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Abstract

Digital contact tracing is an effective tool in controlling the spread of infectious diseases such
as COVID-19. It involves digital monitoring and recording of physical proximity between
people over time with a central and trusted authority, so that when one user reports infection,
it is possible to identify all other users who have been in close proximity to that person
during a relevant time period in the past and alert them. One way to achieve this involves
recording on the server the locations, e.g. by reading and reporting the GPS coordinates of a
smartphone, of all users over time. Despite its simplicity, privacy concerns have prevented
widespread adoption of this method. Technology that would enable the “hiding” of data
could go a long way towards alleviating privacy concerns and enable digital contact tracing
at a very large scale. In this article we describe a general method to hide data. By hiding,
we mean that instead of disclosing a data value x , we would disclose an “encoded” version
of x , namely E (x ), where E (x ) is easy to compute but very difficult, from a computational
point of view, to invert. We propose a general construction of such a function E and show
that it guarantees perfect recall, namely, all individuals who have potentially been exposed
to infection are alerted, at the price of an infinitesimal number of false alarms, namely, only
a negligible number of individuals who have not actually been exposed will be wrongly
informed that they have. Our encoding method does not require the use of public or private
encryption keys, and its security relies on the sheer size of the relevant spatio-temporal
data domain.
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1 Introduction

Contact tracing has proven to be an effective tool in controlling the spread of infectious diseases such as
COVID-19. It involves investigating the movement and human contacts that an infected person has had
in the days prior to the infection being discovered, and notifying and isolating these persons in the hope
of stopping the spread. Obviously the process repeats if one of these persons has already been infected.
While effective when done properly, the manual contact tracing process is time-consuming, tedious and
error-prone, as not all contacts may be discovered and subsequently traced. It is estimated that a workforce
of 100,000 “contact tracers” are required in the USA alone to cover the COVID-19 outbreak, yet only slightly
more than 53,000 were active in October 2020, seven months after the pandemic began in the USA [24].
It is estimated that once the infection rate hits 10 new cases per day per 100,000 people, manual contact
tracing will become infeasible. The only hope for contact tracing at that point is to automate it by digital
monitoring and recording of physical proximity between people over time, so that when one user reports
infection, it is possible to identify all other users who have been in close proximity to that person during a
relevant time period in the past and alert them. These users would be required to monitor their symptoms
and isolate, allowing early treatment and preventing further spread. Digital contact tracing (sometimes
called automatic contact tracing) was pioneered and deployed successfully in countries such as China, South
Korea, Singapore, Israel, Australia, and Germany, and since the early days of the pandemic, many apps have
been developed worldwide implementing digital contact tracing. The interested reader is referred to the
survey of Ahmed et al. [1] for a comprehensive description of many of them.

There are two main approaches to digital contact tracing. The first is based on the relative distance
between users. Using the Bluetooth sensor on a smartphone, it is possible to detect signals from other users
with Bluetooth emitters who are physically close by (i.e. within a certain range) and record the proximity,
either locally on the user’s device, or at a central authority/server. This method, developed by Apple and
Google in their Exposure Notification (EN) framework [2], has the advantage that absolute locations of users
are never disclosed, ensuring some degree of privacy. The disadvantage is the reliability of the Bluetooth
sensors and their ability to work well under all relevant conditions (e.g. occlusion) and at all relevant ranges
and some security concerns about the popular decentralized approach to storing this type of data on user
devices [27]. In retrospect, although digital contact tracing based on this technology held much promise, in
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practice it was plagued with operational issues and used by far fewer people than what would be required to
make an impact [25].

The second approach to digital contact tracing involves recording on a central server the absolute
locations, e.g. by reading and reporting the GPS coordinates of a smartphone, of all users over time. This
obviously provides the server with more information to work with than the first approach, enabling not
only alerts to nearby users, but also to identify geographic hotspots and other patterns of contagion. It also
provides a historic record of the evolution of an epidemic which can be mined and analyzed in many other
ways.

Despite the simplicity of the second approach, privacy concerns have prevented its widespread adoption.
Many people do not want their location history to be known to any third party, thus would avoid using any
software that explicitly discloses this information. Some have gone so far as to call digital contact tracing
based on unprotected disclosure of location data illegal or unconstitutional [18]. A number of commercial
digital contact tracing apps, which report and store explicit location data, have been found in violation of
user privacy policies, having shared this data with unauthorized third parties [13]. Such privacy concerns
must be addressed if digital contact tracing is to be deployed, as it is not very effective unless adopted by a
majority of the population.

Technology that would enable the “hiding” or “obfuscation” of location data could go a long way to-
wards alleviating privacy concerns and enabling contact tracing at a very large scale. Since the outbreak of
COVID-19, this has been the topic of recent research, incorporating cryptographic techniques such as private
set intersection [6], private proximity testing based on an equality testing protocol [8] and homomorphic
encryption [5]. We refer the interested reader to the comprehensive surveys by Reichert et al. [22] and Messai
and Seba [19] on the privacy aspects of existing contact tracing apps.

The objective of this article is to describe a very simple method to hide data, which can also be used
to hide spatio-temporal data. By hiding, we mean that instead of disclosing a data value x , a user would
disclose an “encoded” version of x , namely E (x ). For this to be useful, it should be easy for any user to
compute E (x ) if given x , but be very difficult, from a computational point of view, to invert E , namely to
recover x when provided only with E (x ) (even for the user who encoded x ). By “difficult” we mean it would
require a prohibitive amount of storage or of computational resources, which would effectively deter any
such attempt. Although quite distinct, as we will make clear later, these resemble in spirit one-way functions
or cryptographic hash functions [15] used in classical cryptography. In its simplest form, the function E is
deterministic and injective, as then it is easy to check if x = y by simply checking if E (x ) = E (y ). In the
contact-tracing scenario, the data x = (t , l ) is a data value consisting of a concatenation of the time t with the
location l . Given the function E , a user with ID i would periodically transmit to a central server the pair (i , e ),
where e = E (x ) is the encoded version of x . The server would store these pairs in a database indexed by
the second component. Given a query vector e (of a detected infection), it should be easy to search this
database to determine all pairs (i ′, e ′) such that e ′ = e , namely identify which other users (having ID i ′) were
also at location l at time t and alert them.

We depart from traditional cryptographic techniques by not requiring the use of encryption keys of any
sort, neither private nor public keys. This means that even the user who computed E (x ) from x cannot
recover x from E (x ) unless she explicitly records the connection between the two or stores some additional
information which might facilitate the recovery. As we will see later, the security of the system follows from
the sheer enormity of the relevant domain of spatio-temporal data (the so-called “plaintext” space) to be
coded, which makes attacks on the system computationally infeasible. While the basic embodiment of E is
deterministic, it is possible to add an extra layer of security by introducing a non-deterministic (probabilistic)
element to E , namely E (x ) could assume more than one value for any given x . In this case we need to modify
the database search to a matching procedure: given a query e , instead of searching for other vectors e ′ such
that e = e ′, we search for all other vectors e ′ such that δ(e , e ′)≤τ, where δ is the Hamming distance function
between two vectors, namely the number of coordinates in which they differ, and τ is some threshold.
These e ′ are called matches of e . An exact match is, of course, the special case where τ = 0. A judicious
choice of the encoding function E and the value τ will guarantee no false negatives (i.e. perfect recall),
namely, given a query e corresponding to some data x , we will always find all other matching values e ′

corresponding to the same x . It will also guarantee a negligible (ideally zero) number of false positives (also
called false alarms), namely, almost never report values e ′ corresponding to a different data value y ≠ x . In
the contact tracing scenario, perfect recall is necessary so that all individuals who have potentially been
exposed to infection are alerted. A tiny number of false positives are tolerable as all this means is that a small
number of individuals who have not actually been exposed will be informed that they have.
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This article proposes encoding functions for spatio-temporal data. In a nutshell, it maps a 2D location l
and time t , combined and represented as a large integer in a discrete world, to an n-dimensional vector
of integers E (x ), where n is quite large, e.g. 100. The range of the components of E (x ) can be much larger
than n , e.g. {0, . . . , 502}. The function E is based on well-known number-theoretic techniques, the preferred
one making use of polynomials over finite fields. First deployed in 1960 in Reed–Solomon error-correcting
codes [21] and its variants (the most important being the BCH code), the technique has also found use in
other cryptographic methods, such as Shamir’s secret sharing method [23] and even blockchain [7]. The
most important property of E is that it transforms a very large integer into a long vector of much smaller
integers in an injective way, which can be thought of as an embedding in a higher-dimensional space, and
this transformation cannot be inverted unless a minimal number m ≤ n of the vector coordinates (and their
indices in the vector) are known. We take advantage of this by sorting the vector coordinates so that their
correspondence to the coordinate indices is lost, making it difficult to apply the standard decoding methods.
An attacker has no choice but to try all possible permutations of subsets of size m of the n coordinates,
making it computationally infeasible, even for relatively small values of n and m . Another important property
is that, although there are simple algebraic relationships between the coordinates of the vector, to the naked
eye, and even to a statistical test, they look like random integers. Thus, the distribution of the encoded
vectors in the embedding space is quite uniform, which will work in our favor.

2 The setup

Consider an integer domain W = {0, . . . , M − 1} (the “world”). Any integer x ∈ W is a valid (plaintext)
message and we may express it as a sequence of m digits x = (x1, . . . , xm ) in base p : x =

∑m−1
i=0 xi p i where p

is a prime number (or more generally a prime power) and xi ∈ Zp = {0, . . . , p − 1}. Note that this implies
that m = ⌈logp M ⌉ and taking a larger m is superfluous. Essentially, W is synonymous with a subset of Zm

p ,
the set of all vectors of length m , where each coordinate is taken from Zp .

In the contact tracing application, the spatio-temporal world consists of two-dimensional (latitude and
longitude) GPS coordinates at 1 meter resolution (or the Open Location “Plus Codes” [12]), which translates
to a grid with 1014 points, and 105 different time stamps for every 30 seconds over the past month, implying
a “world” of size M = 1019. If we use the prime p = 503, this would mean m = 8.

3 The encoding function

We propose the following non-deterministic encoding scheme:

Let W = {0, . . . , M − 1} be an integer domain, n a positive integer and p a prime. Denote by Zn
p the

set of vectors with n elements from Zp and by∆n
p the set of vectors with n elements from Zp in non-

decreasing order, also known as the ordered discrete simplex. The encoding function E : W → E ⊂∆n
p

has parameters (M , p , n , k ), where 0≤ k ≤ n ≤ p and n ≥m = ⌈logp M ⌉.

To compute E (x ) for a domain element x ∈W :

1. Express x in base p : x =
∑m−1

i=0 xi p i .

2. Compute the basic encoding

C (x ) = (π(0),π(1), . . . ,π(n −1)) ∈ C ⊂Zn
p ,

where π(ξ) =
∑m−1

i=0 xiξ
i (mod p ) is a polynomial of degree m −1 over the finite field Zp .

3. Sort the coordinates of C (x ) in non-decreasing order to C ′(x ) ∈ E .

4. Randomly modify k arbitrary coordinates of C ′(x ), while preserving the increasing order of the
coordinates, resulting in E (x ) ∈ E .

Note that as a result of step (4), k > 0 implies that E (x ) is non-deterministic, namely may assume multiple
values.
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The basic code space C ⊂Zn
p , defined as the set of all possible basic codes of world elements C = {C (x ) : x ∈W }

consists of vectors of length n , such that Ci (x ) ∈Zp . It has the following properties:

1. C (x ) is injective, namely x = y if and only if C (x ) =C (y ).

2. C has Hamming distance d = n −m +1, namely any two distinct codewords c1, c2 ∈ C differ from each
other by at least d coordinates: δ(c1, c2)≥ d . This is because any polynomial of degree m −1 over a
field is uniquely determined by m of its values. So not only is C an injective function (i.e. d > 0), but it
maps distinct world elements quite far apart from each other in C.

3. x may be recovered from C (x ) by a variety of efficient methods, including inverting a linear Vander-
monde system [14, Section 6.1].

The basic coding function C described above was proposed by Reed and Solomon [21] as an error-correcting
code to overcome corruption of k = ⌊d /2⌋ coordinates of C (x ). When presented with c ′, which is a corrupted
version of C (x ), Property 2 guarantees that C (x ) is the unique codeword in C such that δ(C (x ), c ′)≤ k , thus
error-correction performed by replacing c ′ with the vector closest to it in C by the Hamming distance, is
well-defined and yields the correct result C (x ). The corrected codeword C (x )may be found by efficient
algorithms (e.g. [9]), which take into account the special algebraic structure of C.

Our non-deterministic encoding function is a variation on the theme of error-correction. In our scenario,
we are presented with two vectors E (x ), E (y ) ∈ E originating from x , y ∈ W . We would like to have a
threshold τ such that x = y if and only if δ(E (x ), E (y ))≤τ.

To give the flavor of our approach, we remark that it is relatively easy to determine this threshold if the
encoding procedure does not contain the sorting step 3 in the encoding procedure, as the following lemma
implies.

Lemma 1. If we eliminate the sorting step 3 in the encoding procedure with parameters (M , p , n , k ), and set
k = ⌊n−m

4 ⌋ and τ= 2k for m = ⌈logp M ⌉, then x = y if and only if δ(E (x ), E (y ))≤τ.

Proof. From the definition of k , we have n −m ≥ 4k , so

x = y ⇒ C (x ) =C (y ) ⇒ δ(C (x ), C (y )) = 0

⇒ δ(E (x ), E (y ))≤ 2k =τ,

x ̸= y ⇒ δ(C (x ), C (y ))≥ n −m +1

⇒ δ(E (x ), E (y ))≥ n −m +1−2k > 2k =τ.

While not incorporating the sorting step 3 is amenable to easy analysis and identification of k and τ, it also
compromises the security of the encoding E (x ), namely, it is then quite easy to recover x from E (x ). This is
essentially error-correction from k errors, which, as mentioned above, is possible by a number of efficient
algorithms, taking advantage of the special algebraic structure of C [9].

The advantage of introducing sorting step 3 is precisely because it prevents the use of the standard
error-correction algorithms, since the critical correspondence between the coordinates of C ′(x ) (and thus
of E (x )) and the indices in the original C (x ) is lost.

The disadvantage of introducing sorting step 3 is that it modifies the Hamming distance d present in C,
which is not likely to be preserved in C′ and E . In theory it could increase the distance, but it is much more
likely to decrease it. It seems like it will be difficult to obtain a lower bound on this distance (which could
have then been used to determine a threshold τ, akin to Lemma 1), since all the algebraic structure that was
present in C has been destroyed in the transition to C′ and E .

Luckily, we are still able to make useful observations about the nature of the encoded vectors in E . To
the naked eye, the basic code space C will consist of integer vectors of essentially random values in the
range {0, . . . , p − 1}. By “random” we mean actually pseudo-random, namely that although completely
determined by x , it will be statistically impossible to distinguish between these vectors and completely
random vectors. The sorting of the vectors will make them less random, but it will still be quite difficult to
distinguish between the vectors in E and random non-decreasing integer vectors.
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4 The matching algorithm

Let us recall the application: We have a database of D pairs of user ID’s and encoded spatio-temporal
values: {(i , E (x )) : i = 1, . . . , D }. Given the query – a vector e – we wish to find all matches of e , namely, find
all database entries {(i , e ′)} such that both e and e ′ are possible encodings of the same data value x , i.e.
δ(e , e ′)≤τ for a suitable threshold τ. We say that τ is the matching threshold and e ′ matches e .

Recall that the size of the world is M = |W | = 1019. Assuming one billion (i.e. 109) users, each storing
location data for every 30 seconds over the past month, namely, close to 105 time-stamped locations, this
implies that the database could contain D = 1014 entries.

We would like to show that even though the vectors are sorted, a matching threshold of τ = 2k for
“reasonable” values of k , as in Lemma 1, is still a good choice. This is because the size of the database (D )
is much smaller than the size of the world (M ), thus the probability that database vectors match a typical
query vector is infinitesimally small, unless they are encodings of the same world data.

Remember that D ≪M ≪N , where M ≈ p m and N = p n . Now, if given a query e = E (x ) for which there
exists a matching database entry e ′, then obviously δ(e , e ′)≤ 2k . So to avoid false negatives, namely, to avoid
missing correct matches, we must take τ≥ 2k .

Can we expect a given query vector e = E (x ) to “accidentally” match a vector e ′ = E (y ) corresponding to
another y ̸= x in the database because of the sorting and corruption of the original basic code vectors in C?
The following theorem implies that this false positive is highly unlikely.

Theorem 1. Given any e ∈ E , an upper bound for the probability of a vector e ′ ∈ E , generated by sorting the
coordinates of a random vector z ∈Zn

p , differing from e in at most τ non-adjacent coordinates is

Prob{δ(e , e ′)≤τ} ≤ s (p , n ,τ) =
n !

p n

τ
∑

d=0

(2p )d

d !
.

Proof. For the case τ= 0, the probability of an exact match in all coordinates is at most n !/p n , since all n !
permutations of e can be taken as z among all p n possible unsorted vectors in Zn

p , such that δ(e , e ′) = 0. For
every coordinate of e that occurs with multiplicity µ> 1, the probability reduces by a factor of µ!, because
the order of the repeated coordinate in z does not matter.

For the case τ = 1, let us study the number of sorted vectors e ′ ∈ E that differ from e in exactly one
coordinate. Letting e0 = 0 and en+1 = p −1, it is clear that each coordinate e ′i of e ′ for i = 1, . . . , n can take any
value in {ei−1, . . . , ei −1, ei +1, . . . , ei+1}without compromising the correct order. Hence, there are

n
∑

i=1

(ei+1− ei−1) = p −1+ en − e1 ≤ 2p −2≤ 2p

sorted vectors e ′ ∈ E at distance δ(e , e ′) = 1 from e and thus the number of sorted vectors e ′ ∈ E with
δ(e , e ′)≤ 1 is at most 2p +1. Using the same permutation argument as before, this proves the upper bound
for τ= 1.

For the case τ> 1 we apply the previous argument iteratively τ times while using the assumption that
the coordinates of e ′ that differ from those of e are non-adjacent. Then a vector at distance τ+1 is just a
modification of a vector at distance τ in one additional coordinate, thus the number of modifications is at
most (2p )τ. Note that this is an overestimate as a modification may occasionally reduce the distance by one.
Since the order of modification of the modified coordinates is not important, we have counted each distinct
modification τ! times.

The assumption that the differing coordinates of e and e ′ are non-adjacent makes the proof of Theorem 1
easier, but we have experimentally observed that this upper bound holds also for the unrestricted case.

So the expected number of false positives for any given query e is at most D s (p , n ,τ), which decreases
as τ decreases. For the values p = 503, n = 100, we may use k = 10 and matching threshold τ = 20, thus
s (p , n ,τ)≈ 10−71. Since D = 1014, the expected number of false positives per query is infinitesimal (10−57),
and even the expected number of false positives when each database entry is used as a query is still only
D 2s (p , n ,τ) = 10−43.

4.1 Conclusion

In our encoding scheme, it suffices to take a corruption parameter k which is not too small and not too large,
and then use τ= 2k as the matching threshold. Such a threshold will completely avoid false negatives and
produce a negligible number of false positives.
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4.2 Retrieving matching data

Now that we have a suitable matching threshold for our matching algorithm, we must address the algorithmic
question of how to organize the database of D encoded values (which are sorted integer vectors), such that
given a query vector e , it is possible to efficiently find all pairs (i ′, e ′) in the database such that e ′ matches e ,
namely such that δ(e , e ′) ≤ τ? This is known as the “static Hamming distance range query”. Of course,
exhaustive search of the database is possible, but that would cost O (D ) time, which is too costly in our
scenario where D = 1014. Efficient data structures have been devised for dealing with this problem, as in
Manku et al. [17]. This requires O (τnD ) storage (which is significant but not prohibitive in our application)
but has very fast (O (log D )) query runtime. See also Liu et al. [16] for more recent work on this problem.

5 The tracing algorithm

Now that we have an encoding algorithm and are able to match two encoded vectors, we describe the
procedure to be followed by the individual users and the central server to do the actual contact tracing and
alerts.

User with ID i

• The user continuously transmits to the server data pairs (i , e )where e = E (x ) and x = (t , l ) is her time
and location, tagged as “uninfected”. The user also stores the triples (t , l , e ) in a local database indexed
by t and e (e.g. on her smartphone), so that it is easy to retrieve all e ’s transmitted during a given time
interval and recover (t , l ) from its encoding e .

• If the user discovers she is infected, she sends again all pairs (i , e ) generated by her over the past, say,
two weeks (by querying her local database) back to the server, tagged as “infected”.

• Upon receipt of message e tagged with “possible infection” from the server, the user recovers the
infection time and location (t , l ) from e (by querying her local database). The user self-isolates for two
weeks and can possibly report (t , l ) separately to friends and family.

Central server

• Upon receipt of a data pair (i , e ) tagged “uninfected”, the server stores the pair on the server database
(of size D ).

• Upon receipt of a pair (i , e ) tagged “infected”, the server retrieves from the server database (by the
matching algorithm described in Section 4) all pairs (i ′, e ′) for which e ′ matches e . The server then
sends these e ′ to user i ′ tagged with “possible infection”.

6 Attacking the code

Recall that a critical objective is to “hide” the data by its encoding, namely render it computationally infeasible
to recover the (large) integer y ∈W from the integer vector e = E (y ) ∈ E , either because it would require too
much computation time or too much storage space. We describe here three possible methods of attack and
argue that they are infeasible. In all possible attacks, the large size M of the spatio-temporal (plaintext) data
domain is what makes the attacks computationally impossible. Thus there is no need for an encryption key
to further improve the system security.

6.1 Brute-force attack

The simplest method is just to exhaustively scan the entire world and check if the encoded version e ′ = E (x )
of any world point x matches the given encoding e (namely, that δ(e , e ′)≤τ). This would require |W |=M =
1019 encodings and comparisons, which is prohibitive in runtime.
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6.2 Table attack

We could reduce the runtime of the brute-force attack by trading off space for time, employing a very large
database. Simply compute some encoding E (x ) for every possible x ∈W in a preprocessing phase and store
the pairs (x , E (x )) in a database indexed by E (x ). Given an encoding e , the matching algorithm described in
Section 4 would then be able to quickly retrieve all matches of e . However, this requires a database of size
O (τnM )which is M

D = 105 times larger than the server database. For M = 1019, p = 503, n = 100, and τ= 20,
this is at least 1021 bytes, and would be prohibitively large.

6.3 Direct attack

A direct attack occurs when an adversary tries to invert the encoding through a subset of the coordinates by
applying the traditional decoding algorithms such as solving a linear Vandermonde system. This is foiled
by the sorting of the coordinates of the vectors. Since inversion requires knowledge of the correspondence
between coordinates and their indices for at least m uncorrupted coordinates, this is what an attempt to
invert e = E (x )must look like:

1: for each of the
�n

m

�

subsets of m coordinates do
2: for each of the n !

(n−m )! permutations of m indices do
3: solve for x ▷ e.g., by multiplying e by the inverse of the Vandermonde sub-matrix consisting

of the corresponding m rows from the full n ×m Vandermonde matrix
4: if x ≥M then
5: continue
6: compute e ′ = E (x )
7: if δ(e , e ′)≤τ then
8: return(x )

Each solve costs Ω(m ) time. Should any of the selected subset of m coordinates be corrupted, the inner loop
will run completely, costing n !

(n−m )! solves. Since the probability that none of the m coordinates are corrupted

is
�

1− k
n

�m ≈ exp
�

− k m
n

�

, the outer loop will terminate on the average after exp
�

k m
n

�

iterations and the inner

loop will compute an expected number of n !
2(n−m )! solves the last time it runs. Note that failure in one iteration

due to one or more corrupted coordinates will not reveal which of the m coordinates are corrupted, so that
there is no extra information that can help to choose a “better” set of m coordinates in the next iteration. In
total, the expected number of solves for this attack would be n !

(n−m )! exp
�

k m
n

�

. For n = 100 and p = 503, we
have m = 8. With k = 10, the expected number of solves is 1016, which would take too long.

7 An alternative: redundant residue number systems

While we have presented an encoding method based on polynomials over finite fields, it is possible to
use another method which is also employed in error-correcting coding and secret-sharing. This involves
so-called redundant residue number systems. Originally proposed in the 1950’s for efficient arithmetic
computations on large integers [10], this technique was adopted for error-correction coding soon after [26, 4]
and is also used in cryptography [20, 3]. The main difference between this method and the basic coding
method described above based on polynomials is that now the basic code space is C =Zp1

×Zp2
×· · ·×Zpn

for
a sequence of distinct primes (p1, . . . , pn ), instead of Zn

p .
Recall that the “world” is W = {0, . . . , M −1}. Let (p1, . . . , pn ) be a sequence of increasing primes, m an

integer such that
∏n

i=n−m+2 pi <M <
∏m

i=1 pi , and denote N =
∏n

i=1 pi . The encoding function E : W → E
for a domain element x ∈ W , has parameters (p1, . . . , pn , k , n ), where pi are primes and 0 ≤ k ≤ n is an
integer. The basic coding function is simply C (x ) = (x (mod p1), . . . , x (mod pn )) ∈ C. Similar to the case
of polynomials over finite fields, the infamous Chinese Remainder Theorem [4] guarantees that x can be
recovered from any subset of m coordinates of C (x ) along with their indices, so this code also has Hamming
distance n −m +1, and error-correction may be done using a variety of methods taking advantage of the
algebraic structure (e.g. [11]). Our encoding proceeds as above, by sorting the coordinates of the basic code
and corrupting a small subset without changing the order. Nothing else is changed.
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Table 1: Parameters of the different settings for world size M = 1019 and database entries D = 1014.

coding
method

encoded
vector
length

alphabet
size

data vector
size (base p )

corrupted
coordinates

matching
threshold

encoded
vector

size (bits)

expected
# of false
positives

“direct attack”
complexity

n p m = ⌈logp M ⌉ k τ ⌈n log2 p ⌉ D 2s (n , p ,τ) n !
(n−m )! exp
�

k m
n

�

polynomial 100 503 8 10 20 898 10−43 1016

polynomial 100 101 10 1 2 666 10−10 1020

polynomial 200 211 9 20 40 1545 10−5 1021

residues 80 ≈ 1143 7 8 16 858 10−58 1013

Despite this approach actually being simpler to implement than the polynomial-based approach, it is
less desirable due to m being more constrained as a function of the primes used. For example, for n = 80,
taking as pi all the consecutive primes from 877 to 1, 451 (having geometric mean 1, 143) yields only m = 7.
An appropriate k would be 8, thus τ= 16. The probability of a false positive is then 10−58 and the complexity
of the direct attack is 1013 (see Table 1).

8 Discussion and extensions

We have described just a very basic version of a possible contact-tracing system, where our main contribution
is the data coding method, which plays a central and critical role (and could be useful for other applications).
A more realistic system may require more than just this simple feature set. In this section we describe a
number of possible extensions that could make our system more applicable to a real-world setting.

8.1 Increasing the security

It is relatively easy to increase the security of the system, i.e. making a direct attack on the system more
difficult. In the scenario described above, where M = 1019, we took n = 100, p = 503, implying m = 8,
thus the complexity of a direct attack is 1016. If we were to take instead n = 100 and p = 101, so that
m =
�

log101 1019
�

= 10, the complexity would increase to 1020 (although we would have to take k = 1 and τ= 2
to keep the probability of a false positive at 10−10), and if this were not enough, we can increase this further
by increasing both n and p . See Table 1 for a comparison of the attack complexity resulting from different
values of the system parameters. Increasing n obviously increases the (bit) size n log2 p of the code C (x ) and
thus the size of the server database, but the same is true for the database of the “table attack”.

8.2 Using a deterministic mapping

Our encoding method is non-deterministic, namely involves randomly corrupting a subset of k > 0 co-
ordinates in the sorted basic code vector. The advantage of a large k is that it increases the difficulty of a
direct attack on the database, as described in Section 6.3. However, for certain values of the other system
parameters, it may be possible to make do with a deterministic encoding method, namely k =τ= 0. In this
case, matching a query vector within the server database reduces to exact vector match, which may be done
easily by binary search on a table (of size D ) of the database entries (i , e ), sorted in lexicographic order of e .

8.3 Detecting persistence in time

A common assumption for potential infection is temporal persistence, i.e. continuous exposure for a sig-
nificant amount of time (typically 15 minutes). The basic embodiment of our system detects and alerts
for contact at a specific point in time (and space), however it is straightforward to extend it to deal with
persistence. This is done client-side, namely by the user. Exposure to infection for k consecutive time stamps
will result in k alerts to the user, at which point she can check for herself (in the third bullet of the user
algorithm in Section 5) for the temporal persistence of these alerts and proceed accordingly.
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8.4 Detecting proximity in space

The method outlined in this article provides an easy way to determine whether x = y by comparing E (x )
and E (y ). Recall that x and y are taken from a discrete world, which are essentially samples of the true
continuous world at some finite resolution grid. However, sometimes in contact tracing it is necessary to
also determine proximity beyond the grid resolution, either because of an increased radius of infection or
simply because the accuracy of the measured location (typically taken from a GPS device) is much worse
than the grid resolution and the chances of an exact match in measured location even when two users are
within grid resolution, is very slim.

It would seem difficult to achieve this, since the encoded vectors have a pseudo-random distribution
and any spatio-temporal correlation between two data points would be “lost in encoding”. The easy way to
circumvent this is for the user to transmit to the central server encodings of not just her current location,
but also of the neighboring grid points, effectively “dilating” the data point. This would incur some modest
overhead in storage and transmission costs on both client-side and server-side.

8.5 Server-side analytics

Reporting absolute locations has the advantage that the server can run analytics on the accumulated data,
e.g. to detect spatio-temporal infection “hotspots” or other contagion patterns over time and space. However,
this requires the server to access the unencoded (time, location) data vectors reported by the users after
infection, a feature that our basic system does not support. One way around this, while maintaining user
anonymity, is that the user, upon detecting infection, additionally reports to the server the unencoded data
x (without the user ID i ) using a separate protocol that guarantees anonymity of the sender. This would be
added to the second bullet of the user algorithm in Section 5.

8.6 “Inflating” the world

The world size, in our contact tracing application, is M = 1019 integers, which is very large, but constrains
some of the parameters in our encoding scheme. In particular, the parameter m , if too small, could com-
promise the security against the direct attack, as described in Section 6.3. One way to rectify this would be
to “inflate” the world by means of some function f : W →W ′ with M = |W | ≪ |W ′|=M ′. This function f
should be injective and non-polynomial, so that it cannot be inverted easily at each individual coordinate.
One possibility for such an f is the following:

Let qi denote the i -th prime (i.e. q1 = 2, q2 = 3, etc.) and observe that the product of the first m0 = 16
primes is a little larger than the size of our world. Hence, the first step is to map x ∈W to the residue code
vector w.r.t. these 16 primes, namely compute C (x ) = (c1, . . . , cm0

)with ci = x (mod qi ). For the next step, let

si =
∑i−1

j=1 qi denote the sum of the first i −1 primes (i.e. s1 = 0, s2 = 2, s3 = 5, etc.) and let us map each ci to the

(si + ci +1)-th prime, giving the vector C ′(x ) = (c ′1, . . . , c ′m0
)with c ′i = qsi+ci+1. Finally, we define f (x ) =

∏m0

i=1 c ′i
and note that f (x ) is a square-free integer with exactly m0 prime factors. Moreover, as the mapping C is
injective, it follows that f (x ) and f (y ) for x ≠ y have at most m0 − 1 common factors, thus guaranteeing
the injectivity of f . The size of the inflated world is M ′ =

∏m0

i=1 qsi+1
≈ 1039. We now continue to encode

x ′ = f (x ) ∈W ′ instead of x ∈W with the polynomial-based approach outlined above, but now having the
advantage of a larger m ′ = 15 instead of the previous m = 8.

8.7 Other linear codes

The basic code based on polynomials that we use is a linear code, in the sense that the coding operation
is just multiplication by a matrix: C (x ) =V x over Zp . V is the n ×m Vandermonde matrix, which has the
special property that all submatrices of size m ×m have full rank. This property allows to recover x from
any subset of m coordinates of C (x ) by multiplying them by the inverse of the appropriate submatrix of
V . Thus any n ×m matrix with similar properties would serve the same purpose. Furthermore, were we to
construct an n×m matrix A with the property that some of the submatrices of size m×m have rank less than
m , and that full rank is obtainable only when the submatrix is enlarged to (m + l )×m , this, coupled with
the corruption of coordinates during encoding, could further complicate the direct attack on the method
described in Section 6.3.
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