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Abstract

Any point inside a d -dimensional simplex can be expressed in a unique way as a convex combina-
tion of the simplex’s vertices, and the coefficients of this combination are called the barycentric
coordinates of the point. The idea of barycentric coordinates extends to general polytopes with n
vertices, but they are no longer unique if n > d + 1. Several constructions of such generalized
barycentric coordinates have been proposed, in particular for polygons and polyhedra, but most
approaches cannot guarantee the non-negativity of the coordinates, which is important for applic-
ations like image warping and mesh deformation. We present a novel construction of non-negative
and smooth generalized barycentric coordinates for arbitrary simple polygons, which extends to
higher dimensions and can include isolated interior points. Our approach is inspired by maximum
entropy coordinates, as it also uses a statistical model to define coordinates for convex polygons,
but our generalization to non-convex shapes is different and based instead on the project-and-
smooth idea of iterative coordinates. We show that our coordinates and their gradients can be
evaluated efficiently and provide several examples that illustrate their advantages over previous
constructions.
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1 Introduction

Given a polytope Ω in Rd with n ≥ d +1 vertices v1, . . . , vn ∈Rd , a set of functions λi : Ω→R, i = 1, . . . , n is
called a set of generalized barycentric coordinates, if they allow to write any v ∈Ω as an affine combination of
the vertices vi with coefficients λi (v ), that is,

n
∑

i=1

λi (v )vi = v,
n
∑

i=1

λi = 1. (1)

For most applications, it is further indispensable that the coordinate functions λi satisfy the Lagrange
property

λi (v j ) =δi , j , i , j = 1, . . . , n , (2)

since this implies that any data f1, . . . , fn given at the vertices of Ω can be interpolated by the function
f (v ) =
∑n

i=1λi (v ) fi . Another desirable property is that the generalized barycentric coordinates should be
non-negative for any v ∈Ω,

λi (v )≥ 0, i = 1, . . . , n , (3)

so that the interpolated values f (v ) are guaranteed to be inside the convex hull of the data. Moreover, all
λi (v ) should depend smoothly both on v and the vertices vi , and reduce to k -dimensional generalized
barycentric coordinates, if restricted to the k -dimensional faces of Ω. In particular, they should be linear
over the edges of a planar polygon and over the faces of a triangle mesh.

(a) (b) (c) (d) (e) (f)

Figure 1: Maximum likelihood coordinates can be defined for arbitrary simple polygons with interior points (b, c). The
explicit form of their gradient allows to compute the area and angle distortion (e, f) of the deformation of an image
obtained by moving the polygon vertices (a, d).
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Generalized barycentric coordinates have numerous applications, including geometric modelling [36, 30],
mesh parameterization [11, 12], morphing [14], colour interpolation [39], rendering [23], image warping [49],
image cloning [10], mesh deformation [27, 25, 33, 31, 34, 46, 45], finite element methods [47, 37, 18], and
many more [22].

1.1 Related work

Barycentric coordinates were discovered by Möbius [41], who not only showed that they are unique if Ω
is a d -dimensional simplex, but also derived an explicit formula for these simplex coordinates. Starting
with the work of Kalman [29] and Wachspress [47], the idea of barycentric coordinates has been extended to
non-convex polygons and polytopes, and many kinds of generalized barycentric coordinates were proposed.
A good overview can be found in the surveys by Floater [13] and Anisimov [1].

The different constructions of generalized barycentric coordinates can mainly be divided in two groups.
On the one hand, there are closed-form constructions, which provide the coordinates in terms of an algebraic
expression that can be evaluated efficiently for any v ∈ Ω. Particularly simple formulas are known for
Wachspress [39] and discrete harmonic coordinates [42, 9]. These coordinates are well-defined only for
convex polygons and convex polytopes [48, 49, 28, 26] and turn out to be special cases of a whole family of
three-point coordinates [15, 2]. This family also includes mean value coordinates [12, 20], which come with
the advantage of being well-defined for non-convex polygons and polyhedra, too [16, 27]. Whole families
of barycentric coordinates for non-convex polygons and polyhedra were constructed by [7] and [50], but
just like metric [37], Poisson [32], and Gordon–Wixom coordinates [6], they may take on negative values at
certain v ∈Ω. Some constructions guarantee the non-negativity of the coordinates, but at the price of not
depending smoothly on either v ∈Ω [33, 38] or the vertices vi [3]. An exception are iterative coordinates [8],
which modify mean value coordinates iteratively until they are non-negative, which is proven to be the case
after a finite number of iterations. However, the number of required iterations is not known a priori for a
given polygon and may be on the order of O (n 2), so that the evaluation of these coordinates becomes very
slow.

On the other hand, there are computational constructions, where the coordinates are defined as the
solution of a non-linear optimization problem with conditions (1), (2), and (3) as constraints. The resulting
coordinates have all desired properties, but must be treated numerically. This includes harmonic [25] and
local barycentric coordinates [51, 44], which are usually approximated by piecewise linear functions over a
dense triangulation T of Ω and require to solve a global problem to determine the values of the functions at
the vertices of T . Another construction from this category are maximum entropy coordinates [21], which
can be evaluated at any v ∈Ω by solving a local convex optimization problem, but this approach relies on
the choice of certain prior functions, and it is not clear how to choose the latter for a given polygon, so that
shape artefacts in the coordinates are avoided.

1.2 Contribution

We propose a novel construction of non-negative and smooth computational barycentric coordinates. Like
maximum entropy coordinates (MEC), they are derived from a statistical model, but instead of maximizing
the entropy of a discrete probability distribution, we propose to maximize the likelihood. In their basic form
(Section 2), these maximum likelihood coordinates (MLC) satisfy (1) and are non-negative over the convex
hull of the vertices vi , but they satisfy the Lagrange property (2) only at the corners of the convex hull, that is,
at the vertices of a convex polygon or polytope, akin to MEC with constant or Gaussian priors [43]. Another
similarity with MEC is that MLC can be computed efficiently at any v ∈ IntΩ after finding the minimum of a
convex function in d variables with few iterations of Newton’s method. As for MEC [40], this minimum can
also be used to determine the gradients of the coordinates at v with a simple formula (Section 2.1).

To extend the construction of MLC to non-convex polygons, we borrow the project-and-smooth idea from
iterative coordinates [8] (Sections 3.1 and 3.2), and we explain how to include interior points (Section 3.4)
and how to generalize them to higher dimensions (Section 3.5). Our comparisons (Section 4) show that MLC
outperform other coordinates in the context of image deformation and that the results get even better when
using a novel scaling approach that takes the interior distances from v ∈ IntΩ to the vertices vi into account
and improves the shape of the coordinate functions (Section 4.1). We conclude by discussing limitations
and future work (Section 5).
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2 Convex polygons

Let us start with the case when Ω is a planar convex polygon with n vertices v1, . . . , vn ∈R2. For any v ∈ IntΩ,
we define the barycentric coordinates λ=λ(v ) ∈Rn by maximizing

L(λ) =
n
∏

i=1

λi , (4)

subject to the constraints

n
∑

i=1

λi = 1,
n
∑

i=1

λi vi = v, λi ≥ 0, i = 1, . . . , n . (5)

The objective function L is motivated by the shape of likelihood functions which occur in statistics. To solve
this nonlinear optimization problem, we first observe that L(λ)> 0 if all coordinates λi are positive, while
L(λ) = 0 if at least one λi vanishes. Therefore, we can focus on the set of positive coordinates and maximize
instead of L(λ) its logarithm,

ℓ(λ) = logL(λ) =
n
∑

i=1

logλi , (6)

because the logarithm is strictly increasing. This is somewhat simpler, because ℓ is strictly concave over the
convex set of positive coordinates that satisfy the constraints in (5). Therefore, maximizing ℓ is equivalent to
determining a constrained local extremum of ℓ, which in turn can be found with the method of Lagrange
multipliers. The latter states that a local extremum of ℓ under the constraints in (5) is characterized by the
existence of someφ0 ∈R andφ = (φ1,φ2)

T ∈R2, such that

∂

∂ λi
ℓ(λ) =

1

λi
=φ0+φ

T(vi − v ), i = 1, . . . , n .

Multiplying both sides of this identity by λi , summing over i , and using (5), we get

n =
n
∑

i=1

λi (φ0+φ
T(vi − v )) =φ0

n
∑

i=1

λi +φ
T

n
∑

i=1

λi (vi − v ) =φ0,

so that

λi =
1

n +φT(vi − v )
, i = 1, . . . , n . (7)

It remains to findφ, such that the second constraint in (5) holds, that is,

n
∑

i=1

λi (vi − v ) =
n
∑

i=1

vi − v

n +φT(vi − v )
= 0. (8)

This condition, however, is equivalent to finding a stationary point of the function

F (φ) =−
n
∑

i=1

log
�

n +φT(vi − v )
�

, (9)

defined over the set
Φ=
�

φ ∈R2 : n +φT(vi − v )> 0, i = 1, . . . , n
	

of allφ that yield positive coordinates λi by (7). Note that Φ is the interior of the polar dual [28] of Ωwith
respect to v , scaled by −n , and therefore bounded and convex. Since F is strictly convex and diverges to∞
at the boundary of Φ, it is clear that the unique stationary point of F is at the global minimum of F . Hence,
instead of solving the original constrained nonlinear optimization problem in n variables λi , we just have to
minimize a convex function in the two variablesφ1,φ2, which can be done efficiently with few iterations of
Newton’s method, usingφ(0) = (0, 0)T ∈Φ as initial guess (see Algorithm 1 in Appendix A.1). Once the optimal
φ =φ⋆ is found, the basic maximum likelihood coordinates (BMLC) λi are computed using (7).

Like all barycentric coordinates that are non-negative over IntΩ, BMLC have a unique continuous
extension to ∂ Ω, which is linear along the edges of Ω and satisfies the Lagrange property [15, Corollary 2.3].
Hence, as v ∈ IntΩ converges to v⋆ ∈ ∂ Ω, say v⋆ = (1−µ)v j +µv j+1 for some j and 0≤µ≤ 1, the BMLC of v
converge to λ j = 1−µ, λ j+1 =µ, and λi = 0 for i ̸= j , j +1.
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Figure 2: Examples of BMLC for a convex and a concave polygon.

2.1 Gradients

Since F and thus also the minimum of F depend smoothly on v , BMLC are smooth (i.e., C∞) over IntΩ,
and we can even determine their gradients without too much effort (see Algorithm 2 in Appendix A.1). To
this end, letφ⋆ =φ(v ) denote the minimum of F , as a function of v , and recall from (8) that

G (φ, v ) =
n
∑

i=1

vi − v

n +φT(vi − v )

vanishes at (φ⋆, v ) for any v ∈ IntΩ. Hence, the derivative of G (φ(v ), v )with respect to v vanishes, too, and
we get, by the multivariate chain rule,

d

dv
G (φ(v ), v ) =

∂

∂ φ
G (φ⋆, v )

d

dv
φ(v ) +

∂

∂ v
G (φ⋆, v ) = 0, (10)

where

∂

∂ φ
G (φ, v ) =

n
∑

i=1

−(vi − v )(vi − v )T

(n +φT(vi − v ))2
,

∂

∂ v
G (φ, v ) =

n
∑

i=1

(vi − v )φT− (n +φT(vi − v ))I2

(n +φT(vi − v ))2
,

with Ik denoting the k -dimensional identity matrix. Likewise, considering the formula for λi in (7) as a
function ofφ and v , we have

d

dv
λi (φ(v ), v ) =

∂

∂ φ
λi (φ⋆, v )

d

dv
φ(v ) +

∂

∂ v
λi (φ⋆, v ), (11)

where
∂

∂ φ
λi (φ, v ) =

−(vi − v )T

(n +φT(vi − v ))2
,
∂

∂ v
λi (φ, v ) =

φT

(n +φT(vi − v ))2
.

Solving (10) for d
dvφ(v ) and substituting the result in (11), we finally get, after some simplifications,

∇λi =
�

d

dv
λi (φ(v ), v )
�T

=λ2
i

�

φ⋆−Gv G −1
φ (vi − v )
�

, (12)

where the two 2×2 matrices

Gφ =
n
∑

j=1

λ2
j (v j − v )(v j − v )T, Gv =

n
∑

j=1

λ2
jφ⋆(v j − v )T− I2

do not depend on i , so that Gv G −1
φ needs to be computed only once for every v ∈ IntΩ. Note that Gφ is

invertible, because Gφ =U TU , where the rows of the matrix U ∈ Rn×2 are λi (vi − v )T, i = 1, . . . , n . Since
these are the vertices of a non-degenerate polygon, it follows that Gφ is the Gram matrix of two linearly
independent vectors X , Y ∈Rn , namely the two columns of U = (X , Y ).
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Figure 3: Individual steps of transforming Ω into Ω̂. To get the Lagrange property, we translate Ω by −v and project the
vertices to the unit circle (P0). To get the linearity along the edges, we further smooth�Ω with two averaging steps (A1, A2)
and subsequent projections (P1, P2).

2.2 Higher dimensions

The formulation of BMLC naturally extends to convex polytopes in Rd . The formula for the coordinates
in (7) still applies, except thatφ is d -dimensional in general and must be found by minimizing the d -variate
analogue of the function F in (9). Likewise, the gradient of λi can be computed as above, but with d ×d
matrices Gφ and Gv .

3 Non-convex polygons

While BMLC satisfy all the key properties of generalized barycentric coordinates if Ω is convex and are
well-defined and non-negative over the convex hull Conv(Ω) of a concave polygon, they loose the Lagrange
property at the vertices and the linearity along the edges that do not belong to Conv(Ω) (see Figure 2). A
similar behaviour is known for maximum entropy coordinates (MEC) with constant or Gaussian priors [43].
For MEC, this can be fixed by using special edge-aware prior functions [21], but we need a different strategy
for extending BMLC to non-convex polygons. Our extension is based on the following procedure, which is
inspired by the construction of iterative coordinates [8].

Let V = (v1, . . . , vn ) ∈R2×n be the matrix whose columns are the vertices of a non-convex polygonΩ. Given
v ∈ IntΩ, we first translateΩ by−v to get the polygon Ω̃with vertices Ṽ =V −v eT, where e = (1, . . . , 1)T ∈Rn .
Since barycentric coordinates are invariant under translations, any barycentric coordinates of the origin
w.r.t. Ω̃ are also barycentric coordinates of v w.r.t. Ω and vice versa. We then apply some non-negative matrix
M ∈ Rn×n , possibly depending on v and v1, . . . , vn , with at least one positive entry per row, to get Ω̂ with
vertices V̂ = Ṽ M , which can also be seen as transforming the two vectors consisting of the x - and the y -
coordinates of the vertices ṽi with M T. Any barycentric coordinates of the origin w.r.t. Ω̃ can then be turned
into barycentric coordinates of v w.r.t. Ω by transforming them with M and normalizing the result.

Lemma 1. Given a simple polygon Ω with vertices V and v ∈ IntΩ, let Ω̂ be the polygon with vertices
V̂ = (V − v eT)M and λ̂ be some positive barycentric coordinates of the origin v̂ = 0 with respect to Ω̂. Then
λ=w /W , where w =M λ̂ and W =w1+ · · ·+wn , are positive barycentric coordinates of v with respect to Ω.

Proof. It follows from the properties of M and λ̂ that w > 0 and W = eTw > 0, hence λ > 0 and
∑n

i=1λi =
eTλ= eTw /W = 1. Moreover, since

∑n
i=1 λ̂i v̂i = V̂ λ̂= v̂ = 0, we have

n
∑

i=1

λi vi =V λ=V
w

W
=

V M λ̂

W
=

V̂ λ̂

W
+

v eTM λ̂

W
= v

eTw

W
= v,

which concludes the proof.

Lemma 1 provides a recipe for defining maximum likelihood coordinates (MLC) for non-convex polygons.
For any v ∈ IntΩ,

1. transform Ω into Ω̂, using a suitable matrix M ;

2. compute the BMLC λ̂ of the origin w.r.t. Ω̂;

3. derive λ=λ(v ) from λ̂ using again M .
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Figure 4: Examples of BMLC (left), MLC with projection (middle), and MLC with projection and smoothing (right).

While this approach guarantees that the coordinates λ are barycentric and positive, the difficult part is
finding suitable matrices M =M (v ), such that the coordinates have the Lagrange property at the vertices
and are piecewise linear along the edges of Ω. Both can be achieved by the project-and-smooth idea of
iterative coordinates [8], which are basically defined by the same procedure.

However, iterative coordinates use the circumcentre coordinates of the origin w.r.t. Ω̂ in step 2. These are
guaranteed to be positive only if Ω̂ is a convex cyclic polygon, which in turn may require O (n 2) smoothing
steps. For MLC, step 2 gives positive coordinates even if Ω̂ is a self-intersecting polygon, as long as 0 ∈Conv(Ω̂),
because the definition of BMLC actually depends only on the vertices of the polygon, but not on how they
are connected by edges.

3.1 Projection

The Lagrange property at the vertices can be restored (see Figure 4) by projecting the translated vertices ṽi

to the unit circle around the origin (see Figure 3), that is, by using as M the diagonal projection matrix

P0 = diag
�

1

r1
, . . . ,

1

rn

�

,

where ri = ∥ṽi ∥= ∥vi − v ∥.

Theorem 1. The maximum likelihood coordinates λ(v ) defined by M = P0 possess the Lagrange property at
the vertices of Ω.

Proof. If v ∈ IntΩ converges to v j , then r j converges to 0, while the other rk converge to ∥vk − v j ∥ > 0.
Consequently, the ratios r j /rk converge to δk , j for all k = 1, . . . , n . Therefore,

lim
v→v j

λi (v ) = lim
v→v j

λ̂i /ri
∑n

k=1 λ̂k/rk

=
limv→v j

�

λ̂i r j /ri

�

∑n
k=1 limv→v j

�

λ̂k r j /rk

� =
δi , j limv→v j

λ̂i
∑n

k=1δk , j limv→v j
λ̂k

=δi , j

limv→v j
λ̂i

limv→v j
λ̂ j

=δi , j ,

because all λ̂k are bounded and λ̂ j > 0, even in the limit.

3.2 Smoothing

To restore the linearity along the edges (see Figure 4), we apply the following smoothing process to the
projected vertices �vi = ṽi /ri (see Figure 3). We first average for each edge E j = [v j , v j+1] of Ω the outward-
pointing unit normals of the circular arc �E j between �v j and �v j+1 in an integral sense. Basic calculations
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Figure 5: Examples of normalized gradient fields of MLC with projection and smoothing (cf. Figure 4).

reveal that this average can be expressed as a linear combination of the endpoints,

s j =

∫

�E j

x dx

�∫

�E j

1 dx =σ j ,1�v j +σ j ,2�v j+1, (13)

with weights

σ j ,1 =σ j ,2 =σ j =
tan

α j

2

α j
=

1−�vTj �v j+1

α jθ j
,

where α j is the length of �E j and θ j = sinα j is the area of the parallelogram spanned by �v j and �v j+1. Note
that s j = �v j = �v j+1 in the limit, as α j converges to 0. Moreover, as α j tends to π,σ j diverges to +∞, while all
otherσk converge to finite values, which is crucial for getting MLC that are linear along the edges. We then
project the s j back to the unit circle, average them with their predecessors, and project again. That is, we
compute the vertices v̂i of Ω̂ as

v̂i = ti /∥ti ∥, ti =
�

si−1/∥si−1∥+ si /∥si ∥
�

/2,

where indices are considered cyclically over the range [1, . . . , n ]. This is equivalent to using as M the matrix
P0A1P1A2P2, where

A1 =









σ1,1 0 · · · σn ,2

σ1,2 σ2,1 · · · 0
...

...
...

...
0 · · · σn−1,2 σn ,1









, A2 =
1

2









1 1 · · · 0
...

...
...

...
0 · · · 1 1
1 · · · 0 1









,

P1 = diag(1/∥s1∥, . . . , 1/∥sn∥), and P2 = diag(1/∥t1∥, . . . , 1/∥tn∥).

Theorem 2. The maximum likelihood coordinates λ(v ) defined by M = P0A1P1A2P2 are linear along the edges
of Ω.

Proof. If v ∈ IntΩ converges to v⋆ = (1−µ)v j +µv j+1 for some j and 0<µ< 1, then �v j converges to −�v j+1

and α j and θ j converge to π and 0, respectively. And even though σ j diverges to +∞, s j is well-defined,

even in the limit, as the halfway vector between �v j and �v j+1 with length ∥s j ∥= 2
α j

sin
α j

2 . Therefore, all ∥tk∥
converge to positive values, so that Conv(Ω̂) is a well-defined convex cyclic polygon which contains the
origin. It follows that λ̂ > 0, even in the limit, and also u = P1A2P2λ̂ > 0.

We further notice that θ jσ j converges to 2/π as v approaches v⋆, while θ jσk converges to 0 for k ≠ j .
Consequently, θ j A1u converges to the vector �w ∈ Rn with �w j = �w j+1 = 2u j /π and �wk = 0 for k ̸= j , j + 1.
Since

lim
v→v⋆

λ(v ) = lim
v→v⋆

θ j M λ̂

θ j E M λ̂
= lim

v→v⋆

P0(θ j A1u )

E P0(θ j A1u )
=

P0 �w
E P0 �w

,

this implies

lim
v→v⋆

λi (v ) =

�wi

ri

�w j

r j
+
�w j+1

r j+1

=















1/µ
1/µ+1/(1−µ) = 1−µ, i = j ,

1/(1−µ)
1/µ+1/(1−µ) =µ, i = j +1,

0, i ̸= j , j +1,

because r j and r j+1 converge to µe and (1−µ)e , respectively, where e = ∥vi+1− vi ∥.
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Figure 6: Area and angle distortion of the MLC deformation in Figure 9: Jacobian determinant (left) and MIPS energy
(right).

3.3 Gradients

Since all ingredients of the projection and the smoothing process depend smoothly on v , it is clear that MLC
with projection and smoothing are smooth over IntΩ, with a continuous extension to ∂ Ω that is linear along
the edges of Ω. The gradients of MLC can be derived, essentially with the same idea as in Section 2.1 and by
carefully applying the chain rule several times to take care of the projection and smoothing operators. The
details and pseudo code for computing MLC and their gradients can be found in Appendix A.2.

Figure 5 shows three examples of the normalized gradients of MLC with projection and smoothing at
those nodes of a regular grid that are inside the non-convex polygon from Figure 4. Moreover, we can use
the gradients to compute the distortion of the barycentric mapping from a source polygon Ω to a target
polygon Ω′,

f : Ω→Ω′, f (v ) =
n
∑

i=1

λi (v )v
′
i , (14)

at any point v ∈ IntΩ. For example, Figure 6 shows the determinant det(J f ) of the Jacobian matrix

J f (v ) =
n
∑

i=1

v ′i∇
Tλi (v )

of f to visualize the area distortion (no area distortion corresponds to the value 1 and negative values would
indicate fold-overs) of the MLC deformation in Figure 9 (note that the source image in Figure 9 was scaled by
a factor of 2/3 w.r.t. the target images for layout reasons), as well as the MIPS energy trace(J f

T J f )/det(J f )
to illustrate the angle distortion of this mapping (local conformality corresponds to the smallest possible
value 2). Another example of such distortion plots can be found in Figure 1.

3.4 Interior points

An interesting feature of the MLC construction is that it allows to include isolated interior points. In fact, The-
orem 1 does not depend on the vertices forming an actual polygonΩ and also holds for any set of isolated ver-
tices. Hence, if we define the MLC for a given polygonΩ and m additional interior points vn+1, . . . , vn+m ∈ IntΩ
by projecting all vertices as in Section 3.1 and smoothing only the vertices of Ω as in Section 3.2, then we get
generalized barycentric coordinates that satisfy all the key properties, except that they are only continuous
at the interior points (see Figure 7).

Figure 7: Examples of MLC for a polygon with an interior point.
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Figure 8: Deformation of a source mesh (left) with 3D MLC (right).

3.5 Higher dimensions

As for convex polygons, the construction of MLC extends to non-convex polytopes inRd . The generalizations
of Lemma 1 and Theorem 1 from 2D to any dimension d is trivial, so let us focus on the smoothing process.

In the first step, we average the outward-pointing unit normals of the hyperspherical simplices that
correspond to the simplicial faces of the polytope Ω and express them as a linear combination of the vertices
that we get by projecting the faces of Ω. For example, if T = [v1, v2, v3] is a triangle of a polyhedron Ω inR3

and �T is the spherical triangle spanned by the projected vertices �v1,�v2,�v3, then we need to find the weights
σ1,σ2,σ3, such that

s =

∫

�T

x dx

�∫

�T

1 dx =σ1�v1+σ2�v2+σ3�v3. (15)

With α denoting the area of �T and θ = |�v1 · (�v2×�v3)| the volume of the parallelepiped spanned by �v1,�v2,�v3, it
follows from [16, Theorem 2] that

σ1 =
β2,3+β1,2 n1,2 ·n2,3+β3,1 n3,1 ·n2,3

2αθ
sinβ2,3

and similarly for σ2 and σ3, with βr,s denoting the (unsigned) angle between �vr and �vs and nr,s = (�vr ×
�vs )/∥�vr ×�vs ∥ being a unit normal of the triangle [0,�vr ,�vs ]. The computation of the s j for all m triangles
Tj = [v j1

, v j2
, v j3
] of Ω can be expressed as S = (s1, . . . , sm ) = �V A1, where the n ×m matrix A1 has exactly 3

non-zero entries per column, namely (A1) jl , j =σ jl
, for l = 1, 2, 3.

In the next step, we average, for each vertex vi of Ω, the normalized vectors s j of the mi faces adjacent
to vi , with indices in Ni ,

ti =
1

mi

∑

j∈Ni

s j /∥s j ∥,

and normalize again to get v̂i = ti /∥ti ∥. As in Section 3.2, this can be expressed as V̂ = SP1A2P2. For example,
if Ω is a polyhedron in R3, then the m ×n matrix A2 has the same structure as AT1 , with 3 non-zero entries
per row, namely (A2) j , jl

= 1/m jl
, for l = 1, 2, 3.

At least in 3D, the proof of Theorem 2 can be generalized nicely. As v ∈ IntΩ converges to a point inside a
triangle Tj = [v j1

, v j2
, v j3
] of Ω, say v⋆ =µ1v j1

+µ2v j2
+µ3v j3

for some µ1,µ2,µ3 > 0 with µ1+µ2+µ3 = 1, the
area α j and the volume θ j converge to 2π and 0, respectively, and while

lim
v→v⋆

θ j

�

σ j1
,σ j2

,σ j3

�

=
1

2

�

sinβ j2, j3
, sinβ j3, j1

, sinβ j1, j2

�

, (16)

all other scaled weights θ jσkl
for k ̸= j and l = 1, 2, 3 converge to 0. Consequently, θ j A1P1A2P2λ̂ converges to

a vector �w ∈Rn , whose 3 non-zero entries are the values on the right hand side of (16), scaled by a common
positive factor. Since these are, after normalization, the 2D barycentric coordinates of the origin 0 w.r.t. the
triangle limv→v⋆ [�v j1

,�v j2
,�v j2
], it follows from Lemma 1 with M = P0 that the MLC coordinates λ converge to

the barycentric coordinates µ1,µ2,µ3 of v w.r.t. Tj and are thus linear along the faces of Ω.
An example of a cage-based deformation using 3D MLC with projection and smoothing is shown in

Figure 8.
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source MVC IC (k = 4) MLC MEC HC

Figure 9: Deformation of a source image (left) with different barycentric coordinates, zoom-ins, and examples of basis
functions (insets). While the MVC-based deformation has fold-overs, caused by negative functions values (bottom), and
the MEC-based deformation has distortions, related to local maxima of some coordinate functions (top and bottom),
the results using IC, MLC, and HC are free of artefacts.

MVC IC (k = 4) MLC SMLC MEC HC

Figure 10: Comparison of different barycentric coordinate functions for a polygon with two very sharp concave vertices.

4 Results

One of the main applications of 2D barycentric coordinates is image deformation, which can be achieved by
enclosing the source image with a source polygon Ω and then moving its vertices v1, . . . , vn to get a target
polygon Ω′ with vertices v ′1, . . . , v ′n . The deformed target image is then generated by applying the barycentric
mapping f in (14). Due to the properties of the barycentric coordinates λ, the mapping f is interpolatory,
that is, f (vi ) = v ′i for i = 1, . . . , n , and it linearly maps the edges of Ω to the edges of Ω′.

It is well-known that negative coordinates can lead to artefacts in the deformed image. For example, the
negative values (in red) of the mean value coordinates (MVC) associated with the two vertices near the tail of
the butterfly in Figure 9 cause the target image to fold over (bottom insets). For iterative coordinates (IC),
both the negative values and the fold-overs disappear after 4 iterations. However, unexpected deformation
results may also stem from shape artefacts of the coordinate functions. For example, the maximum entropy
coordinates (MEC) associated with the two vertices near the tips of the butterfly’s antennas have a local
maximum of significant height (∼ 0.13 in this case) inside the front wing, which lead to artefacts (top insets)
that are not present in the MLC-based deformation, which in turn is similar in quality to the deformation
obtained using harmonic coordinates (HC).

A more extreme example of this phenomenon can be seen in Figure 10. The MVC functions corresponding
to vertices next to a concave vertex with a big interior angle (close to 2π) can have big local maxima (greater
than 1, in brown) that lead to very negative local minima (in red) of other coordinate functions and may
cause unwanted deformation results. These artefacts disappear for IC after 4 iterations. Local maxima
(smaller than 1) also happen for MEC (top), but instead of causing local minima, they induce severe shape
artefacts of neighbouring coordinate functions (bottom).

One explanation for this problem is that the prior functions, which are used to guarantee the linearity of
MEC along the edges ofΩ, are normalized products of functionsρi that are zero on the edge Ei ofΩ and grow
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Figure 11: Comparison of MLC (left) and SMLC (right) associated with a concave vertex of a non-convex polygon.

source MVC IC (k = 10) MLC SMLC MEC HC

Figure 12: Deformation of a source image (left) with different barycentric coordinates, zoom-ins, and examples of basis
functions (insets). The top row shows artefacts caused by basis functions with too much (MVC) or too little (MLC) local
influence, which disappear after few iterations (IC) or with additional scaling (SMLC), respectively. Instead, the artefact
of the MVC-based deformation in the bottom row is amplified as the number of iterations grows, and the scaling step is
not as effective in improving the result of the MLC-based deformation.

with increasing distance to Ei , independently of the other edges. Due to this locality, MEC are not “aware” of
the global shape of Ω. For MLC, the situation is similar, but to a lesser extent, and it can be improved with a
simple, yet effective approach.

4.1 Scaling

To enrich MLC with a certain global shape awareness, we add another scaling step to the project-and-smooth
procedure from Section 3. These scaled maximum likelihood coordinates (SMLC) are defined by using the
matrix M = P0A1P1A2P2D in the basic MLC recipe, where D = diag(1/d1, . . . ,1/dn ) with di denoting some
interior distance between v and vi . In our examples, we used biharmonic distances [35], but also the geodesic
distance inside Ω [5] could be used. Note that the additional scaling of the projected and smoothed vertices
does not change the fact that 0 ∈Conv(Ω̂), so that we can still compute valid BMLC λ̂ of the origin w.r.t. Ω̂.

Using the same arguments as before, it is clear that SMLC are as smooth as the functions used to compute
the distances di , and as long as the derivatives of these distances can be evaluated in some way, then we can
also compute the derivatives of SMLC, with minor changes to the code provided in Appendix A.2.

Figure 11 shows that the scaling approach is effective in removing local maxima, or at least in significantly
decreasing their magnitude. It also reduces another shape artefact that some MLC functions may have,
namely falling off very quickly in the vicinity of the associated vertex, which in turn implies too little local
impact of these coordinate functions. As shown in Figure 12 (top insets), this can lead to artefacts in
MLC-based deformations, which disappear when using SMLC. MVC functions associated with concave
vertices also tend to suffer from this phenomenon. This causes other neighbouring coordinate functions
to grow too quickly close to concave vertices and thus having too much impact on the deformation. The
resulting artefacts (bottom insets in Figure 12) get even worse when using IC with an increasing number of
iterations. While the MLC-based deformation has similar problems, which are improved only marginally
by the additional scaling step, the deformation using MEC may be considered more natural in this case.
Compared to the HC-based deformation, we observe that the result using SMLC is the most similar among
all shown deformations.
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Figure 13: Deformation of a source image (left) with MLC for a polygon with an interior point (cf. Figure 7). The Jacobian
determinant plots indicate the lack of C 1 continuity at the interior point, and fold-overs may occur if the displacement
is too large (right).

4.2 Interior points

In the context of image deformation, the possibility to add interior points to the polygon (see Section 3.4)
can be useful for constrained deformation, where certain points in the interior of the image should not be
affected by the deformation (see Figure 1). However, as MLC are not C 1 at interior points, so neither is the
deformation, which can lead to visual artefacts, except if the point constraints are placed inside a region of
constant colour, as in Figure 1.

Moreover, interior points do not provide an effective control handle, since moving interior points can
lead to fold-overs in the deformation, unless the displacement is small (see Figure 13). A similar behaviour is
known for HC-based deformation [24, Figure 9].

5 Conclusion

Despite the intense research on generalized barycentric coordinates over the last two decades, few con-
structions give smooth and non-negative coordinates that are well-defined for arbitrary simple polygons,
and with MLC we introduce a new animal to this zoo that comes with several advantages, but also some
limitations. A comparison of the properties of different 2D constructions can be found in Appendix B.

In contrast to harmonic and local barycentric coordinates, MLC and their gradients can be evaluated
efficiently with arbitrary accuracy at any point inside the polygon by solving a local convex optimization
problem. In this respect, MLC are very similar to MEC and even better, since the gradient and the Hessian of
the function F in (9), which are needed for minimizing F with Newton’s method, are considerably simpler
than those needed for computing MEC. However, there is one important conceptual difference between
MLC and MEC.

The construction of MEC for non-convex polygons relies on the choice of suitable prior functions and
both options (MEC-1 and MEC-2) presented in [21] suffer from lack of global shape awareness, which can
cause severe deformation artefacts (see Figure 9). Note that we used MEC-1 in our examples, because the
results obtained with MEC-2 were worse. In the case of MLC, the extension to non-convex polygons is
based on the project-and-smooth idea from iterative coordinates, which seems better suited for creating
natural-looking deformations and can easily be extended to become more aware of the global shape of the
polygon. However, while the scaling step proposed in Section 4.1 effectively reduces unwanted local maxima
of the coordinate functions, it does not remove all shape artefacts (see Figure 12), and future work is needed
for refining and improving this approach.

Compared to iterative coordinates [8], one major advantage of MLC is speed. In our experiments, we
observed that MLC are as expensive to compute as IC with k = 4 iterations, but for certain polygons, k ∈O (n 2)
iterations are needed to guarantee the non-negativity of IC (see Figure 8 in [8]). Moreover, we are not aware
of any algorithm for computing the gradients of IC, a problem that appears to increase in difficulty with the
number of iterations.

Another advantage of our construction regards the extension to higher dimensions. While our smoothing
procedure in Section 3.2 is essentially identical (up to an index shift) to a double-smoothing step of IC,
expressing and viewing it the way we do (a first averaging step to get vectors s j associated with edges and a
second averaging step to get back to vectors ti associated with vertices), renders the extension to 3D and
beyond straightforward. However, for d ≥ 4 it remains future work to work out concrete formulas for the
weights σ1, . . . ,σd that allow us to express the average of the outward-pointing unit normals of a general
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hyperspherical simplex in terms of a linear combination of the projected vertices �v1, . . . ,�vd as in (13) and (15).
On the theoretical side, our construction reveals that the key steps for constructing non-negative bary-

centric coordinates that satisfy the Lagrange property and are linear along the edges are the translation
by −v , the projection P0 onto the unit circle, and the first averaging step A1. In principle, we can use the
basic MLC recipe with M = P0A1M̂ for any non-negative matrix M̂ and using any scheme for computing
non-negative barycentric coordinates λ̂ of the origin w.r.t. the points V̂ = (V −v eT)M = �V A1M̂ . For example,
one could use MEC without priors for the latter, or consider non-uniform averaging methods to replace our
second averaging step A2.

Another interesting line of future research relates to the rather simple and explicit expressions for the
gradients, especially in the case of BMLC for convex polygons. A deeper analysis, similar to the one in [17],
may reveal conditions for guaranteeing the injectivity of the barycentric mapping f in (14).

One inherent limitation of MLC is that they are only continuous across the boundary of the polygon and
not defined outside the convex hull of the polygon. While this is sufficient for cage-based deformation, it
rules out skeleton-based deformation as in [50]. Another limitation is the lack of smoothness at interior
points, and it remains future work to find generalized barycentric coordinates that are at least C 1 at interior
points.
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A Implementation

To facilitate the implementation of our work, this appendix provides further details and pseudo-code for the
evaluation of the coordinate functions and their gradients.

A.1 Basic maximum likelihood coordinates

The pseudo-code in Algorithm 1 for computing the BMLC λ(v ) of a point v inside a convex polytope Ω inRd

closely follows the explanation in Section 2 and explicitly states how to minimize the convex function F in (9)
using Newton’s method with Armijo line search. Usually, 3 to 7 iterations suffice to reach the convergence

Algorithm 1 Basic maximum likelihood coordinates

Input: vertices v1, . . . , vn of a polytope Ω in Rd and point v ∈ Int(Ω)
Output: coordinates λ= (λ1, . . . ,λn ) of v w.r.t. Ω and optimalφ ∈Rd

1: function BMLC(v1, . . . , vn , v )
2: initializeφ = 0, ε= 10−10, ρ = 0.55, τ= 0.4, and K = 20
3: for i = 1 to n do ▷ translate all vi by −v
4: vi := vi − v
5: F :=−n log n ▷ compute value of F in (9) at initialφ = 0
6: while true do
7: Fnew := 0, g := 0 ∈Rd , H := 0 ∈Rd×d

8: for i = 1 to n do ▷ compute gradient g of F atφ
9: ci := n +φTvi , g := g − vi /ci

10: if ∥g ∥2 <ε then
11: goto line 22 ▷ exit while loop
12: for i = 1 to n do ▷ compute Hessian H of F atφ
13: H :=H + vi vTi /c

2
i

14: q :=−H −1g ▷ search direction
15: for k = 0 to K do ▷ Armijo line search method [4]
16: φnew :=φ+ρk q
17: for i = 1 to n do ▷ compute value of F atφnew

18: Fnew := Fnew− log(n +φTnewvi )
19: if Fnew < F +τρk gTq then
20: goto line 21 ▷ exit for loop
21: φ :=φnew, F := Fnew

22: λ := (1/c1, . . . , 1/cn ) ▷ see (7)
23: return [λ,φ]
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Algorithm 2 Gradient of basic maximum likelihood coordinates

Input: vertices v1, . . . , vn of a polytope Ω in Rd and point v ∈ Int(Ω)
Output: gradients∇λ1, . . . ,∇λn of BMLC at v

1: function GRADIENTBMLC(v1, . . . , vn , v )
2: initialize Gφ := 0 ∈Rd×d , Gv :=−Id =−diag(1, . . . , 1) ∈Rd×d

3: [λ,φ] :=BMLC(v1, . . . , vn , v ) ▷ BMLC λ of v w.r.t. Ω
4: for i = 1 to n do
5: vi :=λi (vi − v ), Gφ :=Gφ + vi vTi , Gv :=Gv +λiφ vTi
6: G :=Gv G −1

φ ▷ recall from Section 2.1 that Gφ is invertible
7: for i = 1 to n do
8: ∇λi :=λi (λiφ−G vi ) ▷ see (12)
9: return (∇λ1, . . . ,∇λn )

threshold ε= 10−10, but up to 15 iterations may be required, if v is very close (at a distance of 10−4 times the
diameter of Ω) to the boundary.

Similarly, the pseudo-code in Algorithm 2 for computing the gradients of BMLC sticks to the formulas
derived in Section 2.1, which generalize straightforwardly to any dimension d . Note that since Algorithm 1
must be executed in line 3 as part of the gradient computation, one could easily modify the code to return
both λ and∇λ.

A.2 Maximum likelihood coordinates

The pseudo-code in Algorithm 3 for computing the MLC λ(v ) of a point v inside an arbitrary simple polygon
Ω in R2 closely follows the derivation in Section 3, but with a few modifications that help to simplify and
speed up the code.

We first compute the projected vertices �vi in lines 2–3 as in Section 3, but then deviate from (13) for the
computation of the s j in lines 5–6. More precisely, we omit the multiplications withσ j , since these factors
cancel out when we normalize the s j . In other words, we use the fact that A1P1 = Ā1P̄1, where

Ā1 =









1 0 · · · 1
1 1 · · · 0
...

...
...

...
0 · · · 1 1









, P̄1 = diag
�

1

s̄1
, . . . ,

1

s̄n

�

,

with s̄ j = ∥�v j +�v j+1∥. We similarly omit the factor 1/2 when computing ti and the projected vertices v̂i in
lines 8–9. Note that the statements in lines 4, 7, and 10 (and likewise in lines 12 and 15) serve to avoid modulo
operations to keep the indices in the range [1, . . . , n ] in the subsequent loops.

After computing the BMLC λ̂ of the origin w.r.t. Ω̂ in line 11, we split the multiplication of λ̂with M into
three steps. We start by determining the non-zero entries Ci ,i =αi and Ci ,i+1 =βi of the matrix C = P̄1A2P2

in lines 13–14 and then compute first the weights �w = Ā1P̄1A2P2λ̂ and finally w = P0 �w in lines 17–19. In the
end, we get the MLC λ by normalizing w in line 20.

To understand the pseudo-code in Algorithm 4 for computing the gradient of MLC, let us parse it from
bottom to top. First recall that

λi =
wi
∑n

j=1 w j

, wi =
�wi

ri
, ri = ∥vi − v ∥,

so that, by the quotient rule,

∇λi =
∇wi

∑n
j=1 w j −wi

∑n
j=1∇w j

�∑n
j=1 w j

�2 (17)

and

∇wi =
∇�wi ri − �wi∇ri

r 2
i

=
∇�wi ri + �wi�vi

r 2
i

, (18)

as implemented in lines 29–34.
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Algorithm 3 Maximum likelihood coordinates

Input: vertices v1, . . . , vn of a polygon Ω in R2 and point v ∈ Int(Ω)
Output: coordinates λ= (λ1, . . . ,λn ) of v w.r.t. Ω

1: function MLC(v1, . . . , vn , v )
2: for i = 1 to n do ▷ translate by −v and project with P0

3: ṽi := vi − v , ri := ∥ṽi ∥, �vi := ṽi /ri

4: �vn+1 := �v1

5: for j = 1 to n do ▷ first averaging step A1 and projection P1

6: s j := �v j +�v j+1, s̄ j := ∥s j ∥, �s j := s j /s̄ j ▷ normalized�s
7: �s0 :=�sn

8: for i = 1 to n do ▷ second averaging step A2 and projection P2

9: ti :=�si−1+�si , t̄i := ∥ti ∥, v̂i := ti /t̄i

10: t̄n+1 := t̄1

11: [λ̂,φ] :=BMLC(v̂1, . . . , v̂n , 0) ▷ BMLC λ̂ of the origin w.r.t. Ω̂
12: λ̂0 := λ̂n , λ̂n+1 := λ̂1

13: for i = 1 to n do ▷ entries of the matrix P̄1A2P2

14: αi := 1/(s̄i t̄i ), βi := 1/(s̄i t̄i+1)
15: α0 :=αn , β0 :=βn

16: W := 0
17: for i = 1 to n do
18: �wi :=αi−1λ̂i−1+ (αi +βi−1)λ̂i +βi λ̂i+1 ▷ �w = Ā1P̄1A2P2λ̂
19: wi := �wi /ri , W :=W +wi ▷ w = P0 �w
20: λ := (w1/W , . . . , wn/W ) ▷ normalize w to get λ
21: return λ

The gradient of �wi is then derived by applying the product rule to the formula in line 18 of Algorithm 3,

∇�wi =αi−1∇λ̂i−1+ λ̂i−1∇αi−1

+ (αi +βi−1)∇λ̂i + λ̂i (∇αi +∇βi−1)

+βi∇λ̂i+1+ λ̂i+1∇βi .

(19)

To find the gradients of αi = 1/(s̄i t̄i ) and βi = 1/(s̄i t̄i+1), we recall the definition of s̄i and t̄i in lines 6 and 9 of
Algorithm 3 and realize that

αi =
1

∥�vi +�vi+1∥ · ∥�si−1+�si ∥
, βi =

1

∥�vi +�vi+1∥ · ∥�si+1+�si ∥

are functions that depend on several variables �v j and�s j . Hence, we apply the chain rule to express their
derivatives w.r.t. v as

∇Tαi =
dαi

dv
=
∂ αi

∂ �vi

d�vi

dv
+
∂ αi

∂ �vi+1

d�vi+1

dv
+
∂ αi

∂�si−1

d�si−1

dv
+
∂ αi

∂�si

d�si

dv
,

∇Tβi =
dβi

dv
=
∂ βi

∂ �vi

d�vi

dv
+
∂ βi

∂ �vi+1

d�vi+1

dv
+
∂ βi

∂�si

d�si

dv
+
∂ βi

∂�si+1

d�si+1

dv
.

The partial derivatives of αi and βi w.r.t. the relevant �v j and�s j are found using the quotient rule,

∂ αi

∂ �vi
=
∂ αi

∂ �vi+1
=
−αi�sTi

s̄i
,

∂ αi

∂�si
=
∂ αi

∂�si−1
=
−αi v̂Ti

t̄i
,

∂ βi

∂ �vi
=
∂ βi

∂ �vi+1
=
−βi�sTi

s̄i
,

∂ βi

∂�si
=
∂ βi

∂�si+1
=
−βi v̂Ti+1

t̄i+1
,

so that

∇αi =−αi

�

X i�si

s̄i
+

Yi v̂i

t̄i

�

, ∇βi =−βi

�

X i�si

s̄i
+

Yi+1 v̂i+1

t̄i+1

�

,

where
X i =∇�vi +∇�vi+1, Yi =∇�si−1+∇�si .
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Algorithm 4 Gradient of maximum likelihood coordinates

Input: vertices v1, . . . , vn of a polygon Ω in R2 and point v ∈ Int(Ω)
Output: gradients∇λ1, . . . ,∇λn of MLC at v

1: function GRADIENTMLC(v1, . . . , vn , v )
2: use Algorithm 3 to getφ ∈R2, r, s̄ , t̄ , λ̂,α,β , �w , w ∈Rn , �v ,�s , v̂ ∈ (R2)n

3: for i = 1 to n do ▷ compute∇�v
4: ∇�vi := (�vi�vTi − I2)/ri ▷ see (20)
5: ∇�vn+1 :=∇�v1

6: for i = 1 to n do ▷ compute∇�s and auxiliary variables
7: X i :=∇�vi +∇�vi+1, �S := (I2−�si�sTi )/s̄i

8: ∇�si := X i
�S ▷ see (21)

9: ∇�s0 :=∇�sn

10: for i = 1 to n do ▷ compute∇v̂ and auxiliary variables
11: Yi :=∇�si−1+∇�si , V̂ := (I2− v̂i v̂Ti )/t̄i

12: ∇v̂i := Yi V̂ ▷ see (22)
13: Gφ := 0 ∈R2×2, ∇φ := 0 ∈R2×2

14: for i = 1 to n do
15: Gφ :=Gφ + λ̂2

i v̂i v̂Ti , Gv̂ := λ̂i I2− λ̂2
iφ v̂Ti

16: ∇φ :=∇φ+∇v̂i Gv̂

17: ∇φ :=∇φG −1
φ ▷ see (24)

18: for i = 1 to n do
19: ∇λ̂i :=−λ̂2

i (∇φ v̂i +∇v̂i φ) ▷ see (23)
20: for i = 1 to n do ▷ auxiliary variables for∇α and∇β
21: xi = X i�si /s̄i , yi = Yi v̂i /t̄i

22: x0 := xn , β0 :=βn

23: for i = 1 to n do ▷ auxiliary variables for∇�w
24: ai =αi∇λ̂i − λ̂iαi (xi + yi ), ▷ −αi (xi + yi ) =∇αi

25: bi =βi−1∇λ̂i − λ̂iβi−1(xi−1+ yi ) ▷ −βi (xi + yi+1) =∇βi

26: a0 := an , bn+1 := b1

27: for i = 1 to n do ▷ compute∇�w
28: ∇�wi := ai−1+ai + bi + bi+1 ▷ see (19)
29: W := 0, ∇W := 0 ∈R2

30: for i = 1 to n do ▷ compute∇w and∇W
31: ∇wi := (∇�wi ri + �wi�vi )/r 2

i ▷ see (18)
32: W :=W +wi , ∇W :=∇W +∇wi

33: for i = 1 to n do ▷ compute∇λ
34: ∇λi := (∇wi W −wi∇W )/W 2 ▷ see (17)
35: return (∇λ1, . . . ,∇λn )

Before working out the formulas for∇�vi ,∇�si , and∇λ̂i , observe that the implementation of (19) is found in
lines 20–28 of Algorithm 4.

Let us now derive the gradients of

�vi =
vi − v

∥vi − v ∥
, �si =

�vi +�vi+1

∥�vi +�vi+1∥
, v̂i =

�si−1+�si

∥�si−1+�si ∥
.

By the quotient rule, we immediately have

∇�vi =
�vi�vTi − I2

ri
, (20)

as well as
∂�si

∂ �vi
=
∂�si

∂ �vi+1
=

I2−�si�sTi
s̄i

,
∂ v̂i

∂�si−1
=
∂ v̂i

∂�si
=

I2− v̂i v̂Ti
t̄i

.

Using the chain rule, we then get

∇T�si =
d�si

dv
=
∂�si

∂ �vi

d�vi

dv
+
∂�si

∂ �vi+1

d�vi+1

dv
(21)
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and

∇T v̂i =
dv̂i

dv
=
∂ v̂i

∂�si−1

d�si−1

dv
+
∂ v̂i

∂�si

d�si

dv
. (22)

Lines 3-12 implement the formulas for these three gradients.
It remains to determine ∇λ̂i . To this end, recall that λ̂ are the BMLC of the origin w.r.t. the vertices

v̂1, . . . , v̂n , hence, by (7),

λ̂i (φ, v̂i ) =
1

n +φT v̂i
,

whereφ =φ(v̂1, . . . , v̂n ) denotes the minimum of the function F̂ (φ) =−
∑n

i=1 log(n +φT v̂i ). Since the partial

derivatives of λ̂i are
∂ λ̂i

∂ φ
=−λ̂2

i v̂Ti ,
∂ λ̂i

∂ v̂i
=−λ̂2

iφ
T,

we find, by applying the chain rule, that

∇λ̂i =−λ̂2
i (∇φ v̂i +∇v̂i φ). (23)

Using the chain rule again, we express the derivative ofφ w.r.t. v as

dφ

dv
=

n
∑

i=1

∂ φ

∂ v̂i

dv̂i

dv
,

and to get the partial derivatives ofφ w.r.t. v̂i , we exploit the fact (cf. Section 2.1) that the function

G (φ, v̂1, . . . , v̂n ) =
n
∑

i=1

v̂i

n +φT v̂i

as well as its variations w.r.t. v̂i vanish, that is,

dG

dv̂i
=
∂G

∂ φ

dφ

dv̂i
+
∂G

∂ v̂i
= 0.

Solving these equations for ∂ φ/∂ v̂i = dφ/dv̂i , it follows that

∇φ =
n
∑

i=1

∇v̂i Gv̂i
G −1
φ , (24)

where

Gφ =
n
∑

i=1

λ̂2
i v̂i v̂Ti , Gv̂i

= λ̂i I2− λ̂2
iφ v̂Ti .

The implementation of (23) and (24) can be found in lines 13–19.

B Comparison of properties

Table 1 provides a summary of the properties of all generalized barycentric coordinates for simple planar
polygons that we are aware of. The first group consists of coordinates that are well-defined only for convex
polygons, and the last group are computational coordinates that do not have a closed form.

For the family of 3-point coordinates [15], note that not all coordinates in this family are non-negative.
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coordinates domain non-negative
exact pointwise evaluation

smoothness comments
coordinates gradient

Wachspress
[47, 39] ✓ ✓ ✓ C∞

discrete harmonic
[42, 9] ✗ ✓ ✓ C∞

also known as
“cotangent weights”

3-point family
[15] (✓) ✓ ✓ C∞

includes Wachspress, discrete
harmonic, and mean value

power
[7] ✓ ✓ ✓ C∞

extension to non-convex
polygons C 0 only

mean value
[12, 20] ✗ ✓ ✓ C∞

positive inside
convex polygons

positive mean value
[33] ✓ ✓ ✓ C 0

metric
[37] ✗ ✓ ✓ C∞

polygon can have isolated
interior points and holes

Poisson
[32] ✗ ✓ ✓ C∞

Gordon–Wixom
[19, 6] ✗ ✓ ✓ C 0 positive and C∞ inside

convex polygons

positive Gordon–Wixom
[38] ✓ ✓ ✓ C 0

blended
[3] ✓ ✓ ✓ C k not continuous with respect

to the polygon’s vertices

5-point family
[50] ✗ ✓ ✓ C∞ polygon can be degenerate

iterative
[8] ✓ ✓ ✗ C∞

may need O (n 2) iterations
for non-negativity

harmonic
[25] ✓ ✗ ✗ C∞

usually approximated
with FEM or BEM

local
[51, 44] ✓ ✗ ✗ C 0

maximum entropy
[21] ✓ ✓ ✓ C∞

proposed prior functions lack
global shape awareness

maximum likelihood ✓ ✓ ✓ C∞
SMLC extension has a certain

global shape awareness

Table 1: Properties of generalized barycentric coordinates for simple planar polygons.
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