
RECHERCHE

Towards a Methodology
for the Understanding of
Object-Oriented Systems

Stéphane Ducasse— Michele Lanza

Software Composition Group, University of Berne
Neubrückstrasse 12, CH – 3012 Berne, Switzerland
{ducasse,lanza}@iam.unibe.ch
http://www.iam.unibe.ch/�scg/

ABSTRACT.The reverse engineering of object-oriented legacy systems presents a number of pro-
blems typically encountered in large-scale legacy systems: the lack of overview and the need
to focus on interesting parts. To help in reverse engineering large object-oriented legacy sys-
tems, we proposed a hybrid approach combining the immediate appeal of visualisations with the
scalability of metrics. However, our approach lacked of a methodology that guides the reverse
engineer. In this paper we present a first methodology that we developed from our industrial
experiments.

RÉSUMÉ.La phase de compréhension et d’analyse (reverse engineering) lors de la rétro-con-
ception d’applications à objets rencontre les problèmes typiques des grands systèmes (large
scale systems), à savoir le manque de vue d’ensemble et la nécessité de se focaliser sur les
parties intéressantes. Afin d’aider cette tâche, nous avons proposé une approche hybride
combinant l’attrait de la visualisation avec celui des métriques. Cependant, notre approche
manquait d’une méthodologie qui guide le rétro-concepteur. Dans cet article, nous présentons
une première méthodologie que nous avons élaborée et validée au cours de nos expériences
industrielles.

KEY WORDS: Reverse Engineering, Program Understanding, Program Visualisation, Reenginee-
ring, Software Metrics, Object-Oriented Programming, CodeCrawler, Moose.

MOTS-CLÉS: Reverse engineering, compréhension de programmes, visualisation de programmes,
rétro-conception, métriques, programmation à objets, CodeCrawler, Moose.

Techniques et sciences informatiques. Volume X – no X/2001, pages 1 à Y

2 Techniques et sciences informatiques. Volume X – n

1. Introduction

The ability to reverse engineer object-oriented legacy systems has become a vital
matter in today’s software industry. Early adopters of the object-oriented program-
ming paradigm are now facing the problem of transforming their object-oriented le-
gacy systems into frameworks, hence they need to understand the inner workings of
their legacy systems and identify potential design anomalies. However, since legacy
systems tend to be large —hundreds of thousands lines of poorly documented code
are not an exception— there is a definite need for approaches that help in program un-
derstanding and problem detection [CAS 98]. As shown by the following definitions,
reverse engineering is a part of the reengineering process in the sense that it focuses
on analysing the system and providing representations of a system.

“ Reengineeringis the examination and the alteration of a subject system to re-
constitute it in a new form and the subsequent implementation of the new form.”

“ Reverse engineeringis the process of analysing a subject system to identify the
system’s components and their relationships, and to create representations of the sys-
tem in another form or at a higher level of abstraction.”[CHI 90]

Among the various approaches to reverse engineer systems, two are good candi-
dates for large scale reverse engineering. One isprogram visualisation, often applied
because good visual displays allow the human brain to study multiple aspects of com-
plex problems in parallel (This is often phrased as "One picture conveys a thousand
words"). Another ismetrics, because metrics are often applied to help assess the qua-
lity of a software system and because they are known to scale up well.

A Hybrid Approach. We proposed a hybrid approach to understand existing program
structures and identify potential design anomalies [DEM 99b]. As one of our strong
constraint is the replication of the approach by reengineers without our tool support,
the approach is based on the combination of simple graph layouts and easy to compute
code metrics. For example, a class hierarchy can be displayed by a tree where the size
of its nodes reflects metric values of the classes they represent. This way, the graphs
can be enriched by more than 30 metrics producing a huge number of possibilities.
As only a subset of the enriched graphs is meaningful, we identified so-calleduseful
graphs[LAN 99].

The Need for a Methodology.However, despite the finding of those useful graphs,
there is a definite need for a methodology that guides the reverse engineer depending
on the state of his reverse engineering. A methodology should state in a goal-oriented
way which graph to apply depending on the context and the previous graphs applied.

Based on our previous work and industrial experiments, the current paper introdu-
ces a methodology to guide the reverse engineer during the application and analysis
of the graphs. The paper starts with an overview of the hybrid reverse engineering
approach we developed (section 2) and presents an overview of the useful graphs that
formed the base of the approach. Then in section 3 the methodology is presented by

A Reverse Engineering Methodology 3

definingclustersof useful graphs based on the reverse engineering state and the pos-
sible paths to other graphs. In section 4 the methodology is illustrated on an industrial
case study. In section 5 we discuss CodeCrawler, the tool that supports the methodo-
logy. Finally, we provide an overview of the related work (section 6), and conclude
(section 7).

2. Combining simple metrics and trivial graphs

“Continuous visual displays allow users to assimilate information rapidly and to
readily identify trends and anomalies. The essential idea is that visual representations
can help make understanding software easier.”[BAL 96]

Before presenting our approach in detail we would like to present the context in
which this approach has been developed.

2.1. Replication in an Industrial Context as a Constraint

One of the major constraints that we imposed on ourselves is that graphs and the
methodology presented here are applicable in an industrial context, where software
reengineering faces many problems, i.e. short time constraints, little tool support, and
limited manpower. It is for this reason that we limited ourselves to usesimple metrics
that are easily extracted from source code entities using for example Perl scripts and
to usesimple graph layoutsthat could be easily implemented using scriptable tools
like Rigi [Mül 86].

2.2. Principle

We enrich a basic graph with metric information of the object-oriented entities it
represents. Given a two-dimensional graph we can render up to five metrics on a single
node simultaneously:

1. Node Size.The width and height of a node can render two measurements. We
follow the convention that the wider and the higher the node, the bigger the measure-
ments its size is reflecting.

2. Node Colour.The colour interval between white and black can display another
measurement. The convention is that the higher the value the darker the node is. Thus
light gray represents a smaller metric measurement than dark gray.

3. Node Position.The X and Y coordinates of the position of the node can reflect
two metric measurements. This requires the presence of an absolute origin within a
fixed coordinate system, therefore not all layouts can exploit this dimension.

4 Techniques et sciences informatiques. Volume X – n

Figure 1. Inheritance Tree; node width = NIV (number of instance variables), node
height = NOM (number of methods) and colour = WLOC (lines of code)

Figure 1 shows an example of an inheritance tree enriched with metrics informa-
tion. The nodes represent the classes, the edges the inheritance relationships. The size
of the nodes reflects the number of instance variables (width) and the number of me-
thods (height) of the class, while the colour tone represents the lines of code of the
class. The position of a node does not represent metrics in this case, as the position is
given by the layout algorithm.

2.3. Metrics

We make extensive use of object oriented software metrics and measurements
[FEN 97, HEN 96]. In the wide array of possible metrics that we could use, we se-
lected so calledDesign Metrics[LOR 94], i.e. metrics that areextracted from the
source entities themselves. These metrics are used to assess the size and in some cases
the quality and complexity of software. Moreover, the ability to easily reproduce our
approach lead us to select simple metrics. To this regard the work presented in this
paper is on how to use simple metrics to support program understanding and not on
the definition of metrics for code quality assessment.

We chose to use metrics that:

— can be easily extracted from source code entities,

— have a simple and clear definition, and

— are termed asdirect measurementmetrics [FEN 97], i.e. their computation in-
volves no other attributes or entities.

As such we don’t make use ofcomposite metricswhich raise the issue of dimensio-
nal consistency [HEN 96]. Furthermore we don’t make use ofindirect measurement
where metrics are combined to generate new ones. A good example for such metrics
are average and percentage metrics.

In Figure 1 we list all metrics mentioned in this article. The metrics are divided
into three groups, namely class, method and attribute metrics, i.e. these are the entities
that the metric measurements are assigned to.

A Reverse Engineering Methodology 5

Name Description
Class Metrics

HNL Number of classes in superclass chain of class
WNMAA Number of all accesses on attributes
WNOC Number of all descendants
NCV Number of class variables
WNOS Sum of statements in all method bodies of class

Method Metrics
NIV Number of instance variables
LOC Method lines of code
NMA Number of methods added, i.e. defined in subclass and not in superclass
MHNL Class HNL in which method is implemented
NME Number of methods extended, i.e. redefined in subclass by invoking the same method on

a superclass
MSG Number of method message sends
NOP Number of parameters
NMAA Number of accesses on attributes
NMO Number of methods overridden, i.e. redefined compared to superclass
NOS Number of statements in method body
NOC Number of immediate children of a class

Attribute Metrics
NOM Count all methods in class
AHNL Class HNL in which attribute is defined
WLOC Class lines of code
NAA Number of times accessed

Figure 1. Selected Measurements and Metrics

2.4. Actual Visualisation

The actual visualisation depends on three factors:

1. The graph type: Its purpose is to emphasise those aspects of a system that
are relevant for reverse engineering, e.g. a tree graph is well suited for showing the
inheritance relationships in the system.

2. The layout variation: Starting from the type of the graph, layout variations
further customise the actual visualisation. The layout takes into account the choice
of the displayed entities and their relationships plus issues like whether the complete
graph should fit onto the screen, whether space should be minimised, whether nodes
should be sorted, etc.

3. The metric selection:Metrics selected from Figure 1 are incorporated into the
graph.

2.5. Graph Types

We selected a small set of graph types for their simplicity and simple layout algo-
rithms. We list below the essential ones. For a more detailed description of the graphs
and a discussion of their advantages and limitations, we refer to [LAN 99].

6 Techniques et sciences informatiques. Volume X – n

Name Layout Metrics Sort Scope
System Complexity Inheritance

Tree
NIV, NOM, LOC,- ,- NO Full System

Gives an overview based on the inheritance hierarchies of a whole system. It gives clues
on the complexity and structure of the system.
System Hot Spots Checker NOM, NIV, WLOC,- ,- NO Very Large System
Displays really simply all the classes according to their number of methods and instance
variables.
Weight Distribution Histogram NOM, -, HNL, - ,NOM NO Full System
Categorises systems as top-heavy, bottom-heavy or mixed.
Root Class Detection Correlation -, -, -, WNOC, NOC NO Very Large Full

System
Identifies important classes regarding their impact on their children.
Service Class Detection Stapled NOM, WLOC, NOM,- ,- width Full System
Identifies data structure like class containing only read write accessors.
Cohesion Overview
Checker

Checker NOM, WNAA, NIV,- ,- width Full System

Identifies possible god class candidates and highly cohesive classes.
Hierarchy Carriers Inheritance

tree
WNOC, NOM, WNOC ,-
,-

NO Subsystem: Inheri-
tance Tree

Identifies classes having a big impact on their subclasses.
Intermediate Abstract Inheritance

tree
NOM, NMA, NOC,- ,- NO Subsystem: Inheri-

tance Tree
Detects abstract classes or nearly-empty classes which are located somewhere in the
middle of an inheritance chain. Ideal for Smalltalk.
Class Size Checker Checker LOC, LOC,NIV,-,- width Full System
Gives a raw overview of the system in terms of its physical size
Inheritance Classifica-
tion

Inheritance
Tree

NMA,NMO, NME,-, - NO Subsystem

Qualifies inheritance relationships. Subclasses can be only overriding methods, adding
functionality or specialising behaviour.

Figure 2. List of useful graphs which can be applied on a collection of classes or on
complete systems

Tree.Positions all entities according to some hierarchical relationship (example Figu-
re 1).

Correlation. Positions entities in an orthogonal grid (origin in the upper left corner)
according to two measurements. Entities with the same measurement will overlap.
Useful for comparing two metrics in large populations (example Figure 7). The reader
should note that the graph is not a real correlation graph in the mathematical sense. We
overuse this term to convey the fact the entities are placed according to two metrics.

Histogram. Positions nodes along a vertical axis depending on one measurement.
Nodes with the same measurement are then positioned in rows, one beside the other.
Useful for analysing the distribution within a population.

Checker. Sorts nodes according to a given metric and then places them into seve-
ral rows in a checkerboard pattern. It is useful for getting a first impression of ra-
ther small populations, especially for the relative proportions between measurements

A Reverse Engineering Methodology 7

Name Layout Metrics Sort Scope
Graphs applied to methods

Identifies possible candidate methods for further refactorings.
Coding Impact Histo-
gram

Histogram LOC, -, LOC, LOC, - width Small Subsystem
or single class

Gives an overview of the class method distribution.
Method Size Nest Le-
vel

Checker LOC, NOS, MHNL, -, - NO Subsystem: Inhe-
ritance Tree

Graphs applied to attributes
Direct Access Attribu-
te Checker

Checker NAA,NAA,NAA,-,- NO Full System

Categorises attributes in terms of their uses.
Graphs applied to class internals

Class Confrontation Confrontation method(LOC,NOS,LOC)
attribute (NAA,NAA,NAA)

NO Class

Presents class structure in terms of attribute accesses and identifies method clusters.
Method Size Correla-
tion

Correlation -, -, LOC, NOS, LOC NO Full System

Gives an overview of the system from a method size point of view. It detects empty,
strange, long or non-coherently formatted methods.

Figure 3. List of useful graphs applicable on methods and attributes

(example Figure 5).

Stapled.Sorts nodes according to a given metric, renders a second metric as the height
of a node and then positions nodes one besides the other in a long row. Is used to
detect exceptional cases for metrics that usually correlate, because the stapling effect
will normally result in a steady inclining staircase, yet exceptions will break the steady
inclination.

Confrontation. Visualises two different kinds of entities and the relationships bet-
ween them. It is mainly used for analysing access patterns between attributes and me-
thods. The two kinds of entities are positioned in two separate rows and then edges are
drawn to represent the access relationships. Layout variations are achieved by sorting
or splitting the rows (example Figure 11).

2.6. Useful graphs

Enriching graphs with the set of metrics we presented leads to a huge set of po-
tential graphs out of which only a small number are meaningful. In [LAN 99] we
identified some useful graphs, i.e. a combination of a graph type and the metrics ne-
cessary to enrich the graph. We present them in Figure 2 and 3. The first two entries
are the name and the layout of the useful graph. The third entry describes its metrics
described as follows, first the node size, then the node color and the node position:
width node metric, height node metric, node color metric, x node metric, y node me-
tric. ’-’ means that no metric is defined. Then the fourth entry describes if the graph
is sorted, and if so according to which metric. The last entry describes the scope of

8 Techniques et sciences informatiques. Volume X – n

graph.

3. A First Methodology

We applied our approach on several large industrial applications ranging from a
system of approximately 1.2 Million lines of C++ from Nokia to a Smalltalk frame-
work of approximately 3000 classes. Our experiments demonstrated the strength of
our approach. We were able to quickly gain an overall understanding of the analy-
sed application, identify some problems and point to classes or subsystems for further
investigation.

Moreover we learned that the approach is preferably applicable during the first
contact with the system, and provides maximum benefits during the one or two first
weeks of the reverse engineering phase.

However the approach definitively lacked a methodology that would help a reverse
engineer to deploy its full potential. Ideally such a methodology should define which
graphs to apply depending on the goal of the reverse engineer, what the paths are
between the different graphs, and on what selections the next graphs should be applied.

Difficulties. Such a methodology is difficult to elaborate for the following reasons:

— There is no one unique or ideal path through the graphs.

— Different graphs can be applied at the same stage depending of the analysis of
the graphs.

— The decision to apply a graph most of the time depends on some interactions
with the current graph.

— The graphs can be applied to different entities implying some back and forth
between different graphs.

— A graph displays a system from a certain point of view that emphasises a par-
ticular aspect of the system. However, the graph has to be analysed and the code un-
derstood to determine if the symptoms revealed by the graph are interesting for further
investigation.

The Purpose of a Methodology.We would like to stress that the results of a reverse
engineering phase are not a list of problematic classes, even if the identification of
possible design defects is a valuable piece of information. Understanding the overall
structure of the application, gaining a better understanding of the inheritance relation-
ships between classes, as well as gaining an overview of the methods and the way they
are organised should be the result of a reverse engineering phase. We are looking for
the bad use as well as the good use of object-oriented design. In that sense, knowing
that an inheritance hierarchy is well designed is also valuable information.

Moreover in a reengineering context the fact that a class may have a design pro-
blem does not mean that the class should be redesigned. Indeed, if a badly designed
class or subsystem accomplishes the work it has been assigned to, without impacting
the reengineering process, there is no point in changing it. However, as most of the

A Reverse Engineering Methodology 9

time reengineers are not the original developers of the system they are maintaining,
being aware of such information is still valuable for getting a better mental model of
the system.

3.1. The Methodology Navigation Map

Each of the graphs presented here produces somesymptoms, like small dark nodes
or wide flat nodes. Such symptoms provide information about the analysed system
and also support the choice of the next graphs to further complete this understanding.
Graph symptoms point to possible paths that can guide the reverse engineer from
graph to graph. Depending on the symptoms the next graph can be applied on the
same entities, on a subpart of currently displayed entities or on the structurally contai-
ning entities (a class for a method or an attribute). Not all the symptoms are leading
to new graphs but also to some specific reengineering actions that represent the next
logical step after the detection of defects. For example detecting a “god class” that
Riel defines as a class that has grown over the years and has been assigned too many
responsibilities, may lead to a split of the class [RIE 96], long methods may be analy-
sed to see if they contain code duplication or be split up if they perform several tasks
at the same time [ROB 97, FOW 99].

The presented methodology is based on clusters that group the useful graphs depen-
ding on the problem encountered by the reverse engineer and the information provided
by the graphs. Each of these clusters is presented in detail in the subsequent section.
We identify four clusters:

1. First Contact, which provides different overviews of the system.

2. Inheritance Assessment, which qualifies the inheritance relationships and the
role played by the classes.

3. Candidate Detection, which identifies potential class candidates for future in-
vestigation.

4. Class Internals, which analyses the classes themselves.

Figure 4 presents a map that summarises the main paths between the different the
graphs, the clustered graphs and their symptoms.

3.2. First Contact

The first thing to do with an unknown system is to gain an overview. We should
know how complex the system is and in which way the system is organised. The
graphs proposed in this cluster provide answers to the following questions: How is the
system composed: only of standalone classes, or of some (maybe deep) inheritance
hierarchies? Is the system composed of a lot of small classes and some outliers or
only of big classes? What are the biggest entities?

Class Size Checkeris based on the metric LOC and provides an overview of a

10 Techniques et sciences informatiques. Volume X – n

Direct Access Attribute
empty node
big node

outliers
Method Size Correlation

large nodes
small nodes
high nodes

System Hotspot
Weight Distribution

big bottom node

Root Class Detection
outliers deep or big hierarchies

System Complexity

standalone node

long node

Inheritance Carriers

small light nodes
large dark nodes

Inheritance Classifier
flat nodes -> (functionality addition)
tall nodes (hook specification)

Service Class Detection

long node -> (method splitting)
breaking staircase -> (missing encapsulation)

Cohesion Checker
narrow dark node -> (cohesive)
square average node

Graph Name
Symptoms

apply following graph

Graph Clusters

-> (...) External actions to be
 investigated

Intermediate Abstract
flat dark nodes -> (hooks)

Class Confrontation

Class Internals

Class Size Checker

First Contact

Inheritance Assessment

Candidate Detection

Coding Impact Histogram
long node -> method splitting

Figure 4. The methodology is summarised by a navigation map that identifies the
graphs and their symptoms and relates the clusters themselves and the graphs

system application in terms of its raw measure. In particular, it reveals the overall pro-
portion of the classes and allows one to understand if the system is composed by few
big classes and lot of small ones or is only composed of average classes (see Figure 5).
This graph scales up well to very large systems.

— Big nodesrepresent big classes that may be worth further analysis, and can be

A Reverse Engineering Methodology 11

investigated by applyingClass Confrontation.

System Hot Spotshelps to identify big and small classes and scales up well to
very large systems. It relates the number of methods with the number of attributes of
a class.

— Large nodesrepresent voluminous classes that may be further investigated,
applying for exampleClass Confrontation.

— High nodesare classes that define a lot of methods and few or no attributes. Ap-
plying Inheritance ClassificationandHierarchy Carriers may help to understand
their relationship with their descendants.

— Wide nodesare classes defining a lot of instances variables. When such a class
shows a 2:1 size ratio it may represent a class whose main purpose is to be a data
structure implementing only get and set methods.

Variations ofClass Size CheckerandSystem Hot Spotsare useful to understand
how the programmers made use of static behaviour. For example, for Smalltalk code,
changing the color of the metaclasses allows us to see if metaclasses have not been
overused. Too much behaviour on the static or metaclass side are a sign that the class
has too many responsibilities or that it is a facade or a bridge to other classes.

Weight Distribution gives a qualitative overview of a system by categorising it as
top-heavy, bottom-heavyor mixed.

— Big dark nodes at the bottom of the graphrepresent classes defining a lot of me-
thods deep inside the hierarchy. ApplyingInheritance Classificationon the hierarchy
containing this class helps in understanding the repartition of the methods. Applying
Class Confrontationon them helps to understand their structure.

System Complexitywhich is based on the inheritance hierarchies of a whole sys-
tem gives clues on the complexity and structure of the system (see Figure 6). For
really huge systems and depending of the complexity of the inheritance hierarchies,
this graph should be applied on subsystems.

— Tall, narrow nodesrepresent classes with few instance variables and a lot of
methods. ApplyingClass Confrontationhelps to understand their internal structure.
When such long nodes appear in a hierarchy, applyingInheritance Classification
helps to qualify the semantics of the inheritance relationship in which the class is
involved.

— Deep or big hierarchiesare definitively subsystems on which the graphs of the
Inheritance Assessmentcluster help to refine the understanding.

— Big standalone nodesrepresent classes having a lot of attributes and a lot of
methods, yet without any subclasses. After further investigation it may be worth to
applyClass Confrontation to understand the internal structure of the class and learn
if the class is well structured or could be decomposed or reorganised.

Method Size Correlation provides a view at the method level (see Figure 7).
It helps to assess if the application is composed of classes principally defining data
structure and implementing little behaviour or not. By relating the method lines of
code with the number of statements in the context of the entire system, it helps to

12 Techniques et sciences informatiques. Volume X – n

identify empty methods, overlong methods, or methods not consistently formatted
according to the method majority.

— First raw displays empty methods that can represent commented or hook me-
thods.

— Outliersrepresents methods being too long and that may be the candidates for
splitting or methods not following formatting rules adopted by the rest of the applica-
tion.

Root Class Detectionhelps in identifying “root” of inheritance tree in the sense of
classes having a lot of children.Root Class Detectionis really useful for really large
applications whereSystem Complexitymay have problem to represent on screen
huge and multiple inheritance trees.

— Outliersare root classes. In languages like C++ where there is no concept of a
common root, root classes and their subclasses are good candidates for all the graphs
of the clusterInheritance Assessment.

Direct Access Attribute Checkershows all the attributes of a system represented
with the number of times they are accessed. This graph helps to understand if some
coding conventions have been applied e.g. whether accessor methods have been used
systematically. It helps also to identify violations of such conventions.

— Small nodesrepresent attributes that are not accessed and may point to dead
code.

— Big nodesrepresent attributes heavily accessed. These nodes can be the starting
point of understanding the functionality and structure of the class defining them.

3.3. Inheritance Assessment

Inheritance is a privileged way to structure object-oriented applications. Inheri-
tance relationships are thus an interesting point of view to understand applications.
However, inheritance can be used in different ways, like for example the pure addition
of functionality in the subclasses or specialisation of the root class functionality. The
graphs defined in this cluster help in the analysis of inheritance related aspects, e.g.
identifying classes which have a large impact on their subclasses, identifying nearly
empty classes or qualifying the inheritance relationships.

Inheritance Classification qualifies the inheritance relationships by displaying
the amount of added methods relative to the number of overridden methods and the
extended methods (see Figure 8).

— Flat light nodesrepresent classes where a lot of methods have been added but
where few methods have been overridden or extended. In such a case, the semantic of
the inheritance relationship is an addition of functionality.

— Tall nodesrepresent classes where a lot of methods have been overridden. They
can represent classes that have specialised hook methods. When the nodes are dark this
means that a lot of method have been extended.

A Reverse Engineering Methodology 13

Hierarchy Carriers helps to detect classes having a certain impact on their sub-
classes (see Figure 9).

— Large dark nodesrepresent classes that define a lot of behaviour and have a lot
of descendants. They represent classes having a certain impact on the application.

— Flat light nodesrepresent classes defining little behaviour but shared by a lot of
descendants. They can represent the ideal place to factor out code from the subclasses
to the superclass.

Intermediate Abstract identifies classes that are nearly empty in the middle of a
hierarchy.

— Flat dark nodesrepresent classes having few methods being added but that
have subclasses. Further investigation may reveal that the classes implement some
abstract behaviour.

3.4. Candidate Detection

This group of graphs helps in identifying potential classes for further analysis or
refactorings, e.g. data structure like classes potentially needing a better encapsulation
or interface, long methods or “god classes” [RIE 96] needing to be split.

Cohesion Overview Checkerpresents the number of methods, the total number
of attributes accesses and the number of attributes of all the classes of a system (see
Figure 10). It helps in identifying on one hand highly cohesive classes and on the other
hand possible “god classes”.

— Narrow and high dark nodesrepresent classes having few methods which hea-
vily access the attributes defined in the classes.

— Square average noderepresent medium to big classes with proportional attri-
bute accesses. These classes may be further investigated by applyingClass Confronta-
tion.

Service Class Detectionis based on relating the number of methods and the lines
of code of a class and interpreting this information in the context of the complete
application.

— Long nodesrepresents classes having long methods compared to the applica-
tion context.

— Breaking staircase effect nodesrepresent nodes that given a certain number of
methods do not have the expected length in terms of LOC. Such classes often lack
from encapsulation and are service classes. Service classes may point to sets of cou-
pled classes being brittle to changes.

14 Techniques et sciences informatiques. Volume X – n

3.5. Class Internals

The graphs of this cluster provide insight on the classes or small subsystems them-
selves.

Coding Impact Histogram reveals the shape of a class or a subsystem in terms of
the methods size distribution. Methods that are too long or strangely structured classes
are identified.

Class Confrontation reveals the structure of a class in terms of method use and
attribute accesses by showing the dependencies between the methods and the attributes
(see Figure 11). It detects classes which are candidates for splitting into smaller and
more encapsulated classes.

4. Case study

“The primary purpose ofreverse engineeringa software system is to increase
the overall comprehensibility of the system for both maintenance and new develop-
ment.”[CHI 90]

Introduction. Before applying our methodology on the case study, we list the results
that we expect to obtain. Here are our main expectations:

— Gain an overview of the system in terms of number of classes and their propor-
tion.

— Locate and understand the most important class and inheritance hierarchies.

— Assess the overall quality of the system.

— Identify exceptional classes in terms of size and/or complexity.

— Comprehend the internal organisation of the classes.

— Identify the possible use of design patterns or occasions where design patterns
could be used.

Reporting about the case study.In this section we illustrate the proposed methodo-
logy by showing a selection of the graphs we obtained while reverse engineering an
industrial system.

Reporting about a case study is quite difficult without sacrificing the exploratory
nature of the approach. Indeed, the idea is that different graphs provide different yet
complementary perspectives. Consequently, a concrete reverse engineering strategy
should be to apply the graphs in some specific order, although the exact order would
vary depending on the kind of system at hand and the kind of questions driving the
reverse engineering project. Therefore, readers should read the case study report as
one possible use case, keeping in mind that reverse engineers must customise their
approach to a particular reverse engineering project. For the sake of simplicity, we
chose to present some selected useful graphs following the presented clusters and not
a possible path through the graphs.

A Reverse Engineering Methodology 15

Some Facts about the Case Study.The system we report on here is VisualWorks
3.0 [HOW 95], an industrial framework developed in Smalltalk that consists of 528
classes (not counting the meta-classes), 10794 methods, 1674 attributes, 535 inheri-
tance relationships, 32591 method invocations and 9537 attribute accesses.

VisualWorks is a good case study because (a) it is freely available so the results
presented here can be reproduced and (b) it is a complex system large enough to show
the benefits of our approach. Note that besides this case study, we have run other
experiments on industrial systems implemented in C++ and Smalltalk. However due
to non-disclosure agreements, we cannot publish the results of these experiments.

4.1. First Contact Cluster

As this cluster contains more graphs than the other, we present three different and
complementary graphs that provide overviews of the case study.

Figure 5. First Contact: Class Size Checker; node size = LOC, and colour = NIV

Class Size Checker.One of the first impressions of the system that reverse engi-
neers desire is a feeling for the raw physical measures of a system. For that purpose,
we generate aClass Size Checker(see Figure 5). Checker graphs are useful for sho-
wing relative proportions between the system elements. In this particular case it shows
the proportions among the classes of the software system in terms of lines of code.
Through sorting, it is easy to identify the largest and smallest classes.

Interpretation. In the displayed graph, we remove the class Object and a class called
InverseColorMapInitializer that contains 72 attributes to get a better distribution of the
colour metrics over the other nodes. In this graph we see there are many very small
classes (around 400) and that there are some empty classes positioned on the upper
left corner, and also a great number of big classes not bigger than 2000 LOC. T The
empty classes are only visible on the screen and not in the paper version, because
metric measurements equal to zero render the nodes with a blue border. The biggest
one with 2087 lines of code is the class ParagraphEditor. We see there are many others
which are also very big and have sizes around 2000 lines of code. In decreasing order:
ParagraphEditor (2087 LOC), SimpleDialog (2068), UIBuilder (1959), Point (1572).
Then the darker nodes represents classes having a lot of attributes: this is the case of

16 Techniques et sciences informatiques. Volume X – n

GraphicsContext (1302 LOC and 22 attributes) and some smaller classes RasterOp
(422 LOC and 22 attributes) and DataSetColumnSpec (247 LOC and 19 attributes).

Figure 6. First Contact: System Complexity; node width = NIV, height = NOM and
colour = LOC

System Complexity.To assess the size and complexity of the system, we applySys-
tem Complexity on the complete system. The fact that in Smalltalk all the classes in-
herit from the class Object blurs the identification of relevant inheritance trees. That’s
why to get a better understanding of the inheritance hierarchies we removed the class
Object. Due to the space limits of the paper, we selected some interesting hierarchies.
Figure 6 presents then a partial view that we obtained.

Interpretation. The system is composed by several inheritance trees of various size
(B is the inheritance tree of UISpecification, C the one of Controller) and some stan-
dalone classes (A, K and L). The big left standalone class (A) is the UIBuilder class
that is one of the cornerstones of the framework as mentioned in [HOW 95]. This
class implements a lot of functionality. The second hierarchy from the left (B) is the
UISpecification hierarchy that represents all the functionality related to the way the
widget are specified. The third left inheritance graph (C) is the inheritance of the class
Controller of the MVC triad. The big dark node (E) is the class ParagraphEditor with
2087 LOC. The small class D, named NoController, with only three methods is the
result of the application of the Null Object pattern [MAR 98b]. It represents the de-
fault behaviour of not having a controller. The fourth inheritance tree (F) is a part of
the Geometric class tree. The big narrow node (G) is Rectangle. Its big relative size in

A Reverse Engineering Methodology 17

terms of methods is confirmed by the use of Rectangle in Smalltalk. H represents the
class GraphicsContext a nearly standalone class. The two rightmost big standalone
classes are InverseCoplorMapInitializer (J) with 72 attributes and InverseColorMap
(I) with 16 attributes. After manual browsing, we identified that the first class is in
fact an algorithm that uses attributes as temporary variables and that it is used by the
second class.

Figure 7. First Contact: Method Size Correlation; node position = (X = LOC, Y =
NOS) and colour = LOC

Method Size Correlation.While a histogram is good to get a feeling for the distri-
bution of system elements according to one metric, it is not optimal for analysing a
system as it emphasises a single metric only. In contrast, the correlation graph is one
of the graphs that may render up to five different metrics per node at the same time.
Nevertheless, we usually restrict ourselves to three metrics to achieve the effect of all
nodes having uniform size for better understanding. We applyMethod Size Correla-

18 Techniques et sciences informatiques. Volume X – n

tion on the full system and obtain Figure 7. Note that in a correlation graph, the nodes
may overlay each other, which is the case for many nodes in the upper left corner.
However, this is not a problem as only the outliers are interesting to us.

Interpretation. The first line of nodes are interesting because their bodies contain no
statement at all. Most of them represent hooks methods like hasFocus or performUp-
date methods. Some of them are positioned there because they contain only comments
(remember that we count comment lines as well). The rightmost nodes on the second
line represent methods having a lot of lines of code but few statements (one in this
case). In this system they represent most of the time primitives on classes Screen,
GraphicsDevice that included quite a lot of comments. The left most top most node is
a primitive with up to 14 arguments.

The other interesting nodes are the ones on the outer edges of the correlation graph.
Looking at these methods helps to understand what are the classes performing some
costly operations. Some of such a method are potential for a split like print:on:using:
of the class NumberPrintPolicy that is 86 LOC long. However one of the danger with
this graph is to dive too much into the details.

Another insight which can come from this graph is a general assessment of the sys-
tem. During our experiments we have seen that the methods tend to align themselves
along a certain correlation axis. Depending on the age of the system the axis changes
its angle with time: methods are written and corrected all time, slowly getting messy
with many statements on few lines.

4.2. Inheritance Assessment Cluster

We present two complementary graphs that help to understand inheritance relation-
ships.

Inheritance Classification. Inheritance is a key mechanism of object-oriented pro-
gramming. That’s why having a better understanding of the inheritance relationships
between classes is important. By changing the shape and the colour of the nodes
according to their numbers of methods added, overriding or extended,Inheritance
Classification provides such information. Figure 8 presents the results we obtained
on the class VisualComponent that is crucial in the VisualWorks system.

Interpretation. Such a graph contains three kind of nodes: the horizontal ones, the
vertical ones and the small blue square ones. Each of them describes a different kind
of inheritance relationship.

A horizontal box means that a lot of method have been added. For example, the
classes Image, TableView, SelectionView are adding new behaviour. Classes Widget-
Wrapper, DataSetView and VisualPart are adding and overriding behaviour.

A vertical box says that more methods have been overridden than added. This is
the case of the class Wrapper. Indeed this class is a Decorator that is why it contains a
lot of extended and overridden methods and few added ones [ALP 98].

Small blue square nodes identify classes that potentially are not defining new me-

A Reverse Engineering Methodology 19

thods, thus only specialising the superclass behaviour. We have still to check that the
first measurement is really zero. This is mainly the case for the classes denoted by A.
Note that this shows that the hierarchy is good.

Figure 8. Inheritance Assessment: Inheritance Classification; width node =NMA,
height node = NMO and colour = NME

Hierarchy Carriers. Inheritance being the essential mechanism of reuse, it is interes-
ting to identify classes having a big impact on their subclasses. Figure 9 is the appli-
cation ofHierarchy Carriers on the previous inheritance tree.

Interpretation. Large square or large horizontal rectangle nodes represent classes ha-
ving a lot of children while in the same time defining a lot of methods. Such classes
share code among a large set of classes. For example, the classes VisualComponent,
VisualPart, DependentPart, View and SimpleView defines important behaviour (like
associating a model and a controller to the visual element) that is shared among sub-
hierarchies.

20 Techniques et sciences informatiques. Volume X – n

Figure 9. Inheritance Assessment: Hierarchy Carriers; node width = WNOC, node
height = NOM and colour = WNOC

4.3. Candidate Detection Cluster

Cohesion Overview Checker.One of the generic principles in designing software
systems is to maximise the cohesion within and minimise the coupling between the
systems components.Cohesion Overview Checkerhelps in assessing if the classes
are cohesive or possible god classes. Such classes are candidates for splitting.

Interpretation. In Figure 10, we see some narrow nodes like RasterOp, Controller
that are cohesive. Narrow nodes means classes having few methods accessing a lot
the attributes. ApplyingClass Confrontationon these classes produces dense graphs

A Reverse Engineering Methodology 21

Figure 10. Candidate Detection: using Cohesion Overview Checker to assess class
cohesion; width node = NOM, height = WNAA, colour = NIV.

where the attributes are heavily accessed by the methods. Flat light nodes, like the last
bottom node of the graph, represent classes having few attributes, then few accesses
to these attributes and a lot of methods.

The other interesting kind of nodes are the approximately average squared nodes
of average colour. These nodes are potential god classes[RIE 96]. ApplyingClass
Confrontation on these classes may lead to identify classes needing to be split. Figu-
re 11 shows the applicationClass Confrontation on the node representing the class
ScheduledWindow.

The current graph interpretation is limited by the fact that this graph only takes
into account the direct accesses to attributes. This means that it cannot detect god
classes or non-cohesive classes that are using accessors instead of directly accessing
the attributes.

4.4. Class Internals Cluster

For this cluster we present the application ofClass Confrontationas the following
step of the application ofCohesion Overview Checker(see 4.3).

Class Confrontation. After applying theCohesion Overview Checkergraph, we
apply aClass Confrontationon the class ScheduledWindow (in Figure 10) to gain a
better understanding of its internal structure.

Interpretation. As shown by the Figure 11 we identify two clusters of methods ac-
cessing two distinct sets of attributes. This suggests that the class could be split. Due

22 Techniques et sciences informatiques. Volume X – n

Figure 11. Class Internals: Focus on Class Cohesion of ScheduledWindow using a
Class Confrontation; method node height and width = NOS and colour = LOC; attri-
bute node height and width and colour = NAA. The top nodes represents attributes,
the bottom nodes the methods and the edges the attribute accesses.

to the good state of VisualWorks we were surprised to find such a situation. In fact the
left group of attributes deals with internal aspects such as the minimum size, maxi-
mum size, label... of the window, whereas the right set of attributes represents the
connection with the external objects such as the controller, the component the master
window and the model associated with the window.

4.5. Case study evaluation

Using a hybrid approach combining metrics and graph layouts on this industrial
framework provided us with an initial understanding and identify some of the key
classes without having to dive into the details. During the time we allocated to the
system understanding, three days in the present case, the methodology guided us to
steer our tasks by structuring the possible branches we could follow depending on
the various signs the graph revealed. One of the major problems with large systems
is to get an overview and get some initial understanding without getting lost in their
intrinsic complexity. The clusters helped to stay focus at the different levels of unders-
tanding that we wanted to gain, and we were able to maintain a breath first overview
instead of a deep first that would have led us to deal with too detailed understanding.

In the three days we allocated to this experiment we also have been able to:

— See that the framework is composed from a few big classes like UIBuilder, and
ApplicationModel and a lot of small classes.

— See that metaclasses were used in a good way. Metaclass methods implement
class behavior and not other services.

— Identify key hierarchies like the VisualComponent one in which we found the
application of the Decorator pattern.

— Identify strange classes merely implementing algorithms.

— Identify many very long methods.

— Understanding the relative importance of key classes like the Controller class.

A Reverse Engineering Methodology 23

Possible Improvements.Up to now the graphs defined do not handle coupling or col-
laboration between classes. We missed this aspect while trying to understand how
classes in different hierarchies were linked or when trying to understand what class
represent configuration object or a central place in the system. Moreover, the unders-
tanding of the class internals is limited in the sense that it only shows attribute accesses
and that method invocations is not really presented in a meaningful way. Improving
these aspects is one of our major goals in the future.

5. Tool Support: Moose and CodeCrawler

CodeCrawler is the tool that we developed to identify the useful graphs and to
validate our methodology. CodeCrawler is freely available at http://www.iam.unibe-
.ch/�famoos/. CodeCrawler is based on Moose for the source code entity meta model
and the metric extraction, and on the HotDraw framework [JOH 92] for its visualisa-
tion.

Moose is a language independent and extensible reengineering environment built
in VisualWorks Smalltalk and it has the following characteristics:

— Language independence – Moose supports reengineering of applications deve-
loped in different object-oriented languages such as Java, Smalltalk and C++, as its
core model islanguage independent[TIC 98].

— Extensible – New entities like associations or groups can be added.

— Analysis support – Moose supports reengineering by providing facilities for
analysing and storing multiple models, for refactoring and support for analysis me-
thods such as metrics and inference of source code entity properties.

Measurements and Metrics in Moose.Moose defines a large set of metrics which is
constantly being extended. The supported metrics are mainly simple metrics or measu-
rements that are easily extractable from source code and whose definition is relatively
simple as shown in Table 2.3. Moreover Moose supports language independent as well
as language dependent metrics. By language dependent we mean metrics which can
be defined only for a certain language. For example NOMP, the number of method
protocols of a class, is meaningful for Smalltalk classes.

CodeCrawler. Being based on Moose, CodeCrawler is language independent – it
has been used to validate our approach during the reverse engineering of applications
written in Java, C++ and Smalltalk, extensible from the entity and metric point of
view– we are currently extending the approach to introduce groups of entities (like
module or package) and to define new metrics for such entities.

24 Techniques et sciences informatiques. Volume X – n

6. Related work

Program visualisation.Among the various approaches to support reverse engineering
that have been proposed in the literature, graphical representations of software have
long been accepted as comprehension aids. Various tools provide quite different pro-
gram visualisations: Graphtrace [KLE 88], Rigi[Mül 86], Hy+ [CON 92, CON 93],
SeeSoft [BAL 96], ISVIS [JER 97]and JInsight [PAU 93].

Powerful algorithms have been developed to support such huge visual program
representations: the Sugiyama algorithm to optimise hierarchical layouts [SUG 81],
hyperbolic geometry to navigate through large hierarchies [LAM 95], Shrimp views to
optimise layouts in general [STO 95], libraries providing ranges of algorithms [SAN 96],
ternary diagrams to track dynamic interactions between system modules [HAY 97],
mural techniques to provide large overviews [BAL 96], [JER 97].

Metrics. Metrics have long been studied as a way to assess the quality of large soft-
ware systems [FEN 97] and recently this has been applied to object-oriented sys-
tems as well [MAY 96], [KON 97], [MAR 98a], [LEW 98], [NES 88]. However, a
simple measurement is not sufficient to assess such complex thing as software quality
[HEN 96], not to mention the reliability of the results [DEM 99a].

Some of the metric tools visualise information via typical algorithms for statistical
data, such as histograms and Kiviat diagrams. Datrix [MAY 96], TAC++ [FIO 98a,
FIO 98b], and Crocodile [LEW 98] are tools that exhibit such visualisation features.
However, in all these approaches, the visualisation is a mere side-effect of having a
lot of numbers to analyse. In our approach, the visualisation is an inherent part of the
approach, hence we do not visualise numbers but constructs as they occur in source
code.

Methology. To the best of our knowledge none of the approaches we referenced ela-
borate a methodology. Most of the times, metrics definitions, tools or techniques are
indeed presented, but no process or methodology is discussed with which the tools or
techniques can be applied.

7. Conclusion

We presented a hybrid approach for the reverse engineering of large object-oriented
systems. It combines the immediate appeal of program visualisation with the scalabi-
lity of metrics to support program understanding and problem detection. However,
contrary to other researches that limit themselves to present metrics definition or tool
functionality, we elaborated a methodology to guide the reengineers. The contribu-
tions of this paper are:

— The elaboration of a methodology that helps to apply and analyse the graphs
we identified in our previous work. The methodology is based on the definition of
simple graphs that once applied act as revealer by showing or not symptoms that the

A Reverse Engineering Methodology 25

reengineer should check in the code. The methodology is based on the definition of
clusters that group graphs depending on the goal of the reengineer. The methodology
also states the possible paths from the graphs themselves or from the clusters depen-
ding on the symptoms revealed by the graph application.

— The methodology supports the reverse engineer process by helping to map
some simple goals to some specific graph application e.g. for example which are the
graphs that support class internal understanding or system overview.

— The presentation of an industrial case study where we show that the methodo-
logy helped us to understand differents aspects of the case study, e.g. the overview of
the application, the qualification of inheritance, the presence of design patterns.

Note that the definition of new graphs expressing the coupling between entities
(classes, methods, modules, applications...) could improve the presented methodology.
Such new graphs may lead to the definition of new clusters and paths between graphs.
This is part of our future work.

Acknowledgements

This work has been funded by the Swiss Government under Project no. NFS-2000-
46947.96 and BBW-96.0015 as well as by the European Union under the ESPRIT
program Project no. 21975.

8. Bibliography

[ALP 98] ALPERT S. R., BROWN K. et WOOLF B., Design Patterns in Smalltalk. Addison-
Wesley, 1998.

[BAL 96] B ALL T. et EICK S., « Software Visualization in the Large ».IEEE Computer, p.
33–43, 1996.

[CAS 98] CASAIS E., « Re-Engineering Object-Oriented Legacy Systems ».Journal of
Object-Oriented Programming, vol. 10, no 8, p. 45–52, January 1998.

[CHI 90] CHIKOFSKY E. et CROSS II J., « Reverse Engineering and Design Recovery: A
Taxonomy ».IEEE Software Engineering, p. 13–17, January 1990.

[CON 92] CONSENSM., MENDELZON A. et RYMAN A., « Visualizing and Querying Soft-
ware Structures ». InProceedings of the 14th International Conference on Software Engi-
neering, p. 138–156, 1992.

[CON 93] CONSENSM. et MENDELZON A., « Hy+: A Hygraph-based Query and Visualisa-
tion System ». In Proceeding of the 1993 ACM SIGMOD International Conference on
Management Data, SIGMOD Record Volume 22, No. 2, p. 511–516, 1993.

[DEM 99a] DEMEYER S. et DUCASSE S., « Metrics, Do They Really Help? ». In
MALENFANT J., Ed.,Proceedings LMO’99 (Languages et Modèles à Objets), p. 69–82.
HERMES Science Publications, Paris, 1999.

26 Techniques et sciences informatiques. Volume X – n

[DEM 99b] DEMEYER S., DUCASSES. et LANZA M., « A Hybrid Reverse Engineering Plat-
form Combining Metrics and Program Visualization ». In BALMAS F., BLAHA M. et
RUGABER S., Eds.,WCRE’99 Proceedings (6th Working Conference on Reverse Enginee-
ring). IEEE, October 1999.

[FEN 97] FENTON N. et PFLEEGERS. L., Software Metrics: A Rigorous and Practical Ap-
proach. International Thomson Computer Press, London, UK, second édition, 1997.

[FIO 98a] FIORAVANTI F., NESI P. et PERLI S., « Assessment of System Evolution Through
Characterization ». InICSE’98 Proceedings (International Conference on Software Engi-
neering). IEEE Computer Society, 1998.

[FIO 98b] FIORAVANTI F., NESI P. et PERLI S., « A Tool for Process and Product Assessment
of C++ Applications ». In CSMR’98 Proceedings (Euromicro Conference on Software
Maintenance and Reengineering). IEEE Computer Society, 1998.

[FOW 99] FOWLER M., Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[HAY 97] H AYNES P., MENZIEST. et COHEN R., «Software Visualization», Chapitre Visua-
lisations of Large Object-Oriented Systems. World-Scientific, 1997.

[HEN 96] HENDERSON-SELLERS B., Object-Oriented Metrics: Measures of Complexity.
Prentice-Hall, 1996.

[HOW 95] HOWARD T., The Smalltalk Developer’s Guide to VisualWorks. SIGS Books, 1995.

[JER 97] JERDING D. et RUGABER S., « Using Visualization for Architectural Localization
and Extraction ». In BAXTER I., QUILICI A. et VERHOEFC., Eds.,Proceedings Fourth
Working Conference on Reverse Engineering, p. 56 – 65. IEEE Computer Society, 1997.

[JOH 92] JOHNSON R. E., « Documenting Frameworks using Patterns ». InProceedings
OOPSLA ’92 ACM SIGPLAN Notices, p. 63–76, October 1992.

[KLE 88] K LEYN M. F. et GINGRICH P. C., « GraphTrace – Understanding Object-Oriented
Systems Using Concurrently Animated Views ». InProceedings OOPSLA ’88, ACM SIG-
PLAN Notices, p. 191–205, November 1988. Published as Proceedings OOPSLA ’88, ACM
SIGPLAN Notices, volume 23, number 11.

[KON 97] KONTOGIANNIS K., « Evaluation Experiments on the Detection of Programming
Patterns Using Software Metrics ». In BAXTER I., QUILICI A. et VERHOEFC., Eds.,Pro-
ceedings Fourth Working Conference on Reverse Engineering, p. 44 – 54. IEEE Computer
Society, 1997.

[LAM 95] L AMPING J., RAO R. et PIROLLI P., « A Focus + Context Technique Based on
Hyperbolic Geometry for Visualising Larges Hierarchies ». InProceedings of CHI’95,
1995.

[LAN 99] L ANZA M., « Combining Metrics And Graphs for Object Oriented Reverse Engi-
neering ». Master’s thesis, University of Bern, 1999.

[LEW 98] LEWERENTZC. et SIMON F., « A Product Metrics Tool Integrated into a Software
Development Environment ». InObject-Oriented Technology Ecoop’98 Workshop Reader,
LNCS 1543, p. 256–257, 1998.

[LOR 94] LORENZ M. et KIDD J., Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall, 1994.

A Reverse Engineering Methodology 27

[Mül 86] M ÜLLER H., « Rigi - A Model for Software System Construction, Integration, and
Evaluation based on Module Interface Specifications». PhD thesis, Rice University, 1986.

[MAR 98a] MARINESCU R., « Using Object-Oriented Metrics for Automatic Design Flaws
in Large Scale Systems ». InObject-Oriented Technology Ecoop’98 Workshop Reader,
LNCS 1543, p. 252–253, 1998.

[MAR 98b] MARTIN R., RIEHLE D. et BUSCHMANN F., Eds.,Pattern Languages of Program
Design 3. Addison-Wesley, 1998.

[MAY 96] M AYRAND J., LEBLANC C. et MERLO E., « Experiment on the Automatic Detec-
tion of Function Clones in a Software System Using Metrics ». InInternational Conference
on Software System Using Metrics, p. 244–253, 1996.

[NES 88] NESI P., « Managing OO Project Better ».IEEE Software, July 1988.

[PAU 93] PAUW W. D., HELM R., KIMELMAN D. et VLISSIDES J., « Visualizing the Beha-
vior of Object-Oriented Systems ». InProceedings OOPSLA ’93, ACM SIGPLAN Notices,
p. 326–337, October 1993.

[RIE 96] RIEL A. J.,Object Oriented Design Heuristics. Addison-Wesley, 1996.

[ROB 97] ROBERTSD., BRANT J. et JOHNSON R. E., « A Refactoring Tool for Smalltalk ».
Theory and Practice of Object Systems (TAPOS), vol. 3, no 4, p. 253–263, 1997.

[SAN 96] SANDER G., « Graph Layout for Applications in Compiler Construction ». Rapport
technique, Universitaet des Saarlandes, February 1996.

[STO 95] STOREY M.-A. D. et MÜLLER. H. A., « Manipulating and documenting software
structures using SHriMP views ». InProceedings of the 1995 International Conference on
Software Maintenance, 1995.

[SUG 81] SUGIYAMA K., TAGAWA S. et TODA M., « Methods for Visual Understanding of
Hierarchical System Structures ».IEEE Transactions on Systems, Man and Cybernetics,
vol. SMC-11, no 2, February 1981.

[TIC 98] TICHELAAR S. et DEMEYER S., « An Exchange Model for Reengineering Tools ».
In DEMEYER S. et BOSCH J., Eds.,Object-Oriented Technology (ECOOP’98 Workshop
Reader), LNCS 1543. Springer-Verlag, July 1998.

Article reçu le 18 Novembre 1999
Version révisée le 6 Juin 2000

Rédacteur responsable : Christophe DONY

Stéphane Ducasseis first assistant at the University of Bern in the Software Composition Group
led by Prof. Nierstrasz. Since 1996, he has a PhD from the I3S laboratory of the University
of Nice-Sophia Antipolis. He likes teaching and supervising students. His research interests
are: metaprogramming, reflective systems and languages, meta object protocol definitions, com-
ponent specification and composition, metamodeling, frameworks building, code understanding
and analysis, refactorings, object oriented reverse engineering and reengineering, and teaching
programming to kids. He participated to the FAMOOS Esprit project and is currently partici-
pating to the PECOS IST project. He is involved in the Smalltalk and Squeak communities.

28 Techniques et sciences informatiques. Volume X – n

Michele Lanza is currently doing his Ph.D. at the University of Bern in the Software Com-
position Group led by Professor Nierstrasz. His main interests lie in reengineering and reverse
engineering as well as program understanding. He likes programming and software engineering
in general, although at the same time he is trying to keep an open view on things for the sake of
personal flexibililty. He got involved in software reengineering by participating to the FAMOOS
Esprit Project. At this time he is shifting his focus in research towards software evolution.

