University of California, Davis

Barycentric Finite Element Methods

UC Davis Workshop on Generalized Barycentric Coordinates, Columbia University July 26, 2012

Collaborators and Acknowledgements

- **Collaborators**
- **Alireza Tabarraei** (UNC, Charlotte)
- **Seyed Mousavi** (University of Texas, Austin)
- **Kai Hormann** (University of Lugano)

• Research support of the **NSF** is acknowledged

Outline

- Motivation: Why Polygons in Computations?
- Weak and Variational Forms of Boundary-Value Problems
- □ Conforming Barycentric Finite Elements
- □ Maximum-Entropy Basis Functions
- □ Summary and Outlook

Motivation: Voronoi Tesellations in Mechanics

Motivation: Flexibility in Meshing & Fracture Modeling

Convex Mesh Nonconvex Mesh

Motivation: Transition Elements, Quadtree Meshes

Transition elements

Galerkin Finite Element Method (FEM)

FEM: Function-based method to solve partial differential equations steady-state heat conduction, diffusion, or electrostatics

Strong Form:
$$
-\nabla^2 u \stackrel{\lambda}{=} f
$$
 in Ω , $u = \bar{u}$ on $\partial\Omega$

Variational Form:

$$
u^* = \underset{u}{\operatorname{argmin}} \left[\pi[u] = \int_{\Omega} \left(\frac{\nabla u \cdot \nabla u}{2} - f u \right) d\Omega \right]
$$

Galerkin FEM (Cont'd)

Variational Form

$$
\delta \pi[u] = \delta \int_{\Omega} \left(\frac{\nabla u \cdot \nabla u}{2} - fu \right) d\Omega = 0
$$

$$
\int_{\Omega} \nabla \delta u \cdot \nabla u \, d\Omega - \int_{\Omega} f \delta u \, d\Omega = 0 \,\forall \delta u \in H_0^1(\Omega)
$$

$$
\delta u \text{ must vanish on the boundary}
$$

Finite-dimensional approximations for trial function and admissible variations

$$
u^h(\boldsymbol{x}) = \sum_{b=1}^N \phi_b(\boldsymbol{x}) u_b, \ \delta u^h(\boldsymbol{x}) = \phi_a(\boldsymbol{x})
$$

Galerkin FEM (Cont'd)

Discrete Weak Form and Linear System of Equations

$$
\int_{\Omega} \nabla \delta u^h \cdot \nabla u^h d\Omega = \int_{\Omega} f \delta u^h d\Omega
$$

$$
\sum_{b=1}^N \left(\int_{\Omega} \nabla \phi_a \cdot \nabla \phi_b d\Omega \right) u_b = \int_{\Omega} f \phi_a d\Omega
$$

$$
K_{ab} = \int_{\Omega} \nabla \phi_a \cdot \nabla \phi_b \, d\Omega, \quad f_a = \int_{\Omega} f \phi_a \, d\Omega
$$

Biharmonic Equation

Strong Form

$$
\nabla^4 u = u_{,iijj} = f \text{ in } \Omega
$$

BCs: $u = \bar{u}$ and $\partial u / \partial n = 0$ on $\partial \Omega$

Variational (Weak) Form

Find $u \in S$ such that $\int_{\Omega} \nabla^2 u \nabla^2 w \, d\Omega = \int_{\Omega} f w \, d\Omega \ \ \forall w \in V$ $S = \{u : u \in H^2(\Omega), u = \overline{u} \text{ on } \partial\Omega, \partial u/\partial n = 0 \text{ on } \partial\Omega\}$ $V = \{w : w \in H^2(\Omega), w = 0 \text{ on } \partial\Omega, \partial w/\partial n = 0 \text{ on } \partial\Omega\}$

Elastostatic BVP: Strong Form

 $\nabla \cdot \boldsymbol{\sigma} = 0$ in Ω **BCs** $\begin{cases} \n\mathbf{u} = \bar{\mathbf{u}} \text{ on } \Gamma_u \\ \n\boldsymbol{\sigma} \cdot \mathbf{n} = \bar{\mathbf{t}} \text{ on } \Gamma_t \n\end{cases}$ $\pmb{\sigma} = \mathbf{C} \mathpunct{:}\! \pmb{\varepsilon}$ $\varepsilon = \nabla_{\rm s} u$

Elastostatic BVP: Weak Form/PVW

$$
\int_{\Omega} \delta \varepsilon_{ij} \sigma_{ij} d\Omega - \int_{\Gamma_t} \delta u_i \bar{t}_i d\Gamma = 0 \quad \forall \, \delta u_i \in \mathbb{H}_0^1(\Omega)
$$

Kinematic relation

$$
\boldsymbol{\varepsilon}=\boldsymbol{\nabla}_s\mathbf{u}
$$

Constitutive relation

$$
\boldsymbol{\sigma}=\mathbf{C}:\boldsymbol{\varepsilon}
$$

Approximation for trial function and admissible variations

$$
\mathbf{u}^{h}(\mathbf{x}) = \sum_{b} \phi_{b}(\mathbf{x}) \mathbf{u}_{b}
$$

\n
$$
\delta \mathbf{u}^{h}(\mathbf{x}) = \sum_{a} \phi_{a}(\mathbf{x}) \delta \mathbf{u}_{b}
$$

\n
$$
\mathbf{basis function}
$$

Elastostatic BVP: Discrete Weak Form

$$
\mathbf{Kd}=\mathbf{f}
$$

$$
\mathbf{K}_{ab} = \int_{\Omega} \mathbf{B}_a^{\mathrm{T}} \mathbf{C} \mathbf{B}_b \, d\Omega \,, \quad \mathbf{f}_a = \int_{\Gamma_t} \phi_a \bar{\mathbf{t}} \, d\Gamma
$$

$$
\mathbf{B}_{a}(\mathbf{x}) = \begin{bmatrix} \phi_{a,x} & 0 \\ 0 & \phi_{a,y} \\ \phi_{a,y} & \phi_{a,x} \end{bmatrix}
$$

 $C =$ Material moduli matrix

Finite Element versus Polygonal Approximations

Data Approximation

Three-Node FE versus Polygonal FE (Cont'd)

FEM (3-node) Polygonal

$$
\mathbf{K}_{ab} = \int_{\Omega} \mathbf{B}_a^{\mathsf{T}} \mathbf{C} \mathbf{B}_b d\Omega \qquad \mathbf{B}_a = \begin{bmatrix} \phi_{a,x} & 0 \\ 0 & \phi_{a,y} \\ \phi_{a,y} & \phi_{a,x} \end{bmatrix} \qquad a = 1, 2, ..., n
$$

Three-Node FE versus Polygonal FE (Cont'd)

Three-Node FE versus Polygonal FE (Cont'd)

Assembly

Barycentric Coordinates on Polygons

• Wachspress basis functions **(Wachspress, 1975; Meyer et al., 2002; Malsch and Dasgupta, 2004)**

• Laplace and maximum-entropy basis functions **(S, 2004; S and Tabarraei, 2004)**

Properties of Barycentric Coordinates

• Non-negative

$$
\phi_a(\bm{x}) \geq 0
$$

• Partition of unity

$$
\sum_{a=1}^n \phi_a(\boldsymbol{x}) = 1
$$

• Linear reproducing conditions

$$
\sum_{a=1}^n \phi_a(\boldsymbol{x}) \boldsymbol{x}_a = \boldsymbol{x}
$$

Wachspress Basis Functions: Reference Elements

Isoparametric Transformation

(S and Tabarraei, IJNME, 2004)

Nonconvex Polygons

Issues in the Numerical Implementation

Mesh Generation and Numerical Integration

- Mesh generation with polygonal/polyhedral elements (Lectures to follow by **Julian Rimoli** and **Glaucio Paulino**)
- Numerical integration of bivariate polynomials and generalized barycentric coordinates on polygons (Next lecture by **Seyed Mousavi**)

Quadtree mesh

Principle of Maximum Entropy

(Shannon, Bell. Sys. Tech. J., 1948; Jaynes, Phy. Rev., 1957) \Box *discrete* set of events $\{x_1, \ldots, x_n\}$ \Box possibility of each event $p_a = p(x_a) \in [0,1]$ *<u>uncertainty</u>* of each event $-\ln(p_a)$ **a** Shannon entropy $H(p) = -\sum p_a \ln p_a$ $a=1$ **average uncertainty** $0.3 -$ **Concave functional** $-p_a$ In p_a $0.2 0.1$ **unique maximum** Jaynes's *principle of maximum entropy* 0.4 0.6 0.8 maximizing $H(p)$ s.t. $\sum p_a = 1$, $\sum x_a p_a = E[x]$

gives the *least-biased* probability distribution

Entropy to Generalized Barycentric Coordinates

 \Box convex polygon $\Omega \subset \mathbb{R}^2$ with vertices x_1, \ldots, x_n

 \Box for any $x \in \Omega$, maximize

$$
-\sum_{a=1}^n \phi_a(\boldsymbol{x}) \ln \phi_a(\boldsymbol{x})
$$

subject to

$$
\sum_{a=1}^n \phi_a(\boldsymbol{x}) = 1, \, \sum_{a=1}^n \phi_a(\boldsymbol{x}) \boldsymbol{x}_a = \boldsymbol{x}
$$

 \square maximum entropy basis functions **(S, IJNME, 2004)**

Max-Ent Basis Functions: Unit Square

which simplifies to

$$
\frac{e^{-\lambda_1}}{1 + e^{-\lambda_1}} = x, \frac{e^{-\lambda_2}}{1 + e^{-\lambda_2}} = y \Rightarrow e^{-\lambda_1} = \frac{x}{1 - x}, e^{-\lambda_2} = \frac{y}{1 - y}
$$

Max-Ent Basis Functions: Unit Square (Cont'd)

Since
$$
\phi_a = \frac{e^{-\lambda_1 x_a - \lambda_2 y_a}}{Z}
$$
, $Z = \sum_{b=1}^4 e^{-\lambda_1 x_b - \lambda_2 y_b}$,

we obtain $Z^{-1} = (1-x)(1-y)$ and therefore

$$
\phi_1(x, y) = (1 - x)(1 - y), \ \phi_2(x, y) = x(1 - y)
$$

$$
\phi_3(x, y) = xy, \ \phi_4(x, y) = y(1 - x)
$$

which are the same as bilinear finite element shape functions

Maximum-Entropy Meshfree Basis Functions

 0.8 0.6

Non-Negative Max-Ent Coordinates

(Hormann and S, Comp. Graph. Forum, 2008)

Prior is based on edge weight functions $\rho_a(\bm{x}) = (\bm{x}_a - \bm{x}) \cdot (\bm{x}_{a+1} - \bm{x}) + |\bm{x}_a - \bm{x}||\bm{x}_{a+1} - \bm{x}| \geq 0$ \boldsymbol{x}_{a+1} $w_a(\boldsymbol{x}) = \frac{\Pi_a(\boldsymbol{x})}{n}$ \bm{x}_{a-1} $\sum_{b=1}^n\Pi_b(\boldsymbol{x})\,,$ \overline{a} \boldsymbol{x} $\Pi_a(\boldsymbol{x}) = \frac{1}{\rho_{a-1}(\boldsymbol{x})\rho_a(\boldsymbol{x})}$ \bm{x}_a

Quadratic Max-Ent Coordinates on Polygons

- \checkmark Use notion of a prior in the modified entropy measure (signed basis functions) introduced by **Bompadre et al., CMAME, 2012**
- \checkmark Adopt the linear constraints for quadratic precision proposed by **Rand et al., arXiv, 2011**
- Use nodal priors **(Hormann and S, CGF, 2008)** based on edge weights in the max-ent variational formulation
- Construction applies to convex and nonconvex planar polygons. On each boundary facet, one-dimensional Bernstein bases **(Farouki, CAGD, 2012)** are obtained

Quadratic Max-Ent Coordinates on Polygons

uniform prior

Gaussian prior

Average $#$ of iterations = 3.7

Average $#$ of iterations = 3.7

Quadratic Precision Basis Functions: Pentagon

Quadratic Precision Basis Functions: Pentagon

Quadratic Precision Basis Functions: Pentagon

Approximation error for an arbitrary bivariate polynomial

Summary

- □ Introduced variational/weak forms for boundaryvalue problems, and presented the discrete equations for standard and polygonal FE
- **□** Discussed construction of basis functions on polygonal meshes and implementation of polygonal finite elements
- □ Constructed linearly precise basis functions on planar polygons using relative entropy. Initial results for basis functions with quadratic precision on convex and nonconvex polygons were presented

