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ABSTRACT

In this paper we address the Lo, Voronoi diagram of polygonal objects and present
applications in VLSI layout and manufacturing. We show that the Lo Voronoi diagram
of polygonal objects consists of straight line segments and thus it is much simpler to
compute than its Euclidean counterpart; the degree of the computation is significantly
lower. Moreover, it has a natural interpretation. In applications where Euclidean preci-
sion is not essential the Lo, Voronoi diagram can provide a better alternative. Using the
L Voronoi diagram of polygons we address the problem of calculating the critical area
for shorts in a VLSI layout. The critical area computation is the main computational
bottleneck in VLSI yield prediction.
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1. Introduction

The Voronoi diagram of polygonal objects has been given considerable atten-
tion because of its numerous applications in diverse areas such as biology, geog-
raphy, robot motion planning, computer graphics. In this paper we address the
L, Voronoi diagram of line-segments and present applications in VLSI layout and
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manufacturing. It is well known that the ordinary Voronoi diagram of polygonal
objects has linear combinatorial complexity and consists of straight-line segments
and parabolic arcs. Several efficient algorithms using divide and conquer, plane
sweep, or incremental construction are known for its computation (see Refs. [2,3]
for a survey). However, the existence of parabolic arcs in the diagram makes it
hard to compute in practice. Existing algorithms assume exact computation over
the real numbers while in reality computer calculations have finite precision. To
formalize the precision to which arithmetic calculations need to be executed in a
robust implementation, Liotta, Preparata, and Tamassia'®, introduced a new com-
plexity model called the degree of an algorithm. Namely, an algorithm has degree d
if its test computations involve the evaluation of multivariate polynomials of arith-
metic degree at most d. In the construction of the Voronoi diagram of segments,
using a randomized incremental approach, Burnikel showed that the well-known
incircle test can be answered correctly with degree 40, Refs. [6,7]. However, 40 is
too high for practical problems involving Voronoi diagrams that require robust and
fast implementations. In a recent paper! Aichholzer and Aurenhammer introduced
a new type of skeleton for polygonal objects in the plane called the straight skeleton.
The straight skeleton consists of angular bisectors between edges and thus consists
of straight line segments. The straight skeleton captures the shape of the defining
elements in a natural manner. Its main advantage over the Voronoi diagram is the
elimination of parabolic arcs. However, straight skeletons do not provide the prox-
imity information that Voronoi diagrams do and thus, they do not always provide
an alternative solution to Voronoi diagrams.

In applications where Euclidean accuracy is not particularly important a prac-
tical solution to the high degree problem of the Euclidean Voronoi diagram of seg-
ments may be the use of a different geometry, in particular, the Lo, (resp. Li)
metric. Note that the Voronoi diagram of segments in arbitrary orientations in
metrics derived from fixed orientations such as the L, or the L; metric, has not
been given any attention in the literature. As it is shown in this paper, the L.,
Voronoi diagram of segments consists of straight line segments and its combinatorial
complexity is similar to the Euclidean case. If the input vertices are on rational
coordinates the Voronoi vertices are also rational. Furthermore, the L., in-circle
test for segments can be answered with degree 5 (see Section 4).

An intuitive way to view the Lo, (resp. L;) Voronoi diagram of polygonal objects
is to view it as the locus of points corresponding to centers of isothetic squares®
(resp. isothetic square diamonds®) that touch the boundary in at least two points.
In contrast, the Euclidean Voronoi diagram can be regarded as the locus of centers
of circles that touch the boundary in at least two points. It is not hard to see that
the Lo, and L; Voronoi diagrams of segments are equivalent under 45° rotation®.
In the case of rectilinear segments, the Lo, Voronoi diagram coincides with the
straight-skeleton of Ref. [1]. Similarly, in the case of segments of slope +1 and
the L; metric. In this paper we focus in the Lo, case due to applications in VLSI

“An isothetic square is one with sides parallel to the coordinate axes.
b An isothetic square diamond is an isothetic square rotated by 45°.



layout and manufacturing, as described below. Note that VLSI shapes consist in
the majority of axis-parallel edges but are not necessarily rectilinear. Thus, the L,
metric is very appropriate for proximity problems involving shapes of VLSI designs.

This paper consists of two parts. In the first part we consider the L., Voronoi
diagram of arbitrary segments and provide an O(nlogn)-time plane-sweep algo-
rithm of degree 7 to construct it. The algorithm extends the wavefront approach
of Ref. [9] for points to handle arbitrary line segments in the Lo, metric; it is a
refinement of the original plane sweep approach given by Fortune!'2. In the second
part we present an important application of Ly, Voronoi diagrams in predicting
the yield of a VLSI chip. The yield of a VLSI chip is the percentage of functional
chips among all chips manufactured. Predicting the yield of a chip prior to fabri-
cation is essential in order to control the cost of manufacturing. Models for yield
estimation are based on the concept of critical area which is a measure reflecting
the sensitivity of the layout to spot defects caused by particles such as dust and
other contaminants in materials and equipment. “Extra material” defects cause
shorts between different conducting regions and represent the main reason for yield
loss during manufacturing. For information on yield estimation and spot defects
see for example Refs. [10,11,14,16,17,20,25,26,27]. In this paper we generalize the
result of Ref. [19] on critical area calculation to general layouts consisting of edges
in arbitrary orientations. In particular, we use the proximity information preserved
in the L, Voronoi diagram of arbitrary shapes on a layer of a VLSI design and
show that the critical area for shorts can be computed as a function of the 2nd
order Lo, Voronoi diagram of shapes on that layer. In Ref. [19] the same result was
shown for restricted ortho-45 layouts i.e., layouts consisting of shapes with edges in
four orientations: horizontal, vertical and slope £1.

Applications of Voronoi diagrams in extracting from the physical description of
a design the equivalent resistance are discussed in Refs. [18,23]. The Lo, version
would be as good in this case?? but much simpler to obtain. Due to the simplicity
of Ly, Voronoi diagrams we expect them to also find applications in other areas.
For example, in Ref. [24] an automatic generation for finite element meshes for
multiply connected planar domains with polygonal boundaries is described. The
Euclidean Voronoi diagram of the domain was used as a starting point and could
be substituted by the L, version?? which is easier to compute.

This paper is organized as follows. In Section 2 we investigate Lo, Voronoi
diagrams of polygonal objects. In Section 3, we provide a simple O(nlogn) plane
sweep algorithm and in Section 4, we show that the degree of this algorithm is 7. In
Section 5, we give an important application in VLSI yield prediction for computing
the critical area of a VLSI layout.

2. Ly Voronoi Diagrams

The L, distance between two points p = (z,,y,) and ¢ = (z,,y,) is the
maximum between the horizontal and the vertical distance between p and q i.e.,

d(pa q) = max{dz(p, Q)de(pa q)} Where dz(p; Q) = |$P - $Q| and dy(p: CI) = |yp - yql-
The L., distance between a point p and a line [ is d(p,l) = min{d(p, q),Yq € 1}.



Fig. 2. The Lo distance form p to ! is dz(p, q).

Intuitively, the Lo, distance between two elements (points or lines) can be defined
in terms of the smallest isothetic square touching the two elements. We shall refer
to a line of slope (£1) simply as a 45-degree line, denoted 45° line.

Consider a point p and the four 45° rays emanating away from p (see Fig. 1).
They partition the plane into four quadrants. In each quadrant the L, distance
between p and any point ¢ simplifies to either the vertical (¢ in upper and lower
quadrant) or the horizontal (¢ in right and left quadrant) distance between p and
q. The L, distance between point ¢ and a horizontal or vertical line is the distance
between ¢ and its orthogonal projection to the line. An arbitrary line [ that does
not contain p intersects two of the 45° rays emanating from p at points ¢ and
r respectively. (If [ is 45° the second intersection is at infinity). Assuming that
dz(p,q) < dy(p,r), the Lo, distance between p and [ is d(p,1) = d,(p, q) (see Fig. 2).
Lemma 1 If the Ly, distance from a point p to a line l of slope £s,s > 0 is r, the
Euclidean distance from p to | is Sir, where S; = \/% for s £ 0,00 and S; =1
for s =0, 00.

Proof. Clearly S; = 1 for s = 0,00. Consider a line [ of non-negative slope
s # oo as shown in Fig. 2. Considering ¢, the intersection of [ with the (—1)-slope
ray emanating from p, as the origin of the coordinate system, [ is given by y = sz and
p = (r,—r). Then the Euclidean distance from p to [ is d.(p,1) = (sr+r)/(Vs> + 1).
Similarly for a line of negative slope. O

Consider an arbitrary line segment s; it consists of three elements: two endpoints
s1, S2, where s; is assumed to be at the top, and an open line-segment [. Consider
the two parallel 45° lines passing through s; and s» whose slope is of opposite sign
than the slope of s (see Fig. 3). They partition the plane into three regions where
the Lo, distance between a point ¢ and segment s, d(q, s), simplifies to d(g, s1),



Fig. 4. The L bisector of two points.

d(g,l), or d(q,s2) depending on whether ¢ lies in the upper, middle, or bottom
region respectively. The top and bottom regions are further subdivided into two
quadrants by the 45° rays emanating from s; and s having slope of the same sign
as s. For a point ¢ in the north or south quadrant, d(g,s) = dy(q, s1) and d(g,s) =
dy(q, s2) respectively, and for ¢ in the east or west quadrant d(g, s) = d;(q, s1) and
d(q,s) = d;(q, s2) respectively.

The bisector of two elements (points or lines) is the locus of points equidistant
from the two elements. In L., the bisector can be regarded as the locus of centers
of squares touching the two elements. Figs. 4 and 5 illustrate the L., bisector of two
points and two lines respectively. In case of two points along the same horizontal
or vertical line the bisector consists of a line segment and two unbounded regions
(shaded regions in Fig. 4). Without creating any significant difference we will assign
one region to each point and consider only the outermost boundary of the bisecting
region as the bisector (thick lines in Fig. 4). Alternatively, both regions could be
assigned to the dominating point according to the lexicographic order as proposed
in Ref. [2]. The Lo, bisector of two lines consists of two lines with slopes given by
the following lemma.

Lemma 2 The Lo, bisector of two non-parallel lines Iy and lo of slopes by and by
(b1, ba # 00), respectively, consists of two lines as follows:

(b14+b2+2b1b2)
(b1 452+2)

o If ba < by <0 the slopes of the bisector are +1 and %

. bo—b1+2b1b bi+b
o Ifby >0 and by < 0 the bisector has slopes *2 bllib; 2 and blj;b.

If 15 is vertical the Ly, bisector consists of a 45° line and a line of slope (1 + 2by)
for by >0 (resp. (—1+ 2b1) for by < 0). The Ly, bisector of two parallel lines is a
single parallel line as in the Euclidean metric.

o If0 < by < by the bisector consists of two lines of slopes —1 and

Proof. Let’s consider the point of intersection of lines /; and Iy as the origin of
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Fig. 5. The L bisector of two lines.

the coordinate system (see Fig. 5). Then the equations of /1 and l» are y = by z and
y = bax respectively. Let (xo,yo) be any point along the bisector. (zq,%o) must be
the center of a square D touching /; and Iy at two points. Let z1,z2,y1,y2, where
z1 < Z2,y1 < Y2, denote the z and y coordinates of D. Clearly, o = 21 + /2 and
Yo = y1 + r/2 where r = x5 — 1 = y2 — y;. For simplicity we assume that y, > 0.

Let’s first assume that by > 0,by < 0. Then D must touch /; and I with two
adjacent corners . If D touches I;,l> with its lower horizontal side then y; = by zs,
y1 = bazy, and y1 = ¢,¢ > 0. Thus, 21 = ¢/ba, 2 = ¢/b1, and 7 = ¢(by — by) /(b1b2).
Then z¢ = C(bl + bz)/(2b1b2) and Yo = C(2b1b2 + by — bl)/(2b1b2) Thus, Yo = Bz
where B = %. Similarly for D touching Iy, l> with its upper horizontal
side. If D touches [l1,l> with its left vertical side then y; = byx1, y2 = bix1, and
z1 = ¢,¢ > 0. Then r = ¢(by — b2), 20 = c(by — b2 + 2)/2, and yo = (b1 + b2)/2.
Thus, yo = Bz with B = g1t

If 0 < by < be, D must touch Iy, 1> with two non-adjacent corners or D touches
the intersection point of Iy, [, with exactly one corner. In the latter case the bisector
is clearly a (—1)-slope line. If D touches l1,ls with its lower-right and upper-left
corner respectively, then y; = byxa, yo = bax1, y1 + 22 = ¢, and 1 + y2 = ¢,¢ > 0.
Thus, £z = ¢/(b1+1),21 = ¢/(ba+1),y2 = cba/(b2+1) and y; = ¢b1 /(b1 +1). Then
o = C(bl + b2 + 2)/(2(b1 + 1)(b2 + 1)) and Yo = C(bl + b2 +2b1b2)/(2(b1 + 1)(b2 + 1))
Thus, yo = Bxg, B = %.

Similarly for by < b; < 0 and for a vertical ls. The case of parallel lines is easy
to see. O

The L, bisector of a point p and a line [ (p & [, see Fig. 6) consists of at most
four parts, one for each quadrant of p. Each part corresponds to the portion of
the bisector between [ and a vertical or horizontal line through p depending on the
quadrant of p. Thus, each part is a line segment or ray whose slopes can be derived
by Lemma 2. The unbounded parts of the bisector are always 45° rays (see Fig. 6).
For a point p along a non-axis-parallel line [ the bisector is a 45° line through p and
for a point p along an axis-parallel line [ the bisector is the area enclosed by the 45°
lines through p. For simplicity we only consider the boundary of this region as the
bisector between p and [; the interior of this region is considered to be closer to p.

Let G be a planar straight line graph on n points in the plane as defined in

Refs. [1,3] i.e., a set of non-crossing line segments spanned by these points. The




Fig. 6. The Lo, bisector between a point and a line.

elements of G, {e1,e2,...,en}, consist of the points and the open portions of the
segments of G. The L, Voronoi diagram of G, denoted V(G), is a partitioning of the
plane into regions, called Voronoi cells, each of which is associated with an element
of G, called the owner, of the cell. The boundary that borders two Voronoi cells is
called a Voronoi edge, and adjacent Voronoi edges of each Voronoi cell are common
to a Voronoi vertex. The collection of Voronoi edges and vertices is also called the
Voronoi diagram. By the above discussion it is clear that the L, Voronoi diagram
of a planar straight-line graph G consists of straight line edges. Moreover, if the
vertices of G are on rational coordinates the L., Voronoi vertices are also rational.
Fig. 7 illustrates the Lo, Voronoi diagram in the interior of a simple polygon (the
medial azis) and Fig. 8 illustrates the Lo, Voronoi diagram of polygons. Most of the
existing algorithms to compute the Euclidean Voronoi diagram of a planar straight
line graph can be easily modified to compute the Ly, Voronoi diagram in O(n logn)
time. The well known incircle test to determine whether an element is in or out of
the circle defined by three other elements (lines or points) now simplifies to a test
involving the square defined by the three elements®. The details of the L., incircle
test and the precision required are given in Section 4. The following lemma, is easy
to see.

Lemma 3 Three lines define a square if and only if two of the lines have non-
negative (resp. mon-positive) slope and one has non-positive (resp. non-negative)
slope.

The combinatorial complexity of the Ly, Voronoi diagram is similar to the Eu-
clidean one. However, there is some difference in the number of Voronoi vertices
produced by reflex angles. The number of 45° rays emanating from a concave vertex
v depends on the slopes of the incident edges and can be either one, two, or three. In
particular, if the incident edges belong in the same, consecutive, or non-consecutive
quadrant of v, there are respectively three, two, or one 45° rays emanating from
v. In the Euclidean case the mormals bisecting a vertex from the incident edges
are always two and in the straight-skeleton' the corresponding angular bisector is
always one. Thus, the combinatorial complexity of the Lo, diagram can be lower
or higher than the Euclidean one depending on the input. An exact bound that

¢Three elements are said to define a square if there exists a square touching the three elements.
Three elements need not always define a square.



Fig. 7. The Lo, medial axis of a simple polygon.

Fig. 8. The Lo Voronoi diagram of polygons.

also counts the “infinite” vertices on unbounded edges and 45° rays, can be derived
following the proof of Ref. [3] for the Euclidean case.

Lemma 4 Let G be a planar straight line graph on n points in the plane such that
G has t terminals (vertices of degree 1), t,, of which are incident to non-orthogonal
edges, ro refler angles inducing two 45° rays, and r3 reflex angles inducing three
45° rays. The number of (finite and infinite) vertices of the Lo, Voronoi diagram
of G is exactly 2n +t + t, + 72 + 2r3 — 2.

Proof. Assuming G in general position, all Voronoi vertices are induced by
a triplet of elements. Some Voronoi vertices are induced by a triplet including a
segment and its own endpoint, referred to as type-2 vertices, and the rest are induced
by a triplet of distinct elements, referred to as type-3 vertices (terminology follows
Ref. [3]). A Type-2 vertex is always incident to a 45° ray emanating from a point
of G. In the diagram obtained by removing all 45° rays incident to the points of G,
type-2 vertices have degree 2 and type-8 vertices have degree three. Type-3 vertices
are induced in exactly the same way as in the Euclidean case, thus their number
remains the same. The difference with the Euclidean case are vertices of type-2.

Let’s first count type-2 vertices. Type-2 vertices are induced by the 45° rays
emanating from terminals and reflex angles. Let r denote the total number of reflex
angles of G and let r; denote those inducing only one 45° ray. Non-orthogonal
terminals induce three 45° rays i.e., 3t, 45° rays in total. Orthogonal terminals
induce two 45° rays i.e., 2(t — t,). Similarly, reflex angles induce (r1 + 2ra + 3r3)



45° rays. i.e, r + r2 + 2r3. Each 45° ray has exactly one type-2 vertex as endpoint
(finite or infinite). Thus the total number of type-2 vertices is (2t +t, +7+r2+2r3).

To derive the number of type-3 vertices we restrict the proof of Ref. [3] to count
only type-3 vertices. This number is the same in both the Euclidean and the L,
case. If G consists of e disjoint line segments then the number of type-3 vertices
(including those at infinity) is 2e —2 (see Ref. [3] page 44). Now let’s transform G to
a set of disjoint segments by shortening each segment slightly such that the segment
endpoints are in general position®. An endpoint p of degree d > 2 in G gives rise to
d copies in the transformation. The Voronoi diagram of these copies has d — 2 finite
type-3 vertices due to these copies. Since the sum of degrees d > 2 in G is 2e —t, we
get (2e —t) — 2(n — t) new type-3 vertices because of the copies. A reflex angle at
p gives rise to one new type-& vertex (finite or infinite) on the bisector of the copies
of p. A convex angle at p does not produce new type-3 vertices Thus, the number
of new type-3 vertices due to the transformation is (2¢ — 2n + ¢t + 7). Hence, the
total number of type-3 vertices is (2e —2) — (2e —2n+t+71) = 2n —r —t — 2. The
lemma, follows by summing up type-2 and type-3 vertices. m|

Note that in the Euclidean case this bound is 2n + ¢t + r — 2, where r is the
total number of reflex vertices® (i.e., r = 71 + ra + r3, where 71 is the number of
reflex vertices inducing a single 45° ray). In the rectilinear case the bound becomes
2n+1t— 2.

3. A Sweep-Line Algorithm for the L, Voronoi Diagram

In Ref. [9], Dehne and Klein presented a plane sweep paradigm for the Voronoi
diagram of points in “nice metrics”. In the Euclidean case it is a refinement of the
original plane sweep approach given by Fortune'2. In this section we modify the
algorithm of Ref. [9] to accommodate segments in the Lo, metric.

We will compute the Ly, Voronoi diagram of a planar straight-line graph G,
V(@). Consider a vertical sweep-line L sweeping across the entire plane from left to
right. At any instant ¢ of the sweeping process the sweep-line partitions the set of
segments (edges) of G into three subsets Sj, S, and S, corresponding to those that
lie totally to the left of L, intersect L, and lie totally to the right of L, respectively.
The segments in S, cut L into |Sy,| + 1 sweepline segments, denoted as Ly, two of
which are unbounded. Let S; denote the portions of segments in S, to the left of
L. In other words, S; = {s¢ | s € S} where s; denotes the portion of s to the left
of L. At every instant ¢ of the sweeping process we compute the Voronoi diagram
of Gy = S;U S U L;. Note that at any instant ¢ the sweep-line segments are treated
as being part of G. (In case G is a collection of simple polygons and we only wish
to compute the Voronoi diagram in the exterior of the polygons, we exclude from
L; the segments in the interior of polygons, Fig. 9).

The boundary of the Voronoi cell of each segment in L; is referred to as a wave-
front component and the collection of all wavefront components for all segments
in L; is called the wavefront. In Fig. 9, the wavefront is shown in dashed lines.
Note that in the case of points the whole wavefront consists of a single compo-
nent. Clearly, in the L, metric the wavefront is y-monotone. The elements of G
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Fig. 9. The Lo Voronoi diagram of Gy.

that contribute segments (bisectors) to the wavefront are referred to as wavefront
elements. In Fig. 9, the wavefront-elements are shown in thick lines. The Voronoi
edges (bisectors) that have an endpoint common with the wavefront are called spike
bisectors. A segment of the wavefront is called a wave and has as owner a wavefront
element.

As the plane sweep proceeds, the wavefront, and therefore the endpoints of spike
bisectors, as well as the endpoints of segments in S; move continuously to the right
until an event takes place which causes the wavefront to change. Following Ref. [9],
we have two kinds of events: 1) events corresponding to the occurrence of a point
or a vertical edge in G, referred to as site events and 2) events corresponding to
the intersection point of two neighboring spike bisectors, referred to as spike events.
A site event induced by a point p takes place at t = z,, where z, is the abscissa
of point p. A spike event C' takes place at t = x. + w where z. is the abscissa of
the intersection point and w is the distance of the intersection from the inducing
element i.e., as soon as the intersection is reached by the wavefront. Throughout the
plane sweep we implicitly maintain the wavefront in a height-balanced binary tree,
T, referred to as the sweep-line status. In particular, the sweep-line status contains
the waves ordered according to their order in the wavefront. Each wave corresponds
to a wavefront element. Note that a wavefront element may introduce more than
one wave. Each wave is sliding along two tracks which are either spike bisectors or
segments in S,,. A segment in S, is the owner of the incident waves. At any
instant ¢ of the sweeping process, the endpoint of a spike bisector corresponds to the
center of the square defined by the owners of the bisector and sweep-line L;. The
endpoint of a segment in S, corresponds to the intersection of the segment with the
sweep-line L;. At any instant ¢, the endpoints of a wave are given by the endpoints
of the incident spike bisector(s) or segment in S,,. The wavefront is the polygonal
line obtained by connecting the endpoints of consecutive waves in the order they
appear in 7. Since the wavefront is y-monotone it coincides with the polygonal line
obtained by connecting the endpoints of spike bisectors and of segments in S,, in
increasing y-coordinate value. The events are organized in a priority queue referred
to as the event list in increasing priority value.

10
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Fig. 10. Handling site events.

Now let us discuss how to handle the event points. Let P be a site event corre-
sponding to a point p or to a vertical segment p;ps in G (p; is assumed to be above
p2). For simplicity of presentation, a point p is treated as a vertical segment prips
of zero length i.e., P = p = p; = ps. For a point p;, let S(p;) = {51(pi),-- -, sk(pi)}
and T(p;) = {t1(pi),---,tm(pi)} denote the segments of G incident to point p; to
the left and to the right of L, respectively. S(p;) and T'(p;) are ordered from top
to bottom (see Fig. 10) and are referred to as the set of incoming and outgoing
segments of p; respectively. The set of incoming and outgoing segments of P are
S(P) = S(p1) U S(p2) and T(P) = T(p1) Upips U T(p2) respectively. (If P is a
point, T(P) = T(p1) = T(p2)). The vertical and the horizontal axes through p;
partition the plane into four quadrants. Recall that if the segments incident to p;
form a reflex angle, there must be 45° ray(s) emanating from p; depending on which
quadrant of p; the incident segments lie. We do the following;:

(i) Determine the portion of the wavefront that becomes part of the final Voronoi
diagram. In other words, determine points v; and vy on the wavefront such
that the part of the wavefront between v; and vs is finalized. (v, is assumed
to be above vy, i.e., vy follows v; as we walk along the wavefront from top to
bottom).

(a) Determine vy as follows:

If the upper-left quadrant of p; has no incoming segments (i.e., S(p1) = 0
or si(p1) has positive slope), consider a ray 71 of slope —1 emanating
from p; extending to the left of L; (see Fig. 10). If S(p1) # 0, ray
ry is part of the wavefront itself, thus let v; be the other endpoint of
r1 (Fig. 10c). If S(p1) = 0, let v1 be the intersection point of ry with
the wavefront (Fig. 10a,b). To compute vertex v; in the latter case we
perform binary search in 7 to identify the wave intersected by r;.

The binary search proceeds as follows: Let e; and e;1; denote two con-
secutive wavefront elements in 7 and let b(e;, €;41) be their spike bisector
(the wave of e; is assumed below the wave of e;11). Consider the square
D; defined by e;,e;+1 and the sweepline £;. Let Y; denote the lower
ordinate of D;. If p; lies below Y;, we can exclude from the search all

11



wavefront elements above and including e;y;. (Note that r; must in-
tersect the wavefront below the endpoint of b(e;, e;11).) If p; lies above
Y; then we can exclude all wavefront elements below e; (not including
e;). If the ordinate of p; is identical to Y; then v; is the endpoint of
b(e;,ei+1). In the latter case we have four “co-circular” elements (in the
L, sense). For a wavefront element e; corresponding to a segment in Sy,
the decision is easier: If p; lies below (resp. above) e; we can exclude all
wavefront elements above (resp. below) e;.

If the upper-left quadrant of p; contains incoming segments (i.e., s1(p1)
has non-positive slope) let v; = p;.

Determine vy similarly:

If the lower-left quadrant of p, has no incoming segments (i.e., S(p2) = 0
or s1(p2) has negative slope), consider a ray r2 of slope +1 emanating
from py extending to the left of L;. If S(ps) # 0, vy is part of the
wavefront; let va be the other endpoint of ro. If S(p2) = 0, let vy be
the point of intersection of ro with the wavefront; vy can be identified
by binary search similarly to step (a). If the lower-left quadrant of ps
contains incoming segments (i.e., s (p2) has non-negative slope) let vy =
D2-

(ii) Update the Voronoi diagram so far by inserting the portion of the wavefront
identified in step (i).

(iii) Delete from the sweep line status 7 all waves between v; and vs (except those
containing v; and vs).

(iv) Generate new spike bisectors: (In Fig. 10c, new spike bisectors are illustrated
in arrows):

(a)
(b)

For every pair of consecutive segments in T'(p;) and T'(p2) (if any) gen-
erate a new spike bisector.

If the upper-right quadrant of p; (resp. lower-right quadrant of ps) con-
tains no outgoing segments i.e., T'(p1) = @ or #1(p1) has negative slope
(resp. T(p2) = 0 or t,,(p2) has positive slope), generate a new spike
bisector as a ray of slope +1 (resp. —1) emanating from p; (resp. p2)
extending to the right of L.

Generate a new spike bisector for every Voronoi vertex v;,i = 1,2, pro-
duced in step (i) (if any). Let e;,4 = 1, 2 denote the element of G inducing
the wave incident to v;. Let b;,4 = 1,2 denote the new spike bisector
with startpoint at v;. b; is defined by e; and an outgoing segment t; as
follows: If the upper-right quadrant of p; (resp. lower-right quadrant of
p2) contains outgoing segments, let t1 = t1(p1) (resp. t2 = tm(p2)). (t1
has positive slope and t» has negative slope in this case). Otherwise, let
t; denote the horizontal line through p;.

If both upper (resp. lower) quadrants of p; (resp. p2) contain segments
generate a new spike bisector by (resp. bs) with startpoint at p; (resp.
p2), extending above p; (resp. below ps), defined by the lines through

s1(p1) and t1(p1) (resp. si(p2) and ¢, (p2)).
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Note that b; may extend to the right or to the left of L; and that it may
be a 45° ray.

At any instant ¢ of the sweeping process the endpoint of a spike bisector
corresponds to the center of a square defined by L; and the two wavefront
elements inducing the bisector.

(v) Update the sweep-line status 7 by inserting waves corresponding to new wave-

front elements sliding along the new spike bisectors generated in step (iv) and
the outgoing segments in T'(P). Each wave corresponds to a wavefront ele-
ment. Clearly, all elements in T'(P) define new wavefront elements. If both
upper (resp. lower) quadrants of p; (resp. p2) contain no segments, then
p1 (resp. po) forms a new wavefront element equivalent to a horizontal line
through p; (resp. p2). Note that in this case, a spike bisector corresponding
to a 45° ray emanating from p; must have been generated in step (iv). If
T(P) = 0 then P itself induces a new wave equivalent to the one of a vertical
line. In this case two 45° rays emanating from p; must have been generated
in step (iv).
The insertion order of the new wavefront elements in 7 is the natural order of
the wavefront. Note that an element may appear more than once in T since
it may define multiple waves. All new waves are inserted between the waves
of the elements inducing v; and wvs.

(vi) For every new spike bisector b generated in step (iv) create at most one new
spike event corresponding to the first intersection of b (if any) with the neigh-
boring spike bisectors from above and below. (The order is induced by the
wavefront). If b is induced by two consecutive segments in T'(p;), there are no
neighboring spike bisectors and thus no spike event gets generated. A spike
event induced by the intersection of two neighboring spike bisectors corre-
sponds to the center of the square defined by the three wavefront elements
inducing the spike bisectors. The priority value of the spike event is given
by the rightmost abscissa of this square. Insert those spike events in the
event-list.

Spike events are handled similarly. Let g be a spike event induced by the in-
tersection of two spike bisectors i.e., ¢ is induced by three elements e;, ez, e3. If ¢
is walid, the wavefront elements must be neighboring in 7T; otherwise ¢ is invalid.
Invalid spike events are simply discarded. A valid spike event ¢ is a Voronoi vertex
of the final diagram and the incident spike bisectors are Voronoi edges. The wave
of the middle wavefront element vanishes at ¢ and gets deleted from 7. A new
spike bisector b induced by e; and ez, emanating from g, is generated. At most two
new spike events are generated due the intersections of b with its upper and lower
neighbors. These spike events correspond to the center of the squares defined by
e1,e3 and the wavefront element preceding e; and following e3 respectively. The
priority value of the spike events is given by the rightmost abscissa of the squares.
The spike event of minimum priority value is inserted in the event-list; the second
spike event must be invalid. Note that in case of more than three “co-circular”
elements the new spike event may coincide with gq.
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The correctness of the algorithm follows using the same arguments as in Ref. [9].
By the same observations the number of site and spike events is O(n). Thus, the
time complexity of the algorithm is O(nlogn).

4. The degree of the plane sweep algorithm

Let’s first review some definitions and notation from Refs. [15,5]. An algorithm
has degree d if its test computations (predicates) involve the evaluation of multivari-
ate polynomials of arithmetic degree at most d Ref. [15]. The arithmetic degree of
a polynomial is the maximum arithmetic degree of its monomials, and the arith-
metic degree of a monomial is the sum of the arithmetic degrees of its variables. An
input variable is considered to have degree 1; the arithmetic degree of an arbitrary
variable is the degree of the polynomial that computes it. An elementary predi-
cate is the sign of a homogeneous multivariate polynomial of input variables and
more generally a predicate is a boolean function of elementary predicates®. The
degree of an elementary predicate is the maximum degree of its irreducible (over
the rationals) factors whose sign is not constant. Clearly the degree of a predicate
is the maximum degree of its elementary predicates and the degree of an algorithm
is the maximum degree of its predicates. For more information on the degree of
an algorithm and its implication on the speed and robustness of the algorithm see
Ref. [5]. All input data are considered to be b-bit integers.

Following the notation of Ref. [15], an unspecified multivariate polynomial of
degree s over input variables is denoted by a®. A specific term p, which is known
to be a polynomial of degree s over input variables, can be written as a® using the
genericization operation (p — a®) Ref. [15]. To manipulate unspecified polynomials
the following rules were given in Ref. [15]: a®a™ = a®t" (product rule), a® + a® —
a® (sum rule), —a® — o® (sign rule). In the following we will show that the degree
of the plane sweep algorithm in Section 3 is seven.

Let’s consider a spike event C' induced by three wavefront elements e;, e;, ey
appearing on the wavefront from bottom to top. C' corresponds to the intersection
point of b(e;, e;) and b(e;, ex) which is the center of a square D(e;, e;, ex) (for brevity
D) touching e;,e; and er. The priority of C is the abscissae of the rightmost side
of D. Without loss of generality we assume that e;, e;, e, correspond to three lines,
denoted by [;,1;,1, respectively. Note that in Lo, any point can be regarded as
a vertical or horizontal line depending on which quadrant of the point is relevant.
Let’s also assume that the slope of [; is non-negative; the case where I; has non-
positive slope is equivalent. By Lemma 3 one of the slopes must be of opposite sign
than the others. Thus, assuming that the slope of /; is non-negative, the slopes of
l;,1r must be non-positive and non-negative respectively.

Let Xi(ei,ej,ex), Xa(ei, ej,er),Yi(ei, ej,ex) and Ya(e;, ej,ex) (for brevity Xy,
X5, Yy, Y3) denote the z and y coordinates of D(e;, e;, e) respectively, where X; <
X5 and Y} < Y (see Fig. 11). Under our assumptions, points (X1,Y5), (X1,Y7),
and (X»,Y7) must belong in I, I; and I; respectively. Let am® + bmy + cm = 0
be the line equation of line [,,,,m = i,j,k. To determine D we need to solve the
following linear system of four equations:
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Fig. 11. The square defined by three lines

Az =c
0 a; bz‘ 0
a 0 b, O
A= az 0 d bk ) ZT:(X17X27)/17Y2)7 CTZ(_Ci7_Cj7_Ck70)
-1 1 1 -1

Thus, we obtain the following formulas for the coordinates of D.

N,

X, = fl, N, = —bjbkci — aibij + bibij + aibjck (1)

D = —a,-akbj + aiajbk — a]‘bibk + aibjbk
N-

Xy = 627 Ny = akbjci — ajbkci — bjbkci — akbicj + bibkC]' + a]-bick (2)
M,

Yi = F, M, = ajbkci + a;axc; — aibij — a;a;Ck (3)
M,

Y, = 3, M,y = akbjci + azagc; — akbicj —a;a;ck + a]-bick — aibjck (4)

The priority value of spike event C' is X2 and the Voronoi vertex induced by C'
is the center of D, point (X1 +r, Y] +7),r = (X2 — X1)/2.

To implement the plane sweep algorithm robustly, it is essential to correctly
compute at any instant the event of lowest priority value. For this purpose we need
to compare the priority values of spike and site events accurately. Furthermore,
we need the ability to correctly perform the binary search described at step (i) of
the algorithm. These comparisons correspond to correctly answering the predicates
given below. These are the only predicates that are used in the algorithm. We use
the following notation: For two points p,q, p <, ¢ means that the x-coordinate of
p is less than the x-coordinate of g. Similarly for <,. Given a point p and a line [,
p <y I means that point p lies below line [, i.e., p <y I, where [, is the intersection
of [ and the vertical line that passes through p.

Predicate 1: p <, [
Predicate 2: p <, Y1(Ly,ej,er) or p <, Ya(Ly, €5, ex)
Predicate 3: Xy(e;,ej,ex) <, p: Compare the priority value of a spike and a site

15



event.
Predicate 4: Xy(e,ez,e3) <, Xa(es,es,e6): Compare the priority values of two
arbitrary spike events.

Here p denotes a point site of the straight-line graph G. A line I: ax+by+c =0,
is defined by two points p = (zp,yp) and ¢ = (24, y,) Where a =y, —yq, b = 4 —2p,
and ¢ = —ypx, + 2py,- Using the genericization operation of Ref. [15] a,b — « and
c— a?.

Lemma 5 The predicates of the plane sweep algorithm can be answered with the
following degrees: Predicate 1: degree 2; Predicate 2: degree 3; Predicate 3: degree
4; Predicate 4: degree 7.

Proof. The degree of Predicate 1 is 2 as shown in Ref. [5].

As mentioned above, we assume that the slope of e; is non-negative and thus the
slopes of e; and e, are non-positive and non-negative respectively. For Predicate 2,

we use the equation of the sweep-line L; (i.e., a; = 1,b; = 0,¢; = —t) in equation (3).
Then Y1 (L¢, ej,ex) = Mi(L¢, ej,ex)/D(Ly, €5, ex), where My (L¢, ej,ex) = —ajbyt +
arcj — bpej — aje, — o and D(Ly,ej,er) = —agbj + ajby + bjby — a?. Thus

Predicate 2, P> = yp, x D(Lyt,ej,ex) — M1(L¢,ej,er) < 0, and P, — o. Similarly
for p <y Yg(Lt,ej,ek).

Using Eq.(4), Predicate 3 becomes P; = Na(e;,ej,ex) — D(es, ej,ex) xxp < 0,
where Ns(e;,e;,e) — ot and D(e;,ej,ex) — a®. Thus, P; — o' — a®a — ot

The most expensive predicate in terms of degree is Predicate 4: Given two
arbitrary spike events determine which one has lowest priority value. Using Eq.(2)
this predicate can be written as Xo(e1, e2,e3) < Xa(es,es5,e5) = Na(ey,e2,e3)D(eq,
es,e6) — Na(es,e5,e6)D(e1, e2,e3) < 0. No(es,ej,er) = a*, D(ej,ej,ex) = a,i=
1, 4,J = 2, 5, k= 3, 6. ThUS, P4 = N2(61, €a, €3)D(€4, €5, 66) —N2(€4, €5, eG)D(el, €a,
e3) = a’. |
Theorem 1 Given a planar straight line graph G on n points in the plane there
ezists a sweep-line algorithm of degree 7 to compute the Lo, Voronoi diagram of G
in O(nlogn) time.

Proof. The O(nlogn)-time complexity of the algorithm was established in
Section 3. By Lemma 5 the degree of the algorithm is at most 7. To show that it
is exactly 7 we need to show that the polynomial of Predicate 4 is irreducible over
the rationals. This is shown in Lemma A.2 in the appendix. O

In the case of segments in fixed orientations where the slopes of segments can be
assumed to be small constants the degree of the algorithm is only 1. This situation is
very common in VLSI layouts and thus this algorithm can be directly implemented
in this case with no robustness problems.

The L, Voronoi diagram of segments could also be computed in an incremental
fashion where the most expensive predicate to be answered correctly is the Lo, in-
circle test. An algorithm based on the in-circle test (e.g., similar to those presented
in Ref. [21,6] for the Euclidean case) would have lower degree than the plane sweep
since the L, in-circle test for line segments can be answered with degree 5 (see
Lemma 6). In this paper we chose the plane sweep approach because it is simple
and very appropriate for our application presented in the next section. In this
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application there is no need to maintain the whole Voronoi diagram throughout the
computation; it is enough to only maintain Voronoi cells incident to the wavefront.
Since the amount of data in modern VLSI designs is extremely large, given in
a compact hierarchical manner, the plane sweep approach results in much lower
memory requirement. Moreover, as mentioned above, typical VLSI designs contain
shapes in a small number of constant orientations (often ortho-45) in which case
the plane sweep is robust.

Lemma 6 The Lo, in-circle test for line segments can be answered with degree 5.

Proof. Letl;,i = 1,2,3 be three lines defining a square D. (Note that three lines
may define more than one square but the test is performed for the one corresponding
to a given Voronoi vertex). Let s denote the query segment and let’s assume that
s is not orthogonal (otherwise the test is easier).

We first perform the in-circle test for the endpoints of S; if an endpoint lies
within D then clearly s intersects the interior of D. Otherwise, let I denote the line
through s. The test is the following: If the slope of I is negative (resp. positive)
check whether the corners (X1,Y1) and (X3,Y2) (resp. (Xi,Y2) and (X3,Y7)) lie
on opposite sides of I. Thus, we need to answer the following predicate where [ is
ax+by+c=0,a,b = a,and c = o®: P, = aX,+bY1+c < OAP, = aXy+bYs+c >0
(if —a/b<0),or P =aX1+bYo+c<O0AP, =aXy+bY; +¢>0 (if —a/b>0).
This is equivalent to P, = aN; +bM; +c¢cD < OA P, = aNy +bMs +c¢D > 0 or
P, =aN; +bMy+¢D <O0ANPy, =aNs; +bM; +c¢D > 0. Thus, P — Ot5,P2 - ab.
O

In the Euclidean metric, the in-circle test for points and segments can be an-
swered with degree 4 and 40 respectively®. However, the plane sweep approach for
the Euclidean Voronoi diagram of points and segments must have higher degree.
The main reason is the need to accurately compare the priority value of two arbi-
trary spike events i.e., the predicate equivalent to our Predicate 4. As the following
lemma shows, in the case of points in the Euclidean metric this predicate (denoted
as P;) can be answered with degree 20. Note that the same predicate in the L
metric has degree 1. For segments predicate P, must have higher degree.

Lemma 7 Predicate P, for points in the Euclidean metric can be answered with
degree 20.

Proof. The equation of the circle through three non-collinear points (x;,¥;),% =
1,2,3, is given by the following determinant.

224+9y® 2z oy
i +yi @y
3y T2 Y2

3+y; T3 s

—
Il
[en]

Equivalently, the circle equation is (z? + y?)D — Az + By — C = 0, where
A, B,C, D are subdeterminants. Note that 4, B — a®, C — o*, and D — o®. The
center of the circle is (g, yo) where zg = % and yo = 2. The radius of the circle
is R=55(/p),p=A?+ B> +4CD.
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Given two distinct triplets of non-collinear points, let (zo,¥o), R, and (z§, ), R’
denote the center and radius of the circle defined by each triplet. (The factors of
the second triplet are denoted by primes). Predicate P, = zo + R < zj + R’
ie., Pj = AD' — A'D + \/pD' — /D < 0. Thus, P, — o + a2/p — a2/p
= al® — (& /p — 2Vp)? = ot — ot /pVp = a0 —aBpp’ — 0. (Used the
segregate and square rule of Ref. [15]). O

5. The L, Voronoi Diagram and the Critical Area Problem

In this section we present an important application of the L., Voronoi diagram of
segments in computing the critical area for shorts of a VLSI layout. The extraction
of critical area forms the main computational bottleneck in predicting the yield of
a VLSI chip.

Given a circuit layout C, the critical area is defined as A, = [;° A(r)D(r)dr
where A(r) denotes the area in which the center of a defect of radius r must fall
in order to cause circuit failure and D(r) is the density function of the defect size.
Defects are usually modeled as circles and the density function has been estimated to
follow the “1/r3” distribution!!:20:25.27 Existing methods require substantial CPU
time for large layouts. They can be summarized into three categories: 1) Geometric
methods, where A(r) is computed for several different values of 7 independently and
then the results are used to approximate A.. The methods to compute A(r) are
usually based on shape-expansion followed by shape-intersection (see Ref. [27] for
references). For rectilinear layouts there is a more efficient plane-sweep method?°.
2) Monte Carlo simulation, where a large number of defects is drawn with their radii
distributed according to D(r). The probability of fault is estimated by dividing the
number of defects causing faults over the total number of defects?8. 3) Grid-based
approach, where an integer grid is assumed over the layout and the critical radius
(i.e., the radius of the smallest defect causing a fault at this point) of every grid
point is computed?”. The time complexity is O(I'-3), where I is the number of grid
points and can be improved to O(I) as shown in Ref. [19].

For rectilinear layouts, our solution to the critical area problem for shorts, as-
suming that defects are isothetic squares, appears in Ref. [19]. In Ref. [19], we
showed that the critical area integral for rectilinear layouts and layouts including
+1-slope edges can be written as a function of edges of the 2nd order Lo, Voronoi
diagram of layout shapes, and thus the critical area computation for shorts can be
done analytically once the 2nd order L., Voronoi diagram is available. The 2nd
order Voronoi diagram of arbitrary polygons is a variation of the ordinary k-th
order Voronoi diagram of points: The Voronoi cell of a polygon P is subdivided
into finer regions by the Voronoi diagram of its neighbors. The 2nd order Voronoi
region of an element s (edge or reflex vertex) within the Voronoi cell of P is defined
as regp(s) = {z | d(s,z) < d(t,z),¥t € C — P}, where C is the given collection
of polygons. The critical radius of every point x € regp(s) is determined by the
distance of z from element s; we say that s is the owner of regp(s).

Having the critical area computation done based on Euclidean Voronoi diagrams
would be out of the question in practice due to the difficulty of computing the
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Fig. 12. The 2nd order subdivision within a Voronoi cell.

Voronoi diagram of segments. However, the computation in L is practical. Using
the Lo, metric is very natural for this problem; it simply amounts to modeling
defects as squares instead of circles. In reality spot defects have any kind of shape
thus, modeling defects as squares is good enough for all practical purposes. In the
critical area literature defects have often been simplified to squares (e.g. Ref. [20]).
In this paper we generalize the result of Ref. [19] to general layouts of shapes in
arbitrary orientations and show that the critical area formula for shorts (assuming
square defects) can be written as a function of 2nd order Lo, Voronoi edges.

5.1. The Critical Area for Shorts as a Function of Voronoi Edges

We have a layer in a circuit layout consisting of a collection of disjoint simple
polygons C in arbitrary orientations. Our goal is to evaluate the integral A, =
Jo* A(r)D(r)dr, where D(r) = r3/r® and r¢ is a minimum optically resolvable size.
Recall that A(r) denotes the area of the critical region for square defects of radius
r. The critical region for radius r is the locus of points where if the center of a
square defect of radius r is placed it causes a short i.e., the defect overlaps with two
disjoint polygons.

Consider an arbitrary point p in the layout. The critical radius of p for shorts is
the radius of the smallest defect which if centered at p overlaps with two different
polygons. Such a defect causes a short between the conducting regions represented
by the two polygons. Clearly, any larger defect centered at p also causes a short.
Thus, the critical radius of p is the distance of p from the second nearest polygon
to p. Let’s assume that we are given the 2nd order L., Voronoi diagram of C as
defined above. Fig. 8 shows the L., Voronoi diagram of a set of shapes and Fig. 12
shows the 2nd order subdivision within a bounded cell. Then A. = >, A.(V)
for all (2nd order) Voronoi cells V' where A.(V) denotes the critical area within
V. Note that A.(V) = fooo A(r,V)D(r)dr where A(r,V) denotes the area of the
critical region for defect radius r within V. We will show that the integral can be
discretized as a summation of (2nd order) Lo, Voronoi edges.

Let’s first concentrate on a single (2nd order) Voronoi cell V having as owner an
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@ (b)
Fig. 13. The decomposition of V' into trapezoids.

edge e of slope +s,s > 0. The Voronoi cell of a vertex is considered as the Voronoi
cell of a vertical or horizontal edge. Consider a decomposition of V' into trapezoids
by drawing lines perpendicular to e (lines of slope +1/s) emanating from the Voronoi
vertices of V' (see Fig. 13a). Each trapezoid T is further decomposed into orthogonal
triangles and at most one rectangle R by drawing lines parallel to e (slope =*s)
through its vertices (see Fig. 13b). (In case 7 is a slanted parallelogram continue
the decomposition recursively). We distinguish between two kinds of triangles, red
and blue, depending on the relevant position of the hypotenuse and the orthogonal
apex with respect to e. In particular, if the owner e and the orthogonal apex lie on
opposite sides of the hypotenuse the triangle is colored red, otherwise it is colored
blue. In Fig. 13b, the lightly shaded triangle is red and the darker shaded one is
blue.

Given two vertices v; and v such that v; is closer to e than vy, let 7,71 denote
the corresponding critical radii i.e., the Lo, distance of v; and v from the line
through e respectively. We derive the following formulas for the critical area within
an element of the above decomposition.

Lemma 8 The critical area within o rectangle R, o red triangle Ty.q, and a blue
triangle Tyye s given by the following formulas, using the “r3/r” defect density
distribution:

r2S 1 l
A, -0~ _ -
®)="C - )
rS Tk l
Ap(Tred) = 2= (STIn(—) — —
(Trea) = (ST ()~ ) (6)
r2S 1 T
A (Thiye) = 2=(— — STIn (=
(Te) = 7 (- = STIn (1) ™)
where 1 is the size of the edge of R,Treq, and Tyye parallel to e, ry,r;, 7 > 15, are
the mazimum and the minimum critical radius of their vertices, S = \/%, where
s is the absolute value of the slope of e, and T = ‘tffsll , where t is the absolute value

of the slope of the hypotenuse (i.e, the slope of the corresponding Voronoi edge).
Fors=00,S=1andT =t.

Proof. Let’s assume, without loss of generality, that the slope of e is positive.
Consider a red triangle T..q of minimum critical radius r;. Let a and b denote the

20



Fig. 14. A red triangle in the Voronoi cell of e

side parallel and perpendicular to e respectively for a defect radius r,7; < r <7y

see Fig. 14). By Lemma 1, b = —2EL_(r — 7). To determine the length of a let’s
& Vsl J

rotate the coordinate system by an angle ¢ so that a becomes horizontal. ¢ = —0
where tanf = s. Let ¢ = tanw denote the slope of the hypotenuse h (h is a
Voronoi edge). In the new coordinate system the slope of h is is t' = tan(w — ) =
janustont, =2 Then [a] = |o]/¢"

Let S = \/% and T = . Then A(r,Treq) = lallb|/2 = S*T(r — r)?/2
for r < rg. For defect radius r > rg, the whole triangle is critical and thus,

A(r,Tyeq) = S?T(ry, — 'I‘J) /2. Hence, the critical area within T is A.(Treq) =
o0 T Tk 00 r2S? Tk
Sy A, Trea) D(r)dr = 58575 ([T (=) /r3dr+ [ (e —rs)? fr¥dr) = "85 ([ (1/r—
2 g2 . T T? 7‘2
20y 17403 [r)dr+ (r—r) [0 1 fridr) = S5 (In () + (5L = 20) 4 (— g 5+

Ti Tk Tj 277 277
—r;:)2 r2g2? s 2 )2 252 .
“E$)=°§”m6®+%—a—&wé+<k”)=°§Umeﬂ+ﬁ—u
But I = ST(ry — ). Thus, A.(Trea) = 42(ST'In (&) — L),

For a rectangle R, the area of the crltlcal region within R for defect radius r
where r; < r < ryis A(r,R) = |b|l = Si(r —r;). For a defect radius r > rj the
whole rectangle R is critical and thus the area is A(r R) = Sl(ry, — rj). Hence,

the critical area within R is A.( fo D(r)dr = Sl( fTJk TS g+
fﬂmrwﬂ—mﬂ%ﬂ———d+f(Wﬁm%wwu o s I
— %) = 18SIGE — 5+ 5 — 5+ ) = 18515, g)=%ﬂ%—4>

For a blue triangle Ty cons1der the red trlangle Tred obtamed by flipping Tpiye
around the hypotenuse. Tpyye and Tr.eq form a rectangle R. For any defect radius
r > r; the area of critical region within Tyiye is A(r, Tpiue) = A(r, R) — A(r Tred)
Note that for r > ry the Whole trlangle is critical. Thus, A.(Tprue) fo
A(r,Treq))D(r)dr = fo (r, R)D(r)dr — fo (r, Treq)D(r)dr. Thus, A (Tblue) =
A(R) — AC(TTed). The formula, is derived by arithmetic substitution. O

We can derive the critical area within V' by adding up the critical areas within
every rectangle and triangle in the above decomposition of V. Because of the sum-
mation, terms of the form SI/r; corresponding to internal decomposition edges can-
cel out. Similarly, for logarithmic terms involving endpoints of the decomposition
other than Voronoi vertices. Thus, the critical area within V' can be written as a
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function of Voronoi edges. Let’s color the Voronoi edges that induce the hypotenuse
of red triangles as red, and those inducing the hypotenuse of blue triangles as blue.
Voronoi edges that are incident to a rectangle or induce an orthogonal edge of a
triangle must be either parallel or perpendicular to the owner of the cell. Those
Voronoi edges that are parallel to the owner are referred to as prime and they are
portions of bisectors of two parallel edges. Prime Voronoi edges are colored red if
the interior and the owner of the cell lie on opposite sides of the edge; otherwise
they are colored blue. Those Voronoi edges that are perpendicular to the owner
are colored neutral with respect to that owner. In the formulas of Lemma 8, terms
corresponding to red edges get added while terms corresponding to blue edges get
subtracted. Neutral edges do not contribute in the formulas. The boundary of the
layout is assumed to be a rectangle whose intersection points with the Voronoi dia-
gram are treated as Voronoi vertices. Boundary edges are treated as Voronoi edges
but they contribute at most once in the formulas.
We derive the following theorem.

Theorem 2 Given the 2nd order Lo, Voronoi diagram of polygons of a layer in a
circuit layout C' and assuming that defects are squares following the “r%/r®” defect
density distribution, the critical area for shorts in that layer is given by the following
formula:

Sil,' Szlz 1 TE 1 Tk B
Ac=r3( > - > +- Y Sln—=-2 Y ST.n—+7)
5 5 2 € r; 2 € r; 2
red, 2 blue, prime = ¥ red, nonprime J blue, nonprime J

prime e; em ej, wrt e ej, wrt e

where l; and r; denote the length and the critical radius of a prime Voronoi edge
ei, and ri,rj, vy > 1; denote the mazximum and the minimum critical radius of a
non-prime Voronoi edge e;. The factors S, and T, are as defined in Lemma 8 for
each owner e of the non-prime edge ej. B 1is the sum of the blue terms for prime
boundary edges and appears as a correction factor since boundary edges contribute
at most once.

Proof. By the above discussion and Lemma 8, it is clear that the critical
area within one (2nd order) Voronoi cell V' of owner e is given by a summation
of terms derived by the bounding Voronoi edges. A prime Voronoi edge e; con-
tributes (r3S;l;)/(2r;), and a non-prime, non-neutral Voronoi edge e; contributes
(r3S%T, In :—f) /2. A neutral Voronoi edge does not contribute to critical area. Ev-
ery prime Voronoi edge bounds exactly two cells and receives the same color with
respect to both cells; thus, it contributes the same term twice. Boundary edges
contribute the respective term once. Note that a boundary edge perpendicular to
the owner is colored neutral and does not contribute at all to critical area. The
formula is derived by adding up the critical area within every Voronoi cell. O

The critical area computation problem for shorts is now reduced to the 2nd order
L Voronoi diagram of polygons. Note that the L., Voronoi diagram of polygons
is not necessarily unique; it depends on the convention adapted for breaking ties.
However, the critical area result is the same no matter which version of the Voronoi
diagram is used: given a point ¢ equidistant from at least two polygonal elements,
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rc(t) is the same no matter which element is considered to be the owner of ¢. Once
the 2nd order L, Voronoi diagram of layout shapes is computed we only need to
determine the coloring of Voronoi edges. The coloring of a Voronoi edge can be
determined by attributes associated with the Voronoi edge without any need to
answer additional high degree predicates. We thus summarize with the following
theorem:

Theorem 3 Assuming square defects following the “r/r®” defect density distri-
bution, the critical area integral for shorts on a layer of a VLSI design can be
computed accurately by plane sweep in O(nlogn) time and degree 7, where n is the
total number of edges of shapes on that layer.

Proof. It only remains to be shown that the coloring of a Voronoi edge f can
be determined with no need for additional predicates of high degree. Let e;, e; be
the owners of f, where e; is the owner of the bordering cell under consideration.
Let I; and [; denote the lines implied by e; and e; respectively. Voronoi edge f is
portion of the bisector b(l;,1;). To determine whether f is prime it is enough to
determine whether /; and I; are parallel i.e., degree 2 is sufficient. For a prime f,
b(l;,1;) consists of a single line. For a non-prime f, b(l;,1;) is partitioned into four
branches by the intersection point of I;,1;. Since e; and e; do not intersect, f must
belong entirely to exactly one branch. Which branch can be easily determined by
comparing the sides of I; (resp. I;) where e; (resp. e;) lie i.e., degree 2 is sufficient.
Once the branch of b(l;,1;) containing f is determined the color of f can be easily
derived by known attributes of f involving which side of f lies I; compared to the
bordering cell of e;. O

In practice VLSI designs consist typically of segments in fixed orientations with
slopes given by small constants. In this case the degree of the algorithm to compute
critical area is only 1.

6. Concluding Remarks

We have shown that the Lo, Voronoi diagram of segments is a simple straight-
line skeleton of combinatorial complexity similar to its Euclidean counterpart. It is
particularly well suited for applications involving proximity in VLSI layout where
shapes are “mostly” rectilinear. In the presence of many orthogonal edges the
combinatorial complexity of the L, Voronoi diagram is slightly smaller than the
Euclidean one. We have presented a simple plane-sweep algorithm of degree 7
to compute the Lo, Voronoi diagram of segments in O(nlogn) time. Although the
degree is low compared to the Euclidean case, a robust implementation for arbitrary
segments would require the use of arithmetic filters (see e.g. Refs. [4,7,13]). In the
special case of segments in fixed orientations with slopes given by small constants
the algorithm is of degree 1 and thus can be implemented robustly by ordinary
means. This is typically the case for shapes in VLSI designs. Using the (2nd order)
Ly Voronoi diagram of shapes in one layer of a VLSI layout we addressed the
problem of computing the critical area for shorts. We have also shown that the
critical area in one layer of a layout can be written as a function of Voronoi edges
and thus it can be computed analytically once the (2nd order) Voronoi diagram is
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available. In future research we plan to investigate potential uses of the L., Voronoi
diagram of segments in other problems in the VLSI layout and manufacturing area.
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Appendix A:

We shall use the definitions, notation, and results of Ref. [5] (appendix). Let
p(z1,...2,) be a multivariate homogeneous polynomial and let I,|I| > 2, be a
subset of variables in p of degree 1. Given a variable z; of degree 1, p can be
expressed as p = p;x; + pijo, where p;, p;o are polynomials in all variables except
x;. Theorem 13 in Ref. [5] states that if p has degree at least 3, |I| > 2, and for
some 4, j € I coefficients p; and p; are distinct and irreducible, then p is irreducible.
Recall that polynomial p is reducible® if it can be written as p = ¢, where ¢,
are multivariate homogeneous polynomials over the same variables satisfying 1 <
degree(¢), degree(y) < degree(p). Polynomials differing only by a multiplicative
constant are not distinct. If p has degree 2 we have the following lemma.

Lemma A.1 Let p(z1,--..,z,) be a multivariate homogeneous polynomial of degree

2, with |I| > 2. If for some i,j € I coefficients p; and p; are distinct and do not
contain variables x; nor x;, then p is irreducible.

Proof. Suppose for a contradiction that p is reducible. Then p can be written
as p = ¢p, where ¢,1¢ are polynomials over the same variables, both of degree
1. A polynomial of degree 1 is a linear combination of all variables, z1,z2, ..., z,
i.e., XLo(q * 1), where ¢;,1 = 0,1,...,n are constants, o = 1, and at least one of
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1,92, ---,qn, is nonzero. Let ¢ = X (q * z;), and ¢ = XL (r; * 27). Since p does
not contain terms z? and a:f, ¢; and r; (resp. g; and r;) cannot both be non-zero.
Let’s first assume that ¢; # 0 and ¢; # 0. Then r; = r; = 0 thus, p; = ¢;¢ and
p;j = q;¥ i.e., p;,p; are not distinct; contradiction. Similarly for r; # 0 and r; # 0.
Let’s now assume that ¢; # 0 and r; # 0 (i.e., r; = 0,¢; = 0). Then p; = ¢;¢ and
pj = ri¢. But then the coefficient of z; in p; and the coefficient of z; in p; are
non-zero; contradiction. O

To prove that the polynomials P, Ps, Py involved in Predicates 2,3,4 are irre-
ducible we apply Theorem 13 of Ref. [5] recursively to pairs of variables until we
derive irreducible polynomials of degree 2. To show that a polynomial of degree
2 is irreducible we apply Lemma A.1. Schematically, the recursive application of
Theorem 13 to a polynomial of degree k results in a binary tree of height k& — 2
where a node at level i corresponds to a polynomial of degree k — i + 1. The root
is the original polynomial of degree k and the leaves are irreducible polynomials of
degree 2. Each node, holding a polynomial p, has two children, each one obtained by
differentiating p with respect to a variable. Any two sibling nodes contain distinct
polynomials.

Lemma A.2 P, P;, and Py are irreducible over the rationals.

Proof. Let (Zm1,Ym1), (Tm2,Ym2) denote the endpoints of element e,,, m =i, j, k
orm = 1,2,...,6. We only give the details for Predicate 2. For the remaining
predicates we only give the sequence of pairs of variables used at each level of the
derivation.

Py =y, D(Ly, ej,ex) — Mi(Lt, ej,€x), I = {Tm1, Ym1s Tm2, Ym2, Yp, m = j, k}. Po
can also be written as P> = p;1y;j1 + pjio where pj1,pji0 do not contain y;;. pj1 =
(t(—zp1 +Tr2) —Tjo(—Th1 +Th2) —TroYrk1 + 52 (Yk1 —Yk2) + Tr1 Y2 + (— Tkt +Tr2)Yp)-
We can apply Theorem 13 of Ref. [5] to pair (yp,y;1). To show that D(L¢,e;,e)
is irreducible we apply Lemma A.1 for variables (z;1,y;j1)- pj1 is of degree 2 and
can be shown to be irreducible using Lemma A.1 for variables (zx1,Zr2). Thus, the
polynomial involved in Predicate 2 is irreducible.

P; = —D(e,-,ej,ek)mp + Ng(e,-,ej,ek). Pj3 can also be written as P3 = p;x;; +
pio (apply Theorem 13 of Ref. [5] to (zp,2i1)). We can show that D(e;,ej,ex) is
irreducible by applying Theorem 13 to (y;1,2k1) to derive two degree 2 irreducible
polynomials, p;1 = (—zj1 + 2j2)(—zkr1 + Tr2) + (—Zr1 + z2) (Y1 — yj2) — (—zj1 +
Hsz)(ykl — Yr2) and pp = —(—:Ej1 + m]‘z)(yﬂ —yi2) + (—za + miz)(yﬂ - yjz) -
(i1 — vi2)(yj1 — yj2)- We show that p;; is irreducible by applying Lemma A.1 to
(zk1,yr1). We show that pg is irreducible by applying Lemma A.1 to (z;1,¥:1). pi
is shown to be irreducible by applying Theorem 13 to (y1,y;1)-

P4 = Ng(el, €2, 63)D(€4, €5, 66) - N2 (64, €s, 66)D(61, €2, 63) and I = {.’L’ml, Ym1,
Tm2,Ym2,m = 1,2,...6}. We apply Theorem 13 to the following sequence of pairs
of variables: (z11,%12), (Z31,%32), (y51,Y52), (Te1,T62), and (y21,y22). Each pair is
applied to one level of the derivation tree, starting with (211, 12). In each branch we
end up with two distinct polynomials of degree 2 which are shown to be irreducible
by applying Lemma A.1. O

26



