Pattern-Based Mining of Opinions in Q&A Websites

Bin Lin*, Fiorella Zampetti’, Gabriele Bavota*

, Massimiliano Di Pentaf, and Michele Lanza*

*Software Institute, Universita della Svizzera italiana (USI), Switzerland — TUniversity of Sannio, Italy

Abstract—Informal documentation contained in resources such
as Q&A websites (e.g., Stack Overflow) is a precious resource
for developers, who can find there examples on how to use
certain APIs, as well as opinions about pros and cons of such
APIs. Automatically identifying and classifying such opinions
can alleviate developers’ burden in performing manual searches,
and can be used to recommend APIs that are good from some
points of view (e.g., performance), or highlight those less ideal
from other perspectives (e.g., compatibility). We propose POME
(Pattern-based Opinion MinEr), an approach that leverages
natural language parsing and pattern-matching to classify Stack
Overflow sentences referring to APIs according to seven aspects
(e.g., performance, usability), and to determine their polarity
(positive vs negative). The patterns have been inferred by man-
ually analyzing 4,346 sentences from Stack Overflow linked to
a total of 30 APIs. We evaluated POME by (i) comparing the
pattern-matching approach with machine learners leveraging the
patterns themselves as well as n-grams extracted from Stack
Overflow posts; (ii) assessing the ability of POME to detect the
polarity of sentences, as compared to sentiment-analysis tools;
(iii) comparing POME with the state-of-the-art Stack Overflow
opinion mining approach, Opiner, through a study involving 24
human evaluators. Our study shows that POME exhibits a higher
precision than a state-of-the-art technique (Opiner), in terms of
both opinion aspect identification and polarity assessment.

I. INTRODUCTION

Online discussions among software developers through
various communication channels — e.g., mailing lists, issue
trackers, and above all Question & Answer (Q&A) forums such
as Stack Overflow— are playing a major and increasing role
in software development. Such sources bring various pieces of
information, including examples of how to use programming
language constructs, APIs or frameworks, and discussions about
design choices or algorithmic solutions to certain development
problems. To cope with the limited search capabilities of Q&A
forums and other forges, and to alleviate developers’ burden
of manually searching for relevant information, researchers
have proposed a wide variety of recommender systems. Such
recommending systems can for example link Stack Overflow
discussions to code snippets [31], produce documentation [46],
enhance existing documentation by mining Stack Overflow
discussions [38], or identify insights about APIs [42].

Naturally, developers’ discussions contain opinions, e.g.,
whether a certain API is suitable for solving a given problem,
or what the pros and cons of a given framework are. For
example, some developers might recommend an API for its
rich functionality, while others may warn about its performance.
Recommenders could therefore exploit such opinions — i.e.,
perform opinion mining — and suggest APIs that best satisfy
the developers’ needs, which can be better functionality, better
performance, increased compatibility, ease of use, etc.

In Natural Language Processing (NLP), opinion mining
has been used in various contexts (e.g., e-commerce, movie
streaming [35]) to analyze users’ moods and feelings about a
given product, expressed in a review written in natural language.

Sentiment analysis [26] is a frequently used opinion mining
technique. Its goal is to identify affective states and subjective
opinions reported in sentences. In its basic usage scenario,
sentiment analysis is used to classify customers’ written
opinions as negative, neutral, or positive. Sentiment analysis
has been used in software engineering for various purposes,
such as assessing the polarity of apps’ reviews [12], [14], [27],
developers’ distress or happiness [25], [34], [41], or identifying
negative opinions about APIs [47].

Recent work has shown that out-of-the-box sentiment
analysis tools are particularly unreliable (and very often in dis-
agreement) when applied to software engineering corpora [20].
Even customized tools (e.g., SentiStrength — SE), or re-
trained tools [23] produced results inadequate in practice for
tasks such as API opinion mining. A recent work by Uddin
and Khomh [45] dealt with API opinion mining by relying on
a keyword-matching approach with a customized Sentiment
Orientation algorithm [17].

Stemming from the positive and negative results highlighted
in previous attempt to automatically mine API opinions and
from the seminal work by Uddin and Khomh [45] in this field,
we propose a novel approach named POME which leverages
linguistic patterns contained in Stack Overflow sentences
referring to APIs, and classify whether (i) a sentence refers to
a particular API aspect (functional, documentation, community,
compatibility, performance, reliability, or usability), and (ii) it
has a positive or negative polarity. The main idea behind POME
is to identify whether an API-relevant sentence from Stack
Overflow discussions matches any of the 157 manually defined
patterns. Each pattern consists of a natural language parse tree
where each leaf can either be a generic part-of-speech (e.g., a
noun) or, in some cases, a specific part-of-speech (taken from
a thesaurus we have built), characterizing an aspect positively
or negatively. We have evaluated our approach along three
dimensions:

1) We assess the precision and recall of POME in identifying
API-related opinions in Stack Overflow on a manually
labeled dataset of 1,662 sentences. We compare different
variants of POME based on simple pattern matching as
well as on machine learning algorithms, finding that its
best configuration achieves a precision ranging between
0.61 and 1.00 and a recall ranging between 0.13 and 0.44,
depending on the quality aspect subject of the opinion.

2) We compare the performance of the opinion polarity as-
sessment when using pattern matching with six sentiment
analysis tools, finding that the defined 157 patterns help
in achieving higher values of precision/recall both for
positive (0.92 precision and 0.99 recall) and for negative
(0.94 precision and 0.73 recall) opinions.

3) We conducted a survey with 24 CS students and profes-
sional developers to collect their assessment about the
precision of the opinions mined by POME and by the
state-of-the-art opinion mining tool Opiner [45] for four
popular APIs. The achieved results show that, for most
of the quality aspect categories (e.g., usability), POME is
able to mine opinions with a higher precision than Opiner.

4) We release POME’s source code, the Web app used to
label patterns, and the list of patterns we manually defined
and all the data used in our evaluations in a replication
package [22].

II. RELATED WORK

We detail related work concerning (i) recommendation of
documentation, and (ii) applications of sentiment analysis and
opinion mining for software engineering problems.

A. Recommendation of (formal and informal) documentation

Treude and Robillard [42] proposed an approach to identify
API (library) insights in Stack Overflow. We detail this
work in Section III since POME uses a (slightly modified)
reimplementation of this approach for tracing Stack Overflow
sentences onto APIs. However, POME also provides positive
or negative opinions about a specific aspect of the library.

Wong et al. [46] proposed AUTOCOMMENT to mine com-
ments from Stack Overflow and automatically describe source
code similar to snippets discussed on Stack Overflow. Differ-
ently from AUTOCOMMENT, we focus on mining opinions
about APIs rather than code snippet descriptions. Chatri and
Robillard [32] developed an approach for identifying relevant
portions of documentation to support developers seeking
information. Other work ([11], [21], [33], [37]) focused on
suggesting relevant documents, discussions and code samples
from the Web to fill the gap between the IDE and the Web
browser. Subramanian et al. [38] proposed BAKER to enhance
API documentation by linking to it relevant code examples.
Among the various resources available on the Web, Q&A
Websites — and in particular Stack Overflow— have been the
basis of many recommender systems [8], [29], [30], [39]. Our
approach is an add-on to these recommenders, as it could be
used to tag APIs in recommended snippets with quality badges
mined from developers’ opinions.

B. Sentiment analysis/opinion tools and their application to
software engineering problems

Sentiment analysis has been used in various areas of SE,
for example to analyze the sentiment of commit comments in
GitHub [14], the correlation between the sentiment in 560k
JIRA comments and the time to fix a JIRA issue [25], or how

the sentiment of developers is affected by the result of a build
process in continuous integration [36].

Besides the analysis of developers’ behaviors, sentiment
analysis has been used to analyze users (or developers)
opinions about software applications. Specifically, Guzman
et al. used sentiment analysis to classify tweets related to
software projects [13]. Several authors have used sentiment
analysis to support the evolution of mobile applications [6],
[12], [15], [27], by prioritizing user reviews based on the
expressed sentiment.

The most adopted sentiment analysis tool in SE is SEN-
TISTRENGTH [40], which is based on a sentiment word strength
list plus some heuristics including spell checking and negation
handling. Its word lists are based on comments taken from
myspace.com/, making it unsuitable for SE applications.

NLTK [18] is a lexicon and rule-based sentiment analysis
tool leveraging VADER (Valence Aware Dictionary and
sEntiment Reasoner), which is tuned to social media text (espe-
cially micro-blogging). Differently, STANFORD CORENLP [35]
leverages a Recursive Neural Network (RNN) and is able to
compute the sentiment of a sentence based on how words
compose the meaning of the sentence, and not by summing
up the sentiment of individual words. However, STANFORD
CORENLP was trained on movie reviews, a non-SE domain.

Since most existing sentiment analysis tools were not con-
ceived to be applied on SE artifacts, researchers posed questions
on their applicability in this domain. Tourani et al. [41] found
that SENTISTRENGTH achieves a very low precision when
analyzing mailing lists. Novielli et al. [24] also highlighted
the challenges of employing sentiment analysis techniques to
assess the affective load of text containing technical lexicon.
Jongeling et al. [20] conducted a comparison of four widely
used sentiment analysis tools and found none of them can
provide accurate predictions in the SE domain.

To overcome limitations of existing tools, Islam and Zi-
bran [19] developed SENTISTRENGTH-SE, which includes
word lists and heuristics specific for SE documents. Calefato
et al. proposed EMOTXT [5] to recognize specific emotions in
SE datasets, such as Stack Overflow and JIRA. Also, Calefato
et al. developed SENTI4SD [4], a sentiment analysis tool
trained on Stack Overflow and leveraging lexicon and keyword-
based features as well as word embedding.

de la Mora and Nadi [9] proposed the use of metric-based
comparison to support developers in selecting the library to use.
Our work aims at mining API opinions from Stack Overflow,
thus being complementary to the quantitative metrics used in
[9].

The closest work to ours is Opiner by Uddin and Khomh [45],
able to detect the polarity of sentences related to APIs by
customizing the Sentiment Orientation algorithm [17]. The
algorithm was originally developed to mine customers’ opinions
on computer products. Uddin and Khomh customized the
tool with words specific to API reviews. Opiner classifies the
mined opinions into “aspects” by exploiting machine learning
classifiers using the frequencies of single words and n-grams
appearing in the sentences as predictor variables.

Developer Frong—end

1M

polarity
analyzer

fine-grained
linker

aspect
classifier

database

Fig. 1. The POME architecture.

We took inspiration from this work. Indeed, the goal of
POME is the same of Opiner. We aim at automatically mine
opinions about APIs in Stack Overflow discussions and classify
them based on their aspect and sentiment polarity. However,
we show that a simpler pattern-based approach can provide a
substantial step ahead in the accuracy of the opinions mined
from Stack Overflow. We also show that pattern matching is
more precise than sentiment analysis tools for identifying the
polarity of opinionated sentences.

III. POME

Fig. 1 depicts POME’s architecture. The dashed arrows
represent dependencies while full arrows indicate flows of
information pushed from one component to another. Arrows
depicted in red indicate operations performed at the beginning
and then refreshed periodically with the goal of storing
crowdsourced opinions about APIs; the black arrows represent
actions triggered by a POME user from the front-end.

The API miner extracts all available Java APIs from the
Maven central repository [1] (@ in Fig. 1). We select for each
API its: (i) name, (ii) description, (iii) link to the jar of the
latest version, and (iv) release date of the jar. We collected
this information for a total of 116,318 APIs, between May and
June 2017, storing it in our database @

The fine-grained linker mines Stack Overflow discussions
to establish links between the APIs stored in the database (4)
and relevant sentences in Stack Overflow discussions (3). For
example, the sentence “Apache commons-io is the straightfor-
ward solution to programmatically copy files” is linked to the
commons — io library by using an approach built on top of
the one proposed by Treude and Robillard [42].

Knowing the sentences related to an API, the aspect classifier
categorizes the semantic content of each sentence in one of
the eight aspects described in Table III (6), and adds this
information to the database (7). The sentences not classified
as “none” (i.e., those discussing quality aspects relevant to
mined opinions about APIs) are then analyzed by the polarity
analyzer , that identifies the sentiment they express and
consequently their polarity, i.e., positive or negative (we ignore
sentences having a neutral sentiment since they are not of
interest when mining opinions), and stores this information in
the database @

To use POME, a developer interested in accessing opinions
about an API can submit a textual query through the Web-

based front-end . She can search for a specific API or, if
she does not know which API to use, the query can be used to
describe the task she wants to perform (e.g., reading JSON files
in Java). This information is provided to a Web service
to identify the most relevant APIs for the given query and
provide as output the opinions mined for them.

In the following, we detail the main POME components.
The API miner is not described since it is a simple Python
Web scraper to mine the Maven central repository.

A. Fine-grained Linker

This component retrieves sentences from Stack Overflow
posts related to a given APIL. Given an API (e.g., GoogleGson),
we use the information collected by the API miner to download
its jar. Using Java Reflection we extract the complete list of
its classes and methods and link sentences in Stack Overflow
discussions to APIs, using a reimplementation of the linker
by Treude and Robillard [42]. There are two differences
between our approach and the one by Treude and Robillard
[42]. First, while they use the Stack Overflow API to retrieve
the Stack Overflow discussions, we rely on the December
2017 official Stack Overflow data dump to avoid issues
related to usage limitations of the APIL. Second, they use
the first three regular expressions reported in Table I to
identify sentences including (i) the fully-qualified API type
(e.g., com.google.code.gson); (ii) the non-qualified API type
(e.g., Gson); and (iii) the link to the official API documentation
(e.g., https://sites.google.com/site/gson/gson-user-guide). In our
approach, we also retrieve Stack Overflow sentences matching
the fourth regular expression shown in Table I. We decided
to include this fourth regular expression since we observed
that many sentences on Stack Overflow discuss issues related
to APIs by referring to specific APIs rather than to the API
type (i.e., name) or to its documentation. While this additional
regular expression might introduce false positives, matching
both the class name and the method name mitigates this risk.
We discuss the precision of this additional regular expression
in Section VI

We use the fine-grained linker to identify all relevant
sentences for a given API only from Stack Overflow answers
(i.e., we do not consider questions), because opinions are
unlikely to reside in the questions, where users mostly ask for
help. Also, we discard sentences belonging to questions posted
before the release date of the library jar under analysis, to
reduce the risk of mining opinions referring to old releases of
the library. The sentences identified by the fine-grained linker,
along with the link to the respective API, are stored in the
POME’s database for all previously mined APIs.

B. Aspect Classifier

The aspect classifier analyzes the stored sentences to identify
the quality aspect(s) discussed in them. In the following, we
discuss different ways to perform this task, while in Section IV
we explain how we identified the best solution.

TABLE I
REGULAR EXPRESSIONS FOR EXTRACTING API-RELATED SENTENCES IN STACK OVERFLOW ANSWERS.

Regular expression

Description Is case sensitive?

(?7%). * \bPackageName\ .TypeName\b.* [42]
cx (] Tazl+ |[\17] |[\(<])TypeName) ([> \)\., !79] |[a-z]+).* [42]

s < a.xhref.xPackageName / TypeName\ .html.x > x < [a > .x [42]

. * ClassName\ .MethodName[\(| |

Fully-qualified API type

Non-qualified API type v
Link to the API official documentation v
Reference to a method of a specific class v

TABLE II
DATASET USED FOR PATTERNS’ DEFINITION AND TRAINING OF THE
MACHINE LEARNING ALGORITHMS.

tences # tences
Category linked validated URL
Bytecode APIs 2,645 999 goo.gl/rzoqc7
Embedded SQL DB 622 622 goo.gl/kknzvD
HTTP Clients 1,714 999 goo.gl/b8vgQN
JSON APIs 4,764 999 goo.gl/9cas1C
Reflection APIs 481 481 £00.g1/6935xc
SSH APIs 246 246 goo.gl/2ih4h6
Overall 10,481 4,346

1) Pattern matching: The conjecture is that users providing
opinions about APIs on Stack Overflow tend to use repetitive
discourse patterns that can be encoded to capture both the
quality aspect(s) and the sentiment of the opinion (thus, pattern
matching can be used in the context of the polarity analyzer).
To identify the patterns, we manually analyzed 4,346 Stack
Overflow sentences identified by the fine-grained linker as
related to APIs belonging to the six categories of popular APIs
(provided by Maven central) reported in Table II.

Table II reports the name of the category, the number of API-
related sentences extracted from Stack Overflow discussions,
the number of sentences we manually analyzed, and the link
to Maven central listing the APIs belonging to the specific cat-
egory. From each category, we only extracted sentences related
to the five most used APIs listed on https://mvnrepository.com/.
For categories having more than 1,000 linked sentences, we
manually analyzed only a randomly selected subset to avoid
bias in the definition of the patterns (i.e., extract patterns that
are very specific to one predominant API category in our
dataset).

The 4,346 sentences have been manually analyzed by four
of the authors (from now on evaluators) to categorize each one
as expressing or not an opinion about the linked API. Each
sentence was randomly assigned to two of the four evaluators,
resulting in ~2,180 sentences per evaluator. In case a sentence
did not report any opinion, we assigned the “none” label. If an
opinion was identified, the evaluator firstly selected the part
of the sentence reporting the opinion. Then, she classified the
selected part of the sentence in terms of the quality aspect(s)
the opinion refers to (e.g., compatibility). No predefined list of
quality aspects was provided. However, every time the evaluator
had to analyze a sentence, the Web application showed the list
of quality aspects created so far, allowing the evaluator to select
one of the already defined aspects. In a context like the one
encountered in this work, where the number of possible quality
aspects might be large, such a choice helps using consistent
naming without introducing a substantial bias. Table III presents

the list of aspects obtained during the labeling process.

The evaluator also assigned a negative or positive sentiment
to the reported opinion (this information is used in the
context of the polarity analyzer) and, finally, she identified in
the selected part of the sentence the Parts-of-Speech (POS)
referring to the linked API and the quality aspect(s), i.e., noun,
adjective, etc. To better understand the process, let us discuss an
example of manual analysis. Consider the sentence: “Based on
my personal experience, Gson is the fastest library out there”.
First, the evaluator selects the part reporting the opinion, in
this case: “Gson is the fastest library”. Then, she assigns
the performance quality aspect and a positive sentiment to
it. Finally, she marks “Gson” as a proper noun referring to
the library, and “fastest” as an adjective related to the quality
aspect assigned to the opinion (i.e., performance).

Once each sentence was manually analyzed by any two of the
evaluators, we solved all conflicts by adding a third evaluator
not previously involved in the analysis of that sentence. A
conflict could be related to (i) the part of the sentence selected
as opinion, (ii) the sentiment assigned to the opinion, and (iii)
the quality aspect(s) identified.

The output includes 388 sentences classified as reporting an
opinion and referring to seven different quality aspects (and
3,958 discarded as not discussing quality aspects). Table III
reports the number of positive and negative opinions identified
for each of them. About 9% of the linked sentences (388/4,346)
explicitly report negative or positive opinions related to one of
the quality aspects. While the percentage might look low, if we
consider the number of posts on Stack Overflow (~50M at the
date of the writing), the amount of opinions is still impressive.

The 388 API-related sentences manually annotated have
been exploited to identify recurrent patterns used in Stack
Overflow discussions for expressing opinions about APIs. With
“patterns” we refer to lexical rules that capture the syntax and
semantic of the opinionated sentences. One of the evaluators
conducted a pilot study using API-related sentences including
opinions about performance. Since we wanted to define patterns
considering both the syntax and the semantic of the API-related
sentences, the evaluator working on the patterns’ extraction not
only had the quality aspect and the sentiment assigned to each
sentence as information, but also the parts of speech related to
each token (i.e., noun, verb, adjective, adverb etc.) as well as
their syntactic dependencies.

To reduce the number of patterns belonging to the same
quality aspect, the evaluator could also create a bag of
words related to verbs, adjectives and adverbs and use them
for defining patterns. A positive pattern belonging to the
performance category is shown in the following.

TABLE III
ASPECTS USED BY THE ASPECT CLASSIFIER AND SENTENCES IDENTIFIED FOR EACH OF THEM DURING MANUAL ANALYSIS.

. # Opinions
Quality Aspect The sentence talks about... Negative Positive
Community The activities of the community maintaining the API (e.g., is the API actively maintained?) 2 8
Compatibility The compatibility of the API with respect to specific platforms, programming languages, or other APIs 21 10
Documentation The content/quality of the API documentation 3 29
Functional The features offered/not offered by the API 13 153
Performance The performance of the API (e.g., speed, memory footprint) 12 26
Reliability The reliability of the API (e.g., whether it is buggy or not) 18 10
Usability The usability of the API, in terms of how easy is to use/adapt it and evolve/maintain the code using it 9 74
None None of the above-listed aspects 3,958

Quality Aspect & Sentiment: Performance | Positive

Rule: [Verb_To_Be] [Pos_Adjective_Performance]

Dependency requirement: [Verb_To_Be] should be the first parent node of
[Pos_Adjective_Performance] with a POS tag of verb.

Example: Gson [is] the [fastest] library out there.

Parsed syntactic dependencies:

det
m amod m
Gson is the fastest library out there
PROPN VERB DET ADJ NOUN ADV ADV

The Pos_Adjective_Performance includes positive adjectives
linkable to performance, such as fastest, performant, etc.

Once the pilot study was completed, the evaluator trained
other three evaluators in a 30-minute session that involved
discussing the results and some ambiguous sentences. The
API-related sentences belonging to the other six quality aspects
were randomly distributed among the four evaluators. For each
quality aspect, all the API-related sentences were coded by the
same evaluator. The same API-related sentence can fall into
more than one quality aspect. For this reason, it is possible
to infer more than one pattern from the same sentence. At
the end of the patterns’ extraction, all the evaluators created
a catalog of inferred patterns to merge similar patterns into a
more general pattern. Each decision taken at this stage was
representative of the opinion of all evaluators.

In the end, we obtained a list of 157 patterns, each one
representative of a specific quality aspect expressing a specific
sentiment. Given a sentence S as input, the aspect classifier can
then be used to check whether S matches one of the defined
patterns. To do this, the aspect classifier uses the spaCy [2]
NLP library to build a dependency tree of S. The tree reports
(i) the POS in .S, and (ii) the dependency relations between the
tokens composing S. This allows to (i) easily verify whether .S
matches a given pattern, and (ii) identify negated terms, needed
to correctly assess the sentiment polarity of the matched pattern
(e.g., if a positive pattern for performance is matched but a
positive performance adjective is negated, then the sentiment
polarity is inverted to negative).

2) Machine learning: Another possibility to implement the
aspect classifier is to use a machine learning algorithm trained
on a set of manually labeled sentences.

We exploit previously labeled sentences (Table II) to train
machine learners to classify a given sentence into eight

categories: the seven quality aspects we consider plus “none”.
Specifically, we used all the sentences with opinions and
randomly selected same amount of sentences without opinions
for training to avoid bias. We used the Scikit-learn [28]
Python library to experiment with 10 different machine learners.
As predictor variables, we used the terms contained in the
sentences. For preprocessing we remove stop words and
punctuations, and performed word stemming. We considered
each term as a predictor variable. Besides analyzing the single
words contained in each sentence, we extract the set of n-grams
composing it, considering n € [2...3].

We consider as features for the machine learner the pres-
ence/absence of the 157 patterns, i.e., whether a sentence
matches each of the patterns we previously defined. There
is a key difference between the pattern matching approach
and employing patterns as a feature of a machine learner.
In the first case, patterns are used as rules, and therefore
sentences matching a given pattern are automatically classified
into an aspect and sentiment polarity. In the second case, the
presence of a pattern, may (or may not) contribute towards
a classification along with other features. We experimented
each machine learner with seven different combinations of
features: (i) BOW-only (Bag Of Words), only considering
single terms, (ii) n-grams-only, (iii) patterns-only, (iv) BOW+n-
grams, (v) BOW+patterns, (vi) n-grams+patterns, and (vii)
BOW-+n-grams-+patterns.

A possible problem is that some categories are rarer
than others. A machine learning algorithm tends to assign
sentences to more frequent categories, because an error in
under-represented categories is more acceptable than an error
in other categories to achieve a better overall accuracy. To
prevent this, we re-balanced our training set using SMOTE [7],
an oversampling method which creates synthetic samples from
the minor class. We experimented each algorithm both with
and without SMOTE.

C. Polarity Analyzer

The polarity analyzer analyzes the sentences classified as
relevant by the aspect classifier to identify the sentiment
polarity of the opinions. We investigated two different options
for the implementation of the polarity analyzer, and we evaluate
their performance to pick the best one (see Section IV).

1) Pattern matching: The set of 157 patterns we extracted
for the aspect classifier can be used also to assess the sentiment
polarity of the opinions.

PODME

@®
Gson @
GroupID com.google.code.gson
Atifact D gson
Atfact JARfie
License Apache 2.0
Description Gson s a Java ibrary that can be used to convert Java Objects into their JSON representation. It can also be used to convert @ JSON string to an equivalent Java
abject. Gson can work with arbitrary Java oblects including that you do not
Aspect Sentiment @ Related APIs @
B posive 5 Negat ve B Poste 8 Negat v
nnnnnnnnnn e ———
communty)
o 5% 0% %
Opinions
Positive Negative @

> realy, i ci sanc eval of all three, and it wen 1. org json, ackson, and gson, with
gson being ~10x

> Although | don't want to say that parsing twith gson will be aster in terms of CPU time, it
willdefiiently be faster in terms of dvelopment fime.

Fig. 2. Information and opinions about the “Gson” API presented by POME.

Indeed, each pattern is related to an aspect and to a sentiment
polarity. Thus, the first possibility is to use pattern matching
to identify the sentiment of opinions.

2) Sentiment Analysis Tools: A second possibility to deter-
mine a sentence’s sentiment polarity is to exploit one of the
many sentiment analysis tools existing in the literature. We
experimented with six of them with their default settings: SEN-
TISTRENGTH [40], SENTISTRENGTH-SE [19], NLTK [18],
SENTICR [3], SENTI4SD [4], and STANFORD CORENLP [35].

D. POME in Action

We implemented POME as an online application. POME
implements a Java API search engine. A developer who needs
to parse JSON files without prior knowledge of any relevant
API, can search with a query “parse JSON”. POME uses
Information Retrieval (IR) techniques to list the APIs in the
database having a textual description relevant for the query.
The developer can select an API, for example “Gson”, to assess
what the users’ opinions about this API are.

POME will then present relevant information about “Gson”
as shown in Fig. 2, and including:

1) Basic information. The API group ID, artifact ID, link
to the jar file, license, and description (2).

2) Opinions on the API classified by aspect. POME
analyzes the polarity of the mined opinions and presents
the results with a bar chart @, where the green and orange
depict the percentages of positive and negative opinions,
respectively. Each bar in the chart stands for one aspect,
while the top bar summarizes the overall polarity of all
opinions, that are listed in the table below (5). By clicking
a bar in the chart, POME only shows in the table opinions
related to the aspect of interest.

3) Opinions on related APIs. POME also presents a bar
chart (4) summarizing opinions of related APIs, i.e.,
same/similar functionality, identified as the ones having a
high textual similarity in terms of description or belonging

TABLE IV
DATASET USED TO ANSWER RQ; & RQo2.

Category # APIs # sentences URL

Configuration APIs 20 67 goo.gl/gnQr51

Mocking 37 199 g00.gl/6iTVeQ

Validation Frameworks 40 171 goo.gl/sQ15rp

XML Processing 34 468 goo.gl/TwPtgD

JDBC Pools 5 757 goo.gl/yDuWql

Overall 136 1,662 -

TABLE V
DATASET USED TO ANSWER RQj3

Aspect POME opinions Opiner opinions

P #pos #neg #Hsum #pos #mneg #sum
community 1 0 1 2 0 2
compatibility 6 5 11 3 0 3
documentation 16 0 16 9 4 13
functional 123 10 133 19 13 32
performance 11 8 19 5 2 7
reliability 3 4 7 2 22 24
usability 16 2 18 92 35 127
total 176 29 205 132 76 208

to same categories in Maven. Each bar stands for one
API, and bars are ordered by decreasing ratio of positive
opinions. Users can open the information pages of related
APIs by clicking the bars.

IV. STUDY DESIGN

The goal of this study is to evaluate the accuracy of POME
in mining opinions from Stack Overflow discussions and
classifying these opinions according to the quality aspects
they refer to (e.g., performance, usability) and their sentiment
polarity (i.e., negative or positive). The context of the study
consists of 2,075 sentences extracted from Stack Overflow
discussions related to 140 APIs from the Maven central
repository. The material used in this evaluation along with
its working data set is available in our replication package
[22].

A. Research Questions

We aim at answering the following research questions (RQs):

RQq: How does a rule-based aspect classifier for Stack
Overflow perform, compared to machine learning ap-
proaches? This RQ compares the performance of different
implementations of the aspect classifier, i.e., the pattern
matching approach and the machine learning approaches.

RQs: How does the rule-based polarity analyzer perform,
compared to state-of-the-art sentiment analysis tools? This
RQ evaluates the accuracy of the polarity analyzer when
using (i) a pattern matching approach, or (ii) six state-of-
the-art sentiment analysis tools.

RQ3: How does POME perform compared to Opiner, a state-
of-the-art tool for mining opinions from Stack Overflow?
This RQ compares POME with Opiner [45].

B. Context Selection & Data Collection
Table IV and Table V present the datasets we used.

1) RQ1 and RQ>: We considered a set of sentences from
Stack Overflow discussions, mined from the official Stack
Overflow dump dated Dec 2017, identified using our fine-
grained linker as relevant to one of the 136 APIs belonging to
the five popular categories of APIs from Maven central listed
in Table IV. 1,662 sentences were mined as relevant to at least
one of the 136 subject APIs. The 136 APIs used in the context
of RQ; and RQs have not been used to define the patterns
exploited by our approach for the opinions detection and
classification. We performed a manual analysis to categorize
each of the 1,662 sentences as expressing or not an opinion
about the linked API. In case the sentence did not report any
opinion, we assigned it to a “no opinion” label. Instead, if
an opinion was identified, the sentence was further classified
in terms of the quality aspect(s) the opinion refers to (i.e.,
one or more among community, compatibility, documentation,
functional, performance, reliability, and usability). Finally, the
sentiment of the reported opinions was manually assessed by
assigning a value between negative and positive.

The manual analysis was performed by three of the authors
and, also in this case, was supported by a Web application
ensuring that two authors were assigned to each sentence. All
1,662 sentences were labeled by two authors. The Cohen’s
kappa coefficient is 0.6492 for sentiment and is 0.6494 for
aspect, which demonstrates a substantial agreement. A fourth
author not involved in the manual analysis then solved conflicts.
A conflict can concern the sentiment of a sentence as well
as the quality aspects assigned to it. Overall, 523 sentences
(31%) were classified as reporting opinions (505 related to
one aspect, 18 to two aspects): community (10), compatibility
(73), documentation (41), functional (246), performance (30),
reliability (56), and usability (85). This manual process was
performed before the definition of the patterns’ catalog to avoid
the authors being influenced during the process. Also, in RQs
we involved external evaluators in the judgment of the opinions
mined by POME (and by Opiner [45]), to have an external
and unbiased view on the quality of the mined opinions.

To answer RQ;, we ran different POME implementations
on the dataset of 1,662 sentences to assess their accuracy in
identifying opinion aspects. The implementations include the
pattern matching approach and machine learning approaches
in all variations presented in Section III.

Concerning RQs, we compared the accuracy of POME in
assessing the sentiment of opinions with the six sentiment
analysis tools mentioned in the previous section. We only
conducted the comparison on the subset of 523 sentences for
which the best configuration of the aspect classifier (output
of RQ;) can detect the existence of opinions. Indeed, when
envisioning POME as a tool deployed to mine opinions
and assign a polarity to them, our priority was to identify
the polarity analyzer implementation better suited for the
sentences identified by the aspect classifier as opinions, since
the discarded ones are not shown to the POME user.

2) RQs3: To compare with Opiner [45], we collected
the opinions mined by the two tools for four APIs in-
cluding “springframework”, “glassfish.jersey”,

“mongodb”, and “google.gwt”, and asked developers and
CS students to assess their accuracy. Those APIs are listed in
the top-ten “most reviewed APIs” in Opiner [43] and were not
used in the POME’s pattern definition nor in RQ; and RQs.
Once the best aspect classifier (RQ1) and polarity analyzer
(RQ>) were identified, we ran POME on the Stack Overflow
data dump to identify opinionated sentences related to the four
APIs, collecting in total 205 opinions.

To compare with Opiner we performed the following steps.
First, we collected the opinions mined by Opiner for the subject
APIs from the original implementation of the authors [43].
Second, we only considered the opinions mined by Opiner for
the same APIs that are related to the same aspects used in
POME. Third, Opiner uses a set of heuristics to link Stack
Overflow sentences onto APIs. One of the heuristics it uses
is the explicit mention of the library in the sentence (similar
to what we also do). Other heuristics focus on increasing
the number of collected opinions (i.e., higher recall) at the
expense of precision. For example, the “same conversation
association” links an opinionated sentence to the nearest
library mentioned in a Stack Overflow conversation. Since
in RQ3 we evaluate the precision of the mined opinions, we
did not want to penalize Opiner by considering for POME
sentences linked with an approach designed to ensure high
precision (like the one implemented in our fine-grained linker)
and for Opiner sentences linked with heuristics possibly
introducing imprecisions. Therefore, among all opinionated
sentences mined by Opiner, we only considered those explicitly
mentioning the subject library. Finally, since Opiner identified
more sentences than POME, we tried to balance the number
of sentences to be evaluated by participants for the two tools:
if the number of sentences identified by Opiner for a specific
aspect was lower or equal than 10, we kept all sentences related
to that aspect. This applied to community, compatibility, and
performance. Otherwise, for a given aspect A;, we compute the
percentage p 4, of sentences identified by Opiner for A4; (e.g., if
10 out of 100 overall opinions mined by Opiner are related to
A;, then such a percentage is 10%). Then, we randomly select
DA, X npomE, Where npoy g is the total number of opinions
identified by POME, among those identified by Opiner for A;.

We invited 11 developers, 12 CS students (BSc, MSc, PhD),
and 1 postdoc to evaluate the accuracy of the opinions mined
by POME and by Opiner for the subject APIs. Participants had
an average of 7.5 years of Java development (median=6). Each
participant was asked to use a Web app to label the aspect
and sentiment polarity (positive, neutral, negative) expressed
in the sentences. While the tools automatically classify the
sentiment polarity into positive or negative, we gave to the
annotators the option to select neutral, to identify false positives
in the sentiment identification. The sentences were randomly
selected from the considered APIs, and shown in random order.
Participants were not aware that the opinions were extracted
from different tools to avoid any type of bias. Each sentence
was labeled by two participants, and participants were required
to label at least 30 sentences. On average, participants labeled
48.5 sentences (median=36).

Each sentence was firstly labeled by two participants. If two
participants did not agree with each other on either aspect or
sentiment, a third participant would be asked to solve conflicts
related to the aspect classification and to the sentiment polarity
again through the Web app. For 18 sentences identified by
Opiner, the participants solving the conflict were not able to
assign an aspect/sentiment with a high confidence. Thus, we
preferred to exclude these 18 sentences from our dataset, as
they are characterized by a high degree of subjectivity (three
humans were not able to agree on the aspect and or sentiment
polarity). The final number of opinions evaluated in RQgs for
each tool is reported in Table V.

C. Data Analysis

To answer RQ; we compare the precision and recall of each
experimented approach in classifying sentences (as belonging
or not to one of the seven aspects) for the dataset of 1,662
sentences. To answer RQy we compare the precision and recall
of the sentiment analysis classification performed by the pattern
matching approach and the six sentiment analysis tools. To
answer RQs we compare the precision of the opinions mined
by POME and Opiner both in terms of aspects they identify and
sentiment assigned to the opinions. We report the percentage
of correctly identified aspects and sentiment for both tools. To
compare the precision of POME and Opiner we use Fisher’s
exact test [10], which statistically compare proportions. Since
we perform multiple comparisons (one for each aspect) we
adjust p-values using Holm’s correction [16]. We also report,
for the overall dataset, the Odds Ratio (OR) i.e., the ratio
between the chance (odd) POME has to correctly classify
aspect and sentiment, vs. odd achieved by Opiner.

V. RESULTS DISCUSSION

RQ:: How does a rule-based aspect classifier for Stack
Overflow perform, compared to machine learning ap-
proaches? Table VI reports the precision and recall in detecting
each of the seven quality aspects discussed in API-related
sentences. Table VI compares the performance obtained using
the pattern matching approach (black row) and the best
performing machine learner, i.e., LinearSVM. We show the
results when using SMOTE to balance the training set, since
it ensured a boost in performance. Also, we do not show the
results when using n-grams only, as this approach obtained
poor accuracy. The complete results including all machine
learning approaches are in the replication package [22].

While a reasonable recall is useful to get enough recommen-
dations, in the context of opinion mining a high precision is
preferable to avoid misleading recommendations to developers.

Using BOW for training the machine learner guarantees a
relatively high precision for two of the seven quality aspects,
namely usability (0.88) and performance (0.75), with a recall
floating around 0.10. Adding n-grams does not significantly
improve the performance of POME with respect to BOW-only.
The only exception is for reliability for which the LinearSVM
is able to reach a precision equals to 1, but with a very low

recall (0.02). The limited contribution of n-grams is in line
with the findings of Uddin and Khomh [44].

When patterns are included as features (gray rows in
Table VI), the performance substantially improves, especially
for precision. Moreover, training the LinearSVM with patterns
only is sufficient to obtain the similar performance ensured by
the combination of all features (BOW+n-grams+patterns). This
confirms the pivotal role of patterns in the classification.

Finally, the last row of Table VI reports results obtained
using the patterns as rules (i.e., plain pattern matching) without
any learning algorithm. The precision for all aspect categories
is comparable to the one obtained using patterns as features for
training LinearSVM, with the exception that other approaches
failed to detect sentences with community aspect. It is worth
noting that the recall is significantly higher. The approach using
pattern-matching is able to obtain, for each quality aspect,
a precision varying in the range [0.61-1.00] with a recall
varying in [0.13-0.44]. The API-related sentences belonging to
documentation or performance are the ones better identified in
terms of both precision (0.95 and 1.00) and recall (0.44 and
0.40). For both reliability and community, the precision is high
(0.78 and 1.00, respectively) with a low recall (0.13 and 0.20).

Given the above results, our decision was to implement the
aspect classifier of POME using the pattern matching approach,
given its simplicity and performance.

RQ2: How does the rule-based polarity analyzer perform,
compared to state-of-the-art sentiment analysis tools? To
answer RQs, we use the 186 API-related sentences identified
as containing opinions when running the implementation of the
aspect classifier chosen in RQ;. Table VII reports the precision
and recall, of (i) six state-of-the-art sentiment analysis tools
and (ii) the pattern-based approach, in identifying the sentiment
expressed in the sentences. As also highlighted in previous
literature [23], sentiment analysis tools show poor performance
in identifying the sentiment (positive or negative) reported
in software engineering datasets. Our results tend to confirm
the above statement and, most importantly, underline how the
pattern-based approach outperforms the state-of-the-art tools
for both positive and negative opinions. This is expected since
(i) the patterns have been properly determined looking at API-
related sentences mined from Stack Overflow, and (ii) the
sentences considered for evaluation have been selected using
the approach that verifies the presence of at least one of the 157
patterns. Specifically, for both positive and negative opinions,
the pattern-based approach has a precision > 0.90. The recall
is higher for positive opinions than for negative ones (0.99 and
0.64 respectively).

To sum up, the pattern-based approach has good performance
in terms of both precision and recall, while for sentiment
analysis tools a high precision comes at the expense of low
recall. The only exception to this trend is Standford CoreNLP
that, however, exhibit a very low precision for the negative
opinions. Looking more in-depth at the low recall of sentiment
analysis tools, it is possible to state that the big challenge
resides in the presence of many sentences wrongly classified
as neutral.

TABLE VI
PERFORMANCE OF THE BEST MACHINE LEARNING APPROACH USING SEVEN DIFFERENT SET OF FEATURES AND THE PATTERN MATCHING APPROACH.

Community | Compatibility | Documentation | Functional | Performance Reliability Usability

Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re
BOW-only 0.00 0.00 | 0.39 0.10 0.21 0.71 033 003 | 075 0.10 | 021 0.09 | 0.88 0.08
BOW-+n-grams 0.00 0.00 | 0.38 0.07 0.34 0.45 026 0.11 | 0.67 0.07 1.00 0.02 | 1.00 0.08
patterns-only 0.00 0.00 | 0.75 0.12 1.00 0.21 063 0.10 | 1.00 037 | 0.00 0.00 | 1.00 0.13
BOW-patterns 0.00 0.00 | 0.76 0.30 0.60 0.36 066 0.16 | 1.00 037 | 0.00 0.00 | 1.00 0.13
n-grams+patterns 0.00 0.00 | 0.75 0.12 1.00 0.21 063 0.10 | 1.00 037 | 0.00 0.00 | 1.00 0.13
BOW-+n-grams+patterns | 0.00 0.00 | 0.87 0.27 1.00 0.24 063 0.13 | 1.00 037 | 0.00 0.00 | 1.00 0.13

Pattern matching

TABLE VII
EVALUATION RESULTS FOR SENTIMENT ANALYSIS TOOLS.
tool # correct positive positive negative negative
precision recall precision recall
SentiStrength 48 0.73 0.23 0.35 0.34
SentiStrength-SE 11 0.78 0.05 0.44 0.09
NLTK 30 0.83 0.17 0.67 0.14
SentiCR 8 0.00 0.00 0.80 0.18
Senti4SD 21 0.72 0.09 0.57 0.18
Stanford CoreNLP 63 1.00 0.15 0.29 0.93
Pattern matching 166 0.92 0.99 0.94 0.73
TABLE VIII

PRECISION FOR POME AND OPINER IN ASPECT & SENTIMENT PREDICTION.

aspect prediction sentiment prediction

predicted aspect

POME Opiner POME Opiner
Community 1.00 0.00 1.00 0.50
Compatibility 0.36 0.33 0.45 0.33
Documentation 0.75 0.54 0.69 0.54
Functional 0.75 0.16 0.76 0.16
Performance 0.79 0.58 0.68 0.43
Reliability 0.57 0.46 0.57 0.42
Usability 0.67 0.24 0.78 0.41
Overall 0.72 0.28 0.73 0.38

As an example, when a sentence clearly reports that
the library provides some useful features (“the Commons
Configuration project from Apache will do the job; it will
allow you to write and read Properties files”) the pattern-
based approach is able to correctly identify it as a positive
opinion, while all the sentiment analysis tools label it as neutral.
The same happens for the sentence “as already stated above
there is a compatibility issue with mockito-all”, in which the
pattern-based approach is able to recognize the presence of a
negative feeling from the compatibility point of view, while the
sentiment analysis tools classify the sentence as neutral. Note
that this is a limitation of these tools in the specific context
in which we are using them. However, this does not mean
that they do not work when assessing the sentiment polarity
in other contexts (e.g., users’ happiness on Stack Overflow).

Given the above results, in POME we rely on the pattern-
matching approach to identify sentiment polarity, rather than
using existing sentiment analysis tools.

RQs How does POME perform compared to Opiner, a
state-of-the-art tool for mining opinions from Stack Over-
flow? To answer RQ3, we compare the results of both aspect
detection and sentiment analysis achieved by POME and
Opiner on the sentences they extracted from Stack Overflow.

Results shown in Table VIII indicate that POME achieves
an overall better precision. That is, when POME identifies

an aspect from a discussion, the chance of it being correct is
higher than that identified by Opiner (0.72 vs 0.28).

According to Fisher’s exact test, the difference is statistically
significant (p-value< 0.001) with an OR=6.6, i.e., POME
has 6.6 times more chances of providing a correct aspect
classification than Opiner. The same trend holds for each aspect
except “compatibility”, where both Opiner and POME exhibit
low performance. One example of misclassification by POME
in this category is “it did not work for me with my spring-boot
version”, classified by POME as compatibility-related (due to
the pattern “did not work [...] [proper noun] version”). The
study participants labeled the sentence as not reporting any
opinion, probably because it is not clear whether the problem
experienced by the user is an actual compatibility issue (as
opposed, e.g., to a misuse of the API by the user).

POME significantly outperforms Opiner when identifying
opinions related to “usability” and “functional” aspects, with
the Fisher’s exact test indicating that differences are statistically
significant (adjusted p-value< 0.001). In other cases differences
are not statistically significant on single categories because of
the small number of samples. However, the ORs are always
in favor of POME, ranging from 1.1 for “compatibility” to
16.0 for “functional”". We can conclude that POME performs
better than Opiner in aspect identification. Since for most
aspects POME can achieve a precision greater than 0.6, we can
say that the opinions mined by POME are generally reliable,
considering that a random assignment of aspect would result
in a precision of 1/8 (0.125).

We qualitatively discuss some examples related to functional-
related sentences, in which POME obtains a 0.75 precision
as compared to the 0.16 achieved by Opiner. Examples of
sentences correctly classified in this aspect by POME are
“you can do most of this config using application.properties
if you are using spring-boot”’, and “the Guava library has an
Ordering.greatestOf method that returns the greatest K elements
from an Iterable [...]”. Concerning the misclassifications related
to the functional aspects, one of the POME’s patterns causing
false positives is “[withluse] [library] [pronoun] [helping verb]
[verb]” (see [22] for an explanation of this pattern) that matches,
for example, the sentence “if you are using mongo-java-driver
then you can have a look at this SO answer”. This pattern was
responsible for 7 out of the 33 false positives in the functional
aspect. However, it also helped in identifying 8 true positives,
thus posing the usual recall vs precision dilemma. As for
Opiner, its precision in identifying opinions about functional
aspects is quite low.

Misclassifications here include “I am working on a jersey
web service” or “an important architectural difference is that
GWT-RPC operates at a more functional level”. Probably, this
is due to the features (words) used by the machine learner
to classify the aspects. Indeed, “service” and “functional” are
likely to be keywords characterizing feature-related sentences.

When comparing the results of sentiment prediction, POME
almost doubles the precision of Opiner (0.73 vs 0.38), and
performs better in all categories. Fisher’s exact test indicates
that the observed differences are, again, statistically significant
for “functional” and “usability" (adjusted p-value< 0.001 in
both cases). In other cases the test did not report significant
differences, again because of the limited number of samples.
The ORs are always in favor of POME, ranging from 1.6 of
“compatibility” to 16.7 of “functional”. On the overall dataset,
we have a statistically significant difference (p-value< 0.001)
and an OR=4.3, i.e., POME has four times more chances of
Opiner in indicating the correct sentiment polarity. Also for
what concerns the sentiment prediction the strongest difference
between the two approaches is observed in the functional-
related sentences. Since we already discussed this category for
the aspect identification, we focus our qualitative analysis on the
compatibility-related sentences, the ones exhibiting the smaller
difference in sentiment prediction precision among the two
approaches (0.45 vs 0.33). Here, the POME’s misclassifications
are mostly due to the wrong handling of negations, often
caused by misspelling/typing issues. For example, POME
misclassifies as positive the sentiment of the sentence “the
problem is that FrameLayout.LayoutParams constructor doesn’t
support another FrameLayout as a parameter until the api 19.”
due to the use of the backtick instead of an apostrophe, which
caused the negation handling failure. Other examples are typos
like “cann’t” instead of “can’t”. Integrating a spell checker
could solve the problem, although it must cope with having
source code words not being correct English words.

Concerning Opiner, the main problem is represented by
sentences considered by the participants as do not actually
reporting an opinion and, thus, being neutral in terms of
sentiment while classified as positive/negative by the tool.
This is the case for “BTW, I'm working with Spring MVC”,
classified as a positive compatibility sentence by Opiner and
as non-opinionated by participants.

Despite the better results achieved by POME, Opiner
identifies a higher number of opinions for these APIs (4
times higher than that identified by POME), thus very
likely exhibiting a higher recall. POME has been designed
to favor precision over recall, and in RQ3 we are only focusing
on the precision of the mined opinions, since assessing the
recall would require the analysis of the entire Stack Overflow.
The precision reported in RQs is not as high as for the other
RQs. This might depend on the specific dataset and/or on whom
performed the labeling. The datasets used in the previous RQs
have been created by the authors, having a deeper knowledge
of the problem. Also, they discussed cases where there was a
disagreement, while this did not happen for RQs participants.
Although instructions were given for evaluators of RQs, the

annotation task remains highly subjective. In spite of these
concerns, POME advances the current state-of-the-art in aspect
and sentiment identification. Also, the difficulty annotators had
in their task highlights once more that grasping API opinions
from Stack Overflow sentences is not an easy task, and therefore
recommenders such as POME and Opiner are valuable.

VI. THREATS TO VALIDITY

Construct validity. This affects the creation of the labeled
dataset used in RQ; and RQ,. The threat has been miti-
gated by having multiple evaluators classifying aspects and
sentiments.As for the slightly modified approach by Treude
and Robillard [42], we manually validated all the sentences
extracted with the fourth regular expressions introduced by us
in order to discriminate between sentences referring to APIs.
Among the 10,481 sentences extracted by our Fine-grained
linker, 360 have been identified using the fourth rule in Table I.
One of the authors manually analyzed all of them, classifying
74% of the sentences correctly linked to the API [22].

Internal validity. It is possible that a different calibration of
the machine learners produce better results. Therefore, results
reported in Table VI and Table V represent a lower-bound for
the different configurations of POME.

Conclusion validity. Where needed we supported our claims
through appropriate statistical procedures. As for the aspect-
specific comparison, it is possible that Type-II errors occurred
(failed to reject hypothesis due to limited sample), however
we showed how the differences were statistically significant
on the overall dataset.

External validity. While we have validated POME, and
compared it with Opiner, on unseen data, it is possible that a
different dataset would exhibit different results. Also, another
dataset could exhibit different distributions of the identified
aspects, and, possibly, further aspects we did not consider.
However, this still makes the approach applicable, possibly by
augmenting the set of identified patterns. POME is suitable
for popular APIs, due to the large availability of opinions to
mine. However, this applies to any recommender based on
(historical) data mining.

VII. CONCLUSION

Mining opinions on APIs helps developers take better
decisions during software development. We proposed a pattern-
based approach named POME which achieves high accuracy
in identifying opinion aspects. POME also outperforms a state-
of-the-art tool (Opiner [45]). POME aids developers to quickly
gain an understandings of the overall quality, pros, and cons
of APIs. As opinions are embedded in many other kinds of
sources, our future work is given.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the projects PROBE (SNF
Project No. 172799) and CCQR (SNF Project No. 175513),
and CHOQOSE for sponsoring our trip to the conference.

[1

[2]
[3]

—

[4

=

[5

=

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

“Apache Maven Central Repository,” http://central.maven.org/maven2/
maven/, last access 24.08.2018.

“Spacy,” https://spacy.io.

T. Ahmed, A. Bosu, A. Igbal, and S. Rahimi, “Senticr: A customized
sentiment analysis tool for code review interactions,” in Proceedings of
the 32Nd IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2017. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 106-111.

F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity
detection for software development,” Empir Software Eng, 2017.

F. Calefato, F. Lanubile, and N. Novielli, “Emotxt: A toolkit for emotion
recognition from text,” in Proceedings of ACII 2017 (7th International
Conference on Affective Computing and Intelligent Interaction), 2017.
L. V. G. Carrefio and K. Winbladh, “Analysis of user comments: an
approach for software requirements evolution,” in Proceedings of ICSE
2013 (35th International Conference on Software Engineering). 1EEE
press, 2013, pp. 582-591.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, pp. 321-357, 2002.

J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation
to support problem solving in software development,” in Proceedings of
RSSE 2012 (3rd International Workshop on Recommendation Systems
for Software Engineering). 1EEE Press, 2012, pp. 85-89.

F. L. de la Mora and S. Nadi, “Which library should I use?: a metric-
based comparison of software libraries,” in 40th International Conference
on Software Engineering: New Ideas and Emerging Results, ICSE (NIER),
2018, pp. 37-40.

R. Fisher, “On the interpretation of x? from contingency tables, and the
calculation of p,” Journal of the Royal Statistical Society, vol. 85, no. 1,
pp. 87-92, 1922.

M. Goldman and R. Miller, “Codetrail: Connecting source code and web
resources,” Journal of Visual Languages & Computing, pp. 223-235,
2009.

M. Goul, O. Marjanovic, S. Baxley, and K. Vizecky, “Managing the
enterprise business intelligence app store: Sentiment analysis supported
requirements engineering,” in Proceedings of HICSS 2012 (45th Hawaii
International Conference on System Sciences), 2012, pp. 4168-4177.
E. Guzman, R. Alkadhi, and N. Seyff, “An exploratory study of
twitter messages about software applications,” Requirements Engineering,
vol. 22, no. 3, pp. 387412, 2017.

E. Guzman, D. Azécar, and Y. Li, “Sentiment analysis of commit
comments in github: an empirical study,” in Proceedings of MSR 2014
(11th Working Conference on Mining Software Repositories). ACM,
2014, pp. 352-355.

E. Guzman and W. Maalej, “How do users like this feature? a fine grained
sentiment analysis of app reviews,” in Proceedings of RE 2014 (22nd
International Requirements Engineering Conference). 1EEE, 2014, pp.
153-162.

S. Holm, “A simple sequentially rejective Bonferroni test procedure,”
Scandinavian Journal on Statistics, vol. 6, pp. 65-70, 1979.

M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proceedings of KDD 2004 (10th ACM SIGKDD international conference
on Knowledge discovery and data mining), 2004, pp. 168-177.

C. J. Hutto and E. Gilbert, in Proceedings of ICWSM 2014 (8th
International AAAI Conference on Weblogs and Social Media.

M. R. Islam and M. F. Zibran, “Leveraging automated sentiment analysis
in software engineering,” in Proceedings of MSR 2017 (14th International
Conference on Mining Software Repositories). 1EEE Press, 2017, pp.
203-214.

R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results
when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, pp. 1-42, 2017.

0. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automatically
locating relevant programming help online,” in Proceedings of VL/HCC
2012 (2012 IEEE Symposium on Visual Languages and Human-Centric
Computing), 2012, pp. 127-134.

B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Replication
package.” https://pome-repo.github.io/.

B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for so ware engineering: How far can we go?” p.
preprint, 2018.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment
detection in the social programmer ecosystem,” in Proceedings of SSE
2015 (7th International Workshop on Social Software Engineering), ser.
SSE 2015, 2015, pp. 33-40.

M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and
R. Tonelli, “Are bullies more productive?: empirical study of affectiveness
vs. issue fixing time,” in Proceedings of MSR 2015 (12th Working
Conference on Mining Software Repositories). 1EEE Press, 2015, pp.
303-313.

B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Founda-
tions and Trends in Information Retrieval, vol. 2, pp. 1-135, 2008.

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. C. Gall, “How can i improve my app? classifying user reviews for
software maintenance and evolution,” in Proceedings of ICSME 2015
(31st International Conference on Software Maintenance and Evolution),
ser. ICSME 2015, 2015, pp. 281-290.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:
Machine learning in python,” Journal of machine learning research,
vol. 12, no. Oct, pp. 2825-2830, 2011.

L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident programming
Prompter,” in Proceedings of MSR 2014 (11th Working Conference on
Mining Software Repositories). ACM Press, 2014, pp. 102-111.

L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto, M. Di
Penta, and M. Lanza, “Supporting software developers with a holistic
recommender system,” in Proceedings of ICSE 2017 (39th International
Conference on Software Engineering), 2017, pp. 94-105.

P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in Proceedings of ICSE 2013 (35th Inter-
national Conference on Software Engineering). 1EEE Press, 2013, pp.
832-841.

M. P. Robillard and Y. B. Chhetri, “Recommending reference API
documentation,” Empirical Software Engineering, pp. 1-29, 2014.

N. Sawadsky and G. Murphy, “Fishtail: from task context to source code
examples,” in Proceedings of TOPI 2011 (1st Workshop on Developing
Tools as Plug-ins). ACM, 2011, pp. 48-51.

V. Sinha, A. Lazar, and B. Sharif, “Analyzing developer sentiment
in commit logs,” in Proceedings of MSR 2016 (13th International
Conference on Mining Software Repositories). ACM, 2016, pp. 520-523.
R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y.
Ng, and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in In Proceedings of EMNLP 2013 (2013
Conference on Empirical Methods in Natural Language Processing).
Citeseer, 2013.

R. Souza and B. Silva, “Sentiment analysis of travis ci builds,” in
Proceedings of MSR 2017 (14th International Conference on Mining
Software Repositories). 1EEE Press, 2017, pp. 459-462.

J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proceedings of VL/HCC 2006 (2006 IEEE
Symposium on Visual Languages and Human-Centric Computing), 2006,
pp. 195-202.

S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documenta-
tion,” in Proceedings of ICSE 2014 (36th International Conference on
Software Engineering), 2014, pp. 643-652.

W. Takuya and H. Masuhara, “A spontaneous code recommendation
tool based on associative search,” in Proceedings of SUITE 2011
(3rd International Workshop on Search-Driven Development: Users,
Infrastructure, Tools, and Evaluation). ACM, 2011, pp. 17-20.

M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Sentiment
strength detection in short informal text,” Journal of the Association for
Information Science and Technology, vol. 61, no. 12, pp. 2544-2558,
2010.

P. Tourani, Y. Jiang, and B. Adams, “Monitoring sentiment in open
source mailing lists: exploratory study on the apache ecosystem,” in
Proceedings of CASCON 2014 (24th Annual International Conference
on Computer Science and Software Engineering). 1IBM Corp., 2014,
pp. 34-44.

C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in Proceedings of ICSE 2016 (38th
International Conference on Software Engineering), 2016, pp. 392-403.
G. Uddin and F. Khomh, “The opiner tool,” goo.gl/2EnL.78.

[44] ——, “Automatic summarization of api reviews,” in Proceedings of ASE
2017 (32nd IEEE/ACM International Conference on Automated Software
Engineering). 1EEE, 2017, pp. 159-170.

[45]
in Proceedings of ASE 2017 (32nd IEEE/ACM International Conference
on Automated Software Engineering), 2017, pp. 978-983.

[46] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and

, “Opiner: an opinion search and summarization engine for apis,”

answer sites for automatic comment generation,” in Proceedings of ASE
2013 28th IEEE/ACM International Conference on Automated Software
Engineering), 2013, pp. 562-567.

[47] Y. Zhang and D. Hou, “Extracting problematic API features from forum
discussions,” in Proceedings of ICPC 2013 (21st International Conference
on Program Comprehension), 2013, pp. 141-151.

