Blending Isogeometric Analysis and local maximumentropy approximants

> Adrian Rosolen Massachusetts Institute of Technology

Marino Arroyo, Daniel Millan, Christian Peco Universitat Politecnica de Catalunya

Outline

 Briefly review of approximants selected by maximum entropy

 Isogeometric analysis and local maximumentropy approximants Briefly review of approximants selected by maximum-entropy approximation schemes

- Inspired in information theory [Sukumar, 2004] [Arroyo, 2006]
- Non-negative basis functions
- Kronecker-delta property at the boundary of the convex hull

0.8

0.6

0.4

0.2

0.2

0.6

0.6

0.41

- Smoothness (continuity)
- Variation diminishing property
- Well-behave mass matrices
- N-dimensional

Approximation of a function

$$u(\boldsymbol{x}) pprox u^h(\boldsymbol{x}) = \sum_{a=1}^N p_a(\boldsymbol{x}) \ u_a$$

where

- The set $\{u_a\}_{a=1,...,N}$ represents the nodal data at a scattered set of points $\{x_a\}_{a=1,...,N}$
- The approximants $p_a(x)$ are regarded as unknowns
- The approximants are required to be non-negative and to satisfy zeroth and first order reproducibility conditions

$$p_a \geq 0 \qquad \qquad \sum_{a=1}^N p_a = 1 \qquad \qquad \sum_{a=1}^N p_a \; oldsymbol{x}_a = oldsymbol{x}$$

Convex optimization problem

For fixed \boldsymbol{x} minimize $\sum_{a=1}^{N} \beta_a p_a |\boldsymbol{x} - \boldsymbol{x}_a|^2 + \sum_{a=1}^{N} p_a \ln p_a$ subject to $p_a \ge 0$, $a = 1, \dots, N$ $\sum_{a=1}^{N} p_a = 1$, $\sum_{a=1}^{N} p_a |\boldsymbol{x}_a = \boldsymbol{x}$

- This constrained program has a unique solution in the convex hull
- We have to solve the problem for each evaluation point (*x*)
 - Data: nodal coordinates, locality parameters, evaluation points
 - Unknowns: basis functions

 Duality methods provide an almost explicit expression of the basis functions

$$p_a(\boldsymbol{x}) = rac{1}{Z\left(\boldsymbol{x}, \boldsymbol{\lambda}^*(\boldsymbol{x})
ight)} \exp\left[-eta_a | \boldsymbol{x} - \boldsymbol{x}_a |^2 + \boldsymbol{\lambda}^*(\boldsymbol{x}) \cdot (\boldsymbol{x} - \boldsymbol{x}_a)
ight]$$

where

$$Z(oldsymbol{x},oldsymbol{\lambda}) = \sum_{b=1}^N \expig[-eta_b |oldsymbol{x}-oldsymbol{x}_b|^2 + oldsymbol{\lambda}\cdot(oldsymbol{x}-oldsymbol{x}_b)ig]$$

 A Lagrange multiplier must be computed for each evaluation point. It is the unique solution of the following unconstrained convex optimization problem

$$\boldsymbol{\lambda}^*(\boldsymbol{x}) = \arg\min_{\boldsymbol{\lambda} \in \mathbb{R}^d} \ln Z(\boldsymbol{x}, \boldsymbol{\lambda})$$

d: Spatial dimension

Control of locality (support size)

• Derivatives can be computed analytically

- Ability to handle non-uniform and unstructured set of points
- LME are very accurate in the calculation of problems involving high order derivatives
- Applications
 - _ Finite deformations
 - _ Thin-shell analysis
 - High-order PDEs
 - Linear and nonlinear
 - _ Variational fracture (phase-field approach)
 - Phase-field modeling of biomembranes
 - High-order PDEs
 - Statics and dynamics

Non-uniform and unstructured set of points

Nonlinear elasticity

 Compression of a neo-Hookean hyperelastic block (nominal stretch ratio = 0.5)

Nonlinear elasticity

 Buckling of a neo-Hookean hyperelastic beam (nominal stretch ratio = 0.35)

[Millan, Rosolen, Arroyo, 2011]

Benchmark tests

Pinched cylinder

[Millan, Rosolen, Arroyo, 2011]

Complex geometry

[Millan, Rosolen, Arroyo, 2011]

[Millan, Rosolen, Arroyo, 2012]

[Millan, Rosolen, Arroyo, 2012]

Variational Fracture (phase-field approach)

[Millan, Arroyo, et al., 2012]

Phase-field model of biomembranes

[Rosolen, Peco, Arroyo, 2012]

Phase-field model of biomembranes

Dynamics

Pear-shaped

Discocyte

[Peco, Rosolen, Arroyo, 2012]

Phase-field model of biomembranes

Dynamics

Dumbell; Pear-shaped

Stomatocyte

[Peco, Rosolen, Arroyo, 2012]

Isogeometric Analysis and maximum-entropy approximants

- In the last years, the excellent properties of smooth non-negative basis functions have motivated their use in the numerical solution of PDE
- Subdivision finite elements [Cirak et al., 2000]
 - Two dimensional approximants on unstructured grids
- Isogeometric Analysis [Hughes et al., 2005]
- Maximum entropy approximation schemes

Isogeometric analysis

• The same basis functions are used to describe the geometry and to interpolate the physical fields

[Cottrell, CMAME, 2006]

[Hughes, CMAME, 2005]

Isogeometric analysis

- Based on NURBS approximation schemes
- Description of the geometry with CAD fidelity
- (semi-)Structured grids
 - Current research in T-Splines
- Handling multiple boundaries requires significant preprocessing and techniques to have globally smooth approximation

Isogeometric analysis

Intrinsic limitation of meshfree methods

- Solely with points, only polytopes can be represented
- Non high fidelity representation of the geometry

- Limitations of max-ent and B-Splines are complementary
 - Handling of unstructured meshes
 - Description of the geometry with high fidelity
- The convex structure is shared
 - Suggests blending through a convex optimization problem
- Related approch: NEFEM [Sevilla et al., 2010]
 - High fidelity representation of the geometry
 - Coupling between NURBS and high-order FEM-DG
 - Smoothness and positivity of the basis functions is not preserved

• CAD description of the boundary (B-Spline curve)

- CAD description of the boundary (B-Spline curve)
- Single layer of Isogeometric (B-Spline + isoparametric mapping) basis functions

- CAD description of the boundary (B-Spline curve)
- Single layer of Isogeometric (B-Spline + isoparametric mapping) basis functions
- Isoparametric mapping (control points involved shown in green)

- The distribution of the interior points is unstructured
- The basis functions are purely isogeometric for boundary nodes

- Blending scheme: convex optimization problem
 - Imposition of reproducibility conditions
 - The interior basis functions are unknown

• Top view of B-Splines, local maximum-entropy (LME) approximants, and isogeometric/LME basis functions

 3D view of B-Splines, local maximum-entropy (LME) approximants, and isogeometric/LME basis functions

Homogeneous Dirichlet boundary conditions

- Three holes, prescribed data on the boundaries, non uniform mesh
- Isogeometric requires significant preprocessing, partitioning of the domain in patches, specialized techniques to have global smoothness

- Conclusions
 - We present a method to blend maximum-entropy approximants and B-Splines
 - The proposed method exploits the best features and overcomes the main drawbacks of isogeometric analysis and local maximum approximation schemes
- Open line of research
 - Developments of appropriate tools to facilitate the preprocessing work for 3D problems

Thank you for your attention