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•  Discretization of Elasticity!

•  Goals:!
–  Rationalizing discretization schemes and putting all the existing 

numerical methods for solid mechanics in one abstract setting"
–  Avoiding numerical artifacts, e.g. dissipation (for conservative 

systems), locking, pressure checkerboarding, etc."
–  Discretization when material manifold has a nontrivial geometry, 

e.g. distributed dislocations, growing bodies, etc."

"

"

Structure-Preserving Discretization of Elasticity!

A Body in Equilibrium�
Balance Laws�

Integral Balance Laws�

Discrete Governing �
Equations� Discretization of BVP�

Governing Differential �
Equations�

Localization�Geometric �

Discretization�



•  Discretization of mechanics based on a discretization of Hamilton’s 
principle: Moser and Veselov (1991), Veselov (1991), Marsden, et al. 
(1998)"

•  Discrete configuration space    , discrete Lagrangian"
•  Action sum"

•  Hamilton’s principle: "

•  Discrete Euler-Lagrange equations!

"

Motivation: Variational Integrators!

Sd : QN+1 � R

Q

Sd =
N�1�

k=0

Ld(qk, qk+1)

Ld : Q�Q⇥ R

D1Ld(qk, qk+1) + D2Ld(qk�1, qk) = 0 ⇥k = 1, ..., N � 1

q0 qN�Sd = 0
for fixed q0 and qN



•  Maxwell’s Equations in the language of differential forms!

•                  : Electric field, electric displacement, magnetic field, magnetic 
induction"

•                        : Current density, charge density, electric permittivity, "
"and magnetic permeability"

•         : 1-forms, and         : 2-forms!
•     : exterior derivative"
•                 : Hodge star operators"

Maxwell’s Equations and Numerical Electromagnetism!

Topological!

Metric-dependent!

E,D,H,B

E,H D,B
d
�E , �H

dH =
⇥D

⇥t
+ JE ,

dE = �⇥B

⇥t
,

dB = 0,

dD = �E

⇤⇥H =
⇥D
⇥t

+ JE ,

⇤⇥E = �⇥B
⇥t

,

⇤ · B = 0,

⇤ · D = �E ,

JE , ⇥R, �0, µ0

D = �0E
B = µ0H

D = �E E

B = �H H



•  Elasticity governing equations can be written in terms of bundle-valued 
differential forms."

 
•  The governing equations unlike EM cannot be directly discretized.!
•  Given a discretized body, how can one write the governing equations 

with no reference to continuum elasticity?"

Geometric Elasticity:  "
Kanso, Arroyo, Tong, AY, Marsden, Desbrun, 2007!
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•  Configuration space: Infinite-dimensional manifold of maps between 
reference configuration and ambient space."

•  Ambient space (a Riemannian manifold)"

"

•  Spatial metric g is a background metric and is not dynamic (unlike the 
metric in general relativity, which is governed by Einstein’s equations)."

•  Deformation gradient (a two-point tensor)"
"

!

Geometric Elasticity & Anelasticity  !

F(X) : TXB � T�(X)S or F a
A(X) =

⇥�a

⇥XA
(X)

elasticity! anelasticity!

(a)

(b)

ϕt

ϕt

B ϕt(B)

ϕt(B)

(S,g)

(S,g)
(B,∇,G)

(a)

(b)

ϕt

ϕt

B ϕt(B)

ϕt(B)

(S,g)

(S,g)
(B,∇,G)



Discrete Exterior Calculus (DEC): Hirani, et al. (2005)!

•  Primal and dual complexes!

"

24123
243

Primal and dual "
vector fields"

Primal and dual "
0, 1 and 2- forms"

Oriented primal and dual "
complexes"



Discrete Exterior Calculus (DEC)!

•  Continuous Hodge star"

•  Discrete Hodge star"
!
!
•  Discrete flat operator"

•  Boundary                                             and coboundary operators"
"
•  Discrete exterior derivative"
"
•  Discrete divergence for a primal vector field"

"

� ⇥ �⇥ = ⇤�,⇥�⌅µ

1
| ⇥ �k| ⇥��, ⇥�k⇤ =

1
|�k| ⇥�, �k⇤

� : �k(N ) ⇥ �n�k(N )

� : �k
d(K) ⇥ �n�k

d (�K)

⇥ : Xd(K)� �1
d(�K)

�X⇥, ⇥�n�1⇥ =
�

�0⇥�n�1

X(�0) · (⇥�n�1)

⇥divX, ⇥�n⇤ = �d � X�

�k : Ck(K)� Ck�1(K)
�k : Ck(K)� Ck+1(K) ��kck, ck+1⇥ = �ck, ⇥k+1ck+1⇥

d : �k
d(K)� �k+1

d (K) dk+1 � dk = 0

a dual form"

Élie Cartan (1869-1951)"

curl � grad = 0
div � curl = 0

d : ⌦k(M) ! ⌦k+1(M)Z

M
d! =

Z

@M
!



•  A discretized solid is modeled by a simplicial complex.                              
Then define a dual complex."

"
"

•  Discrete kinematic and kinetic quantities live on different objects: discrete 
(vector-valued and co-vector valued) differential forms"

•  Discrete deformation map:"
"
•  Discrete velocity field:"
•  Discrete strain: A primal discrete vector-valued 1-form"
"

!

Discrete Nonlinear Elasticity: AY, 2008!

�t : K � �t(K)
�0

i (t) = ⇥t(�0
i ) ⇥ �i � K(0)

Vi(t) := ⇤V, �0
i ⌅ = ⇥̇t(�0

i ) ⇥ �0
i � K(0)

primal cell!

dual cell!



•  Stress is a pseudo covector-valued (n-2)-form."
•  Discrete stress: A dual covector-valued discrete pseudo (n-2)-form"

"
•  Governing equations"

–  Energy balance and!
     its invariance!
–  Action principle!

"
"
"
"

!

Discrete Nonlinear Elasticity!

Internal !
energy!

Power of !
tractions!

4.5 A Discrete Cosserat Elasticity 34

Euler’s equation for planar graphs with h holes reads

#σ2 − 1 + h = #σ1 −#σ0. (4.77)

Therefore, it is seen that the number of compatibility equations are exactly equal to the number of
extra unknowns. !

Summary of Discrete Quantities. The following table summarizes the discrete fields of our theory
and their types.

Quantity Symbol Type
velocity v vector-valued 0-form

displacement u vector-valued 0-form
strain vector-valued 1-form

mass density ρ dual p-form
internal energy density e support volume-form

specific entropy N support volume-form
heat flux h dual (p− 1)-form

heat supply r dual p-form
stress covector-valued (p− 1)-form

body force covector-valued dual p-form
kinetic energy density κ dual p-form

4.5 A Discrete Cosserat Elasticity

In the case of a discrete Cosserat solid, in addition to a discrete deformation mapping a (time-
dependent) rotation is associated with each primal 0-cell, i.e. kinematics is defined by the pair
(ϕt(σ0),ϑt(σ0)). In addition to discrete stress, we postulate the existence of a discrete couple stress

that associates a couple to each dual (p− 1)-cell. Rotation velocity is defined as

〈ṽ,σ0(t)〉 =
d

dt
ϑ(σ0) = ϑ̇t(σ0). (4.78)

For the sake of simplicity, let us ignore the rotational inertia. We also assume that there is a discrete
field of body couples . The new terms in balance of energy are the power of discrete couple stresses
and body couples, which read

∑

!σ1∈ !U

[
ε('σ1, 'σ0) ('σ1(t)) + ε('σ1, 'σ0)r('σ0, 'σ1)× ('σ1(t))

]
· ṽ(σ0(t))

+
∑

!σ0∈ !U

〈ρ, 'σ0(t)〉
〈〈
〈 , 'σ0(t)〉, 〈ṽ,σ0(t)〉

〉〉
, (4.79)

where r('σ0, 'σ1) is the vector connecting σ0
t to the point σ1

t

⋂
'σ1

t . Under a rigid translation, rotation
velocities remain unchanged and hence balance of linear momentum still has the form (4.42) and (4.44).
Under a rigid rotation, rotation velocities have the following transformation

ṽ′(σ0(t)) = ṽ(σ0(t)) + α(t). (4.80)

Henri Poincaré "
(1854-1912)"
Algebraic topology"
Triangulation of"
smooth manifolds"
Independence of"
homology groups "
from triangulations"



Example: Incompressible Elasticity!

•  The numerical solution for incompressible elasticity is usually obtained  
by solving near incompressible problems, i.e., solving compressible 
problem as the parameters tend to those of incompressible problem."

•  Locking can occur in this process (Babuška and Suri,1992), i.e., loss of 
accuracy of solutions as the parameter(s) tend to a critical value, e.g., for 
linear isotropic materials ν " ½."

•  Mixed Methods (Arnold, 2005): Use an extension of de Rham’s complex 
for linearized elasticity."

•  Diamond Elements (Hauret, et al., 2007): Analysis for linearized elasticity. 
A heuristic partitioning of a simplicial complex using a dual complex."

"

•  Pavlov, et al. (2011): Geometric structure-preserving discretization for 
incompressible fluids"

•  Governing equations of discrete linear elasticity!
!

Good convergence for incompressible "
nonlinear elasticity in some numerical 
tests."



Incompressible Linearized Elasticity: Continuous Case!

•  Idea: Instead of using Lagrange multipliers work with the proper 
configuration manifold."

C = {� : B � S | � = ⇥d on ⇤dB}

TC = {(�,U) |� ⇥ C, U : B � T�(B) and U|�dB = 0}

Cvol = {� � C | J(�) = 1}

T�Cvol =
⇤
U ⇥ T�C | div

�
U � ��1

⇥
= 0

⌅

J =
�

detg
detG

detF = 1

Incompressible elasticity"

Nonlinear"
Elasticity"

Incompressible"
Nonlinear"
Elasticity"

Space of variations"

Ebin and Marsden (1970)"



Incompressible Linearized Elasticity: Continuous Case!

•  Lagrangian density                    and space of variations!

•  Action principle!

•  Or"

 
  

 

 

L = K � V

U = {w : B � Rn|div w = 0,w|�dB = 0}

�

� T

0
Ldt = 0

⇤

B

�
�(ü� b,w)g + 2µeabẽab

⇥
dv �

⇤

��B
(⇥,w)gda = 0

K =
1
2

�

B
�(u̇, u̇)gdv V =

�

B
µeabeabdv �

�

B
�(b,u)gdv �

�

��B
(⇥,u)gda

Z

B
(⇢ü� ⇢b� div(2µe]),w)gdv +

Z

@B
(h2µe],n[i � ⌧ ,w)gda = 0



Incompressible Linearized Elasticity: Continuous Case!

•    

•  Inner product on k-form"

!
•  Hodge decomposition theorem for manifolds with boundary"

 
  

 

 

(↵,�)g =

Z

M
↵ ^ (⇤�) =

Z

M
h↵,�]idv

⌦k(M) = d
�
⌦k�1 (M)

�
�Dk

t (M)

⌦

k
t (M) =

�
↵ 2 ⌦

k
(M) | ↵ is tangent to @M

 

Let � be a vector field on B. If for every w ⇤ U we have�

B
(�,w)gdv = 0, then there exists a function p : B ⇥ R

such that � = �div(pg�).

d
�
⌦k�1 (M)

�
=
�
↵ 2 ⌦k (M) | 9� 2 ⌦k�1 (M) such that ↵ = d�

 

Dk
t (M) =

�
↵ 2 ⌦k

t (M) | �↵ = 0
 



Incompressible Linearized Elasticity: Continuous Case!

•  Hamilton’s principle gives us"

•  Remark: The solution space for incompressible fluids is similar to that 
of incompressible linearized elasticity. Variation of the velocity field 
has a non-standard form (Lin constraint)."

 
  

 

 

�ü = �b + div(2µe⇤ � pg⇤), in B
⇥ = ⇥2µe⇤ � pg⇤,n⇥⇤ on ⇤�B

Z

B
(⇢ü� ⇢b� div(2µe]),w)gdv +

Z

@B
(h2µe],n[i � ⌧ ,w)gda = 0

Hodge         decomposition"
A generalization of "
Helmholtz decomposition"
v = grad�+ curlA



Discrete Incompressible Linearized Elasticity!

•  Primary unknowns: displacement field!

 

 

XnP̄h�1 =

�
⌥⇧

⌥⇤

U1
n�1
...

UP̄h
n�1

⇥
⌥⌃

⌥⌅

ρi,  μi

24
123

243

oriented primal "
complex"

oriented dual "
complex"



Discrete Configuration Manifold for Incompressible 
Linearized Elasticity!

 

 

 
c11 = |[3, 1]|i31,123 + |[1, 2]|i12,123, c12 = |[1, 2]|i12,123 � |[3, 2]|i123,243

c13 = |[3, 1]|i31,123 � |[3, 2]|i123,243, c14 = 0
c21 = 0, c22 = |[2, 4]|i24,243 + |[3, 2]|i123,243

c23 = |[4, 3]|i43,243 + |[3, 2]|i123,243, c24 = |[2, 4]|i24,243 + |[4, 3]|i43,243

I2�8�8�1 = 0 I2�8 =
�

c�
11 c�

12 c�
13 c�

14

c�
21 c�

22 c�
23 c�

24

⇥
�8�1 =

�
U1 . . .U4

⇥T

�divU, �[1, 2, 3]⇥ =
1

|[1, 2, 3]|

4�

i=1

c1i · Ui

�divU, �[2, 4, 3]⇥ =
1

|[2, 4, 3]|

4�

i=1

c2i · Ui



Discrete Configuration Manifold for Incompressible 
Linearized Elasticity!

•  Incompressibility!

•  The case n=2:"
!

cil = �|[l, j]|ijlk,jol � |[k, l]|ijlk,lqk

cik = �|[k, l]|ijlk,lqk + |[k, j]|irjk,jlk

cij = |[k, j]|irjk,jlk � |[l, j]|ijlk,jol

Īh =

�

⇧⇤
cT
11 · · · cT

1Ph

...
. . .

...
cT

Dh1 · · · cT
DhPh

⇥

⌃⌅

Dh�(2Ph)

ĪhDh⇥(2Ph)
X̄(2Ph)⇥1 = 0



Discrete Configuration Manifold for Incompressible 
Linearized Elasticity!

 
•    

 

�(|Kh|) = #(0-simplices)�#(1-simplices) + #(2-simplices)
= Ph � Eh + Dh = 1

3Dh = Eb
h + 2Ei

h, Pb
h = Eb

h

Dh = 2Pi
h + Pb

h � 2 = 2Ph � Pb
h � 2 Dh < 2Ph

Theorem: Let Khbe a 2-dimensional well-centered primal mesh
such that |Kh| is a simply-connected set. Then the associated
incompressibility matrix Īh is full-ranked.

rank(Īh) = Dh nullity(̄Ih) = 2Ph � rank(Īh) = 2Ph � Dh

{w̄i � R2Ph}2Ph�Dh
i=1

a basis for the null space  

divU = 0 � Īh
Dh�(2Ph)X̄(2Ph)�1 = 0



Discrete Kinetic Energy for Incompressible "
Linearized Elasticity!

!

Kd =
1
2

P̄h�

i=1

�i| ⇤ ⇥0
i | U̇i · U̇i

Mjk =

�
�i| ⇤ ⇥0

i |, if j = k = n(i� 1) + s with 0 ⇥ s < n, 1 ⇥ i ⇥ P̄h,

0, if j ⇤= k.

Kd =
1
2
Ẋ

T
MẊ

•  Kinetic energy!

!

•                               "
   a diagonal matrix"

!

M � R(nP̄h)�(nP̄h)

i



Discrete Elastic Energy for Incompressible "
Linearized Elasticity!

Ed =
2Eh�

l

E l

E l =
�

Vl

µeabeabdv

Vl =
���[i, k]

⇥
(⇥�0

i )
���

E l =
1
4
µlVl

�
ql,b
a + ql,a

b

⇥�
ql,b
a + ql,a

b

⇥
= (Ūl)TS̄lŪl

Ūl =
�
Ui,Uj ,Uk,Um

⇥T � R8

Ed =
1
2
XTSX



•  Discrete Lagrangian                                , where"

"

 

Discrete Action for Incompressible Linearized Elasticity!

Ld = Kd � V d V d = Ed �Bd � T d

Bd =
PhX

i=1

miBi ·Ui = b ·X +Bd
e

mi = ⇢i| ? �0
i |

b =
n

b1, . . . ,bP̄h

oT

bi = miBi

Bd
e =

PhX

i=P̄h+1

miBi ·Ui

{�0
i }

P̄h
i=1

{�0
i }

Ph

i=P̄h+1

Primal vertices without essential BC 

Primal vertices with essential BC 

T d = t ·X

t = {t1, . . . , tP̄h}



•  Discrete Lagrangian!

•  Variation field"
"

•  Incompressibility!

"

 

Discrete Action for Incompressible Linearized Elasticity!

Ld =
1

2
Ẋ

T
MẊ �XTSX + F ·X + Ld

e

F = �s+ b+ t, Ld
e = Kd

e � Ed
e +Bd

e

X0 = X,
d

d✏

���
✏=0

X✏ = �X

IhX✏ = uh Ih �X = 0

X✏

�X 2 Ker(Ih)



•  Hamilton’s principle!

•  Orthogonal decomposition of the space of displacements"

"

 

Discrete Action for Incompressible Linearized Elasticity!

�

Z t2

t1

Lddt =
d

d✏

���
✏=0

Z t2

t1

✓
1

2
Ẋ

T
✏ MẊ✏ �XT

✏ SX✏ + F ·X✏ + Ld
e

◆
dt

=

Z t2

t1


Ẋ

T
M

✓
d

dt
�X

◆
�XT�S+ ST

�
�X + F · �X

�
dt

= �
Z t2

t1

h
MẌ +

�
S+ ST

�
X � F

i
· �Xdt = 0

h
MẌ +

�
S+ ST

�
X � F

i
· �X = 0

RnP̄h = Ker(Ih)� Ker(Ih)?

�X 2 Ker(Ih) MẌ +
�
S+ ST

�
X � F = ⇤

⇤ =
n

⇤1, . . . ,⇤P̄h

oT
Discrete pressure !
gradient!



•  From rank-nullity theorem"

•  Discrete Euler-Lagrange equations"
"

 

Discrete Action for Incompressible Linearized Elasticity!

dim(Ker(Ih)?) = nP̄h � nullity(Ih) = rank(Ih) = R

{z1, . . . , zR} a basis for" Ker(Ih)?

⇤(t) =
RX

i=1

⇤i(t) z
i

MẌ +
�
S+ ST

�
X � F =

RX

i=1

⇤iz
i

IhX = uh



•  Cauchy stress"

•  Pressure gradient!

•  If “flat” is dual to primal, then “sharp” has to be primal to dual for them 
to be inverse operations."

•  Pressure gradient is a primal vector field. So, this means that            is 
primal. Therefore,       is a dual 1-form. This means that p is a dual 0-form."

•  Laplace-Beltrami operator"

"

•  The smooth ∆ operator is not injective. The same is true for the primal 
discrete ∆ operator. However, the dual discrete ∆ operator is bijective. "

"

 

Discrete Pressure Field!

�ab = 2µ eab � p gab

rp = (dp)]

(dp)]

dp

� : ⌦0(M) ! ⌦0(M) �f = ⇤d ⇤ df = ⇤d ⇤
h
(df)]

i[

� : ⌦0
d(K) ! ⌦0

d(K) � : ⌦0
d(?K) ! ⌦0

d(?K)or"



•  For any             , for both the smooth and primal discrete exterior 
derivative"

•  But for the dual discrete exterior "
      derivative"
"
"

•  Example"

"

 

Discrete Pressure Field!

a 2 R
d(f + a) = df

d(f + a) 6= df

p =
�
p132, p143, p154, p165, p176, p127

 T

f1 − f3

f3 − f4

f2 − f3

f4 − f2

f2 − f1

f243

f243

f123

f123

f243 − f123

{f123, f243}
{f1, f2, f3, f4} primal"

dual"



•  Pressure Laplacian"
•  Theorem. Let       be a planar well-centered primal mesh such that         is a 

simply-connected set. Then, the matrix                            is non-singular."
•      is the pressure gradient                         and hence"

•  From (★) and (★★)"

"

"

 

Discrete Pressure Field!

L6⇥6 p = Ī6⇥14Gp

�p = L6⇥6 p
Kh |Kh|

Lh 2 RDh⇥Dh

rp = (dp)]⇤

�p = ⇤d ⇤⇤[

The same as      but with values at primal "
vertices with essential B.C."
(average value of the closest vertices) 

⇤

(★) 

(★★) 

L =

2

6666664

r1,2+r1,3+r2,3 �r1,3 0 0 0 �r1,2

�r1,3 r1,3+r1,4+r3,4 �r1,4 0 0 0

0 �r1,4 r1,4+r1,5+r4,5 �r1,5 0 0

0 0 �r1,5 r1,5+r1,6+r5,6 �r1,6 0

0 0 0 �r1,6 r1,6+r1,7+r6,7 �r1,7

�r1,2 0 0 0 �r1,7 r1,7+r1,2+r2,7

3

7777775
,

ri,j =
|[i, j]|
| ? [i, j]|



•  Cantilever beam under a parabolic distributed shear force at its free end"

"

 

Example 1: Cantilever Beam!

f(y) =
3F

4c3
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•  Tip displacement and pressure!

"

 

Example 1: Cantilever Beam!

Normalized diaplacement =

UA
y

uA
y



•  Pressure field for the beam problem for meshes with (a) N=64,             
(b) N=156, (c) N=494, where N is the number of primal 2-cells of          
the mesh."

"

 

Example 1: Cantilever Beam!

No pressure !
checkerboarding!!



•  Boundary conditions and loading!

"

 

Example 2: Cook’s Membrane!



•  Convergence of displacements"

"

 

Example 2: Cook’s Membrane!

0 2000 4000 6000 8000 10000
0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

N

N
or

m
al

iz
ed

ti
p

di
sp

la
ce

m
en

t

 

 



•  The pressure field for the Cook's membrane for meshes with (a) N=123, 
(b) N=530, (c) N=955, where N is the number of primal 2-cells of the 
mesh."

"

 

Example 2: Cook’s Membrane!

No pressure checkerboarding!!



Example 2: Cook’s Membrane!

Structure-preserving "
discretization"

Classical"
discretization"

No checkerboarding"
of pressure"

pressure "
checkerboarding"



•  Generalization to 3D problems"
•  Fluid mechanics (fixed mesh)"
•  Nonlinear elasticity: Requires deforming meshes. For formulation 

with circumcentric duals requires remeshing a deforming 
domain."

•   Convergent analysis: What is the proper topology on cochains?"
•  Differential complex of nonlinear elasticity"
•  Discretization when the rest configuration is evolving?"
•  …"

!

Current and Future Work!


