Efficient Numerical Integration in Polygonal Finite Element Method

- S. E. Mousavi^a and N. Sukumar^b
 - ^a University of Texas, Austin
 ^b University of California, Davis

NSF Workshop on Barycentric Coordinates | Columbia University, NY | July 26, 2012

Need for Integration

Mass matrix:
$$\mathbf{M}^{e} = \begin{bmatrix} \mathbf{N}(\mathbf{w}; \mathbf{\hat{\gamma}}^{T} \mathbf{N}(\mathbf{w}; \mathbf{\hat{\gamma}}) \det(\mathbf{J}) d\mathbf{w} d\mathbf{\hat{\gamma}} \end{bmatrix}$$

Stiffness matrix: $\mathbf{K}^{e} = \begin{bmatrix} \mathbf{U}_{0} (\mathbf{J}^{i-1} \mathbf{B}(\mathbf{w}; \mathbf{\hat{\gamma}}))^{T} (\mathbf{J}^{i-1} \mathbf{B}(\mathbf{w}; \mathbf{\hat{\gamma}})) \det(\mathbf{J}) d\mathbf{w} d\mathbf{\hat{\gamma}} \end{bmatrix}$
Force vector: $\mathbf{F}^{e} = \begin{bmatrix} \mathbf{F}_{0} \mathbf{N}(\mathbf{w}; \mathbf{\hat{\gamma}})^{T} \mathbf{f}(\mathbf{w}; \mathbf{\hat{\gamma}}) \det(\mathbf{J}) d\mathbf{w} d\mathbf{\hat{\gamma}} \end{bmatrix}$

Need for Integration

Goal

n Constructing Gaussian-like quadratures for n-gons, n>3

(polynomial precision)

Goal

n Constructing Gaussian-like quadratures for n-gons, n>3

(polynomial precision)

n Weighted quadratures: quadratures for polygonal basis

functions (rational polynomials)

Outline

- q Moment equations
- **q** Node elimination algorithm
- q Quadratures on the fly
- q Weighted quadratures

Moment Equations

$$\mathcal{Q}(f) = \sum_{i=1}^{n} f(\mathbf{x}_i) w_i \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

For a set of basis functions $\mathbf{\Phi}=\{\phi_j\}_{j=1}^m$ over the domain Ω , find

the quadrature $Q = {\mathbf{x}_i, w_i}_{i=1}^n$ such that:

$$\begin{pmatrix} \int_{\Omega} \omega(\mathbf{x})\phi_{1}(\mathbf{x}) \, d\mathbf{x} \\ \int_{\Omega} \omega(\mathbf{x})\phi_{2}(\mathbf{x}) \, d\mathbf{x} \\ \vdots \\ \int_{\Omega} \omega(\mathbf{x})\phi_{m}(\mathbf{x}) \, d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

Moment Equations

$$\mathcal{Q}(f) = \sum_{i=1}^{n} f(\mathbf{x}_i) w_i \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

For a set of basis functions $\mathbf{\Phi} = \{\phi_j\}_{j=1}^m$ over the domain Ω , find

the quadrature $Q = {\mathbf{x}_i, w_i}_{i=1}^n$ such that:

$$\begin{pmatrix} \int_{\Omega} \omega(\mathbf{x})\phi_{1}(\mathbf{x}) \, d\mathbf{x} \\ \int_{\Omega} \omega(\mathbf{x})\phi_{2}(\mathbf{x}) \, d\mathbf{x} \\ \vdots \\ \int_{\Omega} \omega(\mathbf{x})\phi_{m}(\mathbf{x}) \, d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

q Newton iterations

q Least squares solution

Moment Equations

$$\mathcal{Q}(f) = \sum_{i=1}^{n} f(\mathbf{x}_i) w_i \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

For a set of basis functions $\mathbf{\Phi} = \{\phi_j\}_{j=1}^m$ over the domain Ω , find

the quadrature $Q = {\mathbf{x}_i, w_i}_{i=1}^n$ such that:

$$\begin{pmatrix} \int_{\Omega} \omega(\mathbf{x})\phi_{1}(\mathbf{x}) \, d\mathbf{x} \\ \int_{\Omega} \omega(\mathbf{x})\phi_{2}(\mathbf{x}) \, d\mathbf{x} \\ \vdots \\ \int_{\Omega} \omega(\mathbf{x})\phi_{m}(\mathbf{x}) \, d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

q Newton iterations

o time-consuming, fewer points: $n \approx m/(d+1)$

q Least squares solution

o faster, more points: $n \approx m$

Node Elimination Algorithm

$\int_{\Omega} \omega(\mathbf{x}) \phi_1(\mathbf{x}) d\mathbf{x}$		$\phi_1(\mathbf{x}_1)$	$\phi_1(\mathbf{x}_2)$	• • •	$\phi_1(\mathbf{x}_n)$	$\left \right $	$\begin{pmatrix} & & \\ & w_1 \end{pmatrix}$
$\int_{\Omega} \omega({f x}) \phi_2({f x}) d{f x}$	_	$\phi_2(\mathbf{x}_1)$	$\phi_2(\mathbf{x}_2)$		$\phi_2(\mathbf{x}_n)$		w_2
÷	_	• •	÷	:	÷		÷
$\int_{\Omega} \omega(\mathbf{x}) \phi_m(\mathbf{x}) d\mathbf{x}$		$\phi_m(\mathbf{x}_1)$	$\phi_m(\mathbf{x}_2)$	••••	$\phi_m(\mathbf{x}_n)$)		$\left(\begin{array}{c} w_n \end{array} \right)$

Node Elimination Algorithm

$$\begin{pmatrix} \int_{\Omega} \omega(\mathbf{x})\phi_{1}(\mathbf{x}) \, d\mathbf{x} \\ \int_{\Omega} \omega(\mathbf{x})\phi_{2}(\mathbf{x}) \, d\mathbf{x} \\ \vdots \\ \int_{\Omega} \omega(\mathbf{x})\phi_{m}(\mathbf{x}) \, d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ \vdots \\ w_{n} \end{pmatrix}$$

[Xiao and Gimbutas, Comp. Math. App., 2010]

Node Elimination Algorithm

$$\begin{pmatrix} \int_{\Omega} \omega(\mathbf{x})\phi_{1}(\mathbf{x}) \, d\mathbf{x} \\ \int_{\Omega} \omega(\mathbf{x})\phi_{2}(\mathbf{x}) \, d\mathbf{x} \\ \vdots \\ \int_{\Omega} \omega(\mathbf{x})\phi_{m}(\mathbf{x}) \, d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ \vdots \\ w_{n} \end{pmatrix}$$

[Xiao and Gimbutas, Comp. Math. App., 2010]

q Expected number of integration points: m=3 (in two dimensions)

q Start from a quadrature over the partitions

q Significance factor:
$$s_j = \frac{1}{j} \int_{i=1}^{\infty} \hat{A}_i^2(\mathbf{x}_j)$$

Polygonal Quadratures: Accuracy

order	Expected	Obtained				
		n = 5	n = 6	n = 7	n = 8	
5	7	7	7	7	7	
10	22	23	23	23	24	
20	77	79	79	81	80	
30	166	166	166	166	166	

Number of integration points for different n-gons

[PolyMesher: Talischi, Paulino, et al., 2012]

Displacement Patch Test

Quadratures on the Fly

Quadratures on the Fly

Quadratures on the Fly

q For strong discontinuity: replace the weight function with the generalized Heaviside function

q For weak discontinuity: construct two quadratures on the two sides of the interface

Mousavi and Sukumar

 Ω^+

 Ω^{-}

Homogeneous Quadratures

For $f : \mathbb{R}^n \to \mathbb{R}$ a real, q-homogeneous function, $f(\lambda \mathbf{x}) = \lambda^q f(\mathbf{x}) \text{ for } \lambda > 0, \mathbf{x} \in \mathbb{R}^n, \text{ we have:}$ $\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^m \frac{d(\mathbf{o}, \mathcal{H}_i)}{n+q} \int_{\Omega_i} f d\mu$ $\int_{\Omega_i} f d\mu = \frac{1}{n+q-1} \left[\sum_{j \neq i} d_i(\mathbf{x}_0, \mathcal{H}_{ij}) \int_{\Omega_{ij}} f d\nu + \int_{\Omega_i} \langle \nabla f, \mathbf{x}_0 \rangle d\mu \right]$

[Lasserre, Proc. AMS, 1998]

Homogeneous Quadratures

 \mathcal{H}_{j^-} For $f : \mathbb{R}^n \to \mathbb{R}$ a real, q-homogeneous function, Ω_j . Ω_{ij} $f(\lambda \mathbf{x}) = \lambda^q f(\mathbf{x})$ for $\lambda > 0, \mathbf{x} \in \mathbb{R}^n$, we have: m-gon Ω $\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{m} \frac{d(\mathbf{o}, \mathcal{H}_i)}{n+q} \int_{\Omega_i} f d\mu$ $\int_{\Omega_i} f d\mu = \frac{1}{n+q-1} \left| \sum_{i \neq i} d_i(\mathbf{x}_0, \mathcal{H}_{ij}) \int_{\Omega_{ij}} f d\nu + \int_{\Omega_i} \langle \nabla f, \mathbf{x}_0 \rangle d\mu \right|$ [Lasserre, Proc. AMS, 1998] $\Longrightarrow \mathcal{Q}(f) = \sum_{a}^{n \circ p} w_a f(\mathbf{x}_a) = (n+q) \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$ (convex domains)

$$\mathcal{Q}_{d}(f(\mathbf{x})) = \sum_{i=1}^{n} w_{i}f(\mathbf{x}_{i}) = \int_{\Omega} f(\mathbf{x})H(\mathbf{x})d\mathbf{x} = \int_{\Omega^{+}} f(\mathbf{x})d\mathbf{x} - \int_{\Omega^{-}} f(\mathbf{x})d\mathbf{x}$$
$$\begin{pmatrix} \int_{\Omega} H(\mathbf{x})\phi_{1}(\mathbf{x}) d\mathbf{x} \\ \int_{\Omega} H(\mathbf{x})\phi_{2}(\mathbf{x}) d\mathbf{x} \\ \vdots \\ \int_{\Omega} H(\mathbf{x})\phi_{m}(\mathbf{x}) d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

$$\mathcal{Q}_{d}(f(\mathbf{x})) = \sum_{i=1}^{n} w_{i}f(\mathbf{x}_{i}) = \int_{\Omega} f(\mathbf{x})H(\mathbf{x})d\mathbf{x} = \int_{\Omega^{+}} f(\mathbf{x})d\mathbf{x} - \int_{\Omega^{-}} f(\mathbf{x})d\mathbf{x}$$

$$\begin{pmatrix} \int_{\Omega} H(\mathbf{x})\phi_{1}(\mathbf{x}) d\mathbf{x} \\ \int_{\Omega} H(\mathbf{x})\phi_{2}(\mathbf{x}) d\mathbf{x} \\ \vdots \\ \int_{\Omega} H(\mathbf{x})\phi_{m}(\mathbf{x}) d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

$$\mathcal{Q}_{d}(f(\mathbf{x})) = \sum_{i=1}^{n} w_{i}f(\mathbf{x}_{i}) = \int_{\Omega} f(\mathbf{x})H(\mathbf{x})d\mathbf{x} = \int_{\Omega^{+}} f(\mathbf{x})d\mathbf{x} - \int_{\Omega^{-}} f(\mathbf{x})d\mathbf{x}$$

$$\begin{pmatrix} \int_{\Omega} H(\mathbf{x})\phi_{1}(\mathbf{x}) d\mathbf{x} \\ \int_{\Omega} H(\mathbf{x})\phi_{2}(\mathbf{x}) d\mathbf{x} \\ \vdots \\ \int_{\Omega} H(\mathbf{x})\phi_{m}(\mathbf{x}) d\mathbf{x} \end{pmatrix} = \begin{pmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \dots & \phi_{1}(\mathbf{x}_{n}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \dots & \phi_{2}(\mathbf{x}_{n}) \\ \vdots & \vdots & \vdots \\ \phi_{m}(\mathbf{x}_{1}) & \phi_{m}(\mathbf{x}_{2}) & \dots & \phi_{m}(\mathbf{x}_{n}) \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{n} \end{pmatrix}$$

$$\overbrace{\alpha}^{\alpha'} \qquad \overbrace{\alpha}^{\gamma'} \qquad \overbrace{\alpha}^{\gamma'} \qquad \overbrace{\alpha}^{\gamma'} \qquad \overbrace{\alpha}^{\gamma'} + \underbrace{\beta_{1} + \frac{1}{2}}_{\varphi_{1} + f(\mathbf{x})} d\mathbf{x} - \int_{\Omega} f(\mathbf{x})d\mathbf{x} & \text{if } \Omega^{+} \text{ is convex.} \\ \int_{\Omega} f(\mathbf{x})H(\mathbf{x})d\mathbf{x} = \begin{cases} 2 \int_{\Omega^{+}} f(\mathbf{x})d\mathbf{x} - \int_{\Omega} f(\mathbf{x})d\mathbf{x} & \text{if } \Omega^{+} \text{ is convex.} \end{cases}$$

[Mousavi and Sukumar, Comp. Mech., 2011]

[Mousavi and Sukumar, Comp. Mech., 2011]

Weighted Quadratures: mass matrix

Typical element mass matrix

$$\mathbf{M}^{e} = \sum_{\Omega_{o}}^{P} \mathbf{N}(\mathbf{w}; \mathbf{J}^{\mathsf{T}} \mathbf{N}(\mathbf{w}; \mathbf{J}) \det(\mathbf{J}) d\mathbf{w} d\mathbf{J}$$

Jacobian of the transformation

$$J = \frac{\overset{@X}{@} \overset{@Y}{@} \overset{@Y}{@}}{\overset{@Y}{@}}^{"}$$

$$x = \bigwedge_{i=1}^{\mathcal{N}} N_{i}(*; \hat{})x_{i}; \quad y = \bigwedge_{i=1}^{\mathcal{N}} N_{i}(*; \hat{})y_{i}$$

$$N_{i} = \frac{p(*; \hat{})}{Q} \quad (e.g., \text{ for hexagon: } Q = 3_{i} \overset{*^{2}}{} i^{-2})$$

Polygonal basis functions

=) det(J) »
$$\frac{1}{Q^3}$$

$$\Longrightarrow M^e_{IJ} = \int_{\Omega_0} \frac{p(\xi,\eta)}{Q^5} d\xi d\eta$$

Weighted Quadratures: stiffness matrix

Element stiffness matrix

$$\begin{split} \mathbf{K}^{e} &= \sum_{\Omega}^{\Omega} \mathbf{B}(\mathbf{x}; \mathbf{y})^{\mathsf{T}} \mathbf{B}(\mathbf{x}; \mathbf{y}) d\mathbf{x} d\mathbf{y} \\ &= \sum_{\Omega_{0}}^{\Omega} (\mathbf{J}^{i} \mathbf{B}(\mathbf{x}; \mathbf{y}))^{\mathsf{T}} (\mathbf{J}^{i} \mathbf{B}(\mathbf{x}; \mathbf{y})) det(\mathbf{J}) d\mathbf{x} d\mathbf{y} \end{split}$$

Inverse of the Jacobian

$$\det(\mathbf{J}) = \frac{\mathsf{P}(\mathbf{w}; \mathbf{n})}{\mathsf{Q}^3}$$

)
$$J^{i} = \frac{Q^3}{P(s; \hat{z})} \left[\frac{p(s; \hat{z})}{Q^2}\right] = \frac{Q}{P(s; \hat{z})} \left[p(s; \hat{z})\right] \quad (2 \pm 2)$$

$$B_i = \frac{@N_i}{@s} = \frac{\frac{@p}{@s}Q_i}{Q^2}$$

Basis function derivative

=)
$$K_{IJ}^{e} = \sum_{\Omega_{0}} \frac{p(s; \hat{})}{P(s; \hat{})Q^{5}} dsd\hat{}$$

Weighted Quadratures: Accuracy

order	Expected	Obtained				
		n = 5	n = 6	n = 7	n=8	
5	7	8	8	7	8	
10	22	23	23	24	24	
20	77	81	81	80	82	
30	166	165	165	185	166	

Number of integration points for different n-gons

Displacement Patch Test

Displacement Patch Test

Conclusions

q Polygonal quadratures are more efficient than triangulation

q Polygonal quadratures need one level of mapping, whereas partitioning requires two levels of mapping

q For higher accuracies, weighted quadratures are more efficient than polynomial precision polygonal quadratures