International Journal of Computational Geometry & Applications
(© World Scientific Publishing Company

kE-PAIRS NON-CROSSING SHORTEST PATHS IN A SIMPLE
POLYGON~

EVANTHIA PAPADOPOULOU!

IBM TJ Watson Research Center
P.0O. Boz 218, Yorktown Heights, NY 10598, USA

E-mail: evanthia@Qwatson.ibm.com

Received 26 August 1997
Revised 5 May 1999
Communicated by M. J. Atallah

ABSTRACT

This paper presents a simple O(n + k) time algorithm to compute the set of k non-
crossing shortest paths between k source-destination pairs of points on the boundary of
a simple polygon of n vertices. Paths are allowed to overlap but are not allowed to cross
in the plane. A byproduct of this result is an O(n) time algorithm to compute a balanced
geodesic triangulation which is easy to implement. The algorithm extends to a simple
polygon with one hole where source-destination pairs may appear on both the inner and
outer boundary of the polygon. In the latter case, the goal is to compute a collection of
non-crossing paths of minimum total cost. The case of a rectangular polygonal domain
where source-destination pairs appear on the outer and one inner boundary!? is briefly
discussed.

Keywords: non-crossing paths, simple polygon, polygon decomposition, geodesic trian-
gulation, axis-parallel paths.

1. Introduction

The k-pairs non-crossing shortest path problem in a simple polygon is defined
as follows. Given a simple polygon P of n vertices and k source-destination pairs
of points (s;,%;),2 = 1,..., k, along the boundary of P, find the collection of k non-
crossing shortest paths connecting every pair (s;,¢;) that lie entirely in P. Non-
crossing paths are allowed to overlap i.e., share vertices or edges, but they are not
allowed to cross each other. Note that if the source-destination pairs are arbitrarily
located on the polygon boundary there need not be any set of non-crossing paths
between them. In the case where P contains a hole and the k source-destination
pairs of points may appear in both the outer and the inner boundary of P the

*An extended abstract appeared in the proceedings of the 7th International Symposium on
Algorithms and Computation, December 1996, LNCS 1178, 305-314.

This research was conducted while the author was at the Department of Electrical Engineering
and Computer Science, Northwestern University, Evanston, IL 60208, USA.

problem is to compute the collection of k& non-crossing paths whose total length is
minimum.

The non-crossing shortest path problem was introduced by D.T. Lee.” Taka-
hashi et al.'! considered the following problem: Given an undirected plane graph
with nonnegative edge lengths, and k& terminal pairs on two specified face bound-
aries, find k non-crossing paths in G, each connecting a terminal pair, whose total
length is minimum. They presented an O(nlogn) time algorithm, where n is the
total number of vertices in the graph (including terminal pairs), using divide and
conquer. In a subsequent paper,’? Takahashi et al. considered the non-crossing
shortest path problem in a polygonal domain of n rectangular obstacles and the L
metric. Given a set of n rectangular obstacles inside an outer rectangle and a set of
2k terminals (points) located on the boundaries of the outer rectangle and one of
the obstacles, the problem asks for a set of non-crossing paths, each one connecting
a set of terminal pairs without passing through any of the obstacles, and whose
total length is minimum. Using a divide and conquer approach they provided an
O((n + k)log(n + k)) time algorithm.!? Motivation for non-crossing shortest path
problems comes from VLSI layout design.”11:12

In the case of a simple polygon or a simple polygon with one hole, we can obtain
an O(k + nlogk) time algorithm using a divide and conquer approach similar to
Refs. [11,12] and the O(n) time algorithm of Lee and Preparata® for the single
pair shortest path problem in a simple polygon. Alternatively, the problem can be
solved by answering k shortest path queries using the data structure of Guibas and
Hershberger.* This data structure can be constructed in O(n) time and space and
can answer shortest path queries between pairs of points in a simple polygon in
O(logn + 1) time where ! is the number of links of the shortest path.

In this paper we present an O(n+ k) time algorithm for the k pairs non-crossing
shortest path problem in a simple polygon and a polygon with one hole. Sources are
assumed to be sorted around the polygon boundary. The collection of non-crossing
shortest paths is organized in a forest that allows shortest path queries between any
given pair to be answered in time proportional to the size of the path. In section 6,
we make an observation that can slightly improve to O(k+nlogn) the time complex-
ity of the algorithm of Takahashi et al.'? for a rectangular polygonal domain when
sources are given sorted around the boundary. A byproduct of our algorithm for a
simple polygon is a simple O(n) method for computing a balanced geodesic triangu-
lation of a simple polygon. A balanced geodesic triangulation is a decomposition of a
simple polygon into triangle-like regions, called geodesic triangles, with the property
that any line segment interior to P crosses only O(logn) geodesic triangles.?® Such
a decomposition finds often applications in problems involving simple polygons e.g.,

2,3

ray shooting or shortest path queries®® and can be computed in O(n) time?. The

idea is to compute the collection of shortest paths between the following pairs of ver-
tices (v1,vn/3), (Vn/3, V2n/3)s (Van/3, ¥1), (V1,Vn/6)s (Vn/6s Vn/3)s (Vn)3s Vny2), ete. un-
til a pair consists of consecutive vertices. Our O(n) time algorithm for computing
the collection of non-crossing shortest paths among the above O(n) pairs of vertices
gives an alternative method for computing a balanced geodesic triangulation which

1s simple to implement. In general, a collection of non-crossing shortest paths be-
tween pairs of points on the boundary of a simple polygon can be used to obtain
a useful polygon decomposition by including in the decomposition shortest paths
between certain boundary points.

2. Preliminaries

Let P be a simple polygon and let 0P be its boundary. Given two points
z,y € P, m(z,y) denotes the shortest path from z to y that lies entirely in P. 7(z,y)
is assumed to be directed from z to y. We are given a set of k source-destination
pairs along 0P, 8T = {(s;,%:),1 < ¢ < k}. We shall adopt the convention that
sources s;,1 < 7 < k, are ordered clockwise along 0P and that for any pair, s;
appears before ¢; when we traverse 0 P clockwise starting at s;. Source s; is regarded
as the starting point along 0P. Unless otherwise noted, we assume a clockwise
traversal of 0P starting at s;.

Let 0P be mapped onto a unit circle. Then the k source-destination pairs of
points get mapped to k circle chords, s;;,7 = 1,..., k. Fig. 1 shows the mapping.
If chord s;¢; intersects s;¢; then clearly n(s;,t;) and 7(s;,t;) must cross each other.
We say that pairs (s;,t;) and (s;,t;) are non-crossing, if and only if the corre-
sponding chords in the unit circle, s;¢; and s;¢;, do not intersect. For example, in
Fig. 1, pairs (s1,%1), (s2,%2), (83,t3), and (ss5,t5) are non-crossing while pairs (s4,t4)
and (ss,t5) are crossing. It is easy to see that shortest paths between two pairs of
points in 87 are non-crossing if and only if the pairs are themselves non-crossing.
We therfore have the following lemma.

S
S3 1 S
t1 S3
S
2 Y ice
Fig. 1. Mapping of k source-destination pairs of vertices into k chords on the
unit circle.

Lemma 1 Ghiven a simple polygon P of n vertices and k source-destination pairs
along 0P, (s;,t;), 1,...,k, detecting if any two shortest paths connecting s; to t;
cross each other can be done in O(n + k) time.

Given the unit circle representing 0P and a pair (s;,;), the region of the unit
circle enclosed by the chord s;t; and the arc from s; to t; is referred to as a slice
and is denoted as sl(s;,t;). (A clockwise traversal is assumed). For the pair (s1,¢1)
we define two slices, sl(s1,t1) and sl'(s1,t1), where sl'(s1,%1) is the complement
of sl(s1,t1) i.e., the region of the unit circle enclosed by the chord s;t; and the
arc from #; to s;. In Fig. 1, sl(s1,%¢1) is shown shaded. Note that paths x(s;,t;)
and 7(s;,t;) are non-crossing if and only if the corresponding slices, sl(s;,t;) and
sl(s;,t;), do not intersect or one of them totally contains the other. In the former
case, the two non-crossing pairs are said to be in series, and in the latter, they are

said to be in parallel. The destination points of pairs that are in parallel are in
reverse order as the source points. Fig. 2 shows an example of a set of non-crossing
slices; slices si(s1,t1), sl(s3,%3), sl(s6,ts) are in series while sl(s1,t1), sl(s2,t2) are
in parallel.

Consider now a tree, Ty, representing the set of non-crossing slices where the
root corresponds to the unit disk and each node represents a slice. The children of
the root are sl(s1,%1) and sl’(sq1,%1). Slices that are totally contained in si(s;,t;)
are descendants of sl(s;,t;) in the tree. The immediate children of si(s;, ;) (resp.
sl'(s1,t1)) are those slices in series that are totally contained in si(s;,¢;) (resp.
sl'(s1,t1)) but are not contained in any other descendent of si(s;,¢;). Fig. 2 shows
the tree representation of the corresponding slices. The nodes are labeled by the
slice number; slice 0 refers to the unit disk. Note that 75; may be balanced or
completely unbalanced.

ts N O
JANI T)
14 Sy 3 6@ O 2
s, \
S“\\L% Afg
%) 5

Fig. 2. Non-crossing slices and the tree representation.

Let R = {r1,72,...,72} be the set of all points in 7. We assume that R is
ordered according to a clockwise traversal of 0P starting at r1 = s;. Given any two
points z,y along 0P, we say that y follows z, and denote as z < y, if and only if
y follows z in a clockwise traversal of the polygon boundary starting at s;. Given
R C R and r; € R/, let ng/(r;) denote the point in R’ following r; and pgi/(r;)
denote the point in R’ preceding r;. For R' = R, ng(r;) = rj41 and pr(r;) = rj_1.
Let R’ C R be such that the shortest paths between any two pairs of distinct points
are disjoint. The area enclosed by the collection of shortest paths n(r;, ng/(r;)) for
every r; € R’ is called the geodesic polygon induced by R’. In Fig. 3, the shaded
area is the geodesic polygon induced by R’ = {r1,r4, 76,77, 710}. The last common
vertex along the paths emanating from »;, 7(r;, ng(r;)) and «(r;, pr(r;)), is an
apezx of the geodesic polygon and is denoted as «(r;). «(r;) is also referred to as
the apez of 7;. If r; is the only common point of n(r;, ng:(r;)) and 7(r;, pr:(r;))
then «(r;) = r;. In Fig. 3, a(ra) = a and «(r1) = r1. The common part of
7w(rj,npi(r;)) and n(rj, pri(r;)) (i.e., w(r;, a(r;))) is referred to as the geodesic link
of r;. Two consecutive apexes of the geodesic polygon, a(r;) and «(ng/(r;)), are
joined by their shortest path, m(a(r;), @(r;j11)), which is clearly a convex chain with
convexity facing towards the interior of the geodesic polygon.

If R’ contains pairs of distinct points whose shortest paths share some common
part, the collection of shortest paths #(7;, ng/(r;)) induces more than one geodesic
polygon in P. In Fig. 4, set R = {ry,...,r10} induces four geodesic polygons
91, 92, 93, g4, where g1 = {r1,a,7s,76,¢, 710}, g2 = {@, 72, 73,b}, g3 = {d, e, 7o}, and
ga = {e,r7,rs}. Two paths 7(r;, ng/(r;)) and 7(r;, nr/(r;)), j > ¢ + 1, that are not

Fig. 4. The geodesic decomposition of R = {r1,...,710}-

disjoint share a subpath of at least one vertex which is referred to as a geodesic link.
For example, in Fig. 4, segment cd is common to 7(rs, r7) and 7(rg, r10) i.e., cd is
a geodesic link. Note that a geodesic link may consist of a single vertex in which
case the incident geodesic polygons have a common apex (e.g., vertex a in Fig. 4).
The collection of geodesic polygons and links induced by =(r;, ng/(r;)), for every
r; € R, is called the geodesic decomposition of P induced by R’ and is denoted as
¥(R'). In Fig. 4, the geodesic decomposition of R consists of four geodesic polygons
g1, 92, g3, g4- The geodesic link joining ¢g; and g, is vertex a, the geodesic link joining
g1 and g3 is 7(c,d) = cd, and the geodesic link joining gs and g4 is vertex e. The
geodesic link of 74 is 7(ra, b). For every 7;,j # 4, a(r;) = r;, and a(rs) = b.

The root of the geodesic decomposition is considered to be point r;. This induces
a unique directed path from the root to every geodesic polygon which defines a
parent-child relation between the geodesic polygons. The apex of a geodesic polygon
g incident to its parent is called the main apez of g and is denoted as a(g). Given a
geodesic polygon g and a point 7; € R/, let «(r;, g) denote the first apex of g along
7(rj,a(g)). (If g contains «(r;) then «(rj,g) = a(r;)). In Fig. 4, a(rs, 1) = a and
a(rs, gs) = d.

Given a vertex v along a convex chain C and a point p, we say that v is supporting
(with respect to pv) or that segment v is supporting to C if the line containing pv
is tangent to C.

3. Overview and Data Structures

The collection of shortest paths between every pair of points in S7 (given that
ST is non-crossing) forms a forest denoted as £. Our algorithm computes & in

O(n + k) time and processes it to answer shortest path queries between any pair
in 87 in time proportional to the length of the path. In particular, any tree of £
can be transformed into a rooted tree by assigning the source of minimum index
as the root. Let ncag(si,t;), (s:,4) € ST, denote the nearest common ancestor of
s; and t; in £. (Note that s; and ¢; must belong to the same tree of £). Then
m(si,t;) = 7(si, ncag(si,t;)) U m(ncag(si,t;),). Computing the nearest common
ancestor in & for every pair (s;,t;) € ST can be easily done in linear time in a
bottom-up fashion using 7; as a guide. In the case where all source-destination
pairs are in series, we can compute the collection of shortest paths between them in
linear time using any ordinary shortest path algorithm for a single pair of points.®5
In particular, we can use the Lee-Preparata algorithm?® for each pair independently.
The following lemma assures that the time complexity remains linear.

Lemma 2 The collection of non-crossing shortest paths between k source-destination
pairs of points on OP can be found in linear time if the pairs are in series.

Proof. Assuming that P is arbitrarily triangulated, the sleeve of a pair (s;,1;)
is the subpolygon of P consisting of the triangles that m(s;,t;) passes through.® It
has been shown that the total time required to compute (s;,%;) is proportional
to the size of the sleeve.® The sleeves associated with the given source-destination
pairs (s;,%;),1,...,k are either disjoint, or they share some triangles. Since the
source-destination pairs are in series, a triangle can be intersected by the shortest
paths of at most three such pairs (otherwise some pairs would be in parallel, see
Fig. 5). Thus, each triangle can be shared by at most 3 sleeves. Therefore, the total
number of triangles in all k sleeves is O(n + k). O

Fig. 5. Triangle A may be intersected by at most three paths between pairs in

series.

In the general case, where pairs are both in series and in parallel, we compute
the collection of shortest paths, £, in a bottom-up fashion using the tree of slices,
Ts1, as a guide. In phase 1, we compute the geodesic decomposition of P induced by
R. This reveals the collection of shortest paths for every pair at a leaf node of Tg;.
For any pair (s;,t;) at the bottom level of Ty;, we add 7(s;,%;) to £ and we color
all edges along n(s;,t;) red. The remaining edges of the geodesic decomposition are
not colored and are said to be white. Let R, for 1 < ¢ < h, where h is the height
of Ty;, denote the set of points appearing at levels 1 to (h — ¢+ 1) in Tj;. Note
that R' = R and R* = {s;,¢,}. In phase ¢, 1 < ¢ < h, we compute the geodesic
decomposition of P induced by R? which reveals the collection of shortest paths for
every pair (s;,t;) at level (b — g+ 1) of Ty;. Edges of the decomposition at phase
q are either red or white; red edges are those that have been output to £ in some
previous phase. At the end of phase ¢, we output to £ all white edges along #(s;, ;)

for every pair (s;,%;) at level (R — ¢+ 1) of T; and color them red.

At every phase ¢,1 < ¢ < h, the geodesic decomposition of R? is maintained.
Geodesic polygons and links are kept as doubly linked lists of their vertices. In
general, an apex is adjacent to two vertices in its geodesic polygon and one vertex
in the incident geodesic link. An exception are apexes that are common to two
geodesic polygons (e.g., apex a in Fig. 4) which are incident to two vertices in each
of the incident geodesic polygons. Edges of geodesic polygons and geodesic links are
marked as red or white, where red edges have been output to £. In more detail, the
geodesic decomposition is kept as follows: Every vertex v along a geodesic polygon
¢ has a pointer next(v) and a pointer prev(v) to the vertex following and preceding
v In g respectively. Every apex «, other than a main apex, has an additional
pointer nlink(a) to the vertex following « along the incident geodesic link. The
main apex of g, a(g), has a pointer plink(a(g)) to the vertex preceding a(g) along
the incident geodesic link. In other words, every apex has a total of three pointers.
Every vertex u along a geodesic link has a pointer nlink(u) and a pointer plink(u)
to the vertex following and preceding u respectively along the geodesic link. For
consistency, if a geodesic link consists of a single vertex u we can introduce a dummy
vertex u’ representing u in the incident geodesic polygon, and let nlink(u) = v’ and
plink(v') = .

To achieve linear time complexity we need the ability to extract the white edges
of n(s;,t;) for some pair (s;,?;) at level (h — ¢ + 1) of Ty without visiting the
red edges along 7(s;, ;). For this purpose we maintain a doubly linked list of the
polygon vertices incident to white edges, referred to as the white-list. The white-list
includes «(r;) for every r; € RY. Two vertices v and u are joined by a link in the
white-list if and only if v and u belong to the shortest path between two consecutive
apexes «o(r;) and a(nge(r;)) and either 74 is a white edge or #(v,) is a maximal
red subpath of m(«(r;), a(ngr«(r;))). Every link of the white-list corresponds either
to a white edge of the decomposition, referred to as a white link, or to a maximal
sequence of red edges, referred to as a red link. Note that a white edge along a
geodesic link appears twice in the white-list and thus each of the incident vertices
also appears twice.

4. The Algorithm

Let’s first consider the geodesic decomposition at phase 1, i.e., the geodesic
decomposition of R. Pairs (r;,7;41),1 < ¢ < 2k, are clearly in series and therefore
the collection of 7(r;,r;11) can be computed in O(n + k) time (Lemma 2). Once
m(ri, r;41) for every ¢,1 < i < 2k, have been computed, the geodesic decomposition
of P can be easily obtained in linear time. For every pair of points (s;,%;) at the
bottom level of Ty;, we color edges along =(s;,t;) red and output them to £. We
also build the white list by a simple scan starting at «(rq).

To compute the geodesic decomposition of R?, ¢ > 1, we use the geodesic de-
composition of R¥~!. To facilitate updating we use the shortest path tree from s;
to all points in R. Computing the shortest path tree from s; can be done in linear
time using the algorithm of Guibas et al.5 or the simpler to implement algorithm

(9

Fig. 6. y(a(g), aj, ai,01)

of Hershberger and Snoeyink.® Given two points r;,7; € R, the nearest common
ancestor of 7; and 7; in the shortest path tree from s; is denoted as nca(r;,r;). In
the following, we will use the term nearest common ancestor of r; and r; to denote
nea(r;, r;) without explicitly referring to the shortest path tree from s;.

Suppose that the geodesic decomposition of P induced by R?~! has been com-
puted, and that we wish to compute the geodesic decomposition induced by R?. For
brevity, we will use ¥ to denote the geodesic decomposition during phase ¢, n(r;)
to denote nga(r;), the point following r; in R?, and p(r;) to denote pgra(r;), the
point preceding r; in R?. At the end of phase ¢, v = y(R?).

Consider a point 7; € R? such that n(r;) # nge-:1(r;). In phase ¢, every point
r; € R?7! between r; and n(r;) must be deleted from the geodesic decomposition.
For this purpose, we incrementally compute w(a(r;), a(r;)) for every r; € RI™1
between 7; and n(r;) (including n(r;)), updating at the same time the geodesic
decomposition. At the end, we have the geodesic decomposition updated according
to (a(ry), aln(ry).

Suppose now that m(a(r;), a(r;)) has been computed for some r; € RI~1, r; <
ri < n(r;). Suppose also that the geodesic decomposition has been updated accord-
ingly i.e., y = y(R?U {r € R?"Y,r > r;}). Let r; be the point following r; in R?~!
i.e., 7 = nga-1(r;). Note that r;,r;, and 7; are currently consecutive points. Let g
be the geodesic polygon containing a(r;), the apex of r;. For brevity, let «;, ;, and
«; denote «(rj, g), a(r;), and a(r, g) respectively. Note that «; or oy may coincide
with the main apex of g. To update the geodesic decomposition, it is enough to
update the geodesic polygon g according to 7(e;, o).

Consider the geodesic decomposition induced by {a(g), «;, @i, i}, denoted as
¥(ee(9), @, as, 1) (see Figs. 6, 7). If a(g) coincides with «; or ay, y(a(g), o), o,)
must form a geodesic triangle (i.e., have three apexes). Otherwise, y(a(g), o, &y, &7)
forms either a geodesic quadrilateral (a geodesic polygon of four apexes, see Fig. 6)
or two geodesic triangles (see Fig. 7). In any case, let g(a;) denote the geodesic
polygon of y(a(g), &, a;, o) containing «;. Let a,b and ¢ denote the apexes of
¥(e(9), @j, a5,), other than «;, such that @ is the last common vertex along
m(a(g), ;) and 7(a(g), o), b is the last common vertex along w(eaj,a(g)) and
(e,), and ¢ is the last common vertex along m(ai, ;) and 7(ay, a(g)) (see
Fig. 6). If the main apex of ¢ coincides with a; (resp. a;) then a coincides with b
(resp. ¢). Note that a is the nearest common ancestor of r; and ;. If g(e;) is a
geodesic triangle, let @’ denote the main apex of g(a;) (see Fig. 7). Note that a’ is

either the nearest common ancestor of r; and r; or the nearest common ancestor of
r; and r;. To update the geodesic polygon g, we need to compute 7(e;, o) i.e., it
is enough to compute 7 (b, c).

Suppose g(e;) is a geodesic quadrilateral (see Fig. 6). To compute 7(b,c) we
basically need to compute segment yz where y € n(ay, b)Un(b, a) and z € (s, c)U
m(¢, a) such that y and z are supporting and 3z lies entirely in P (see Fig. 8). Then
m(b,c) consists of w(b,y), segment yz, and 7(z,c). Since w(b,y) and w(z,¢c) are
both known we only need to compute segment yz. There are four possible cases for
segment yz:

Case 1: y € m(ay,b) and z € 7(ay, ¢) (Fig. 8(a)).

Case 2: y e m(b,a) and z € m(a;,¢), y # b (Fig. 8(b)).

Case 3: y € m(ay,b) and z € 7(c,a), z # ¢ (Fig. 8(c)).

Case 4: ye€m(b,a)and z € w(c,a), y # b, z # ¢ (Fig. 8(d)).

If g(e;) is a geodesic triangle then w(a;,q;) is known (see Fig. 7). (Recall that
7m(a(g),a;) and 7(a(g),a;) belong to the shortest path tree from s;). If o/, the
main apex of g(«;), is the nearest common ancestor of 7; and r; (see Fig. 7(a)), let
z be a’ and let y be the vertex following z along 7(a’, b). Segment ¥z is supporting to
both 7(a’,b) and 7 (a’, o;). Since y € w(a,b) and z € 7(ey, ¢), this can be regarded
as case (2) for y # b or case (1) for y = b. If &' is the nearest common ancestor
of r; and r; (see Fig. 7(b)) let y be ¢’ and z be the following vertex along 7(d’, ¢).
Since y € m(ay, b) and z € 7(c,a) this can be regarded as case (3) for z # ¢ or case
(1) for z = ¢. Thus, there is no need to differentiate between updating a geodesic
quadrilateral and a geodesic triangle.

@
Fig. 7. g(o;) is a geodesic triangle.

To determine which of the four cases is the one occurring and determine vertices
y and z, we advance a variable vertex v along 7 (e;, b)Un(b, a) and a variable vertex
u along m(a;,¢) U m(e,a) until v and u reach y and z respectively (v and u start
at «;). The problem is that vertices a,b and ¢ as well as apexes «; and «; are not
known in advance. However, useful information can be obtained while advancing v
and u using the shortest path tree from s;. The following properties which can be
easily derived from the definitions, simplify the advancement of v and w.
Property 1: For any vertex v along 7(«;,), v coincides with b if and only if the
predecessor of v on the shortest path from s;, denoted as pred(v), is supporting

@ (b)

Fig. 8. The four cases for segment yz.

with respect to pred(v)v and pred(v) ¢ m(«;,«;). Similarly, for any vertex u along
m(as, oq), u coincides with ¢ if and only if pred(u) is supporting with respect to
pred(u)u and pred(u) € m(ay, o).

Property 2: Segment 7% intersects m(a,c) (resp. w(a,b)) if and only if pred(u)
(resp. pred(v)) lie at the same side of 7w as «;.

Due to property 1 we can easily determine when v and u reach b and ¢ respec-
tively during the advancement. Furthermore, due to property 2, segment vu can
be advanced so that it always lies entirely in the interior of g(e;). If at any point
during the advancement it is determined that 7@ intersects w(a,c) (resp. (a,b)),
we can conclude that we have case 3 or case 4 (resp. case 2 or case 4). In case 4,
the advancement of 7% can be done similarly to the construction of a U-hull® (see
Ref. [10], page 128). In case 4, vertex a is the nearest common ancestor of r; and
r;, and thus a can be easily determined. The details of the algorithm to advance
segment vy are given in the appendix.

Once segment 3z is determined the update of g can be briefly stated as follows:

Case 1: Remove 7(y, ;) U (e, z) and add 7 = 7Z.

Case 2: Remove 7(b, ;) Un(ey, z) and add 7 = 7 (b, y) U 7Z.

Case 3: Remove 7(c, ;) Um(ey,y) and add 7 = #(e, 2) U7Z.

Case 4: Remove 7(b, ;) Um(ey, ¢) and add m = w(b, y) Ugz U 7(z, ¢).

To update ¢ in any of the four cases we walk along the corresponding path

m C =(b,c) starting at vertices b or c¢. (In case 4, we walk along m; = w(b,y)
and w3 = 7(c,2z) and then consider segment yz). Fig. 9 illustrates the update
of g for case 3 where 7 = =w(c,y). Every edge along 7 induces a new geodesic

polygon or becomes part of a new geodesic link. In Fig. 9, edge yzy3 and vertex
ya become geodesic links; the remaining edges induce new geodesic polygons which
are shown shaded. To do the actual update we simply need to update the pointers
prev(y;), nexzt(y;), plink(y;) and nlink(y;) for every vertex y; along 7. The details
are given in the appendix.

The edges visited by the algorithms to determine ¥z and update ¢ are either
deleted from ¢ or they are part of the new path 7 C (b, ¢). For each visited edge
only constant time is spent. Edges along m are either new white edges to be added
to the geodesic decomposition or they become part of a geodesic link. Once an
edge becomes part of a geodesic link, it is never visited again until it gets output or
deleted from the geodesic decomposition. Thus, over all phases, the time spent for

10

Fig. 9. The update of g in case 3.

updates of the geodesic decomposition is proportional to the total number of edges
appearing in the geodesic decomposition throughout the algorithm. Since no two
such edges intersect and since they are always incident to vertices or points in R,
their number is bounded by O(n + k).

To update the white list, let 7’ be the path obtained from 7 by substituting any
maximal sequence of red edges by a single red link. Let h; and hy be the vertices
in the white-list preceding and following (or coinciding with) the endpoints of =
respectively. (Recall that during the update, all vertices in the white-list between
hi and hy were deleted from the geodesic decomposition). Delete the part of the
white list between h; and hy and merge 7’. The time spent is proportional to the
number vertices deleted plus the size of w. Thus,

Lemma 3 The total time spent for updating the geodesic decomposition and the
white-list in every phase of the algorithm is O(n + k).

To complete the update, we need to compute the nearest common ancestor of
r; and 7; because r; and r; become neighbors after the deletion of r;. Clearly
nea(r;,ry) is either nea(r;, ;) or nea(r;, r;). In particular, nca(r;, ;) must be the
one appearing first along 7(s1, ;) i.e., the one nearest to the root. Assigning a level
number to all nodes of the shortest path tree from s, allows to compute nea(r;, r;)
from nca(r;, r;) and nea(r;, r;) in constant time.

After the geodesic decomposition induced by R? has been computed, we need
to extract white edges of 7(s;,¢;) for every pair (s;,¢;) at level (h— ¢ + 1) of Ty,
color them red, output them to &£, and update the white list. Starting at «(s;),
we follow the white list until «(¢;) adding at the same time the white edges that
we encounter to £. Note that white edges along n(s;,t;) that are part of geodesic
links appear twice along the white-list and that both occurrences must become red.
Finally, substitute n(a(s;), «(¢;)) by a single red link between «(s;) and «(¢;). The
time spent is proportional to the number of white edges that get output to & i.e.,
the number of edges that become red.

We therefore conclude that £ can be computed in O(n + k) time.

5. A Simple Polygon With One Hole

Similarly to Refs. [11,12], our algorithm can be extended to the case of a simple
polygon with one hole. Let 0P and 0@ denote the outer and inner boundary

11

respectively i.e., dQ is the boundary of the hole. Source-destination pairs in §7
may appear on both the outer and the inner boundary.

In the presence of one hole the dual graph of an arbitrary triangulation contains
a cycle. Thus, for every pair of points in the polygon we have two kinds of “pull
taut” paths: one clockwise and one counterclockwise around 9@). Let w.(s;,t;) and
Tee(8:,%;) denote the shortest paths from s; to ¢; that pass clockwise and counter-
clockwise around @ respectively, where (s;,t;) € ST. The shortest path from s; to
t; is the shortest between w.(s;,¢;) and 7.(si,t;). Note that if any of the two paths
has no common part with 9@ then that path must be the shortest one.

Let’s first assume that there is a pair (s;,t;) with s; € 9P and ¢; € Q. Then
once a path between s; and ¢; has been routed there is only one way (if any) to
route the rest of the pairs in a non-crossing fashion. Furthermore, a path can be
routed in only two ways: clockwise or counterclockwise around the hole (). Thus,
we can compute m.(s;,%;) and 7..(s;,t;), solve the problem separately for each case,
and chose the solution of minimum total cost. In the following, we concentrate in
determining non-crossing shortest paths assuming that n.(s;,¢;) has been routed.
The counterclockwise case can be treated in the same way.

Suppose that we cut the polygon along 7.(s;,%;). Cutting corresponds to treat-
ing every diagonal along 7.(s;,t;) as a pair of boundary edges. By cutting along
me(8;,t;) we produce a number of simple subpolygons. The problem can then be
reduced to finding non-crossing shortest paths for each subpolygon. Fig. 10 illus-
trates two of the polygons obtained by cutting along =(s;, ;). The lightly shaded
subpolygon is the one containing the first and the last diagonal along = (s;, ;) with
endpoints on both dP and dQ. We shall refer to the latter subpolygon as the main
subpolygon produced by the cutting operation.

Fig. 10. Cutting P along mc(s;,t;).

Let X be a subpolygon produced by the cutting operation and let (s;,%;) be a
source-destination pair such that s; € 0X and ¢; ¢ 0X. The shortest non-crossing
path from s; to ¢; must share some common part with the boundary of X along
me(85,t;). Let v and w be the first and last vertex respectively along w.(s;,t;) N 9X;
if X is the main subpolygon, let w be the last vertex along w.(s;,¢;) N dP. In
Fig. 10, vertices v and w for each subpolygon are indicated by arrows contained
entirely within the respective subpolygons. The shortest path from s; to ¢; which
is non-crossing to w(s;,t;) (if any) must clearly pass through vertex v or w. In

12

particular, it is not hard to see that w(s;,¢;) must pass through v if and only if:
1) vertex v € OP and t; is encountered before s; as we walk on dP starting at v
and moving away from 0X or 2) vertex v € Q) and t; € P. Otherwise, n(s;,t;)
must pass through w. According to this observation we can map ¢; to either v or
w and consider pair (s;,v) or (s;, w) respectively as a source-destination pair in X.
Using this transformation for any source-destination pair with terminals in different
subpolygons we can reduce the problem into computing non-crossing shortest paths
within every subpolygon X.

Let’s now assume that there is no source-destination pair in S7 with terminals
on both P and 0Q. If all pairs appear on 9@ then the problem is easy and we
skip the discussion. Let’s assume that all source-destination pairs in §7 appear on
OP. Then S7 admits a set of non-crossing shortest paths under exactly the same
conditions as in the simple polygon case. This collection of paths has minimum
total cost if and only if every path is itself shortest. The clockwise paths m.(s;,1;)
for every pair (s;,t;) € ST, can be computed similarly to the simple polygon case.
For this purpose we build the geodesic decomposition by computing the clockwise
shortest path between every two consecutive points in S7. Since the paths are all
clockwise, the computation can be done as in the ordinary case by breaking the
cycle of the dual graph. For pair (s1,¢1) both 7.(s1,%1) and 7.(¢1, 51) = mee(51,%1)
get computed and thus at the end we can chose the shortest among the two. Let’s
assume without loss of generality that the shortest path from s; to ¢1 is m.(s1,%1).
Then for every descendent of (s1,¢1) in Ty, 7c(s;,¢;) must be the shortest. Let S7*
denote the remaining pairs i.e., the descendents of (¢1, s1) in Ty;. For pairs in S7'
we also need to compute counterclockwise shortest paths and chose the shortest.
Note however, that if m..(s;,t;) is the shortest path for a pair (s;,¢;) € ST’ then
the counterclockwise path must be the shortest for any ancestor of (s;,t;) in T};.

We can compute counterclockwise shortest paths for pairs in 7" as follows. Let
r be any source or destination between t; and s; and let 7..(r,7) be the shortest
counterclockwise path from r to itself (w..(r,r) wraps around @, see Fig. 11). Let
S7T" be the subset of ST’ that consists of pairs with sources between ¢; and r and
destinations between 7 and sy i.e., ST = {(s;,%;),81 < s; <7 and r < t; < s1}.
We can compute 7..(s;,1;) for every pair in ST by computing shortest non-crossing
paths in the simple polygon produced by cutting P along #(s1,%1) and we.(r,7).
For the remaining pairs in 87’ — 87" let v and w be the first and last vertex
respectively in 9Q along m..(r,r). Clearly the counterclockwise shortest path for
any pair in 87’ — 87" must pass through v or w. Thus we can compute the
remaining counterclockwise shortest paths using the shortest path trees from v and
w to all points in 87’ — §7"”. Note that if 7.(s1,%¢1) passed through 0@ we could
compute counterclockwise shortest paths for pairs in 87’ using the shortest path
trees from the first and last vertex in 9Q along m.(s1,%1).

6. A note on the k-pairs non-crossing shortest path problem in a rect-
angular domain

In this section we make an observation on the algorithm of Takahashi et al.l?

13

Fig. 11. Computing counterclockwise shortest paths in 7.

for the k pairs non-crossing shortest path problem in a domain of rectangles. All
rectangles are enclosed within a single outer rectangle and source-destination pairs
may appear on the outer and one inner rectangle. Distances are measured in the
L; metric. Takahashi et al.'? showed that the collection of non-crossing paths of
minimum total length between the k source-destination pairs can be computed in
O((n+k)log(n+k)) time where n is the number of rectangles. The idea is to reduce
the problem for a plane region to a problem for a series of plane graphs of O(n + k)
vertices in total. Our observation is that k& need not play an important role in the
time complexity of this algorithm. The problem for a plane region can be reduced
to a problem for plane graphs of total size O(n). Then a solution for O(n) non-
crossing paths can be modified to provide the set of non-crossing shortest paths for
the original k source-destination pairs. In this manner the algorithm of Takahashi et
al.'? can achieve O(k +nlogn) time, assuming that the source-destination pairs are
given sorted around the boundary. If pairs are not sorted an additional O(klogk)
time is needed initially for sorting.

A simpler problem whose solution is used throughout Ref. [12] is one where
source-destination pairs appear on two parallel boundary edges in a sorted order.

To solve the general problem, Takahashi et al.1?

perform a case analysis and define
subsets of source-destination pairs for which they determine shortest non-crossing
paths within subregions of the rectangular domain. Within each subregion the
non-crossing shortest path problem simplifies to one where source-destination pairs
appear on two parallel boundary edges. The algorithmic parts that lead to the
derivation of these simpler subproblems do not depend on the number of source-
destination pairs, k, and can be performed in O(nlogn) time. These parts involve
the computation of axis parallel paths between a constant number of boundary
points and the cutting® of the domain along those paths. Thus, by modifying the
algorithm of Ref. [12] for the simpler subproblem to run in O(k + nlogn) time, the
time complexity of the general algorithm in Ref. [12] becomes also O(k + nlogn)
assuming that source-destination pairs are given sorted. In the sequel we focus on
this simpler problem (see Fig. 12).

Let’s assume, without loss of generality, that all sources appear on the upper
horizontal edge of the outer boundary and that all destinations appear on the lower
horizontal edge. The outer boundary is assumed to be an axis parallel polygon

@ Cutting a plane region is equivalent to slitting a plane graph as defined in Ref. [12]. Recall
that cutting a region along a path corresponds to treating every segment along the path as a pair
of parallel boundary edges.

14

which need not always be a rectangle. As with the simple polygon case, the source-
destination pairs admit a collection of non-crossing paths if they appear in a certain
order along the boundary. If non-crossing paths exist the solution is simply a
collection of shortest paths between the given source-destination pairs. We assume
that the given set of source-destination pairs, §7, admits a set of non-crossing
paths and that (s1,%1) appears on the boundary as the left-most pair. Note that a
set of non-crossing paths exists if and only if s1,..., s, and ¢1,...,%; appear on the
boundary from left to right in this order.

lsiji=s6

ls, ‘Iﬁ,i=2,3;4

S1 S5 S S5 s

1

]
R

‘tl‘ ty ‘t3 4t ‘ (b)

Yoo %i, i=345

Fig. 12. The vertical decomposition of a rectangular domain and the corre-
sponding bipartite graph.

Consider the wertical decomposition of the plane region obtained by drawing
vertical lines through the vertical edges of the boundary (see Fig. 12). It partitions
the horizontal boundary edges into intervals which are assumed to be ordered from
left to right. An interval containing at least one source (resp. destination) is
referred to as a source interval (resp. destination interval). Consider the bipartite
graph G whose vertex set consist of source nodes corresponding to source intervals
and destination nodes corresponding to destination intervals. There is an edge
connecting a source node I to a destination node J if and only if there is a pair
(s;,t;) such that s; belongs to interval I and ¢; belongs to interval J. Fig. 12b
illustrates the bipartite graph for the problem in Fig. 12. Since 87 is assumed to
admit a set of non-crossing paths, the edges of G must be non-crossing.

Given a pair (s;,t;), let I,, and J;, be the intervals of the boundary where
s; and t; belong respectively. Nodes I;, and J;, must be adjacent in G. If I,
and Jy, bound the same rectangular region in the vertical decomposition, #(s;,1;)
can be computed trivially and thus we ignore this case. Otherwise, let [;, and
rs, (resp. I, and r:,) denote the left and right endpoint of I,, (resp. J:,). It
is easy to see that 7(s;, ;) must be the shortest among the following four paths:
Py = s;0,,Un(ls,, ;) Ul s, Py = s;l,,Un(ls,, 7,)Urs i, Ps = 875, UT (75, 74,)UTe L,
P, = 57, Um(rs,,lt,) Ul,t;. This observation implies that no matter how many

sources there are within interval I, or how many destinations within interval Jy,,
the problem of finding 7 (s,t) for s € I,, and ¢t € J:, can be reduced to computing
w(ls,, le,)ym(rs,, ley), m(ls,, me,), and w(rs,, 7:,). Note that if 7(s;,¢;) passes through

15

rs, (resp. I;,) then for any s; € I,,,7 > ¢, (resp. s; € I,,,7 < 1), path n(s;,t;)
must also pass through r, (resp. I;,). Similarly for r;, and l;,. Thus, we can
define a new set of source-destination pairs, S7’, where sources are the endpoints
of intervals containing at least one source, and destinations are the endpoints of
intervals containing at least one destination. In particular, 7’/ = U{(IL,,, J:,) |
(s5,t) € ST}, where (I, J1,) = {(ls,, 1e.), (s, 72,)s (7555 12y, (755, 72,)} Set ST can
be regarded as a set of source-destination pairs of intervals where each interval pair
contributes four source-destination pairs of points. The source-destination pairs of
intervals correspond to pairs of adjacent vertices in the bipartite graph G and can
be regarded as pairs of super-nodes between which we need to obtain shortest paths.
The size of ST’ is O(min{n, k}).

The paths between pairs of points in 87’ are crossing each other, however
ST’ can be partitioned into at most four subsets of non-crossing pairs (assum-
ing that the original set S7 admits a set of non-crossing paths). In particular,
let STy = {(l;,, 1) | (si,t:) € ST}, 8Ty = {(bs,,7e,) | (85,8) € ST} — 8Ty,
ST's ={(rs;, 1t,) | (85,8:) € ST} —{ST'1UST’3}, and STy = {(rs,,7¢,) | (85, 8:) €
ST}—{87'1UST';UST'3}. Since the size of each subset is O(min{n, k}), shortest
paths can be computed in O(nlogn) time using the algorithm of Takahashi et al.!?
Alternatively, instead of repeating the algorithm!? for each subset, we can slightly
modify the divide and conquer technique of Ref. [12] by using the bipartite graph
@ as a guide. Let I, be the middle source interval i.e., p = [m/2] where m is the
number of source intervals. Let J, be the left-most destination interval which is adja-
cent to I, in G. We first compute 7(I,, J;) = {7(lp, ly), 7(rp, lg), 7(lp, 7¢), 7(rp, 7g)
where [, rp,l; and r; denote the left and right endpoints of I, and I, respectively.
Assuming that all horizontal line segments of rectangles have been pre-sorted in a
list £ in descending order,'? each path in 7(I,, J,) can be computed in O(n) time
by procedure SHORTESTPATH of Ref. [12]. Note that J, is the left-most destina-
tion interval adjacent to I, and thus, no shortest path for 7, other than n(s;,¢;),
s; € I, and t; € J,, need to intersect m(l,,r;). Thus, we can divide the plane re-
gion into two subregions by cutting the region along #(l,,r,). Then we recursively
compute shortest paths for interval pairs with sources to the left of I, in the left
subregion, and paths for interval pairs with sources to the right of I, (including I,
if I, is adjacent to J,41 in G) in the left subregion. In this manner, the depth of the
recursive calls is O(logm) and the time required for all recursive calls at the same
depth is O(n). (Note that £ can be updated for the two cut subregions in O(n)
time.'?) Thus, the modified recursive algorithm takes O(nlogn) time in total.

Now for each pair (s;,¢;) € ST we simply need to select the shortest among
paths Pj, P>, P3 and P;. Assuming that ties are broken in a consistent way when
computing shortest paths, the resulting collection of shortest paths for §7 must be
non-crossing. (Note that crossing paths between pairs in S7 must cross at least
twice. Thus, the only way for shortest paths between two pairs to be crossing is to
have subpaths of equal length between the crossing points). Thus, the solution for
shortest paths in S7’ can be easily modified to derive the set of non-crossing paths
for the original set S7 in additional O(k) time, resulting in an O(k + nlogn)-time

16

algorithm.

7. Conclusion

We have given a simple linear time algorithm for the k-pairs non-crossing short-
est path problem in a simple polygon. The algorithm is easy to implement and can
be used to obtain useful geodesic decompositions of simple polygons by including in
the decomposition shortest paths between pairs of boundary points. An example is
the balanced geodesic decomposition.® Similarly to Takahashi et al.,'12 this result
can be extended to a simple polygon with one hole where source-destination pairs
may appear on both the outer and the inner boundary. We also made an observa-
tion for the k-pairs non-crossing shortest path problem in a rectangular polygonal
domain, as defined in Ref. [12], that k need not play a main role in the algorithm
other than initial sorting.

Acknowledgments

The author wishes to thank professor D.T. Lee for valuable discussions and
comments.

References

1. B. Chazelle, “A theorem on polygon cutting with applications,” Proc. 28rd Annu.
IEEE Sympos. Found. Comput. Sci., 1982, pp. 339-349.

2. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink, “Ray shooting in polygons using geodesic triangulations”, Algorithmica,
12, 1994, 54-68.

3. M. T. Goodrich and R. Tamassia, “Dynamic ray shooting and shortest paths via
balanced geodesic triangulations”, In Proc. 9th Annu. ACM Sympos. Comput.
Geom, 1993, 318-327.

4. L.J. Guibas and J. Hershberger, “Optimal shortest path queries in a simple polygon”,
J. Comput. Syst. Sci., 39, 1989, 126-152.

5. L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan, “Linear-time
algorithms for visibility and shortest path problems inside triangulated simple poly-
gons”. Algorithmica, 2, 209-233, 1987.

6. J. Hershberger and J. Snoeyink, “Computing minimum length paths of a given
homotopy class”, Comput. Geometry: Theory and Applications, 4, 1994, 63-97.

7. D.T. Lee, “Non-crossing path problems”, Manuscript, Dept. of EECS, Northwestern
University, 1991.

8. D. T. Lee and F. P. Preparata, “Euclidean shortest paths in the presence of recti-
linear barriers”, Networks, 14 1984, 393-410.

9. M.H. Overmars and J. van Leeuwen, “Maintenance of configurations in the plane”,
Journal of Computer and System Science 23 1981, 166-204.

10. F.P. Preparata and M. I. Shamos, Computational Geometry: an Introduction,
Springer-Verlag, New York, NY 1985.

11. J. Takahashi, H. Suzuki, and T. Nishizeki, “Shortest non-crossing paths in plane
graphs”, Algorithmica, 16(3) 1996, 339-357.

17

Fig. A.1. (a) v is concave. (b) v is supporting. (c) v is reflex.

12. J. Takahashi, H. Suzuki, and T. Nishizeki, “Shortest non-crossing rectilinear paths
in plane regions”, Int. J. of Computational Geometry and Applications, Vol. 7, No.
5, 1997, 419-436.

Appendix A:

In the following, the algorithms to determine segment 3z and update the geodesic
polygon ¢ are given in detail. A segment uv, where u,v € 9P, is said to be valid if
it lies entirely within P.

Let’s first give some useful terminology.!® Given a convex chain C, a vertex
v € C and a point p ¢ C, we say that vertex v is concave (with respect to segment
pv) if segment pv intersects the polygon derived by drawing the segment joining the
endpoints of C (see Fig. A.1(a)). Otherwise, if the line containing pv is tangent to
C (i.e., the two vertices adjacent to v lie on the same side of the line), we say that
v is supporting (with respect to pv) (see Fig. A.1(b)). Otherwise, we say that v is
reflex (with respect to pv) (see Fig. A.1(c)).

Algorithm Determine-yz
Input: The geodesic decomposition y and «;.
Output: Vertices y, 2z, and the case id (1...4).
Begin
(i) Initialize v and u to a.
(i1) Check for case (1) as follows: (Recall that v € 7(ay, b) and u € 7(ey, ¢).)
While either v or u is reflex with respect to wv, and segment uv is valid do:
(To determine whether wv is valid, discriminate pred(v) and pred(u) against
wv. Segment Uv is valid if and only if both pred(v) and pred(u) lie to the
opposite side of uT as ¢.)

(a) Advance v along m(a;, a;) until v becomes supporting or wo becomes
invalid. (Note that v cannot advance beyond & in this step. For v = b,
v must be supporting with respect to vpred(v) (property 1), and thus
v must be supporting with respect to any valid T with v € n(ay, o).
Note also that v cannot advance beyond o' = nca(r;,), since for v =
nea(r;, r), v must be supporting with respect to any valid wv with v €
m(as, o) (see Fig. 7).)

(b) Advance u along w(«;, ;) until v becomes supporting or v becomes
invalid. (Note that u cannot advance beyond ¢ or o’ in this step).

If segment wv is valid we have case (1); return. (Note that if segment uv is
valid both v and u must be supporting, otherwise the previous step would not

18

have terminated.)

Otherwise, if wv is invalid because pred(v) falls to the same side of v as «; i.e.,
v intersects 7(a, b), we have case (2) or case (4). Determine b by advancing
v along m(a;, ;) until v becomes supporting with respect to vpred(v); let
v = b; go to step (iii).

Otherwise, segment o must be invalid because pred(u) falls to the same side
of uv as «; i.e., Uv intersects m(a, c). We have case (3) or case (4). Determine
¢ by advancing v along 7(a;, ;) until u becomes supporting with respect to
upred(u); let u = ¢; go to step (iv).

(iii) Check for case (2) as follows: (Recall that v € 7(a,b) and u € 7(ey, ¢)).
While v is concave or u is reflex, and v does not intersect #(a,c) do: (Note
that segment uv intersects 7(q, ¢) if and only if pred(u) is to the same side of
U as «;.)

(a) Advance v along n(b, a(g)) until v becomes supporting. (Note that v
starts as concave).

(b) Advance u along m(«;, o) until either u becomes supporting, or v be-
comes concave, or Uv intersects 7(q, ¢).

If segment wv is valid we have case (2); return.

Otherwise we have case (4). In case (4), determine vertex ¢ by advancing
u along m(ey, c;) until u becomes supporting with respect to upred(u); let
u = ¢; go to step (v).

(iv) Check for case (3) by advancing segment %o similarly to case (2). (Recall that
v € m(ay, b) and u € w(a, c)). If at the end of the advancement segment wv is
valid we have case (3); return.

Otherwise we have case (4). In case (4), determine b by advancing v along
7(eu, oj) until v becomes supporting with respect to vpred(v); let v = b; go
to step (v).

(v) Case (4): Advance v along w(b,a) and u along 7(c,a) until both v and u
become supporting. Deciding whether to advance v or u at each step is done
as in the U-hull construction of Overmars and van Leeuwen® (see page 128 of
Ref. [10]). In particular do the following:

Let ! be a line containing vertex a = nca(r;, r;) with slope between the slopes
of edges along 7(a,b) and n(a,c) that are incident to a. Let ! be oriented
away from a.

While v or u is concave do

(a) Let I3 be the line containing v and its successor along 7(b,a) and let I3
be the line containing v and its successor along 7(c,a). Let I be the
intersection point of I; and Is.

(b) If I is to the right of then u has not reached its final position because
u must be concave with respect to wv for any v € 7(b, a); advance wu.

(c) If I is to the left of ! then v has not reached its final position because
v must be concave with respect to uv for every u € 7(c,a); advance v.

(See page 128 of Ref. [10] for more details).
End

19

The following algorithm updates a geodesic polygon ¢ according to path = C

w(r;j,) (in case 4, 7 = m and 7 = 73 UYZ). For the definition of =, 71, and 7,

see section 4. Let y1,..., ym denote the vertices along 7 (resp. 71 and 73 U 3z for

case 4) where y; is the starting point of 7 i.e., y1 = b or y1 = ¢ in cases 2,3,4.

Fig. 9 shows the update of g for case 3, where # = 7(c,y). The shaded parts are

the geodesic subpolygons of g produced by the update.

Algorithm Update-y

Input: The geodesic decomposition v, vertices y, z, path 7 = y1 ... ym, and the case
id (1...4).

Output: The updated geodesic decomposition.

Begin
Let 1 = 1. While 1 < m do

End

(i)

(i)

(iii)

If igir1 # yZ and ¥¥i+1 is not a boundary edge of g then Z;g;11 intro-
duces a geodesic subpolygon whose main apex is y;11 (e.g., edges T1yz
and 37z in Fig. 9). Edge %711 is white.
(a) If y; < yit1 (i-e., yit1 follows y; in a clockwise traversal of 9P
starting at s1), let old-nezt(y;1+1) = newt(yiy1) and newt(yiy1) =
y;. Otherwise, let old-prev(y;11) = prev(y;+1) and prev(yi+1) = vi-
(Recall that geodesic polygons are assumed to be ordered clockwise.)
(b) If y; has become the main apex of a geodesic polygon then y; cor-
responds to a geodesic link of a single vertex. For consistency, we
represent this link using a dummy node y;. Let prev(y}) = prev(y;),
nexrt(y,) = next(y;), plink(y.) = yi, and nlink(y;) = v Iy < ¥it1,
let next(y;) =old-next(y;). If y; > yiy1, let prev(y;) =old-prev(y;).
(¢) If yi < Yit1, let prev(y;) = yiy1. Otherwise, let next(y;) = yiy1.
If v;yitr1 is a boundary edge of g then y;5,11 becomes part of a geodesic
link (e.g., edge 7273 in Fig. 9). Edge %;7i11 may be either red or white. If
¥ = o or y; = g then update the apexes of r; or r; respectively to ;41
and add edge Tigir1 to the output £. Otherwise, let nlink(y11) = u
and plink(y;) = yit1-
If %711 is segment ¥z (e.g., segment Yzys in Fig. 9) do the following. If
vertex y or vertex z has become the main apex of a geodesic polygon,
introduce a dummy node as explained in step (b). Let nezt(y) = z and
prev(z) = y. Edge ¥z is white.

20

