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Abstract

Given a finitely-connected bounded planar domain Ω, it is possible to define a divergence
distance D (x , y ) from x ∈Ω to y ∈Ω, which takes into account the complex geometry of
the domain. This distance function is based on the concept of f -divergence, a distance
measure traditionally used to measure the difference between two probability distributions.
The relevant probability distributions in our case are the Poisson kernels of the domain at x
and at y . We prove that for the χ2-divergence distance, the gradient by x of D is opposite
in direction to the gradient by x of G (x , y ), the Green’s function with pole y . Since G is
harmonic, this implies that D , like G , has a single extremum in Ω, namely at y where D
vanishes. Thus D can be used to trace a gradient-descent path within Ω from x to y by
following ∇x D (x , y ), which has significant computational advantages over tracing the
gradient of G . This result can be used for robotic path-planning in complex geometric
environments.
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1 Introduction

The f -divergence function, first introduced by Kullback and Leibler [6] and later generalized by Csiszár [4],
measures the difference between two probability distributions.

Definition 1. Let f :R→R be a strictly convex function with f (1) = 0 and p , q : E → [0, 1] be two non-negative
real functions on some domain E such that

∫

E

p (t )d t =

∫

E

q (t )d t = 1.

We then call

d f (p , q ) =

∫

E

p (t ) f
�

p (t )
q (t )

�

d t (1)

the f -divergence between p and q .

It is well known [6] that
d f (p , q )≥ 0

and
d f (p , q ) = 0 ⇐⇒ p = q .

The f -divergence is not necessarily a metric, since it is typically not symmetric and does not satisfy the
triangle inequality. Many instances of f have been proposed over the years, each suitable for some specific
application, mostly in probability theory, statistics, and information theory. The interested reader is referred
to Liese and Vajda [7] for a survey of the possibilities. We just mention the most popular choices of f :
Kullback–Leibler: f (t ) = − log t , Total Variation: f (t ) = |t − 1|, Chi Squared (χ2): f (t ) = t 2 − 1, Hellinger:
f (t ) = (

p
t −1)2.

In this context, it is useful to remember the concept of the dual function of f ,

f ∗(t ) = t f (1/t ).

For example, if f (t ) =− log t , then f ∗(t ) = t log t , and if f (t ) = |t −1|, then f ∗(t ) = f (t ). It is easy to verify that

• f is (strictly) convex if and only if f ∗ is (strictly) convex;

• d f (p , q ) = d f ∗ (q , p );

• f (1)≤ d f (p , q )≤ f (0) + f ∗(0).
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Chen et al. [3] took advantage of the concept of f -divergence to define the f -divergence distance Df (x , y )
between pairs of points in a planar domain Ω (see Section 2) and showed that this distance can play an
important role in robotic path-planning applications. In that context, given two points x , y in a geometrically
complex domain Ω, it is important to be able to generate a path from x to y which stays completely within Ω.
Given a non-negative distance function D (x , y ) on the domain, which vanishes only when x = y , it is possible
to trace such a path by following the gradient of D , as long as this gradient does not vanish at some local
minimum of D . Fig. 1 (Left) shows some examples of such paths. Chen et al. [3] show that the f -divergence
distance Df (x , y ) has this important property in the case of a simply-connected bounded domain. Their
proof uses the concept of conformal invariance and relies heavily on the Riemann conformal mapping
theorem [1], namely, that any simply-connected domain is conformally equivalent to the unit disk. They
show that Df is a conformal invariant of the domain, as is the Green’s function G , leading to the conclusion
that the gradient of the f -divergence distance function is opposite in direction to the gradient of the Green’s
function, independent of f . Since the harmonic G has the required property, then so does Df .

Although Df and G both have the same desirable property and generate identical gradient paths between
points, Chen et al. [3, 2] show that there are significant computational advantages to using Df instead of G in
practical path-planning applications, where the domain is discretized.

In this paper we generalize the results of Chen et al. [3] to the more challenging case of multiply-connected
domains. Since these are not conformally equivalent to the unit disk, the proof technique used for the
simply-connected domain is no longer applicable. Instead, in our central Theorem 3, we provide a direct
proof for the χ2-divergence distance using methods of complex analysis (see Section 4).

2 The f -divergence distance

The f -divergence distance between two points in a bounded planar domain Ω is defined using the Poisson
kernel of Ω at y ∈Ω,

P (w , y ) =−
1

2π

∂G

∂ n (w )
(w , y ), w ∈ ∂ Ω, (2)

which is the derivative of the Green’s function G (x , y )with pole y at the boundary point w in the direction of
the unit outer normal n (w ) [5]. Thus P is positive in Ω and for all y ∈Ω,

∮

∂ Ω

P (w , y )|d w |= 1

where |d w | is the usual arc length differential.

Definition 2. Let f be a strictly convex function with f (1) = 0 and Ω be a bounded planar domain. The
f -divergence distance from x ∈Ω to y ∈Ω is the contour integral

Df (x , y ) := d f (P (·, x ), P (·, y )) =

∮

∂ Ω

P (w , y ) f
�

P (w , x )
P (w , y )

�

|d w |, (3)

The following theorem summarizes the basic properties of the f -divergence distance.

Theorem 1. Let Df (x , y ) be a f -divergence distance on a planar domain Ω. Then:

• Df is non-negative: Df (x , y )≥ 0.

• Df is symmetric: Df (x , y ) =Df (y , x ).

• Df is constant on the boundary ∂ Ω (unless it is infinite there).

• Df is strictly subharmonic: for any y ∈Ω,∇2
x Df (x , y )> 0.

Proof. See Chen et al. [3].

The second property is a little surprising, since in general the f -divergence of two probability functions (1) is
not symmetric. Despite this, the f -divergence distance will typically not be a metric, as it does not satisfy the
triangle inequality. A rare exception is the Total Variation divergence distance

DTV(x , y ) =

∮

∂ Ω

|P (w , x )−P (w , y )||d w |.

Relying on the symmetry of Df and the properties of the dual function f ∗, we have:
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Corollary 1. The functions f and f ∗ generate identical divergence distances,

Df (x , y ) =Df ∗ (x , y ).

3 Preliminaries

To prove our central Theorem 3, we need a few preliminaries about Green’s functions and their consequences
on divergence distance functions.

Let Ω be an open, bounded, and finitely-connected domain. Following [5], we consider Ω as a subset ofC
and define for any y ∈Ω the Green’s function with pole at y as

G (x , y ) = log
1

|x − y |
+H (x , y ), x ∈ Ω̄ \ {y }, (4)

where H (x , y ) is the harmonic solution of the Dirichlet problem for the boundary values f (w ) = log |w − y |,
w ∈ ∂ Ω. Thus G vanishes on ∂ Ω and is positive and harmonic on Ω \ {y }. Furthermore, G is symmetric:
G (x , y ) = G (y , x ). We may treat x and y as complex numbers and, taking advantage of the convenient
complex algebra, use the subscripts x , y , x̄ , and ȳ to denote the Wirtinger derivatives of G (x , y )with respect
to its first and second variable and their conjugates, for example,

Gx =
∂G

∂ x
, G x̄ =

∂G

∂ x̄
, Gx ȳ =

∂ 2G

∂ x∂ ȳ
, G x̄ y =

∂ 2G

∂ x̄∂ y
,

and likewise for H . Note that according to this notation, we have, for example,

∂

∂ w
G (w , y ) =Gx (w , y ), ∇x G (w , x ) = 2

∂G

∂ x̄
∇y Gx (w , y ) = 2

∂

∂ ȳ
Gx (w , y ) = 2Gx ȳ (w , y ).

We further say that two complex numbers a , b ∈C are proportional and write a∝ b , if arg a = arg b , namely
a/b ∈Rwith a/b > 0.

Observation 1. The Poisson kernel (2) satisfies

P (w , y ) =
1

2π
|∇x G (w , y )|=

1

π
|G x̄ (w , y )|=

1

π
|Gx (w , y )|,

because Green’s function is real, positive in Ω, and vanishes at ∂ Ω, hence its gradient at w ∈ ∂ Ω points in the
opposite direction of n (w ), the unit inward normal at w .

Observation 2. For any w ∈ ∂ Ω and y , z ∈Ωwith y ̸= z , we have

P (w , y )
P (w , z )

=

�

�

�

�

Gx (w , y )
Gx (w , z )

�

�

�

�

=
Gx (w , y )
Gx (w , z )

by Observation 1 and because Gx (w , y )∝Gx (w , z ).

Using these observations, we can express the f -divergence distance as a complex contour integral in terms
of Gx .

Lemma 1. The f -divergence distance (3) satisfies

Df (x , y ) =
i

π

∮

∂ Ω

f
�

Gx (w , x )
Gx (w , y )

�

Gx (w , y )d w .

Proof. By Observation 1,

Df (x , y ) =
1

π

∮

∂ Ω

f
�

P (w , x )
P (w , y )

�

|G x̄ (w , y )||d w |=
1

π

∮

∂ Ω

f
�

P (w , x )
P (w , y )

�

|G x̄ (w , x )d w |.

Since G x̄ (w , y ) and d w are orthogonal to each other, with G x̄ (w , y ) pointing 90◦ to the left of d w , we have

|G x̄ (w , y )d w |= iG x̄ (w , y )d w = iGx (w , y )d w , (5)
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resulting in

Df (x , y ) =
i

π

∮

∂ Ω

f
�

P (w , x )
P (w , y )

�

Gx (w , y )d w .

Note that the complex integral is computed counter-clockwise for the outer boundary loop and clockwise for
the internal boundary loops. The Lemma then follows by Observation 2.

Observation 3. Since G (x , y ) is harmonic in x and y , Gx is a function of x and not of x̄ . For the same reason,
Gx ȳ is a function of only x and ȳ . As a result, Gx and Gx ȳ are both holomorphic in x , except at possible poles.

Lemma 2. For any x , y ∈Ωwith x ̸= y ,

Gx (x , y )∝
1

G x̄ (x , y )
.

Proof. Since G is real, we have G x̄ =Gx , and the Lemma then follows, because a∝ 1/ā for any a ∈C\{0}.

Lemma 3. For any y , z ∈Ωwith y ̸= z ,

lim
x→y
(x − y )

Gx (x , y )
Gx (x , z )

=−
1

2Gx (y , z )

Proof. It follows from (4) that

Gx (x , y ) =−
1

2(x − y )
+Hx (x , y ). (6)

Therefore,

lim
x→y
(x − y )Gx (x , y ) =−

1

2
,

because H is twice continuously differentiable and thus Hx is finite. The Lemma follows.

Lemma 4. For any x ∈Ω,
Gx ȳ (x , x ) ∈R.

Proof. It follows from (6) that
Gx ȳ (x , y ) =Hx ȳ (x , y ), (7)

and since H is twice continuously differentiable, Gx ȳ (x , x ) exists, even though G (x , x ) does not. By the
symmetry of G , we further have

Gx ȳ (x , x ) =G x̄ y (x , x ) =Gx ȳ (x , x ),

implying the Lemma.

4 The χ2-divergence distance

Let us now focus on the χ2-divergence distance, which is given by the function f (t ) = t 2−1, and denote it by
D (x , y ) =Df (x , y ). Note that D is infinite on the boundary ∂ Ω, but this does not pose a problem. We first
express D in terms of the derivatives of G and H , mentioned in (4).

Theorem 2. The χ2-divergence distance can be written as

D (x , y ) = 2
Hx (x , x )
Gx (x , y )

+
1

2

Gx x (x , y )
Gx (x , y )2

−1. (8)

Proof. By Lemma 1,

D (x , y ) =
i

π

∮

∂ Ω

Gx (w , x )2

Gx (w , y )
d w −

i

π

∮

∂ Ω

Gx (w , y )d w .

According to Observation 3, both integrands are holomorphic. For the second integrand, which has a first-
order pole in Ω at w = y , applying Cauchy’s Residue Theorem [1] and using Lemma 3, we get

∮

∂ Ω

Gx (w , y )d w = 2πi lim
w→y
(w − y )Gx (w , y ) =−πi .
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Figure 1: (Left) Gradient-descent paths of the χ2 divergence distance from various source points (green) to a common
target point (red). The domain is colour-coded according to the distance. The red curves are contours (level sets) of the
distance function. (Right) The integral path γ is a sub-path of the gradient-descent path of the Green’s function from
target y to x , continuing further to the boundary point w , possibly passing through a saddle point s . The gradient of
Green’s function is visualized as a unit-length direction field, while the magnitude of the gradient is the colour-coded
background.

The first integrand has a second-order pole at w = x , and so by Cauchy’s Residue Theorem and Lemma 3,

∮

∂ Ω

Gx (w , x )2

Gx (w , y )
d w = 2πi lim

w→x

d

d w

�

(w − x )2
Gx (w , x )2

Gx (w , y )

�

= 2πi lim
w→x

�

2(w − x )Gx (w , x )
Gx (w , x ) + (w − x )Gx x (w , x )

Gx (w , y )
−
�

(w − x )Gx (w , x )
�2 Gx x (w , y )

Gx (w , y )2

�

=−2πi
� limw→x

�

Gx (w , x ) + (w − x )Gx x (w , x )
�

Gx (x , y )
+

Gx x (x , y )
4Gx (x , y )2

�

.

Since it follows from (4) that

Gx (x , y ) =−
1

2(x − y )
+Hx (x , y )

and

Gx x (x , y ) =
1

2(x − y )2
+Hx x (x , y ),

we have
lim

w→x

�

Gx (w , x ) + (w − x )Gx x (w , x )
�

= lim
w→x

�

Hx (w , x ) + (w − x )Hx x (w , x )
�

=Hx (x , x ),

and the Theorem follows.

Theorem 3. The gradient of the χ2-divergence distance to y is proportional to the negative gradient of the
Green’s function with pole y , that is,

∇x D (x , y )∝−∇x G (x , y )

Proof. Since G is harmonic, we have

∇x Gx (x , y ) = 2Gx x̄ (x , y ) = 0, and ∇x Gx x (x , y ) =∇x̄ Gx x̄ (x , y ) = 0,

5



The harmonicity of H , together with (7), implies

∇x Hx (x , x ) = 2
∂

∂ x̄
Hx (x , x ) = 2Hx x̄ (x , x ) +2Hx ȳ (x , x ) = 2Hx ȳ (x , x ) = 2Gx ȳ (x , x ).

We then conclude from Theorem 2 that

∇x D (x , y ) = 2
∇x Hx (x , x )

Gx (x , y )
−2

Hx (x , x )∇x Gx (x , y )
Gx (x , y )2

+
1

2

∇x Gx x (x , y )
Gx (x , y )2

−
Gx x (x , y )∇x Gx (x , y )

Gx (x , y )3

= 4
Gx ȳ (x , x )

Gx (x , y )
= 2

Gx ȳ (x , x )

|Gx (x , y )2|
∇x G (x , y )

By Lemma 4, Gx ȳ (x , x ) is real, so it remains to show that the ratio

φ(x ) =φ(x , y ) =
∇x G (x , y )
∇x D (x , y )

is also negative for any x ∈Ωwith x ̸= y .
To keep the notation simple, let us omit the subscript x and tacitly assume that all gradients are taken

with respect to x . Following this convention, we then have by the harmonicity of G that

0=∇2G (x , y ) =∇·
�

φ(x )∇D (x , y )
�

=∇φ(x ) ·∇D (x , y ) +φ(x )∇2D (x , y )

=
∇φ(x )
φ(x )

·∇G (x , y ) +φ(x )∇2D (x , y ),

implying
∇φ(x ) ·∇G (x , y ) =−φ(x )2∇2D (x , y )≤ 0, (9)

because D is subharmonic. Let us now consider the unique gradient-descent path, defined by∇G , from y
to x and further on to some boundary point w ∈ ∂ Ω, and denote by γ the reverse sub-path from w to x
with vector differential d z . By definition of γ, we have d z/|d z |=∇G (z , y )/|∇G (z , y )|, and according to the
Gradient Theorem, we then have

φ(x )−φ(w ) =
∫

γ

∇φ(z ) ·d z =

∫

γ

∇φ(z ) ·∇G (z , y )
|∇G (z , y )|

|d z | ≤ 0, (10)

where the last inequality follows from (9).
As∇G (w , y ) is normal to the boundary ofΩ at w , so is∇D (w , y ) by Theorem 3. But while∇G (w , y ) points

inwards, ∇D (w , y ) points outwards, because D is subharmonic and hence obtains its maximum on ∂ Ω.
Consequently,φ(w )< 0, and it follows from (10) that

φ(x )≤φ(w )< 0.

Note that for multiply-connected domains, it may happen that the gradient-descent path of G from y
to w encounters a saddle point s of G . In this case, even though∇G (s ) = 0, there still exists a direction of
steepest descent, given by the principal curvature directions (the eigenvectors of the Hessian of G ) at that
point, and we follow this direction to extend the path beyond s , see the example in Fig. 1 (Right). Since the
number of saddle points is finite, this strategy guarantees that the path eventually terminates at some w ∈ ∂ Ω.
Hence, the path γ from w to x in (10) is well-defined and consequentlyφ(x )< 0, even in this case.

5 Conclusion

We have shown that the χ2-divergence distance of a multiply-connected domain behaves similarly to the
Green’s function of that domain, namely that it has no local minima, except at the target point, where it has
a global minimum of zero. This implies that the divergence distance function may be used to trace paths
between pairs of points in the domain by gradient descent. Our numerical experiments have indicated that
all other divergence distances (based on other strictly convex f ’s) also have this desirable property, although
we have been unable to prove it. The obstacle is applying Cauchy’s Residue Theorem to compute the contour
integral in the proof of Theorem 3. For many f ’s, the resulting integrand may have branches or higher-order
poles, significantly complicating the computation of that integral.

6



References

[1] L. V. Ahlfors. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable. Interna-
tional Series in Pure and Applied Mathematics. McGraw-Hill, New York, 3rd edition, 1979. ISBN 978-0-07-000657-7.

[2] R. Chen, C. Gotsman, and K. Hormann. Efficient path generation with reduced coordinates. Computer Graphics
Forum, 37(5):37–48, Aug. 2018. Proceedings of SGP. [PDF]

[3] R. Chen, C. Gotsman, and K. Hormann. Path planning with divergence-based distance functions. Computer Aided
Geometric Design, 66:52–74, Nov. 2018. [PDF]

[4] I. Csiszár. Information-type measures of difference of probability distributions and indirect observations. Studia
Scientiarum Mathematicarum Hungarica, 2:299–318, 1967.

[5] J. B. Garnett and D. E. Marshall. Harmonic Measure, volume 2 of New Mathematical Monographs. Cambridge
University Press, New York, 2005. ISBN 978-0-521-47018-6.

[6] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics, 22(1):79–86, Mar.
1951.

[7] F. Liese and I. Vajda. On divergences and informations in statistics and information theory. IEEE Transactions on
Information Theory, 52(10):4394–4412, Oct. 2006.

7

https://www.worldcat.org/search?q=isbn%3A9780070006577
https://doi.org/10.1111/cgf.13489
https://www.inf.usi.ch/hormann/papers/Chen.2018.EPG.pdf
https://doi.org/10.1016/j.cagd.2018.09.002
https://www.inf.usi.ch/hormann/papers/Chen.2018.PPW.pdf
https://doi.org/10.1017/CBO9780511546617
https://www.worldcat.org/search?q=isbn%3A9780521470186
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/TIT.2006.881731

	Introduction
	The f-divergence distance
	Preliminaries
	The 2-divergence distance
	Conclusion

