A Geometric Structure-Preserving Discretization Scheme for Incompressible Linearized Elasticity

Arash Yavari

School of Civil and Environmental Engineering \& The George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
In collaboration with
Arzhang Angoshtari
School of Civil and Environmental Engineering
Georgia Institute of Technology

Outline

- Motivation for Geometric Discretization of Elasticity
- Numerical Electromagnetism
- Discrete Exterior Calculus (DEC)
- Discrete Nonlinear Elasticity
- Example: Incompressible Elasticity
- Incompressible Linearized Elasticity: Continuous Case
- Discrete Configuration Manifold for Incompressible Linearized Elasticity
- Discrete Euler-Lagrange Equations
- Discrete Pressure Field
- Numerical Examples
- Conclusions and Future Directions

Structure-Preserving Discretization of Elasticity

- Discretization of Elasticity
A Body in Equilibrium $\stackrel{\text { Balance Laws }}{\stackrel{y y y y}{c} \text { Integral Balance Laws }}$
Geometric
Discretization \downarrow

Discrete Governing \Longleftarrow Governing Differential Equations
Discretization of BVP
Equations
- Goals:
- Rationalizing discretization schemes and putting all the existing numerical methods for solid mechanics in one abstract setting
- Avoiding numerical artifacts, e.g. dissipation (for conservative systems), locking, pressure checkerboarding, etc.
- Discretization when material manifold has a nontrivial geometry, e.g. distributed dislocations, growing bodies, etc.

Motivation: Variational Integrators

- Discretization of mechanics based on a discretization of Hamilton's principle: Moser and Veselov (1991), Veselov (1991), Marsden, et al. (1998)
- Discrete configuration space Q discrete Lagrangian $L_{d}: Q \times Q \rightarrow R$
- Action sum $S_{d}: Q^{N+1} \rightarrow R$

$$
S_{d}=\sum_{k=0}^{N-1} L_{d}\left(q_{k}, q_{k+1}\right)
$$

- Hamilton's principle:
$\delta S_{d}=0$
for fixed q_{0} and q_{N}

- Discrete Euler-Lagrange equations
$D_{1} L_{d}\left(q_{k}, q_{k+1}\right)+D_{2} L_{d}\left(q_{k-1}, q_{k}\right)=0 \quad \forall k=1, \ldots, N-1$

Maxwell's Equations and Numerical Electromagnetism

- Maxwell's Equations in the language of differential forms

$$
\begin{aligned}
& \left\{\begin{array}{l}
\nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+J_{E}, \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \\
\nabla \cdot \mathbf{B}=0, \\
\nabla \cdot \mathbf{D}=\rho_{E},
\end{array}\right. \\
& \left\{\begin{array} { l }
{ \mathbf { D } = \epsilon _ { 0 } \mathbf { E } } \\
{ \mathbf { B } = \mu _ { 0 } \mathbf { H } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\mathbf{d H}=\frac{\partial \mathrm{D}}{\partial t}+J_{E}, \\
\mathbf{d E}=-\frac{\partial \mathrm{B}}{\partial t}, \\
\mathrm{~dB}=0, \\
\mathbf{d D}=\rho_{E}
\end{array} \quad\right.\right. \text { Topological }
\end{aligned}
$$

- E, D, H, B: Electric field, electric displacement, magnetic field, magnetic induction
- $J_{E}, \rho_{R}, \epsilon_{0}, \mu_{0}$: Current density, charge density, electric permittivity, and magnetic permeability
- E, H: 1-forms, and D, B: 2-forms
- d: exterior derivative
- $*_{E}, *_{H}$: Hodge star operators

Geometric Elasticity:
 Kanso, Arroyo, Tong, AY, Marsden, Desbrun, 2007

- Elasticity governing equations can be written in terms of bundle-valued differential forms.

$$
\left\{\begin{array} { l }
{ \frac { \partial \rho _ { 0 } } { \partial t } = 0 } \\
{ \operatorname { D i v } \mathbf { P } + \rho _ { 0 } \mathbf { B } = \rho _ { 0 } \mathbf { A } } \\
{ 2 \rho _ { 0 } \frac { \partial E } { \partial \mathbf { g } \circ \varphi } = \boldsymbol { \tau } } \\
{ \boldsymbol { \tau } ^ { \top } = \boldsymbol { \tau } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\frac{\partial \mu_{0}}{\partial t}=0 \\
\mathfrak{D P}+\mathbf{B} \otimes \mu_{0}=\dot{\mathbf{V}}^{\mathrm{b}} \otimes \mu_{0} \\
\varphi^{*} \alpha \wedge\left\langle\beta^{\sharp}, \boldsymbol{P}\right\rangle=2 \frac{\partial E}{\partial \mathbf{g}}(\alpha, \beta) \mu_{0} \quad \forall \alpha, \beta \in \Omega^{1}(\mathcal{R}) \\
\varphi^{*} \alpha \wedge\left\langle\beta^{\sharp}, \boldsymbol{P}\right\rangle=\varphi^{*} \beta \wedge\left\langle\alpha^{\sharp}, \mathcal{P}\right\rangle \quad \forall \alpha, \beta \in \Omega^{1}(\mathcal{R})
\end{array}\right.\right.
$$

- The governing equations unlike EM cannot be directly discretized.
- Given a discretized body, how can one write the governing equations with no reference to continuum elasticity?

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathcal{U}} \rho_{0}\left(E+\frac{1}{2}\langle\langle\mathbf{V}, \mathbf{V}\rangle\rangle\right) d V=\int_{\mathcal{U}} \rho_{0}(\langle\langle\mathbf{B}, \mathbf{V}\rangle\rangle+R) V+\int_{\mathcal{U}}(\langle\langle\mathbf{T}, \mathbf{V}\rangle\rangle+H) d A \\
& \delta \int_{t_{0}}^{t_{1}} \int_{\mathcal{B}} \mathcal{L}(\mathbf{X}, t, \mathbf{G}, \varphi, \dot{\varphi}, \mathbf{F}, \mathbf{g} \circ \varphi) d V d t+\int_{t_{0}}^{t_{1}} \int_{\mathcal{B}} \mathbf{F} \cdot \delta \varphi d V d t=0
\end{aligned}
$$

Geometric Elasticity \& Anelasticity

- Configuration space: Infinite-dimensional manifold of maps between reference configuration and ambient space.
- Ambient space (a Riemannian manifold)

- Spatial metric \mathbf{g} is a background metric and is not dynamic (unlike the metric in general relativity, which is governed by Einstein's equations).
- Deformation gradient (a two-point tensor)

$$
\mathbf{F}(\mathbf{X}): T_{\mathbf{X}} \mathcal{B} \rightarrow T_{\varphi(\mathbf{X})} \mathcal{S} \quad \text { or } \quad F^{a}{ }_{A}(\mathbf{X})=\frac{\partial \varphi^{a}}{\partial X^{A}}(\mathbf{X})
$$

Discrete Exterior Calculus (DEC): Hirani, et al. (2005)

- Primal and dual complexes

Oriented primal and dual complexes

Primal and dual vector fields

Primal and dual 0,1 and 2 - forms

Discrete Exterior Calculus (DEC)

- Continuous Hodge star $*: \Lambda^{k}(\mathcal{N}) \rightarrow \Lambda^{n-k}(\mathcal{N})$

$$
\alpha \wedge * \boldsymbol{\beta}=\left\langle\boldsymbol{\alpha}, \boldsymbol{\beta}^{\sharp}\right\rangle \boldsymbol{\mu}
$$

- Discrete Hodge star $*: \Omega_{d}^{k}(K) \rightarrow \Omega_{d}^{n-k}(\star K)$

$$
\frac{1}{\left|\star \sigma^{k}\right|}\left\langle * \boldsymbol{\alpha}, \star \sigma^{k}\right\rangle=\frac{1}{\left|\sigma^{k}\right|}\left\langle\boldsymbol{\alpha}, \sigma^{k}\right\rangle
$$

- Discrete flat operator $b: \mathfrak{X}_{d}(K) \rightarrow \Omega_{d}^{1}(\star K)$

$$
\left\langle\mathbf{X}^{b}, \star \sigma^{n-1}\right\rangle=\sum_{\sigma^{0} \prec \sigma^{n-1}} \mathbf{X}\left(\sigma^{0}\right) \cdot\left(\star \sigma^{n-1}\right) \quad \int_{M} d \omega=\int_{\partial M} \omega
$$

Élie Cartan (1869-1951)

$$
d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)
$$

- Boundary $\partial_{k}: C_{k}(K) \rightarrow C_{k-1}(K)$ and coboundary operators

$$
\delta^{k}: C^{k}(K) \rightarrow C^{k+1}(K) \quad\left\langle\delta^{k} c^{k}, c_{k+1}\right\rangle=\left\langle c^{k}, \partial_{k+1} c_{k+1}\right\rangle
$$

- Discrete exterior derivative

$$
\mathbf{d}: \Omega_{d}^{k}(K) \rightarrow \Omega_{d}^{k+1}(K) \quad \mathbf{d}^{k+1} \circ \mathbf{d}^{k}=0
$$

curl $\circ \operatorname{grad}=0$ $\operatorname{div} \circ \operatorname{curl}=0$

- Discrete divergence for a primal vector field $\left\langle\operatorname{div} \mathbf{X}, \star \sigma^{n}\right\rangle=* \mathbf{d} * \mathbf{X}^{b} \longrightarrow$ a dual form

Discrete Nonlinear Elasticity: AY, 2008

- A discretized solid is modeled by a simplicial complex. Then define a dual complex.

- Discrete kinematic and kinetic quantities live on different objects: discrete (vector-valued and co-vector valued) differential forms
- Discrete deformation map: $\varphi_{t}: K \rightarrow \varphi_{t}(K)$

$$
\sigma_{i}^{0}(t)=\varphi_{t}\left(\sigma_{i}^{0}\right) \quad \forall \sigma_{i} \in K^{(0)}
$$

- Discrete velocity field: $\mathbf{V}_{i}(t):=\left\langle\mathbf{V}, \sigma_{i}^{0}\right\rangle=\dot{\varphi}_{t}\left(\sigma_{i}^{0}\right) \quad \forall \sigma_{i}^{0} \in K^{(0)}$
- Discrete strain: A primal discrete vector-valued 1-form

Discrete Nonlinear Elasticity

- Stress is a pseudo covector-valued (n-2)-form.
- Discrete stress: A dual covector-valued discrete pseudo (n-2)-form

- Governing equations
- Energy balance and its invariance
- Action principle

Henri Poincaré (1854-1912)
Algebraic topology Triangulation of smooth manifolds Independence of homology groups from triangulations

Power of tractions

Quantity	Symbol	Type
velocity	\mathbf{v}	vector-valued 0-form
displacement	\mathbf{u}	vector-valued 0-form
strain	\mathbb{F}	vector-valued 1-form
mass density	ρ	dual p-form
internal energy density	e	support volume-form
specific entropy	N	support volume-form
heat flux	h	dual $(p-1)$-form
heat supply	r	dual p-form
stress	\mathbb{t}	covector-valued $(p-1)$-form
body force	\mathbb{b}	covector-valued dual p-form
kinetic energy density	κ	dual p-form

Example: Incompressible Elasticity

- The numerical solution for incompressible elasticity is usually obtained by solving near incompressible problems, i.e., solving compressible problem as the parameters tend to those of incompressible problem.
- Locking can occur in this process (Babuška and Suri,1992), i.e., loss of accuracy of solutions as the parameter(s) tend to a critical value, e.g., for linear isotropic materials $v \rightarrow 1 / 2$.
- Mixed Methods (Arnold, 2005): Use an extension of de Rham's complex for linearized elasticity.
- Diamond Elements (Hauret, et al., 2007): Analysis for linearized elasticity. A heuristic partitioning of a simplicial complex using a dual complex.

Good convergence for incompressible nonlinear elasticity in some numerical tests.

- Pavlov, et al. (2011): Geometric structure-preserving discretization for incompressible fluids

Incompressible Linearized Elasticity: Continuous Case

- Idea: Instead of using Lagrange multipliers work with the proper configuration manifold.

$$
J=\sqrt{\frac{\operatorname{det} \mathbf{g}}{\operatorname{det} \mathbf{G}}} \operatorname{det} \mathbf{F}=1
$$

Incompressible elasticity

Nonlinear $\quad \mathcal{C}=\left\{\psi: \mathcal{B} \rightarrow \mathcal{S} \mid \psi=\varphi_{d}\right.$ on $\left.\partial_{d} \mathcal{B}\right\}$ Elasticity

$$
T \mathcal{C}=\left\{(\psi, \mathbf{U}) \mid \psi \in \mathcal{C}, \mathbf{U}: \mathcal{B} \rightarrow T \psi(\mathcal{B}) \text { and }\left.\mathbf{U}\right|_{\partial_{d} \mathcal{B}}=0\right\}
$$

Incompressible Nonlinear Elasticity

$$
\begin{aligned}
& \mathcal{C}_{v o l}=\{\psi \in \mathcal{C} \mid J(\psi)=1\} \\
& T_{\psi} \mathcal{C}_{\text {vol }}=\left\{\mathbf{U} \in T_{\psi} \mathcal{C} \mid \operatorname{div}\left(\mathbf{U} \circ \psi^{-1}\right)=0\right\}
\end{aligned}
$$

Ebin and Marsden (1970)

Incompressible Linearized Elasticity: Continuous Case

- Lagrangian density $L=K$ - Vand space of variations

$$
\mathfrak{U}=\left\{\mathbf{w}: \mathcal{B} \rightarrow \mathbb{R}^{n}|\operatorname{div} \mathbf{w}=0, \mathbf{w}|_{\partial_{d} \mathcal{B}}=0\right\}
$$

$$
K=\frac{1}{2} \int_{\mathcal{B}} \rho(\dot{\mathbf{u}}, \dot{\mathbf{u}})_{g} d v \quad V=\int_{\mathcal{B}} \mu e^{a b} e_{a b} d v-\int_{\mathcal{B}} \rho(\mathbf{b}, \mathbf{u})_{g} d v-\int_{\partial_{\tau} \mathcal{B}}(\tau, \mathbf{u})_{g} d a
$$

- Action principle

$$
\delta \int_{0}^{T} L d t=0 \Longleftrightarrow \int_{\mathcal{B}}\left[\rho(\ddot{\mathbf{u}}-\mathbf{b}, \mathbf{w})_{g}+2 \mu e^{a b} \tilde{e}_{a b}\right] d v-\int_{\partial_{\tau} \mathcal{B}}(\tau, \mathbf{w})_{g} d a=0
$$

- Or

$$
\int_{\mathcal{B}}\left(\rho \ddot{\mathbf{u}}-\rho \mathbf{b}-\operatorname{div}\left(2 \mu \mathbf{e}^{\sharp}\right), \mathbf{w}\right)_{g} d v+\int_{\partial \mathcal{B}}\left(\left\langle 2 \mu \mathbf{e}^{\sharp}, \mathbf{n}^{\mathrm{b}}\right\rangle-\boldsymbol{\tau}, \mathbf{w}\right)_{g} d a=0
$$

Incompressible Linearized Elasticity: Continuous Case

- Let ξ be a vector field on \mathcal{B}. If for every $\mathbf{w} \in \mathfrak{U}$ we have $\int_{\mathcal{B}}(\xi, \mathbf{w})_{g} d v=0$, then there exists a function $p: \mathcal{B} \rightarrow \mathbb{R}$ such that $\xi=-\operatorname{div}\left(p \mathbf{g}^{\sharp}\right)$.
- Inner product on k -form

$$
(\boldsymbol{\alpha}, \boldsymbol{\beta})_{g}=\int_{\mathcal{M}} \boldsymbol{\alpha} \wedge(* \boldsymbol{\beta})=\int_{\mathcal{M}}\left\langle\boldsymbol{\alpha}, \boldsymbol{\beta}^{\sharp}\right\rangle d v
$$

- Hodge decomposition theorem for manifolds with boundary $\Omega^{k}(\mathcal{M})=\mathbf{d}\left(\Omega^{k-1}(\mathcal{M})\right) \oplus \mathfrak{D}_{t}^{k}(\mathcal{M})$ $\mathbf{d}\left(\Omega^{k-1}(\mathcal{M})\right)=\left\{\boldsymbol{\alpha} \in \Omega^{k}(\mathcal{M}) \mid \exists \boldsymbol{\beta} \in \Omega^{k-1}(\mathcal{M})\right.$ such that $\left.\boldsymbol{\alpha}=\mathbf{d} \boldsymbol{\beta}\right\}$ $\mathfrak{D}_{t}^{k}(\mathcal{M})=\left\{\boldsymbol{\alpha} \in \Omega_{t}^{k}(\mathcal{M}) \mid \boldsymbol{\delta} \boldsymbol{\alpha}=0\right\}$
$\Omega_{t}^{k}(\mathcal{M})=\left\{\boldsymbol{\alpha} \in \Omega^{k}(\mathcal{M}) \mid \boldsymbol{\alpha}\right.$ is tangent to $\left.\partial \mathcal{M}\right\}$

Incompressible Linearized Elasticity: Continuous Case

- Hamilton's principle gives us

$$
\int_{\mathcal{B}}\left(\rho \ddot{\mathbf{u}}-\rho \mathbf{b}-\operatorname{div}\left(2 \mu \mathbf{e}^{\sharp}\right), \mathbf{w}\right)_{g} d v+\int_{\partial \mathcal{B}}\left(\left\langle 2 \mu \mathbf{e}^{\sharp}, \mathbf{n}^{b}\right\rangle-\boldsymbol{\tau}, \mathbf{w}\right)_{g} d a=0
$$

$$
\begin{array}{ll}
\rho \ddot{\mathbf{u}}=\rho \mathbf{b}+\operatorname{div}\left(2 \mu \mathbf{e}^{\sharp}-p \mathbf{g}^{\sharp}\right), & \text { in } \mathcal{B} \\
\tau=\left\langle 2 \mu \mathbf{e}^{\sharp}-p \mathbf{g}^{\sharp}, \mathbf{n}^{b}\right\rangle & \text { on } \partial_{\tau} \mathcal{B}
\end{array}
$$

- Remark: The solution space for incompressible fluids is similar to that of incompressible linearized elasticity. Variation of the velocity field has a non-standard form (Lin constraint).

Discrete Incompressible Linearized Elasticity

- Primary unknowns: displacement field

$$
\boldsymbol{X}_{n \overline{\mathrm{P}}_{h} \times 1}=\left\{\begin{array}{c}
\mathbf{U}_{n \times 1}^{1} \\
\vdots \\
\vdots \\
\mathbf{U}_{n \times 1}^{1}
\end{array}\right\}
$$

oriented primal complex
(b)

$$
\Rightarrow \begin{aligned}
& \text { oriented dual } \\
& \text { complex }
\end{aligned}
$$

Discrete Configuration Manifold for Incompressible Linearized Elasticity

$$
\begin{array}{lll}
\mathbf{c}_{11} & =|[3,1]| \mathbf{i}_{31,123}+|[1,2]| \mathbf{i}_{12,123}, & \mathbf{c}_{12}=|[1,2]| \mathbf{i}_{12,123}-|[3,2]| \mathbf{i}_{123,243} \\
\mathbf{c}_{13} & =|[3,1]| \mathbf{i}_{31,123}-|[3,2]| \mathbf{i}_{123,243}, & \\
\mathbf{c}_{14}=\mathbf{0} \\
\mathbf{c}_{21}=\mathbf{0}, & \mathbf{c}_{22}=|[2,4]| \mathbf{i}_{24,243}+|[3,2]| \mathbf{i}_{123,243} \\
\mathbf{c}_{23}=|[4,3]| \mathbf{i}_{43,243}+|[3,2]| \mathbf{i}_{123,243}, & \mathbf{c}_{24}=|[2,4]| \mathbf{i}_{24,243}+|[4,3]| \mathbf{i}_{43,243}
\end{array}
$$

$$
\mathbb{I}_{2 \times 8} \mathbf{\Upsilon}_{8 \times 1}=\mathbf{0} \quad \mathbb{I}_{2 \times 8}=\left[\begin{array}{cccc}
\mathbf{c}_{11}^{\top} & \mathbf{c}_{12}^{\top} & \mathbf{c}_{13}^{\top} & \mathbf{c}_{14}^{\top} \\
\mathbf{c}_{21}^{\top} & \mathbf{c}_{22}^{\top} & \mathbf{c}_{23}^{\top} & \mathbf{c}_{24}^{\top}
\end{array}\right] \quad \mathbf{\Upsilon}_{8 \times 1}=\left\{\mathbf{U}^{1} \ldots \mathbf{U}^{4}\right\}^{\top}
$$

Discrete Configuration Manifold for Incompressible Linearized Elasticity

- Incompressibility

$$
\overline{\mathbb{I}}_{\mathrm{D}_{h} \times\left(2 \mathrm{P}_{h}\right)} \overline{\boldsymbol{X}}_{\left(2 \mathrm{P}_{h}\right) \times 1}=\mathbf{0}
$$

- The case $\mathrm{n}=2$:

$$
\begin{aligned}
& \overline{\mathbb{I}}^{h}=\left[\begin{array}{ccc}
\mathbf{c}_{11}^{\top} & \cdots & \mathbf{c}_{1 \mathrm{P}_{h}}^{\top} \\
\vdots & \ddots & \vdots \\
\mathbf{c}_{\mathrm{D}_{h} 1}^{\top} & \cdots & \mathbf{c}_{\mathrm{D}_{h} \mathrm{P}_{h}}^{\top}
\end{array}\right]_{\mathrm{D}_{h} \times\left(2 \mathrm{P}_{h}\right)} \\
& \mathbf{c}_{i j}=|[k, j]| \mathbf{i}_{r j k, j l k}-|[l, j]| \mathbf{i}_{j l k, j o l}
\end{aligned}
$$

$$
\mathbf{c}_{i l}=-|[l, j]| \mathbf{i}_{j l k, j o l}-|[k, l]| \mathbf{i}_{j l k, l q k}
$$

$$
\mathbf{c}_{i k}=-|[k, l]| \mathbf{i}_{j l k, l q k}+|[k, j]| \mathbf{i}_{r j k, j l k}
$$

Discrete Configuration Manifold for Incompressible Linearized Elasticity

$$
\begin{aligned}
& \operatorname{div} \mathbf{U}=0 \\
& \begin{aligned}
\chi\left(\left|K_{h}\right|\right) & \sim \overline{\mathbb{I}}_{\mathrm{D}_{h} \times\left(2 \mathrm{P}_{h}\right)} \overline{\mathbf{X}}_{\left(2 \mathrm{P}_{h}\right) \times 1}=\mathbf{0} \\
& =\mathrm{P}_{h}-\mathrm{E}_{h}+\mathrm{D}_{h}=1
\end{aligned}
\end{aligned}
$$

$3 \mathrm{D}_{h}=\mathrm{E}_{h}^{b}+2 \mathrm{E}_{h}^{i}, \quad \mathrm{P}_{h}^{b}=\mathrm{E}_{h}^{b}$

$$
\mathrm{D}_{h}=2 \mathrm{P}_{h}^{i}+\mathrm{P}_{h}^{b}-2=2 \mathrm{P}_{h}-\mathrm{P}_{h}^{b}-2 \Rightarrow \mathrm{D}_{h}<2 \mathrm{P}_{h}
$$

Theorem: Let K_{h} be a 2 -dimensional well-centered primal mesh such that $\left|K_{h}\right|$ is a simply-connected set. Then the associated incompressibility matrix $\overline{\mathbb{I}}^{h}$ is full-ranked.
$\operatorname{rank}\left(\overline{\mathbb{I}}^{h}\right)=\mathrm{D}_{h} \quad \Longrightarrow \operatorname{nullity}\left(\overline{\mathbb{I}}^{h}\right)=2 \mathrm{P}_{h}-\operatorname{rank}\left(\overline{\mathbb{I}}^{h}\right)=2 \mathrm{P}_{h}-\mathrm{D}_{h}$ $\left\{\overline{\mathbf{w}}_{i} \in \mathbb{R}^{2 \mathrm{P}_{h}}\right\}_{i=1}^{2 \mathrm{P}_{h}-\mathrm{D}_{h}} \quad$ a basis for the null space

Discrete Kinetic Energy for Incompressible Linearized Elasticity

- Kinetic energy

$$
\begin{aligned}
& K^{d}=\frac{1}{2} \sum_{i=1}^{\overline{\mathrm{P}}_{h}} \rho_{i}\left|\star \sigma_{i}^{0}\right| \dot{\mathbf{U}}^{i} \cdot \dot{\mathbf{U}}^{i} \\
& K^{d}=\frac{1}{2} \dot{\boldsymbol{X}}^{\top} \mathbf{M} \dot{\boldsymbol{X}}
\end{aligned}
$$

- $\mathbf{M} \in \mathbb{R}^{\left(n \overline{\mathrm{P}}_{h}\right) \times\left(n \overline{\mathrm{P}}_{h}\right)}$ a diagonal matrix

$$
\mathbf{M}_{j k}= \begin{cases}\rho_{i}\left|\star \sigma_{i}^{0}\right|, & \text { if } j=k=n(i-1)+s \text { with } 0 \leq s<n, 1 \leq i \leq \overline{\mathrm{P}}_{h} \\ 0, & \text { if } j \neq k\end{cases}
$$

Discrete Elastic Energy for Incompressible Linearized Elasticity

Discrete Action for Incompressible Linearized Elasticity

- Discrete Lagrangian $L^{d}=K^{d}-V^{d}$, where $V^{d}=E^{d}-B^{d}-T^{d}$

$$
\begin{aligned}
& B^{d}=\sum_{i=1}^{\mathrm{P}_{h}} m^{i} \mathbf{B}^{i} \cdot \mathbf{U}^{i}=\mathbf{b} \cdot \boldsymbol{X}+B_{e}^{d} \\
& {\left[m^{i}=\rho_{i}\left|\star \sigma_{i}^{0}\right|\right.} \\
& \mathbf{b}=\left\{\mathbf{b}^{1}, \ldots, \mathbf{b}^{\overline{\mathrm{P}}_{h}}\right\}^{\top} \\
& \left\{\begin{array}{l}
T^{d}=\mathbf{t} \cdot \boldsymbol{X} \\
\mathbf{t}=\left\{\mathbf{t}^{1}, \ldots, \mathbf{t}^{\bar{P}_{h}}\right\}
\end{array}\right. \\
& \mathbf{b}^{i}=m^{i} \mathbf{B}^{i} \\
& B_{e}^{d}=\sum_{i=\overline{\mathrm{P}}_{h}+1}^{\mathrm{P}_{h}} m^{i} \mathbf{B}^{i} \cdot \mathbf{U}^{i} \\
& \left\{\sigma_{i}^{0}\right\}_{i=1}^{\overline{\mathrm{P}}_{h}} \\
& \left\{\sigma_{i}^{0}\right\}_{i=\overline{\mathrm{P}}_{h}+1}^{\mathrm{P}_{h}} \longrightarrow \text { Primal vertices with essential BC }
\end{aligned}
$$

Discrete Action for Incompressible Linearized Elasticity

- Discrete Lagrangian

$$
\begin{aligned}
& L^{d}=\frac{1}{2} \dot{\boldsymbol{X}}^{\top} \mathbf{M} \dot{\boldsymbol{X}}-\boldsymbol{X}^{\top} \mathbf{S} \boldsymbol{X}+\mathbf{F} \cdot \boldsymbol{X}+L_{e}^{d} \\
& \mathbf{F}=-\mathbf{s}+\mathbf{b}+\mathbf{t}, \quad L_{e}^{d}=K_{e}^{d}-E_{e}^{d}+B_{e}^{d}
\end{aligned}
$$

- Variation field \mathbf{X}_{ϵ}
$\boldsymbol{X}_{0}=\boldsymbol{X},\left.\quad \frac{d}{d \epsilon}\right|_{\epsilon=0} \boldsymbol{X}_{\epsilon}=\delta \boldsymbol{X}$
- Incompressibility

$$
\mathbb{I}^{h} \boldsymbol{X}_{\epsilon}=\mathbf{u}^{h} \Rightarrow \mathbb{I}^{h} \delta \boldsymbol{X}=\mathbf{0} \Rightarrow \delta \boldsymbol{X} \in \operatorname{Ker}\left(\mathbb{I}^{h}\right)
$$

Discrete Action for Incompressible Linearized Elasticity

- Hamilton's principle

$$
\begin{aligned}
\delta \int_{t_{1}}^{t_{2}} L^{d} d t & =\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} \int_{t_{1}}^{t_{2}}\left(\frac{1}{2} \dot{\boldsymbol{X}}_{\epsilon}^{\top} \mathbf{M} \dot{\boldsymbol{X}}_{\epsilon}-\boldsymbol{X}_{\epsilon}^{\top} \mathbf{S} \boldsymbol{X}_{\epsilon}+\mathbf{F} \cdot \boldsymbol{X}_{\epsilon}+L_{e}^{d}\right) d t \\
& =\int_{t_{1}}^{t_{2}}\left[\dot{\boldsymbol{X}}^{\top} \mathbf{M}\left(\frac{d}{d t} \delta \boldsymbol{X}\right)-\boldsymbol{X}^{\top}\left(\mathbf{S}+\mathbf{S}^{\top}\right) \delta \boldsymbol{X}+\mathbf{F} \cdot \delta \boldsymbol{X}\right] d t \\
& =-\int_{t_{1}}^{t_{2}}\left[\mathbf{M} \ddot{\boldsymbol{X}}+\left(\mathbf{S}+\mathbf{S}^{\top}\right) \boldsymbol{X}-\mathbf{F}\right] \cdot \delta \boldsymbol{X} d t=0
\end{aligned}
$$

$$
\left[\mathbf{M} \ddot{\boldsymbol{X}}+\left(\mathbf{S}+\mathbf{S}^{\boldsymbol{\top}}\right) \boldsymbol{X}-\mathbf{F}\right] \cdot \delta \boldsymbol{X}=0
$$

- Orthogonal decomposition of the space of displacements

$$
\begin{aligned}
& \mathbb{R}^{n \overline{\mathrm{P}}_{h}}=\operatorname{Ker}\left(\mathbb{I}^{h}\right) \oplus \operatorname{Ker}\left(\mathbb{T}^{h}\right)^{\perp} \\
& \delta \boldsymbol{X} \in \operatorname{Ker}\left(\mathbb{I}^{h}\right) \Longrightarrow \mathbf{M} \ddot{\boldsymbol{X}}+\left(\mathbf{S}+\mathbf{S}^{\mathbf{T}}\right) \boldsymbol{X}-\mathbf{F}=\boldsymbol{\Lambda}
\end{aligned}
$$

$$
\mathbf{\Lambda}=\left\{\boldsymbol{\Lambda}^{1}, \ldots, \boldsymbol{\Lambda}^{\overline{\mathrm{P}}_{h}}\right\}^{\top} \quad \begin{aligned}
& \text { Discrete pressure } \\
& \text { gradient }
\end{aligned}
$$

Discrete Action for Incompressible Linearized Elasticity

- From rank-nullity theorem

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{Ker}\left(\mathbb{I}^{h}\right)^{\perp}\right)=n \overline{\mathrm{P}}_{h}-\operatorname{nullity}\left(\mathbb{I}^{h}\right)=\operatorname{rank}\left(\mathbb{I}^{h}\right)=\mathrm{R} \\
& \left\{\mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{R}}\right\} \quad \text { a basis for } \operatorname{Ker}\left(\mathbb{I}^{h}\right)^{\perp} \\
& \boldsymbol{\Lambda}(t)=\sum_{i=1}^{\mathrm{R}} \Lambda_{i}(t) \mathbf{z}^{i}
\end{aligned}
$$

- Discrete Euler-Lagrange equations

Discrete Pressure Field

- Cauchy stress $\sigma^{a b}=2 \mu e^{a b}-p g^{a b}$
- Pressure gradient $\nabla p=(\mathbf{d} p)^{\#}$
- If "flat" is dual to primal, then "sharp" has to be primal to dual for them to be inverse operations.
- Pressure gradient is a primal vector field. So, this means that $(\mathbf{d} p)^{\sharp}$ is primal. Therefore, $\mathbf{d} p$ is a dual 1-form. This means that p is a dual 0 -form.
- Laplace-Beltrami operator

$$
\Delta: \Omega^{0}(M) \rightarrow \Omega^{0}(M) \quad \Delta f=* \mathbf{d} * \mathbf{d} f=* \mathbf{d} *\left[(\mathbf{d} f)^{\sharp}\right]^{b}
$$

$\Delta: \Omega_{d}^{0}(K) \rightarrow \Omega_{d}^{0}(K) \quad$ or $\quad \Delta: \Omega_{d}^{0}(\star K) \rightarrow \Omega_{d}^{0}(\star K)$

- The smooth Δ operator is not injective. The same is true for the primal discrete Δ operator. However, the dual discrete Δ operator is bijective.

Discrete Pressure Field

- For any $a \in \mathbb{R}$, for both the smooth and primal discrete exterior derivative $\mathbf{d}(f+a)=\mathbf{d} f$
- But for the dual discrete exterior derivative $\mathbf{d}(f+a) \neq \mathbf{d} f$

$$
\begin{array}{ll}
\left\{f^{1}, f^{2}, f^{3}, f^{4}\right\} & \text { primal } \\
\left\{f^{123}, f^{243}\right\} & \text { dual }
\end{array}
$$

- Example

$$
\mathbf{p}=\left\{p^{132}, p^{143}, p^{154}, p^{165}, p^{176}, p^{127}\right\}^{\top}
$$

Discrete Pressure Field

- Pressure Laplacian $\Delta \mathbf{p}=\mathbb{L}_{6 \times 6} \mathbf{p}$
- Theorem. Let K_{h} be a planar well-centered primal mesh such that $\left|K_{h}\right|$ is a simply-connected set. Then, the matrix $\mathbb{L}^{h} \in \mathbb{R}^{D_{h} \times D_{h}}$ is non-singular.
- $\boldsymbol{\Lambda}$ is the pressure gradient $\nabla p=(\mathbf{d} p)^{\sharp}$ and hence

$$
\Delta p=* \mathbf{d} * \boldsymbol{\Lambda}^{b}
$$

$$
(\star \star)
$$

- From (\star) and ($\star \star$)

The same as $\boldsymbol{\Lambda}$ but with values at primal $\mathbb{L}_{6 \times 6} \mathbf{p}=\overline{\mathbb{I}}_{6 \times 14} \mathbb{G}_{p} \longrightarrow$ vertices with essential B.C. (average value of the closest vertices)
$\mathbb{L}=\left[\begin{array}{cccccc}r_{1,2}+r_{1,3}+r_{2,3} & -r_{1,3} & 0 & 0 & 0 & -r_{1,2} \\ -r_{1,3} & r_{1,3}+r_{1,4}+r_{3,4} & -r_{1,4} & 0 & 0 & 0 \\ 0 & -r_{1,4} & r_{1,4}+r_{1,5}+r_{4,5} & -r_{1,5} & 0 \\ 0 & 0 & -r_{1,5} & r_{1,5}+r_{1,6}+r_{5,6} & -r_{1,6} & 0 \\ 0 & 0 & 0 & -r_{1,6} & r_{1,6}+r_{1,7}+r_{6,7} & -r_{1,7} \\ -r_{1,2} & 0 & 0 & 0 & -r_{1,7} & r_{1,7}+r_{1,2}+r_{2,7}\end{array}\right]$
$r_{i, j}=\frac{|[i, j]|}{|\star[i, j]|}$

Example 1: Cantilever Beam

- Cantilever beam under a parabolic distributed shear force at its free end

$$
\begin{aligned}
& f(y)=\frac{3 F}{4 c^{3}}\left(c^{2}-y^{2}\right) \\
& \operatorname{div} \mathbf{u}=\frac{1}{E I}(1+\nu)(1-2 \nu) F(x-L) y
\end{aligned}
$$

$$
p(x, y)=-\frac{F(x-L) y}{2 I}
$$

$$
\begin{aligned}
& u_{x}=\frac{\left(1-\nu^{2}\right) F y}{6 E I}\left(3 x^{2}-6 L x+\frac{\nu y^{2}}{1-\nu}\right)-\frac{F y}{6 I \mu}\left(y^{2}-3 c^{2}\right) \\
& u_{y}=\frac{\left(1-\nu^{2}\right) F}{6 E I}\left[\frac{3 \nu(L-x) y^{2}}{1-\nu}+3 L x^{2}-x^{3}\right]
\end{aligned}
$$

Example 1: Cantilever Beam

- Tip displacement and pressure

(b)

Normalized diaplacement $=\frac{U_{y}^{A}}{u_{y}^{A}}$

Example 1: Cantilever Beam

- Pressure field for the beam problem for meshes with (a) $\mathrm{N}=64$, (b) $\mathrm{N}=156$, (c) $\mathrm{N}=494$, where N is the number of primal 2-cells of the mesh.
(a)

(b)

No pressure checkerboarding!

Example 2: Cook's Membrane

- Boundary conditions and loading

Example 2: Cook's Membrane

- Convergence of displacements

Example 2: Cook's Membrane

- The pressure field for the Cook's membrane for meshes with (a) $\mathrm{N}=123$, (b) $\mathrm{N}=530$, (c) $\mathrm{N}=955$, where N is the number of primal 2-cells of the mesh.

No pressure checkerboarding!

Example 2: Cook's Membrane

Structure-preserving discretization

Current and Future Work

- Generalization to 3D problems
- Fluid mechanics (fixed mesh)
- Nonlinear elasticity: Requires deforming meshes. For formulation with circumcentric duals requires remeshing a deforming domain.
- Convergent analysis: What is the proper topology on cochains?
- Differential complex of nonlinear elasticity
- Discretization when the rest configuration is evolving?

