
The Small Project Observatory - A Tool for Reverse
Engineering Software Ecosystems

Mircea Lungu, Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

ABSTRACT
Software evolution researchers have focused mostly on ana-
lyzing single software systems. However, often projects are
developed and co-exist within software ecosystems, i.e., the
larger contexts of companies, research groups or open-source
communities. We present The Small Project Observatory, a
web-based analysis platform for ecosystem reverse engineer-
ing through interactive visualization and exploration.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Ecosystems

Keywords
Software Evolution, Software Visualization, Software Ecosys-
tems, Mining Software Repositories

1. INTRODUCTION
Software engineering research has produced many success-

ful tools that support the analysis of the static structure of
software systems and their evolution, recorded in the asso-
ciated software repositories. These tools usually focus on
individual software systems, however, software systems do
not exist by themselves, isolated from other systems, but
rather they exist in larger contexts that we call software
ecosystems: groups of projects that are developed and co-
evolve in the same environment. The environment can be a
company, a research group, or an open source community.

Ecosystem analysis has the following goals:

• Understand the past: make sense of the software legacy
stored in the versioning systems of an ecosystem.

• Control the present: monitor the activity of the projects,
observe the evolution of quality metrics, discover code
duplication, etc.

• Shape the future: identify reusable components, ex-
tract baselines for product families, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10 Capetown, South Africa
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

We are mostly concerned with understanding the past,
and in particular we are interested in reverse engineering
software ecosystems, i.e., to recover high-level information
by analyzing the low-level facts that exist in the versioning
systems of the component projects [2]. To support our re-
search, we have developed The Small Project Observatory
(hereafter referred to as SPO).

SPO is a web-based analysis framework dedicated to sup-
porting ecosystem reverse engineering [3]. SPO is free and
open source software, written in Smalltalk, hence the name.
Figure 1 presents a screenshot of SPO running inside the
Opera browser. SPO provides multiple viewpoints on soft-
ware ecosystems supported by exploratory interaction and
navigation facilities.

Although there are other researchers that study collec-
tions of projects, to our knowledge we are the first to propose
a tool for analyzing and understanding software ecosystems.

2. ECOSYSTEM VIEWPOINTS
SPO offers a large number of ecosystem viewpoints, visual

perspectives that capture different aspects of the ecosystem
structure and evolution [2]. The viewpoints are generated
based on the information extracted from the software repos-
itories of the projects that make up the ecosystem. There
are two main aspects of an ecosystem that can be extracted
by analyzing the low-level facts in the software repositories:

1. Project-Centric aspects regard the projects that make
up the ecosystem, their properties, their relationships,
and their evolution.

2. Developer-Centric aspects regard the activity, collab-
oration, and interdependencies of the developers that
contribute to the ecosystem.

For each of these aspects the ecosystem can play one of
two roles in the analysis:

1. The Focus. The goal is to understand the ecosystem
from a holistic point of view. This type of analysis
starts from the premise that the problems that are
associated with an ecosystem are different from the
ones associated with individual systems.

2. The Context. The goal is to understand the individual
elements, i.e., projects, of the ecosystem. This type of
analysis starts from the premise that one can better
understand an element if he studies it in its context.

We illustrate four types of viewpoints with examples taken
from three case studies (presented in more detail in [2]).

2. Available
Perspectives

4. View
Configuration

3. Active Filters

5. Detail
Perspective

1.Interactive
View

Figure 1: Screenshot of The Small Project Observatory running in the Chromium browser

2.1 Project-Centric - Ecosystem as Focus

Supporting a holistic understanding of the ecosystem in terms
of its projects.

There are multiple questions that regard the ecosystem as
a whole: How did the activity on these projects progress over
time? How did the size of the code in the projects evolve
over time? How do projects reuse code in the ecosystem?
Are there projects that depend on others? SPO provides
various analyses and visualizations that answer these ques-
tions. In this section we focus on the Project Dependency
Map, a viewpoint which presents the static dependency re-
lationships between the projects in an ecosystem.

Visualizing the inter-project relationships highlights the
critical projects in an organization because it pinpoints the
projects that all the others depend on. As a result, it is
mainly a tool for the project manager. However, visualizing
the dependencies between projects is also useful for a devel-
oper who is trying to understand the way his code fits into
the big picture or a developer who is new to the ecosystem.

Figure 2 presents the Project Dependency Map of a subset
of the projects in the SCG ecosystem. The nodes represent
projects, and their size is proportional to the project size as
measured in number of classes. The intensity of a node is
proportional to the amount of commits performed to that
project. The dependencies between projects imply a static
dependency which is either subclassing or method invoca-
tion. The figure shows the largest, most active, and one of
the most used projects in the ecosystem at the center of the

Figure 2: The dependencies between a subset of the
projects in the SCG Bern Ecosystem

graph. The name of the project is Moose and it represents a
framework for reverse engineering [7], on top of which many
other tools have been built.

SPO allows for zooming into the details of the individual
projects. By selecting a node in the Project Dependency
Map a user can zoom in to views that present details of the
corresponding project.

2.2 Project-Centric - Ecosystem as Context

Understanding the individual projects in the context of the
ecosystem.

One set of questions that are not answered by the holistic
ecosystem viewpoints are the ones that regard the role of a
given project in the ecosystem. Why are there dependencies
to a given project from the others in the ecosystem? Which
parts of the project are used by the other projects in the
ecosystem?

In SPO, the user can answer this type of questions, and
similar ones, by diving into the details of an individual project.

Figure 3 presents a visual representation of the architec-
ture of Moose (the large, dark project from Figure 2) in the
context of the ecosystem.

Figure 3: The interaction of the Moose project with
the ecosystem (classes with called methods are red,
classes that others inherit from are violet)

The modules are represented as nodes in the graph. The
area of the node is proportional to the size of the corre-
sponding module. Inside the modules the contained classes
and sub-modules are represented as boxes with areas that
are proportional to their respective sizes. The dependencies
between modules are represented as the edges in the graph.
The width of an edge is proportional to the strength of the
dependency. The classes that contain methods invoked by
other classes in the ecosystem are highlighted with red. The
classes that are subclassed by other classes in the ecosystem
are highlighted with blue. The classes that are both invoked
and subclassed are highlighted in violet.

Analyzing a project in the broader context of the ecosys-
tem can provide useful information that otherwise would not
be available. Zooming in to the details of the Moose project
that we have encountered earlier allows us to discover the
reason for the dependency between the other projects in the
ecosystem and it.

2.3 Developer-Centric - Ecosystem as Focus

Supporting a holistic understanding of the ecosystem based
on the collaboration structure of its developers.

One of the most interesting and in the same time least
explicit aspects of an ecosystem is the social structure that
emerges as a result of the collaboration between the contrib-
utors to the ecosystem.

SPO provides the Developer Collaboration Map, a view-
point, intended mainly for managers, which shows how de-
velopers collaborate with each other within an ecosystem.
We consider that two developers collaborate on a project
if they both make modifications to the project for number
of times greater than a given threshold. Based on this def-
inition of collaboration we construct a collaboration graph
in which the nodes are developers and the edges represent
collaboration relations on specific projects.

Figure 4 presents the visual representation of the collab-
oration graph in the Soops case study. For more details we
refer the reader to [4].

Figure 4: The collaboration structure in the Soops
case study shows an ecosystem in which everybody
collaborates with everybody on multiple projects

The visual conventions are the following:

• The nodes in the graph are developers; the color in-
tensity of each node is proportional to the amount of
commits the corresponding developer has performed to
the ecosystem.

• The edges represent collaboration relationships; each
edge is color coded to represent the collaboration on a
given project.

The figure presents an ecosystem where, with the excep-
tion of four contributors (i.e. Marco, aknight, chronos, Pack-
ageBot), the developers are tightly connected in the collab-
oration graph.

SPO allows navigating to detailed views of a given devel-
oper by selecting a node in the graph and to the details of
a given project by selecting an edge in the graph.

Figure 5: The vocabulary of a developer from one of our case studies

2.4 Developer-Centric - Ecosystem as Context

Understanding each individual developer’s contribution to
the ecosystem.

Understanding developers in the context of the ecosystem
means understanding the type and importance of each de-
veloper’s contributions. One aspect of this is understanding
the expertise of the individual developers.

Each contributor to the ecosystem has a certain type of
expertise based on the domain knowledge that he has. When
a large number of developers contribute to the projects in
the ecosystem it is easy to lose track of each individual
developer’s level of expertise. This is especially the case
in large open-source ecosystems (e.g., RubyForge, Squeak-
Source, etc.).

SPO can automatically recover the domain of expertise of
the individual developers by extracting all the pieces of code
to which each developer contributed during his activity in
the ecosystem and analyzing the natural language terms that
the developer used for the various identifiers. The details of
the approach are presented elsewhere [6, 5].

Figure 5 presents the developer expertise tag cloud for one
of the developers (Malnati) in our Reveal case study.

One observation that resulted from our work on developer
expertise was that many of the terms that appear frequently
in the vocabulary of a developer occur in the vocabular-
ies of all the developers in the ecosystem (e.g., controller).
By enriching the analysis with information about the en-
tire ecosystem, such terms can be filtered out from the vo-
cabulary of each developer, offering a crisper image of each
developer’s domain of expertise.

In SPO, the tag cloud is interactive in the sense that se-
lecting a term allows for searching for other developers that
have that term in their vocabulary.

3. TOOL INFORMATION
SPO is the first application that supports ecosystem anal-

ysis and visualization for reverse engineering. It is a free and
open source web application1 written in Smalltalk. SPO re-
ceived the annual Technology Innovation Award at the 15th
International Smalltalk Conference. SPO was used both in
academia and industry to analyze software ecosystems.

1We summarized our experiences in writing web-based
visualization-intensive reverse engineering tools in [1].

We have evaluated the usability of the tool with gradu-
ate students at the University of Lugano and we discovered
that they were in general satisfied with the tool, but wanted
more responsiveness and more flexibility. We reported more
on the usability study elsewhere [3] and we are still improv-
ing the tool. In the future, we plan to deploy the tool in
industrial contexts to be able to receive feedback on its use-
fulness.

A deployment of SPO is accessible at http://inf.unisi.
ch/. It includes three ecosystem case studies that can be
freely analyzed as well as other documentation and installa-
tion instructions.

Acknowledgments: We gratefully acknowledge the fi-

nancial support of the Swiss National Science foundation for the

project “DiCoSA” (SNF Project No. 118063).

4. REFERENCES
[1] M. D’Ambros, M. Lungu, M. Lanza, and R. Robbes.

Promises and perils of porting software visualization
tools to the web. In Proceedings of WSE 2009 (11th
IEEE International Symposium on Web Systems
Evolution), pages 109–118. IEEE CS Press, 2009.

[2] M. Lungu. Reverse Engineering Software Ecosystems.
PhD thesis, University of Lugano, Switzerland, Oct.
2009.

[3] M. Lungu, T. Gı̂rba, and M. Lanza. The small project
observatory: Visualizing software ecosystems. EST
special issue of the Science of Computer Programming.
DOI:10.1016/j.scico.2009.09.004, 2009.

[4] M. Lungu, M. Lanza, T. Gı̂rba, and R. Heeck. Reverse
engineering super-repositories. In Proceedings of WCRE
2007 (14th IEEE Working Conference on Reverse
Engineering), pages 120–129. IEEE CS Press, 2007.

[5] M. Lungu, J. Malnati, and M. Lanza. Visualizing
gnome with the small project observatory. In
Proceedings of MSR 2009 (6th IEEE Working
Conference on Mining Software Repositories), pages
103–106. IEEE CS Press, 2009.

[6] J. Malnati. Developer-centric analysis of svn
ecosystems. Master’s thesis, University of Lugano, June
2009.

[7] O. Nierstrasz, S. Ducasse, and T. Girba. The story of
moose: an agile reengineering environment. SIGSOFT
Softw. Eng. Notes, 30(5):1–10, 2005.

http://inf.unisi.ch/
http://inf.unisi.ch/

	Introduction
	Ecosystem Viewpoints
	Project-Centric - Ecosystem as Focus
	Project-Centric - Ecosystem as Context
	Developer-Centric - Ecosystem as Focus
	Developer-Centric - Ecosystem as Context

	Tool Information
	References

