
CodeCrawler - Polymetric Views in Action

Michele Lanza
Software Engineering Group, University of Zurich, Switzerland

lanza@ifi.unizh.ch

Abstract

CodeCrawler is a language independent software visu-
alization tool. It is mainly targeted at visualizing object-
oriented software, and in its newest implementation has be-
come a general information visualization tool. It has been
validated in several industrial case studies over the past few
years. CodeCrawler strongly adheres to lightweight prin-
ciples: it implements and visualizespolymetric views, vi-
sualizations of software enriched with information such as
software metrics and other source code semantics.

Introduction CodeCrawler implements is a software
visualization tool which implementspolymetric views,
lightweight 2D- and 3D- visualizations enriched with se-
mantic information such as metrics. It relies on the FAMIX
Metamodel [1], which models object-oriented languages
such as C++, Java, Smalltalk, and also procedural languages
like COBOL. FAMIX has been been implemented in the
Moosereengineering environment [2] which offers a wide
range of functionalities like metrics, query engines, naviga-
tion, etc.

We shortly introduce the concept of the polymetric view
and then give some examples of the visualizations that
CodeCrawler enables the user to achieve.

The Principle of a Polymetric View The visualizations
implemented in CodeCrawler are based on the polymetric
views described by Lanza[7]:

In Figure 1 we see that, given two-dimensional nodes repre-
senting entities and edges representing relationships, we enrich
these simple visualizations with up to 5 metrics on the node char-
acteristics and 2 metrics on the edge characteristics: (1+2) The
width and height of a node can render two measurements. We
follow the convention that the wider and the higher the node, the
bigger the measurements its size is reflecting. (3) The color inter-
val between white and black can display a measurement. Here the
convention is that the higher the measurement the darker the node
is. Thus light gray represents a smaller metric measurement than
dark gray. (4+5) The X and Y coordinates of the position of a node

Color Metric

Position Metrics (X, Y)

Width Metric

Height 
Metric

Edge Width Metric 
and Color Metric

Entities

Relationship

Figure 1. The principles of a polymetric view.

can reflect two other measurements. This requires the presence of
an absolute origin within a fixed coordinate system, therefore not
all views can exploit such metrics (for example in the case of a tree
view, the position is given by the tree layout and cannot be set by
the user). (A) The width of an edge can render a measurement: the
wider the edge, the higher the measurement. (B) The color inter-
val between white and black can display a measurement. Here the
convention is that the higher the measurement the darker the edge
is.

In Figure 4 we see CodeCrawler visualizing itself with
a polymetric view calledSystem Complexity. The metrics
used in this view are the number of attributes for the width,
the number of methods for the height, and the number of
lines of code for the color of the displayed class nodes.

Example Polymetric Views CodeCrawler visualizes
three different types of polymetric views: coarse-grained,
fine-grained, and evolutionary views.

Coarse-grained views.Such views are targeted at visu-
alizing very large systems (e.g.,over 100 kLOC to several
MLOC) [7].

In Figure 2 we see aSystem Hotspotsview of 1.2 million lines
of C++ code. The view uses the number of methods for the width
and height of the class nodes. We gather for example from this
view that there are classes with several hundreds of methods (at
the bottom), while at the top we see a large number of structs,
identifiable by the fact that most of them do not implement any
methods.

1



Figure 2. A System Hotspotsview on 1.2 MLOC of C++
code. This view uses the following metrics: Width = height
= number of methods, color = hierarchy nesting level.

Fine-grained views. The most prominent view is the
Class Blueprintview, a visualization of the internal struc-
ture of classes and class hierarchies [6].

Figure 3. A Class Blueprintview on a small hierarchy of
4 classes written in Smalltalk.

In Figure 3 we see a class blueprint view of a small hierarchy of
4 classes. The class blueprint view helped to develop a pattern lan-
guage [5]. In the present example we see the following patterns:
Pure overrider: The three subclasses implement only overriding
methods (denoted by the brown color).Siamese twin: The two
subclasses on the left and the right are structurally identical, not
only do they implement exactly the same methods (the methods
differ within their body, of course), their static invocation struc-
ture is also the same.Template method: The method node in the
superclass annotated asA is a concrete method which only invokes
abstract methods (denoted by their cyan color). This is known as
thetemplate methoddesign pattern [3].Inconsistent accessor use:
The superclass defines only two accessors (positioned in the sec-
ond layer from the right), while it defines three attributes (last layer
to the right). These two accessors do not have ingoing edges:at
least in the context of this hierarchy they are not used at all.Direct

attribute access: We see that the attribute nodes of the superclass
are directly accessed by several methods. The methods annotated
asB andC seem to play an important role in these classes: They
are invoked by many methods (several ingoing edges) and they
invoke several methods (numerous outgoing edges).

Evolutionary views. The most prominent view is the
evolution matrixview, a visualization of the evolution of
complete software systems [4].

Figure 4. CodeCrawler visualizing itself with aSystem
Complexityview. This view uses the following metrics:
Width metric = number of attributes, height metric = num-
ber of methods, color metric = number of lines of code.

References

[1] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
the FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[2] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an ex-
tensible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[4] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. InProceed-
ings of IWPSE 2001 (International Workshop on Principles
of Software Evolution), pages 37–42, 2001.

[5] M. Lanza. Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visualiza-
tion. PhD thesis, University of Berne, May 2003.

[6] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. InProceedings of OOPSLA 2001 (International
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications), pages 300–311, 2001.

[7] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions on
Software Engineering, 29(9):782–795, Sept. 2003.

2


