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Structure-Preserving Discretization of Elasticity

* Discretization of Elasticity

) L Balance Laws
A Body in Equilibrium > Integral Balance Laws

.Georr!etri.c Localization
Discretization

Discrete Governing < ' Governing Differential
Equations Discretization of BVP Equations

e Goals:

— Rationalizing discretization schemes and putting all the existing
numerical methods for solid mechanics in one abstract setting

— Avoiding numerical artifacts, e.g. dissipation (for conservative
systems), locking, pressure checkerboarding, etc.

— Discretization when material manifold has a nontrivial geometry,
e.g. distributed dislocations, growing bodies, etc.



Motivation: Variational Integrators

e Discretization of mechanics based on a discretization of Hamilton’s
principle: Moser and Veselov (1991), Veselov (1991), Marsden, et al.
(1998)

* Discrete configuration space () discrete Lagrangian L;: Q) X Q) — R

e Actionsum S, : QN Tl - R

N—-1
Sa =Y La(qk, qr+1)
k=0
e Hamilton’s principle:
0S54 = 0

for fixed gg and gqn

* Discrete Euler-Lagrange equations

D1La(qr, qiy1) + D2La(qr—1,q) =0 Vk=1,..,N -1



Maxwell’s Equations and Numerical Electromagnetism

e Maxwell’s Equations in the language of differential forms

- oD - oD
_ 7 dH=—+J
VxH= 5 + Jg, 6gB+ E,
0B
__ dE = - :
] VxE= 57 « o Topological
V-B=0, dB =0,
[ D=¢E [D=xp E
7 0 > > 7 " Metric-dependent
. B=uoH  B=xyg H

- E,D,H, B: Electric field, electric displacement, magnetic field, magnetic
induction

* JE, PR, €0, 1o: Current density, charge density, electric permittivity,
and magnetic permeability

* E,H:1-forms, and D, B: 2-forms

e d:exterior derivative

e *E ,*H:Hodge star operators



Geometric Elasticity:
Kanso, Arroyo, Tong, AY, Marsden, Desbrun, 2007

* Elasticity governing equations can be written in terms of bundle-valued
differential forms.

[ Opo | Opo _
o~ or "
DivP + poB = pgA ©P+B®uo=Vb®Mo
- OF & - OF
2 - ’ LPY =2 :
poagosp T 8004/\<57rp> 28g (v, B)po ¥V a,B€Q(R)
. pran (B, P) =@ BA (", P) Va,BeQ(R)

e The governing equations unlike EM cannot be directly discretized.

e Given a discretized body, how can one write the governing equations
with no reference to continuum elasticity?

d 1
G Lo (B s )y = [ @ vy mve [ (mvy+mda

t1 t1
5/ /E(X,t,G,go,gb,F,gogp)dth+/ /F-égp dVdt =0
to B to B



Geometric Elasticity & Anelasticity

* Configuration space: Infinite-dimensional manifold of maps between
reference configuration and ambient space.

e Ambient space (a Riemannian manifold)

————————————————— Pt
Pt e s P
(B,V,G) S
———————————————————————————————————— (S.g)
elasticity (5.8) anelasticity

e Spatial metric g is a background metric and is not dynamic (unlike the
metric in general relativity, which is governed by Einstein’s equations).

e Deformation gradient (a two-point tensor)

8 a
F(X): TxB — Tyx)S or  F*4(X) = a;?A

(X)



Discrete Exterior Calculus (DEC): Hirani, et al. (2005)

* Primal and dual complexes

Oriented primal and dual
complexes

Primal and dual
vector fields

Primal and dual
0, 1 and 2- forms

950,
56 -0.09
-102




Discrete Exterior Calculus (DEC)

Continuous Hodge star x : A¥(NV) — A" 7F(N\)
a A B = (o, B)

Discrete Hodge star « : Q% (K) — Qg_k (xK)

1 1 .
o [oF] &7

k k
Discrete flat operator ) : %d(K) — chl(*K) d: Q" (M) — Q"FH(M)

(X" = Y X(o -1 /dw—/aM

(xau, xo ") =

Elie Cartar{ (1869-1951)

O'O-<O'n 1
Boundary gy, : Cx(K) — Cj_1(K) and coboundary operators
0" : C*(K) — C*"H(K) (6%, cry1) = (¥, Orprchy1)
Discrete exterior derivative 1 d=0
d: Q5(K) - QN (E)  dMtlodt =0 { SPI 0 gr?_a
Discrete divergence for a primal vector field Vot =

(divX,*0™) = xd * X" > adual form



Discrete Nonlinear Elasticity: AY, 2008

* A discretized solid is modeled by a simplicial complex.
Then define a dual complex.

primal cell

* Discrete kinematic and kinetic quantities live on different objects: discrete
(vector-valued and co-vector valued) differential forms

* Discrete deformation map: ¥t - K — o(K)
o) (t) = o (o)) Y oy € KO

i
e Discrete velocity field:V;(t) := (V,0?)) = ¢ (o)) Vo) € K(0)

* Discrete strain: A primal discrete vector-valued 1-form



Discrete Nonlinear Elasticity

e Stress is a pseudo covector-valued (n-2)-form.
e Discrete stress: A dual covector-valued discrete pseudo (n-2)-form

Power of
tractions

Internal

e Governing equations = “"'8Y

— Energy balance and

its invariance Quantity Symbol ~ype
velocity A4 vector-valued 0-form
— Action principle displacement u vector-valued 0-form
— strain IF vector-valued 1-form
Henri Poincaré mass density P dual p-form
(1854-1912) internal energy density e support volume-form
Algebraic topology specific entropy N support volume-form
Triangulation of heat fux h dual (p — 1)-form
smooth manifolds heat supply r dual p-form
Independence of stress t covector-valued (p — 1)-form
homology groups body force b covector-valued dual p-form
from triangulations | kinetic energy density K dual p-form




Example: Incompressible Elasticity

The numerical solution for incompressible elasticity is usually obtained
by solving near incompressible problemes, i.e., solving compressible
problem as the parameters tend to those of incompressible problem.

Locking can occur in this process (Babuska and Suri, 1992), i.e., loss of
accuracy of solutions as the parameter(s) tend to a critical value, e.g., for
linear isotropic materials v = %%.

Mixed Methods (Arnold, 2005): Use an extension of de Rham’s complex
for linearized elasticity.

Diamond Elements (Hauret, et al., 2007): Analysis for linearized elasticity.
A heuristic partitioning of a simplicial complex using a dual complex.

Good convergence for incompressible
nonlinear elasticity in some numerical
tests.

Pavlov, et al. (2011): Geometric structure-preserving discretization for
incompressible fluids



Incompressible Linearized Elasticity: Continuous Case

* Idea: Instead of using Lagrange multipliers work with the proper
configuration manifold.

J—wdetg detF = 1 AN
~ VdetG - @
ot (U)

ﬂ (8,G6)

Incompressible elasticity (S.2)

Nonlinear
Elasticity

Incompressible
Nonlinear
Elasticity

—

—

C={yY:B—->S|v=pgs on 9,8}

| TC={(,U)|¢ €C, U:B—Tp(B) and Ulg,s = 0}

\
Cool = {?,D cC ‘ J(w) = 1} / Space of variations

TyCoot = {U € TyC | div(Uoy™') =0}

Ebin and Marsden (1970)



Incompressible Linearized Elasticity: Continuous Case

« Lagrangian density . = K — Vand space of variations

U={w:B — R"|divw = 0,w|g,5 = 0}

1
K = —/p(ﬂ,u)gdv V:/ueabeabdv—/p(b,u)gdv—/ (1,u)4da
2 Js B B 9.

* Action principle

5/0TLdt:O :>/B [p(it — b, w), + 2ue®’e, }dv—/ (1, W)gda =0

0-B

* Or

/(pu — pb — div(2ue?), w), dv —|—/ ((2ue?,n”) — 7, w)yda = 0
B OB



Incompressible Linearized Elasticity: Continuous Case

Let & be a vector field on B. If for every w € il we have

/(ﬁ, w),dv = 0, then there exists a function p: B — R
B

A f

Inner product on k-form
@)= [ anen) = [ (aph = =2

Hodge decomposition theorem for manifolds with boundary
QF(M) = d(Q" (M) & D (M)

d(Q" T (M) ={a e Q" M)| IB € Q"1 (M) such that o = d3}
D (M) = {a € QF (M) | da = 0}

QFf (M) = {a € Q" (M) | a is tangent to M }



Incompressible Linearized Elasticity: Continuous Case

- Hamilton’s principle gives us

/(pii — pb — div(2ue), w) dv + / ((2ue*,n”) — 7, w)yda = 0
B OB

A generalization of
Hodge ﬁ decomposition > Helmholtz decomposition

v = grad ¢ + curl A

pit = pb + div(2ue* — pg?), in B
T = (2uef — pgf n’) on 0, B

e Remark: The solution space for incompressible fluids is similar to that
of incompressible linearized elasticity. Variation of the velocity field
has a non-standard form (Lin constraint).



Discrete Incompressible Linearized Elasticity

* Primary unknowns: displacement field

rUl \

nXx1

X’I’LF_)hX1 — < >

oriented primal = oriented dual
complex complex



Discrete Configuration Manifold for Incompressible
Linearized Elasticity

1 .
U’ <d1VU, *[1, 2, 3]> = —_— Ci; Uz
2.3] 2=
o] | 4
123,243 <d1VU, *[2’ 47 3]> — e CQ' . UZ
U Ti12,123 ‘ [27 47 3] ‘ zzzl '
UZ
ci1 = |[[3,1)iz1,123 + |[1,2]li12,123, ci2 = |[1,2]]i12,123 — [|3, 2]|i123,243
ciz = |[[3,1]]iz1,123 — |[3,2]|i123,243, €14 =0
cor = 0, Coo = |(2,4]|i24,243 + |[3, 2]|1123 243
coz = |[4,3]|ia3,243 + |[3, 2]|i123,243, €24 = |2, 4]|i24,243 + |[4, 3]|i43 243
T T T T
C C C C T
LxgTsx1 =0 loxg = S S Y5 = {U'...U*}

Ca1 Coo Co3 Cyy



Discrete Configuration Manifold for Incompressible
Linearized Elasticity

* Incompressibility

Egh><(2|:)}L)‘X-(2Ph)><1 — O

e The case n=2:

Cii  Cip,
I =
T T
| €Dy €DyPy Dy, X (2Py)

cij = |1k, jllirjk,jie — 1|1 7)1k 5ol
cit = — |0, jllijik,jor — |[K, U]|ijik,1qk

ci = — ||k, Ulijie.iqr + K, 7]1irik ik



Discrete Configuration Manifold for Incompressible
Linearized Elasticity

divU =0 ~ EghX(ZPh)X(QPh)Xl =0

X(|Kn|) = F(0-simplices) — #(1-simplices) + #(2-simplices)
] = Pnp—Epn+Dp=1

3D, =E) +2E:, P)=E}

g DhZQP%—I—Pz—Q:QPh—P%—Q > D;, < 2Py,

. Theorem: Let Kjbe a 2-dimensional well-centered primal mesh
such that |Kj| is a simply-connected set. Then the associated

incompressibility matrix I" is full-ranked.

U
rank(I") = D, == nullity(I") = 2P, — rank(I") = 2P, — D,

{WZ RQPh}2Ph Dr a basis for the null space



Discrete Kinetic Energy for Incompressible
Linearized Elasticity

* Kinetic energy




Discrete Elastic Energy for Incompressible
Linearized Elasticity

2E;
E‘=Y "¢
[

g :/ ,ueabeabdv
Vi

Vi = | H(oe?)
1




Discrete Action for Incompressible Linearized Elasticity
Discrete LagrangianLd — K4 _ Vd, where Vd — gpd _ pad _pd

P
B'=Y m'B'-U'=b-X + B!
1=1

m' = p;| % 0} T =t-X
N T | ~
1 P 1 P
b:{b,...,bh} t = {t!,... t"")
7 bz _ mz’Bz
Pr
Bél _ Z m'B! . U*
_ i=Ppn+1
{U?}f—hl —> Primal vertices without essential BC
{OQ}Ph— Primal vertices with essential BC
L| i Ji=Pyp+1 7



Discrete Action for Incompressible Linearized Elasticity

Discrete Lagrangian

1. .
Ld:§XTMX—XTSX+F-X+L§

F=-s+b+t, LI{=K!—F4+ B

Variation field X .

d

- X, =0X
de le=0

Incompressibility

"X, =u" = I"6X =0 => X € Ker(I")



Discrete Action for Incompressible Linearized Elasticity

e Hamilton’s principle

t t
2 d 2 1 . .
5/ Lidt = - / (—XGTMXG - X!SX . +F-X .+ Lg) dt
tl € le=0
d

t1 2
to )
_ / [XTM (—5)() ~XT(S+ST)6X +F- 5X] dt
t1

dt

:_/b [MX+(S+ST)X—F] 0Xdt =0

Q[MX+(S+81T)XF] 06X =0

e Orthogonal decomposition of the space of displacements
R"Pr = Ker(I") & Ker(I")*
5X € Ker(I") => MX +(S+ST)X -F=A
A — {Al, o 7A|5h }T Discrete pressure

gradient



Discrete Action for Incompressible Linearized Elasticity

e From rank-nullity theorem

dim(Ker(I")*) = nPj;, — nullity(I") = rank(I") = R

{Zl, - ,ZR} a basis for Ker(I[h)L
R
A(t) =) Ai(t) 2’
1=1

* Discrete Euler-Lagrange equations

R
 MX +(S+ST)X-F=) Az
n 1=1

"X =u"




Discrete Pressure Field

Cauchy stress 530 — 24 e _ pgab

Pressure gradient \Vp = (dp)jj

If “flat” is dual to primal, then “sharp” has to be primal to dual for them
to be inverse operations.

Pressure gradient is a pr1ma1 vector field. So, this means that (dp) is
primal. Therefore, dp is a dual 1-form. This means that p is a dual 0-form.

Laplace-Beltrami operator
b
A QM) — QM) Af =*dxdf = +d * [(df)ﬂ

The smooth A operator is not injective. The same is true for the primal
discrete A operator. However, the dual discrete A operator is bijective.



Discrete Pressure Field

e Forany a € R, for both the smooth and primal discrete exterior
derivative d(f + a) = d f

e But .for ’Fhe dual discrete exterior { fl, f2, f3, f4} primal
derivative d(f T a) 7é df {f123 f243} dual

r=r

f27f1

* Example

p = {p132 ’ p143 | p154, p165 | p176, p127 }T




Discrete Pressure Field

Pressure Laplacian Ap = Lgyxe P (%)

Theorem. Let K, be a planar well-centered primal mesh such that | K} |is a
simply-connected set. Then, the matrix " € RP»*Pr is non-singular.

A is the pressure gradient Vp = (dp)* and hence
Ap = xd * A’ (Fe k)

From (%) and (% %)

_ The same as A but with values at primal
Lexe P = lex14GG, ——> vertices with essential B.C. |
(average value of the closest vertices)

r1,2+71,3+7r2,3

—71,3

—T1,3
71,3+71,4+73,4
—T1,4
0
0
0

0
—T1,4
T1,4+7T1,5+7T4,5
—T1,5
0
0

0
0
—7T1,5
r1,5+71,61t75,6

—T1,6
0

0
0
0
—T1,6
r1,6+7r1,7+76,7

—T1,7

—T1,2
0
0
0
—Tri,7

r1,7+7r1,2+72,7




Example 1: Cantilever Beam

e Cantilever beam under a parabolic distributed shear force at its free end
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Example 1: Cantilever Beam

* Tip displacement and pressure

(a) (b)

1, .
- /, 05 f
e
(]
= I
3
g 095 |
S =
= 2 -15
£ 09 o —— N =64
.S A —— N = 156
N
'T'g 2F —8— N = 236
g —A— N = 494
<Zg 0.85 Fzact
25+
08 I Il Il Il Il Il _3 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 0 2 4 6 8 10 12 14
N x

UA

Normalized diaplacement = —%-
U
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Example 1: Cantilever Beam

e Pressure field for the beam problem for meshes with (a) N=64,
(b) N=156, (c) N=494, where N is the number of primal 2-cells of
the mesh.

(a)

No pressure
(b) checkerboarding!
WAVAY.
NAVAVAVAVAV
R AVAVAVAVAVAVAN A VIQ,VAVAN.
. ey
C




Example 2: Cook’s Membrane

* Boundary conditions and loading

48
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Cook’s Membrane

Example 2

=123,

AV, 2
Va vy AVATAVAVAVAVA
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955, where N is the number of primal 2-cells of the

ressure field for the Cook's membrane for meshes with (a) N

(b) N=530, (c) N

e Thep
mesh.

No pressure checkerboarding!



No checkerboarding
of pressure
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Current and Future Work

Generalization to 3D problems
Fluid mechanics (fixed mesh)

Nonlinear elasticity: Requires deforming meshes. For formulation
with circumcentric duals requires remeshing a deforming
domain.

Convergent analysis: What is the proper topology on cochains?
Differential complex of nonlinear elasticity
Discretization when the rest configuration is evolving?



