a; b)),we can conclude that we have case 3 or case 4 (resp. case 2 or case 4). In case 4,the advancement of vu can be done similarly to the construction of a U-hull9 (seeRef. [10], page 128). In case 4, vertex a is the nearest common ancestor of rj andrl, and thus a can be easily determined. The details of the algorithm to advancesegment vu are given in the appendix.Once segment yz is determined the update of g can be briey stated as follows:Case 1: Remove �(y; �i) [�(�i; z) and add � = yz.Case 2: Remove �(b; �i) [�(�i; z) and add � = �(b; y) [yz.Case 3: Remove �(c; �i) [�(�i; y) and add � = �(c; z) [yz.Case 4: Remove �(b; �i) [�(�i; c) and add � = �(b; y) [yz [�(z; c).To update g in any of the four cases we walk along the corresponding path� � �(b; c) starting at vertices b or c. (In case 4, we walk along �1 = �(b; y)and �2 = �(c; z) and then consider segment yz). Fig. 9 illustrates the updateof g for case 3 where � = �(c; y). Every edge along � induces a new geodesicpolygon or becomes part of a new geodesic link. In Fig. 9, edge y2y3 and vertexy4 become geodesic links; the remaining edges induce new geodesic polygons whichare shown shaded. To do the actual update we simply need to update the pointersprev(yi); next(yi); plink(yi) and nlink(yi) for every vertex yi along �. The detailsare given in the appendix.The edges visited by the algorithms to determine yz and update g are eitherdeleted from g or they are part of the new path � � �(b; c). For each visited edgeonly constant time is spent. Edges along � are either new white edges to be addedto the geodesic decomposition or they become part of a geodesic link. Once anedge becomes part of a geodesic link, it is never visited again until it gets output ordeleted from the geodesic decomposition. Thus, over all phases, the time spent for10

(g)α
α

α

α
y

y

y

y
z

c

y

y
i

j

3

1

l

4

2

5Fig. 9. The update of g in case 3.updates of the geodesic decomposition is proportional to the total number of edgesappearing in the geodesic decomposition throughout the algorithm. Since no twosuch edges intersect and since they are always incident to vertices or points in R,their number is bounded by O(n+ k).To update the white list, let �0 be the path obtained from � by substituting anymaximal sequence of red edges by a single red link. Let h1 and h2 be the verticesin the white-list preceding and following (or coinciding with) the endpoints of �respectively. (Recall that during the update, all vertices in the white-list betweenh1 and h2 were deleted from the geodesic decomposition). Delete the part of thewhite list between h1 and h2 and merge �0. The time spent is proportional to thenumber vertices deleted plus the size of �. Thus,Lemma 3 The total time spent for updating the geodesic decomposition and thewhite-list in every phase of the algorithm is O(n+ k).To complete the update, we need to compute the nearest common ancestor ofrj and rl because rj and rl become neighbors after the deletion of ri. Clearlynca(rj; rl) is either nca(rj; ri) or nca(ri; rl). In particular, nca(rj ; rl) must be theone appearing �rst along �(s1; ri) i.e., the one nearest to the root. Assigning a levelnumber to all nodes of the shortest path tree from s1 allows to compute nca(rj; rl)from nca(rj; ri) and nca(ri; rl) in constant time.After the geodesic decomposition induced by Rq has been computed, we needto extract white edges of �(si; ti) for every pair (si; ti) at level (h � q + 1) of Tsl,color them red, output them to E , and update the white list. Starting at �(si),we follow the white list until �(ti) adding at the same time the white edges thatwe encounter to E . Note that white edges along �(si; ti) that are part of geodesiclinks appear twice along the white-list and that both occurrences must become red.Finally, substitute �(�(si); �(ti)) by a single red link between �(si) and �(ti). Thetime spent is proportional to the number of white edges that get output to E i.e.,the number of edges that become red.We therefore conclude that E can be computed in O(n+ k) time.5. A Simple Polygon With One HoleSimilarly to Refs. [11,12], our algorithm can be extended to the case of a simplepolygon with one hole. Let @P and @Q denote the outer and inner boundary11

respectively i.e., @Q is the boundary of the hole. Source-destination pairs in STmay appear on both the outer and the inner boundary.In the presence of one hole the dual graph of an arbitrary triangulation containsa cycle. Thus, for every pair of points in the polygon we have two kinds of \pulltaut" paths: one clockwise and one counterclockwise around @Q. Let �c(si; ti) and�cc(si; ti) denote the shortest paths from si to ti that pass clockwise and counter-clockwise around Q respectively, where (si; ti) 2 ST . The shortest path from si toti is the shortest between �c(si; ti) and �cc(si; ti). Note that if any of the two pathshas no common part with @Q then that path must be the shortest one.Let's �rst assume that there is a pair (si; ti) with si 2 @P and ti 2 @Q. Thenonce a path between si and ti has been routed there is only one way (if any) toroute the rest of the pairs in a non-crossing fashion. Furthermore, a path can berouted in only two ways: clockwise or counterclockwise around the hole Q. Thus,we can compute �c(si; ti) and �cc(si; ti), solve the problem separately for each case,and chose the solution of minimum total cost. In the following, we concentrate indetermining non-crossing shortest paths assuming that �c(si; ti) has been routed.The counterclockwise case can be treated in the same way.Suppose that we cut the polygon along �c(si; ti). Cutting corresponds to treat-ing every diagonal along �c(si; ti) as a pair of boundary edges. By cutting along�c(si; ti) we produce a number of simple subpolygons. The problem can then bereduced to �nding non-crossing shortest paths for each subpolygon. Fig. 10 illus-trates two of the polygons obtained by cutting along �(si; ti). The lightly shadedsubpolygon is the one containing the �rst and the last diagonal along �(si; ti) withendpoints on both @P and @Q. We shall refer to the latter subpolygon as the mainsubpolygon produced by the cutting operation.
j

w

wv

v

t

s

tQ s ji

i

Fig. 10. Cutting P along �c(si; ti).Let X be a subpolygon produced by the cutting operation and let (sj ; tj) be asource-destination pair such that sj 2 @X and tj 62 @X. The shortest non-crossingpath from sj to tj must share some common part with the boundary of X along�c(si; ti). Let v and w be the �rst and last vertex respectively along �c(si; ti)\@X;if X is the main subpolygon, let w be the last vertex along �c(si; ti) \ @P . InFig. 10, vertices v and w for each subpolygon are indicated by arrows containedentirely within the respective subpolygons. The shortest path from sj to tj whichis non-crossing to �(si; ti) (if any) must clearly pass through vertex v or w. In12

particular, it is not hard to see that �(sj ; tj) must pass through v if and only if:1) vertex v 2 @P and tj is encountered before si as we walk on @P starting at vand moving away from @X or 2) vertex v 2 @Q and tj 2 @P . Otherwise, �(sj ; tj)must pass through w. According to this observation we can map tj to either v orw and consider pair (sj ; v) or (sj ; w) respectively as a source-destination pair in X.Using this transformation for any source-destination pair with terminals in di�erentsubpolygons we can reduce the problem into computing non-crossing shortest pathswithin every subpolygon X.Let's now assume that there is no source-destination pair in ST with terminalson both @P and @Q. If all pairs appear on @Q then the problem is easy and weskip the discussion. Let's assume that all source-destination pairs in ST appear on@P . Then ST admits a set of non-crossing shortest paths under exactly the sameconditions as in the simple polygon case. This collection of paths has minimumtotal cost if and only if every path is itself shortest. The clockwise paths �c(si; ti)for every pair (si; ti) 2 ST , can be computed similarly to the simple polygon case.For this purpose we build the geodesic decomposition by computing the clockwiseshortest path between every two consecutive points in ST . Since the paths are allclockwise, the computation can be done as in the ordinary case by breaking thecycle of the dual graph. For pair (s1; t1) both �c(s1; t1) and �c(t1; s1) = �cc(s1; t1)get computed and thus at the end we can chose the shortest among the two. Let'sassume without loss of generality that the shortest path from s1 to t1 is �c(s1; t1).Then for every descendent of (s1; t1) in Tsl, �c(si; ti) must be the shortest. Let ST 0denote the remaining pairs i.e., the descendents of (t1; s1) in Tsl. For pairs in ST 0we also need to compute counterclockwise shortest paths and chose the shortest.Note however, that if �cc(sj ; tj) is the shortest path for a pair (sj ; tj) 2 ST 0 thenthe counterclockwise path must be the shortest for any ancestor of (sj ; tj) in Tsl.We can compute counterclockwise shortest paths for pairs in ST 0 as follows. Letr be any source or destination between t1 and s1 and let �cc(r; r) be the shortestcounterclockwise path from r to itself (�cc(r; r) wraps around Q, see Fig. 11). LetST 00 be the subset of ST 0 that consists of pairs with sources between t1 and r anddestinations between r and s1 i.e., ST 00 = f(sj ; tj); t1 < sj � r and r � tj < s1g.We can compute �cc(sj ; tj) for every pair in ST 00 by computing shortest non-crossingpaths in the simple polygon produced by cutting P along �(s1; t1) and �cc(r; r).For the remaining pairs in ST 0 � ST 00 let v and w be the �rst and last vertexrespectively in @Q along �cc(r; r). Clearly the counterclockwise shortest path forany pair in ST 0 � ST 00 must pass through v or w. Thus we can compute theremaining counterclockwise shortest paths using the shortest path trees from v andw to all points in ST 0 � ST 00. Note that if �c(s1; t1) passed through @Q we couldcompute counterclockwise shortest paths for pairs in ST 0 using the shortest pathtrees from the �rst and last vertex in @Q along �c(s1; t1).6. A note on the k-pairs non-crossing shortest path problem in a rect-angular domainIn this section we make an observation on the algorithm of Takahashi et al.1213

1 1
s t

r

w v

P

QFig. 11. Computing counterclockwise shortest paths in ST 0.for the k pairs non-crossing shortest path problem in a domain of rectangles. Allrectangles are enclosed within a single outer rectangle and source-destination pairsmay appear on the outer and one inner rectangle. Distances are measured in theL1 metric. Takahashi et al.12 showed that the collection of non-crossing paths ofminimum total length between the k source-destination pairs can be computed inO((n+k) log(n+k)) time where n is the number of rectangles. The idea is to reducethe problem for a plane region to a problem for a series of plane graphs of O(n+ k)vertices in total. Our observation is that k need not play an important role in thetime complexity of this algorithm. The problem for a plane region can be reducedto a problem for plane graphs of total size O(n). Then a solution for O(n) non-crossing paths can be modi�ed to provide the set of non-crossing shortest paths forthe original k source-destination pairs. In this manner the algorithm of Takahashi etal.12 can achieve O(k+n logn) time, assuming that the source-destination pairs aregiven sorted around the boundary. If pairs are not sorted an additional O(k log k)time is needed initially for sorting.A simpler problem whose solution is used throughout Ref. [12] is one wheresource-destination pairs appear on two parallel boundary edges in a sorted order.To solve the general problem, Takahashi et al.12 perform a case analysis and de�nesubsets of source-destination pairs for which they determine shortest non-crossingpaths within subregions of the rectangular domain. Within each subregion thenon-crossing shortest path problem simpli�es to one where source-destination pairsappear on two parallel boundary edges. The algorithmic parts that lead to thederivation of these simpler subproblems do not depend on the number of source-destination pairs, k, and can be performed in O(n logn) time. These parts involvethe computation of axis parallel paths between a constant number of boundarypoints and the cuttinga of the domain along those paths. Thus, by modifying thealgorithm of Ref. [12] for the simpler subproblem to run in O(k+ n logn) time, thetime complexity of the general algorithm in Ref. [12] becomes also O(k + n logn)assuming that source-destination pairs are given sorted. In the sequel we focus onthis simpler problem (see Fig. 12).Let's assume, without loss of generality, that all sources appear on the upperhorizontal edge of the outer boundary and that all destinations appear on the lowerhorizontal edge. The outer boundary is assumed to be an axis parallel polygonaCutting a plane region is equivalent to slitting a plane graph as de�ned in Ref. [12]. Recallthat cutting a region along a path corresponds to treating every segment along the path as a pairof parallel boundary edges. 14

which need not always be a rectangle. As with the simple polygon case, the source-destination pairs admit a collection of non-crossing paths if they appear in a certainorder along the boundary. If non-crossing paths exist the solution is simply acollection of shortest paths between the given source-destination pairs. We assumethat the given set of source-destination pairs, ST , admits a set of non-crossingpaths and that (s1; t1) appears on the boundary as the left-most pair. Note that aset of non-crossing paths exists if and only if s1; : : : ; sk and t1; : : : ; tk appear on theboundary from left to right in this order.
sIsi, i=2,3,4 I

(b)t t

s

t

s 6

1 2 t3 5t4

s2 3s s5

i, i=5,6

1

1

Is1

2

s4

i, i=3,4,5t t tJJ J

I21I I3

J J J2 31Fig. 12. The vertical decomposition of a rectangular domain and the corre-sponding bipartite graph.Consider the vertical decomposition of the plane region obtained by drawingvertical lines through the vertical edges of the boundary (see Fig. 12). It partitionsthe horizontal boundary edges into intervals which are assumed to be ordered fromleft to right. An interval containing at least one source (resp. destination) isreferred to as a source interval (resp. destination interval). Consider the bipartitegraph G whose vertex set consist of source nodes corresponding to source intervalsand destination nodes corresponding to destination intervals. There is an edgeconnecting a source node I to a destination node J if and only if there is a pair(si; ti) such that si belongs to interval I and ti belongs to interval J . Fig. 12billustrates the bipartite graph for the problem in Fig. 12. Since ST is assumed toadmit a set of non-crossing paths, the edges of G must be non-crossing.Given a pair (si; ti), let Isi and Jti be the intervals of the boundary wheresi and ti belong respectively. Nodes Isi and Jti must be adjacent in G. If Isiand Jti bound the same rectangular region in the vertical decomposition, �(si; ti)can be computed trivially and thus we ignore this case. Otherwise, let lsi andrsi (resp. lti and rti) denote the left and right endpoint of Isi (resp. Jti). Itis easy to see that �(si; ti) must be the shortest among the following four paths:P1 = silsi[�(lsi ; lti)[ltiti, P2 = silsi[�(lsi ; rti)[rtiti, P3 = sirsi[�(rsi ; rti)[rtiti,P4 = sirsi [�(rsi; lti) [ltiti. This observation implies that no matter how manysources there are within interval Isi or how many destinations within interval Jti,the problem of �nding �(s; t) for s 2 Isi and t 2 Jti can be reduced to computing�(lsi ; lti); �(rsi ; lti); �(lsi ; rti), and �(rsi ; rti). Note that if �(si; ti) passes through15

rsi (resp. lsi) then for any sj 2 Isi ; j > i, (resp. sj 2 Isi ; j < i), path �(sj ; tj)must also pass through rsi (resp. lsi). Similarly for rti and lti . Thus, we cande�ne a new set of source-destination pairs, ST 0, where sources are the endpointsof intervals containing at least one source, and destinations are the endpoints ofintervals containing at least one destination. In particular, ST 0 = [f(Isi ; Jti) j(si; ti) 2 ST g, where (Isi ; Jti) = f(lsi ; lti); (lsi ; rti); (rsi; lti); (rsi; rti)g. Set ST 0 canbe regarded as a set of source-destination pairs of intervals where each interval paircontributes four source-destination pairs of points. The source-destination pairs ofintervals correspond to pairs of adjacent vertices in the bipartite graph G and canbe regarded as pairs of super-nodes between which we need to obtain shortest paths.The size of ST 0 is O(minfn; kg).The paths between pairs of points in ST 0 are crossing each other, howeverST 0 can be partitioned into at most four subsets of non-crossing pairs (assum-ing that the original set ST admits a set of non-crossing paths). In particular,let ST 01 = f(lsi ; lti) j (si; ti) 2 ST g, ST 02 = f(lsi ; rti) j (si; ti) 2 ST g � ST 01,ST 03 = f(rsi ; lti) j (si; ti) 2 ST g�fST 01[ST 02g, and ST 04 = f(rsi; rti) j (si; ti) 2ST g�fST 01[ST 02[ST 03g. Since the size of each subset is O(minfn; kg), shortestpaths can be computed in O(n logn) time using the algorithm of Takahashi et al.12Alternatively, instead of repeating the algorithm12 for each subset, we can slightlymodify the divide and conquer technique of Ref. [12] by using the bipartite graphG as a guide. Let Ip be the middle source interval i.e., p = bm=2c where m is thenumber of source intervals. Let Jq be the left-most destination interval which is adja-cent to Ip in G. We �rst compute �(Ip; Jq) = f�(lp; lq); �(rp; lq); �(lp; rq); �(rp; rq)g,where lp; rp; lq and rq denote the left and right endpoints of Ip and Iq respectively.Assuming that all horizontal line segments of rectangles have been pre-sorted in alist L in descending order,12 each path in �(Ip; Jq) can be computed in O(n) timeby procedure SHORTESTPATH of Ref. [12]. Note that Jq is the left-most destina-tion interval adjacent to Ip and thus, no shortest path for ST , other than �(sj ; tj),sj 2 Ip and tj 2 Jq, need to intersect �(lp; rq). Thus, we can divide the plane re-gion into two subregions by cutting the region along �(lp; rq). Then we recursivelycompute shortest paths for interval pairs with sources to the left of Ip in the leftsubregion, and paths for interval pairs with sources to the right of Ip (including Ipif Ip is adjacent to Jq+1 in G) in the left subregion. In this manner, the depth of therecursive calls is O(logm) and the time required for all recursive calls at the samedepth is O(n). (Note that L can be updated for the two cut subregions in O(n)time.12) Thus, the modi�ed recursive algorithm takes O(n logn) time in total.Now for each pair (si; ti) 2 ST we simply need to select the shortest amongpaths P1; P2; P3 and P4. Assuming that ties are broken in a consistent way whencomputing shortest paths, the resulting collection of shortest paths for ST must benon-crossing. (Note that crossing paths between pairs in ST must cross at leasttwice. Thus, the only way for shortest paths between two pairs to be crossing is tohave subpaths of equal length between the crossing points). Thus, the solution forshortest paths in ST 0 can be easily modi�ed to derive the set of non-crossing pathsfor the original set ST in additional O(k) time, resulting in an O(k+ n logn)-time16

algorithm.7. ConclusionWe have given a simple linear time algorithm for the k-pairs non-crossing short-est path problem in a simple polygon. The algorithm is easy to implement and canbe used to obtain useful geodesic decompositions of simple polygons by including inthe decomposition shortest paths between pairs of boundary points. An example isthe balanced geodesic decomposition.2;3 Similarly to Takahashi et al.,11;12 this resultcan be extended to a simple polygon with one hole where source-destination pairsmay appear on both the outer and the inner boundary. We also made an observa-tion for the k-pairs non-crossing shortest path problem in a rectangular polygonaldomain, as de�ned in Ref. [12], that k need not play a main role in the algorithmother than initial sorting.AcknowledgmentsThe author wishes to thank professor D.T. Lee for valuable discussions andcomments.References1. B. Chazelle, \A theorem on polygon cutting with applications," Proc. 23rd Annu.IEEE Sympos. Found. Comput. Sci., 1982, pp. 339{349.2. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, andJ. Snoeyink, \Ray shooting in polygons using geodesic triangulations", Algorithmica,12, 1994, 54-68.3. M. T. Goodrich and R. Tamassia, \Dynamic ray shooting and shortest paths viabalanced geodesic triangulations", In Proc. 9th Annu. ACM Sympos. Comput.Geom, 1993, 318-327.4. L.J. Guibas and J. Hershberger, \Optimal shortest path queries in a simple polygon",J. Comput. Syst. Sci., 39, 1989, 126-152.5. L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan, \Linear-timealgorithms for visibility and shortest path problems inside triangulated simple poly-gons". Algorithmica, 2, 209-233, 1987.6. J. Hershberger and J. Snoeyink, \Computing minimum length paths of a givenhomotopy class", Comput. Geometry: Theory and Applications, 4, 1994, 63-97.7. D.T. Lee, \Non-crossing path problems", Manuscript, Dept. of EECS, NorthwesternUniversity, 1991.8. D. T. Lee and F. P. Preparata, \Euclidean shortest paths in the presence of recti-linear barriers", Networks, 14 1984, 393-410.9. M.H. Overmars and J. van Leeuwen, \Maintenance of con�gurations in the plane",Journal of Computer and System Science 23 1981, 166-204.10. F.P. Preparata and M. I. Shamos, Computational Geometry: an Introduction,Springer-Verlag, New York, NY 1985.11. J. Takahashi, H. Suzuki, and T. Nishizeki, \Shortest non-crossing paths in planegraphs", Algorithmica, 16(3) 1996, 339-357.17

v

C

pp

C

(b)

v

p

v

C

(c)(a)Fig. A.1. (a) v is concave. (b) v is supporting. (c) v is reex.12. J. Takahashi, H. Suzuki, and T. Nishizeki, \Shortest non-crossing rectilinear pathsin plane regions", Int. J. of Computational Geometry and Applications, Vol. 7, No.5, 1997, 419-436.Appendix A:In the following, the algorithms to determine segment yz and update the geodesicpolygon g are given in detail. A segment uv, where u; v 2 @P , is said to be valid ifit lies entirely within P .Let's �rst give some useful terminology.10 Given a convex chain C, a vertexv 2 C and a point p 62 C, we say that vertex v is concave (with respect to segmentpv) if segment pv intersects the polygon derived by drawing the segment joining theendpoints of C (see Fig. A.1(a)). Otherwise, if the line containing pv is tangent toC (i.e., the two vertices adjacent to v lie on the same side of the line), we say thatv is supporting (with respect to pv) (see Fig. A.1(b)). Otherwise, we say that v isreex (with respect to pv) (see Fig. A.1(c)).Algorithm Determine-yzInput: The geodesic decomposition and �i.Output: Vertices y; z, and the case id (1 : : :4).Begin(i) Initialize v and u to �i.(ii) Check for case (1) as follows: (Recall that v 2 �(�i; b) and u 2 �(�i; c).)While either v or u is reex with respect to uv, and segment uv is valid do:(To determine whether uv is valid, discriminate pred(v) and pred(u) againstuv. Segment uv is valid if and only if both pred(v) and pred(u) lie to theopposite side of uv as �i.)(a) Advance v along �(�i; �j) until v becomes supporting or uv becomesinvalid. (Note that v cannot advance beyond b in this step. For v = b,v must be supporting with respect to vpred(v) (property 1), and thusv must be supporting with respect to any valid uv with u 2 �(�i; �l).Note also that v cannot advance beyond a0 = nca(ri; rl), since for v =nca(ri; rl), v must be supporting with respect to any valid uv with u 2�(�i; �l) (see Fig. 7).)(b) Advance u along �(�i; �l) until u becomes supporting or uv becomesinvalid. (Note that u cannot advance beyond c or a0 in this step).If segment uv is valid we have case (1); return. (Note that if segment uv isvalid both v and u must be supporting, otherwise the previous step would not18

have terminated.)Otherwise, if uv is invalid because pred(v) falls to the same side of uv as �i i.e.,uv intersects �(a; b), we have case (2) or case (4). Determine b by advancingv along �(�i; �j) until v becomes supporting with respect to vpred(v); letv = b; go to step (iii).Otherwise, segment uv must be invalid because pred(u) falls to the same sideof uv as �i i.e., uv intersects �(a; c). We have case (3) or case (4). Determinec by advancing u along �(�i; �l) until u becomes supporting with respect toupred(u); let u = c; go to step (iv).(iii) Check for case (2) as follows: (Recall that v 2 �(a; b) and u 2 �(�i; c)).While v is concave or u is reex, and uv does not intersect �(a; c) do: (Notethat segment uv intersects �(a; c) if and only if pred(u) is to the same side ofuv as �i.)(a) Advance v along �(b; �(g)) until v becomes supporting. (Note that vstarts as concave).(b) Advance u along �(�i; �l) until either u becomes supporting, or v be-comes concave, or uv intersects �(a; c).If segment uv is valid we have case (2); return.Otherwise we have case (4). In case (4), determine vertex c by advancingu along �(�i; �l) until u becomes supporting with respect to upred(u); letu = c; go to step (v).(iv) Check for case (3) by advancing segment uv similarly to case (2). (Recall thatv 2 �(�i; b) and u 2 �(a; c)). If at the end of the advancement segment uv isvalid we have case (3); return.Otherwise we have case (4). In case (4), determine b by advancing v along�(�i; �j) until v becomes supporting with respect to vpred(v); let v = b; goto step (v).(v) Case (4): Advance v along �(b; a) and u along �(c; a) until both v and ubecome supporting. Deciding whether to advance v or u at each step is doneas in the U-hull construction of Overmars and van Leeuwen9 (see page 128 ofRef. [10]). In particular do the following:Let l be a line containing vertex a = nca(rj ; rl) with slope between the slopesof edges along �(a; b) and �(a; c) that are incident to a. Let l be orientedaway from a.While v or u is concave do(a) Let l1 be the line containing v and its successor along �(b; a) and let l2be the line containing u and its successor along �(c; a). Let I be theintersection point of l1 and l2.(b) If I is to the right of l then u has not reached its �nal position becauseu must be concave with respect to uv for any v 2 �(b; a); advance u.(c) If I is to the left of l then v has not reached its �nal position becausev must be concave with respect to uv for every u 2 �(c; a); advance v.(See page 128 of Ref. [10] for more details).End 19

The following algorithm updates a geodesic polygon g according to path � ��(rj ; rl) (in case 4, � = �1 and � = �2 [yz). For the de�nition of �, �1, and �2,see section 4. Let y1; : : : ; ym denote the vertices along � (resp. �1 and �2 [yz forcase 4) where y1 is the starting point of � i.e., y1 = b or y1 = c in cases 2,3,4.Fig. 9 shows the update of g for case 3, where � = �(c; y). The shaded parts arethe geodesic subpolygons of g produced by the update.Algorithm Update-Input: The geodesic decomposition , vertices y; z, path � = y1 : : : ym, and the caseid (1 : : :4).Output: The updated geodesic decomposition.BeginLet i = 1. While i < m do(i) If yiyi+1 6= yz and yiyi+1 is not a boundary edge of g then yiyi+1 intro-duces a geodesic subpolygon whose main apex is yi+1 (e.g., edges y1y2and y3y4 in Fig. 9). Edge yiyi+1 is white.(a) If yi < yi+1 (i.e., yi+1 follows yi in a clockwise traversal of @Pstarting at s1), let old-next(yi+1) = next(yi+1) and next(yi+1) =yi. Otherwise, let old-prev(yi+1) = prev(yi+1) and prev(yi+1) = yi.(Recall that geodesic polygons are assumed to be ordered clockwise.)(b) If yi has become the main apex of a geodesic polygon then yi cor-responds to a geodesic link of a single vertex. For consistency, werepresent this link using a dummy node y0i. Let prev(y0i) = prev(yi),next(y0i) = next(yi), plink(y0i) = yi, and nlink(yi) = y0i. If yi < yi+1,let next(yi) =old-next(yi). If yi > yi+1, let prev(yi) =old-prev(yi).(c) If yi < yi+1, let prev(yi) = yi+1. Otherwise, let next(yi) = yi+1.(ii) If yiyi+1 is a boundary edge of g then yiyi+1 becomes part of a geodesiclink (e.g., edge y2y3 in Fig. 9). Edge yiyi+1 may be either red or white. Ifyi = �j or yi = �l then update the apexes of rj or rl respectively to yi+1and add edge yiyi+1 to the output E . Otherwise, let nlink(yi+1) = yiand plink(yi) = yi+1.(iii) If yiyi+1 is segment yz (e.g., segment y4y5 in Fig. 9) do the following. Ifvertex y or vertex z has become the main apex of a geodesic polygon,introduce a dummy node as explained in step (b). Let next(y) = z andprev(z) = y. Edge yz is white.End
20

