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Motivation: Flexibility in Meshing & Fracture Modeling

Convex Mesh Nonconvex Mesh



Motivation: Transition Elements, Quadtree Meshes
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Galerkin Finite Element Method (FEM)
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FEM: Function-based method to solve
           partial differential equations

Strong Form:

Variational Form:

steady-state heat conduction,
diffusion, or electrostatics

DT



Galerkin FEM (Cont’d)

Variational Form 

Finite-dimensional approximations for trial function and
admissible variations

   must vanish on the boundary



Galerkin FEM (Cont’d)

Discrete Weak Form and Linear System of Equations



Biharmonic Equation

Strong Form

Variational (Weak) Form



Elastostatic BVP: Strong Form

BCs



Elastostatic BVP: Weak Form/PVW

Kinematic relation

Constitutive relation

Approximation for trial function and admissible variations

basis function



                                               ,

Material moduli
matrix

Elastostatic BVP: Discrete Weak Form



`shape’ function

Data Approximation

Finite Element versus Polygonal Approximations
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FEM (3-node) Polygonal

Three-Node FE versus Polygonal FE  (Cont’d)



FEM (3-node) Polygonal

Three-Node FE versus Polygonal FE  (Cont’d)



Assembly

FEM Polygonal

Three-Node FE versus Polygonal FE (Cont’d)



• Wachspress basis functions (Wachspress, 1975;
   Meyer et al., 2002;  Malsch and Dasgupta, 2004)

• Mean value coordinates
   (Floater, 2003; Floater
    and Hormann, 2006)

• Laplace and maximum-entropy basis functions

x

(S, 2004; S and Tabarraei, 2004)

Barycentric Coordinates on Polygons

x



• Non-negative

• Partition of unity

• Linear reproducing conditions

Properties of Barycentric Coordinates



Wachspress Basis Functions: Reference Elements

Canonical Elements



Isoparametric Transformation
(S and Tabarraei, IJNME, 2004)



Nonconvex Polygons

Mean Value Coordinates

(Floater, CAGD, 2003; Hormann 
 and Floater, ACM TOG,  2006)

(Tabarraei and S, CMAME, 2008)



Issues in the Numerical Implementation 

Mesh Generation and Numerical Integration

  Mesh generation with polygonal/polyhedral  elements
    (Lectures to follow by Julian Rimoli and Glaucio
     Paulino)

  Numerical integration of bivariate polynomials and
    generalized barycentric coordinates on polygons
    (Next lecture by Seyed Mousavi)



Mesh  a Mesh  b Mesh  c

Patch Test

Quadtree mesh

 Error in the        norm =  
 Error in the energy norm =  

Linear essential (Dirichlet) BCs are imposed on



Principle of Maximum Entropy

 discrete set of events
 possibility of each event
 uncertainty of each event
 Shannon entropy

 average uncertainty
 concave functional
 unique maximum

 Jaynes’s principle of maximum entropy
 maximizing           s.t.               ,

gives the least-biased probability distribution

(Shannon, Bell. Sys. Tech. J., 1948; Jaynes, Phy. Rev., 1957)

a



Entropy to Generalized Barycentric Coordinates

 convex polygon
     with vertices

 maximum entropy basis functions
 (S, IJNME, 2004) 

subject to

 for any            , maximize
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Max-Ent Basis Functions: Unit Square
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which simplifies to



Max-Ent Basis Functions: Unit Square (Cont’d)

Since                                                                            ,

  we obtain                                         and therefore

  which are the same as bilinear finite element shape
  functions



Maximum-Entropy Meshfree Basis Functions 
 scattered nodes in
    with coordinates

 for any           , maximize

(Arroyo & Ortiz, IJNME, 2006; S & Wright, IJNME, 2007)

convex basis
pos-def mass matrix
convex hull property
no Runge phenomenonfunctions

subject to



Non-Negative Max-Ent Coordinates
(Hormann and S, Comp. Graph. Forum, 2008)

Prior is based on edge weight functions



Quadratic Max-Ent Coordinates on Polygons

  Use notion of a prior in the modified entropy measure
     (signed basis functions) introduced by Bompadre et
     al., CMAME, 2012

  Adopt the linear constraints for quadratic precision
     proposed by Rand et al., arXiv, 2011

  Use nodal priors (Hormann and S, CGF, 2008) based
     on edge weights in the max-ent variational formulation

  Construction applies to convex and nonconvex planar
     polygons.  On each boundary facet, one-dimensional
     Bernstein bases (Farouki, CAGD, 2012) are obtained



Quadratic Max-Ent Coordinates on Polygons

subject to 6 linearly independent equality constraints: PU,
linear reproducing conditions and

 for any

 planar polygon
     with vertices

(S, unpublished, 2012)



Quadratic Precision Basis Functions: Square

uniform prior



Quadratic Precision Basis Functions: Square

Gaussian prior



Quadratic Precision Basis Functions: Square

edge prior Convergence tolerance =
 Average # of iterations = 3.7



Quadratic Precision Basis Functions: Square

edge prior Convergence tolerance =
 Average # of iterations = 3.7



Quadratic Precision Basis Functions: Pentagon

edge prior



Quadratic Precision Basis Functions: Pentagon

edge prior



Quadratic Precision Basis Functions: Pentagon

edge prior



Quadratic Precision Basis Functions: Nonconvex

edge prior



Quadratic Precision Basis Functions: Nonconvex

edge prior



Quadratic Precision Basis Functions: Nonconvex
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Quadratic Precision Basis Functions: Nonconvex

edge prior



Quadratic Precision Basis Functions: Nonconvex

edge prior



Quadratic Precision Basis Functions: Nonconvex

edge prior



Quadratic Precision Basis Functions: L-Shaped

edge prior



Quadratic Precision Basis Functions: L-Shaped

edge prior



Quadratic Precision Basis Functions: L-Shaped
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Quadratic Precision Basis Functions: L-Shaped

edge prior



Quadratic Precision Basis Functions: L-Shaped

edge prior



Quadratic Precision Basis Functions: L-Shaped

Approximation error for an arbitrary bivariate polynomial



Summary

 Introduced variational/weak forms for boundary-
    value problems, and presented the discrete
    equations for standard and polygonal FE

 Discussed construction of basis functions on
    polygonal meshes and implementation of polygonal
    finite elements

 Constructed linearly precise basis functions on
    planar polygons using relative entropy. Initial results
    for basis functions with quadratic precision on
    convex and nonconvex polygons were presented


