
Miler – A Tool Infrastructure to Analyze Mailing Lists

Alberto Bacchelli, Michele Lanza, Marco D’Ambros
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—The information that can be used to analyze
software systems is not limited to the raw source code, but
also to any other artifact produced during its evolution. In
our recent work we have focused on how archives of e-mails
that concern a system can be exploited to enhance program
comprehension.

In this paper we present Miler, a tool we have built for that
purpose. We describe its architecture and infrastructure, and
the FAMIX meta-model extension we have devised to model
mailing list archives.

I. INTRODUCTION

In software systems, not only the source code, but any
other artifact revolving around them (requirements, design
documents, user manuals, bug reports, etc.) concurs to
define their shapes. Such artifacts add information either
by describing a specific piece of the source code or generally
introducing concepts or necessities.

E-mail archives are widely employed during the devel-
opment of software systems and contain information at
different levels of abstraction. E-mails are used to discuss
issues ranging from low-level decisions (e.g., implementation
of specific software artifacts, bug fixing, discussing user
interface problems) up to high-level considerations (e.g.,
design rationales, future planning). They can often be written
and read by both software system developers and end-users,
and always come with additional meta-information (e.g., time-
stamp, thread, author) that can be taken into account.

Since the FAMIX meta-model was designed to be exten-
sible, adding new information to the source code entities
it models is straightforward. However, to add information
from e-mails it is first necessary to import messages from the
archives in which they reside. Then, the resulting data must
be stored in an easily accessible persistent format, in order
to be used for subsequent analyses. Finally, the information
contained in e-mails must be linked to the entities in the
system model, described according to the FAMIX meta-
model.

In this article we present Miler, a tool infrastructure that
tackles these issues and allows one to analyze e-mail archives
of software systems. Miler is implemented in VisualWorks1

Smalltalk, uses the Moose Reengineering Environment for
the modeling tasks, and uses GLORP [4] and the Metabase
[2] for the object persistency. In previous work we used
this infrastructure to create a benchmark for e-mail analysis

1http://www.cincomsmalltalk.com/

and to test different lightweight methodologies for linking
e-mails and source code [1].

Structure of the paper In Section II we present an
overview of the Miler architecture introducing its components
and showing how they interact. Then we provide the details
of our technique to import archives of mailing lists, and we
explain how we store e-mails in a database transparently
thanks to a simple meta-model description. In Section III,
we discuss how to use Miler to deal with the merging of the
model of the system and the model of the e-mail archive.
We conclude in Section IV.

II. MILER

Figure 1 depicts an overview of Miler’s architecture.
After a target system is chosen (point I), the source code
is imported into the MOOSE Reengineering Environment
through an importer module. The importer parses the source
code, generate the corresponding model according to the
FAMIX meta-model and exports it in a format that can be
loaded by the MOOSE Environment. It is possible both to
use a third-part importer or to implement a specific one. For
example, when working with Java systems we used iPlasma2

as importer, while we implemented specific importers to deal
with languages (e.g., PHP, Actionscript) not supported by
any external tool. After the necessary models are available
from Moose, they are included into the core of Miler as
“System Models”.

After the target system is selected, the e-mails in the
archive of mailing lists are also imported into Miler. Different
systems use different applications to manage and archive
mailing lists, thus not offering a consistent way to access to
their data. Moreover, such applications could change during
the system lifetime. For this reason, in the worst case scenario,
it might be necessary to write at least one importer per system
to collect e-mails. We tackled this issue by using MarkMail3,
a free service for searching mailing list archives, which are
constantly updated. More than 7,000 mailing lists, taken
especially from open source software projects, are stored and
displayed in a consistent manner. It is possible both to search
e-mails through queries and to access all the e-mails of a
specific mailing list. We implemented an importer (Figure 1,
point II) that crawls the MarkMail website and extracts all the
e-mails from the selected mailing lists and instantiates them

2http://loose.upt.ro/iplasma/
3http://markmail.org/



External Components

Miler Core

Database

Target System

MarkMail Service

Source Control System

Source Code Importer

MOOSE
Reengineering
Environment

MarkMail
Importer

System Models

Miler Game
Web 

ApplicationG
LO

R
P

Reviewers

Annotations

E-Mails

Mailing Lists

I

II

III

IV

V

Miler

Figure 1. Miler architecture

as objects that are part of the Miler core. As it appears from
the architecture diagram, it is easy to add various importers
capable of extracting data from other sources than MarkMail
service and instantiate them as objects.

To store information gathered from a mailing list, we use
an approach based on object persistency rather than using text
files (e.g., as done with MOOSE, whose last, and currently
used, file format is MSE4). Text files do not require a DBMS,
however data cannot be accessed remotely, and they generate
performance bottlenecks, since the entire text file must always
be parsed (i.e., it is not possible to import only parts of the
model). When considering mailing lists, the performance
aspect is relevant as they often contain thousands of e-mails.

In Figure 1, the orange components that reside inside the
core of Miler (Point IV) are modeled according to a meta-
model written in Meta5. Thanks to these meta-descriptions,
the Metabase component is capable of automatically gener-
ating the corresponding GLORP class descriptions, which
define the mapping between the Smalltalk classes and the

4http://scg.unibe.ch/wiki/projects/fame/mse
5Meta is the previous version of Fame (http://scg.unibe.ch/wiki/projects/

fame/)

database tables [2]. In this way, objects are stored and
retrieved from the chosen database transparently through the
GLORP layer: It is sufficient to save the objects of the model
the first time they are created and to create a connection
with the database when loading Miler. In addition, since
objects are stored in a common database, it is possible to
access them, even remotely, from different languages and
applications.

The last component of the Miler architecture is the “Miler
Game”(Figure 1, Point V). This is a web application used
to manually annotate the entities of the systems with the
e-mails discussing them. This application is built on the top
of the Miler Core using the Seaside web framework [3]. In
Section III, we describe in detail the application from a user
point of view.

III. ENTITIES AND E-MAILS

After the core of Miler is filled with the necessary data,
gathered from both source code and message archives, the
step that follows is extending the FAMIX models with the
relevant information that resides inside the model of e-mails,
i.e., linking software system entities (e.g., classes) with the

http://scg.unibe.ch/wiki/projects/fame/
http://scg.unibe.ch/wiki/projects/fame/


I

II

III IV

V

Figure 2. The Miler Game Web Application

e-mails discussing them. Since e-mails are written in free-
form text, automatically finding such missing links is not
a trivial task [1]. To create a benchmark against which to
compare approaches that establish such links, we devised the
“Miler Game”, a web application that permits to efficiently
annotate the system entities with the corresponding e-mails.

Figure 2 illustrates the main page of the web application,
which is displayed after the user login. Different interactive
panels form this page: the “Systems” panel (Point I) shows
the list of the software systems for which both the FAMIX
model and the e-mails are available in Miler. The user here
chooses the system to be considered. The “Mails” panel
(Point II) informs the user about how many e-mails have
been read for each system. Since it is possible to setup a
predetermined number of mails to read per system (e.g., to
create benchmarks [1]), this number is also displayed. The
“Navigation” panel (Point III) allows the user to retrieve an
e-mail knowing its unique permalink (as we were using the
MarkMail importer, we decided to use the one present in the
MarkMail service). The main panel of the application is the
e-mail panel (Point IV), in which the headers and content of
an e-mail are displayed. Headers are displayed on top of the
message, including the subject, the author, the date and the
list to which the e-mail was sent, and the unique permalink
of the message inside Miler. The message content is colored
like in common e-mail readers: “Threaded” messages that
are part of a larger discussion often quote sentences from

previous e-mails, thus, in order to increase readability, the
Miler Game colors quoted text differently. Finally, there is the
“Annotation” panel (Point V) with two components: the list
of the entities that are already annotated (i.e., are discussed
in the e-mail) and an autocompletion field (Figure 3).

Figure 3. Autocompletion in the Miler Game

This field helps the user in annotating the e-mail at different
levels: first, it allows the user to see all the entities whose
name include the letters she inserted; second, it avoids
typos and forces the user to enter only entities that are
really present in the FAMIX models; third, the entity names
are colored according to the time proximity of the e-mail



date and the entity release. In Miler, it is possible to have
more than one release of the same system, and when the
entity names are displayed their date is taken into account.
If the entity is present in the last release before the e-
mail date, then its name will be colored in black in the
autocompletion menu, if the entity is older, then it will
be colored in light gray. On the contrary, if the entity
appears in the version released after the e-mail date, its color
will be blue, otherwise light blue, if present in a version
which was released later. This helps the user discerning the
appropriate entity. For example, if we consider the class
named ClassFinder, that is also present in Figure 3, the
autocompletion menu shows two different entities with this
name: “org::apache::jmeter::util::ClassFinder”, in light gray,
and “org::apache::jorphan::reflect::ClassFinder”, in black. If
the class is mentioned only by its name in the e-mail, without
the package, and there is no other information, the user can
decide to take the latter, as it is more probable that the e-mail
is referring to it.

name
rawContent

Miler.MEntity

rawContent
list
permalink
subject
timestamp

Miler.Mail

isReported

Miler.Annotation

name

Miler.Reviewer

name
language

Miler.MSystem

name
timestamp

Miler.MRelease

1 1..*

10..*

11..*

1..*

1 1

1

10..*

SCG.Moose.
FAMIXAbstractObject

Figure 4. UML Schema of the Miler core

Figure 4 shows the core meta-model behind Miler. MSys-
tem is the class representing a system that is imported in
Miler. Since GLORP adds an hidden “id” instance variable
to every object it stores, it is possible for the name to be
not unique. Each MSystem owns a collection of MReleases,
which represent the various version of the source code.
Each MRelease is characterized by a “timestamp” and has a
collection of unique MEntities. In our case, we decided to
create a new class to represent entities of the system, instead
of extending Moose definitions, however it is possible to
substitute this abstraction with a FAMIXAbstractObject class.
To do so, the developer must describe that class meta-model
using Meta to specify the information, i.e., instance variables,
to be stored and retrieved from the database.

In Figure 4, the class Reviewer represents the abstraction
of the users of Miler. When a reviewer reads a new e-
mail, this generates a new Annotation that expresses the
reviewer’s opinion on the connection between a Mail and

zero or more MEntities. This class shows the “missing link”
between source code entities and e-mails. Once the links
are validated (e.g., by a review or other expert users), the
Annotation can be put aside and the MEntity can be directly
extended with the new information. If FAMIXAbstractObject
takes the place of MEntity, it is possible to extend it either
by using a new instance variable or by using the property
attribute already existing in the class.

Annotations can be generated not only by the manual
work of users, but also implementing an automated method.
For example, it was shown that searching for entity names
into the content of mails using regular expressions is often
sufficient to establish a correct link between an e-mail and
source code artifacts [1].

IV. SUMMARY

In this paper we have presented Miler, a novel tool
infrastructure to establish links between e-mails and source
code artifacts. We described the architecture of Miler,
discussing the different modules composing it, and presented
our implementation and how it can be extended. We then
presented Miler Game, a web application we devised for
manually linking the information in the e-mails with the
entities of the system.

As future work, we plan to extend the “Miler Game”
web application to allow selected users to easily perform
administrative tasks, such as adding new systems, releases
or mailing lists, by simply providing a link to the version
control repository or to the mailing list archive.

Acknowledgments We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for
the project “DiCoSA” (SNF Project No. 118063).

REFERENCES

[1] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.
Benchmarking lightweight techniques to link e-mails and source
code. In Proceedings of WCRE 2009 (16th Working Conference
on Reverse Engineering), pages xxx–xxx. IEEE CS Press, 2009.

[2] M. D’Ambros, M. Lanza, and M. Pinzger. The metabase:
Generating object persistency using meta descriptions. In
Proceedings of FAMOOSR 2007 (1st Workshop on FAMIX
and Moose in Reengineering), 2007.

[3] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible
environment for building dynamic web applications. IEEE
Software, 24(5):56–63, 2007.

[4] A. Knight. Glorp: generic lightweight object-relational persis-
tence. In OOPSLA ’00: Addendum to the 2000 proceedings
of the conference on Object-oriented programming, systems,
languages, and applications (Addendum), pages 173–174. ACM
Press, 2000.


	Introduction
	Miler
	Entities and E-Mails
	Summary
	References

