Efficient Numerical Integration in

Polygonal Finite Element Method

S. E. Mousavia and N. Sukumarb
a University of Texas, Austin
b University of California, Davis

Need for Integration

Mass matrix: $\quad \mathrm{M}^{\mathrm{e}}=\underset{\Omega_{0}}{ } \mathrm{~N}\left(» ;^{\prime}\right)^{\top} \mathrm{N}\left(» ;{ }^{\prime}\right) \operatorname{det}(J) d » \mathrm{~d}^{\prime}$

Need for Integration

Mass matrix: $\quad \mathrm{M}^{\mathrm{e}}=\mathrm{\Omega}_{0} \mathrm{~N}\left(» ;^{\prime}\right)^{\top} \mathrm{N}\left(» ; ;^{\prime}\right) \operatorname{det}(J) d » \mathrm{~d}^{\prime}$
Stiffness matrix: $\quad K^{e}={ }_{\Omega_{0}}\left(J{ }^{1} B\left(» ;^{\prime}\right)\right)^{\top}\left(J i^{1} B\left(» ;^{\prime}\right)\right) \operatorname{det}(J) d » d^{\prime}$
Force vector: $\quad F^{e}=\Omega_{\Omega_{0}} N\left(>;^{\prime}\right)^{\top} f(\gg ; ') \operatorname{det}(J) d>d^{\prime}$

Goal

n Constructing Gaussian-like quadratures for n -gons, $\mathrm{n}>3$
(polynomial precision)

Goal

n Constructing Gaussian-like quadratures for n -gons, $\mathrm{n}>3$
(polynomial precision)

n Weighted quadratures: quadratures for polygonal basis functions (rational polynomials)

Outline

q Moment equations
q Node elimination algorithm
q Quadratures on the fly
q Weighted quadratures

Moment Equations

$\mathcal{Q}(f)=\sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right) w_{i} \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d \mathbf{x}$
For a set of basis functions $\boldsymbol{\Phi}=\left\{\phi_{j}\right\}_{j=1}^{m}$ over the domain Ω, find the quadrature $\mathcal{Q}=\left\{\mathbf{x}_{i}, w_{i}\right\}_{i=1}^{n}$ such that:

$$
\left(\begin{array}{c}
\int_{\Omega^{2}} \omega(\mathbf{x}) \dot{\varphi}_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega^{2}} \omega(\mathbf{x}) \dot{\varphi}_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} \omega(\mathbf{x}) \dot{\varphi}_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\dot{\phi}_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\dot{\varphi}_{2}\left(\mathbf{x}_{1}\right) & \varphi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\dot{\varphi}_{m}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{m}\left(\mathbf{x}_{2}\right) & \ldots & \dot{\varphi}_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
$$

Moment Equations

$$
\mathcal{Q}(f)=\sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right) w_{i} \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d \mathbf{x}
$$

For a set of basis functions $\boldsymbol{\Phi}=\left\{\phi_{j}\right\}_{j=1}^{m}$ over the domain Ω, find the quadrature $\mathcal{Q}=\left\{\mathbf{x}_{i}, w_{i}\right\}_{i=1}^{n}$ such that:

$$
\left(\begin{array}{c}
\int_{\Omega_{2}} \omega(\mathbf{x}) \dot{\varphi}_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega_{2}} \omega(\mathbf{x}) \dot{\phi}_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} \omega(\mathbf{x}) \dot{\varphi}_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \varphi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\dot{\varphi}_{m}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{m}\left(\mathbf{x}_{2}\right) & \ldots & \dot{\varphi}_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
$$

q Newton iterations
q Least squares solution

Moment Equations

$$
\mathcal{Q}(f)=\sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right) w_{i} \approx \int_{\Omega} \omega(\mathbf{x}) f(\mathbf{x}) d \mathbf{x}
$$

For a set of basis functions $\boldsymbol{\Phi}=\left\{\phi_{j}\right\}_{j=1}^{m}$ over the domain Ω, find the quadrature $\mathcal{Q}=\left\{\mathbf{x}_{i}, w_{i}\right\}_{i=1}^{n}$ such that:

$$
\left(\begin{array}{c}
f_{\Omega^{2}} \omega(\mathbf{x}) \dot{1}_{1}(\mathbf{x}) d \mathbf{x} \\
f_{\Omega} \omega(\mathbf{x}) \dot{\varphi}_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} \omega(\mathbf{x}) \dot{\phi}_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\dot{\phi}_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\dot{\phi}_{2}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{2}\left(\mathbf{x}_{2}\right) & \ldots & \varphi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\dot{\varphi}_{m}\left(\mathbf{x}_{1}\right) & \dot{\phi}_{m n}\left(\mathbf{x}_{2}\right) & \ldots & \dot{\phi}_{m_{n}}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
$$

q Newton iterations
o time-consuming, fewer points: $n \approx m /(d+1)$
q Least squares solution
o faster, more points: $\mathrm{n} \approx \mathrm{m}$

Node Elimination Algorithm

Node Elimination Algorithm

$$
\left(\begin{array}{c}
\int_{\Omega_{2}} \omega(\mathbf{x}) \dot{\varphi}_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega} \omega(\mathbf{x}) \dot{\varphi}_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} \omega(\mathbf{x}) \dot{\varphi}_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\dot{\varphi}_{1}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{1}\left(\mathbf{x}_{2}\right) & \ldots & \varphi_{1}\left(\mathbf{x}_{n}\right) \\
\dot{\varphi}_{2}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{2}\left(\mathbf{x}_{2}\right) & \ldots & \varphi_{2}\left(x_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\dot{\varphi}_{m}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{m}\left(\mathbf{x}_{2}\right) & \ldots & q_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
2 \ell_{n}
\end{array}\right)
$$

[Xiao and Gimbutas, Comp. Math. App., 2010]

Node Elimination Algorithm

[Xiao and Gimbutas, Comp. Math. App., 2010]
q Expected number of integration points: $m=3$ (in two dimensions)
q Start from a quadrature over the partitions
q Significance factor: $s_{j}=!_{j}{ }^{\chi m} \hat{A}_{i}^{2}\left(x_{j}\right)$
$\mathrm{i}=1$

Polygonal Quadratures: Accuracy

Number of integration points for different n -gons

order	Fxpected	Obtained			
		$n=5$	$n=6$	$n=7$	$n=8$
5	7	7	7	7	7
10	22	23	23	23	24
20	77	79	79	81	80
30	166	166	166	166	166

[PolyMesher: Talischi, Paulino, et al., 2012]

Displacement Patch Test

Quadratures on the Fly

Quadratures on the Fly

$$
\left(\begin{array}{c}
\int_{\Omega_{2}} w(\mathbf{x}) \dot{\varphi}_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega 2} w(\mathbf{x}) \dot{\varphi}_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} w(\mathbf{x}) \dot{\varphi}_{m n}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\dot{\varphi}_{1}\left(\mathbf{x}_{1}\right) & \dot{\varphi}_{1}\left(\mathbf{x}_{2}\right) & \ldots & \varphi_{1}\left(\mathbf{x}_{n}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \dot{2}_{2}\left(\mathbf{x}_{2}\right) & \ldots & \varphi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\dot{\varphi}_{m}\left(\mathbf{x}_{1}\right) & \varphi_{m n}\left(\mathbf{x}_{2}\right) & \cdots & \dot{\phi}_{m n}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
$$

Quadratures on the Fly

q For weak discontinuity: construct two quadratures on the two sides of the interface

Homogeneous Quadratures

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a real, q -homogeneous function,
$f(\lambda \mathbf{x})=\lambda^{q} f(\mathbf{x})$ for $\lambda>0, \mathbf{x} \in \mathbb{R}^{n}$, we have:
$\int_{\Omega} f(\mathbf{x}) d \mathbf{x}=\sum_{i=1}^{m} \frac{d\left(\mathbf{o}, \mathcal{H}_{i}\right)}{n+q} \int_{\Omega_{i}} f d \mu$
$\int_{\Omega_{i}} f d \mu=\frac{1}{n+q-1}\left[\sum_{j \neq i} d_{i}\left(\mathrm{x}_{0}, \mathcal{H}_{i j}\right) \int_{\Omega_{i, j}} f d \nu+\int_{\Omega_{i}}\left\langle\nabla f, \mathbf{x}_{0}\right\rangle d \mu\right]$
[Lasserre, Proc. AMS, 1998]

Homogeneous Quadratures

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a real, \mathbf{q}-homogeneous function,
$f(\lambda \mathbf{x})=\lambda^{q} f(\mathbf{x})$ for $\lambda>0, \mathbf{x} \in \mathbb{R}^{n}$, we have:
$\int_{\Omega} f(\mathbf{x}) d \mathbf{x}=\sum_{i=1}^{m} \frac{d\left(\mathbf{o}, \mathcal{H}_{i}\right)}{n+q} \int_{\Omega_{i}} f d \mu$
$\int_{\Omega_{\Omega_{i}}} f d \mu=\frac{1}{n+q-1}\left[\sum_{j \neq i} d_{i}\left(\mathbf{x}_{0}, \mathcal{H}_{i j}\right) \int_{\Omega_{\Omega_{i j}}} f d \nu+\int_{\Omega_{i}}\left\langle\nabla f, \mathbf{x}_{0}\right\rangle d \mu\right]$
[Lasserre, Proc. AMS, 1998]
$\Longrightarrow \mathcal{Q}(f)=\sum_{a=1}^{n s p} w_{a} f\left(\mathbf{x}_{a}\right)=(n+q) \int_{\Omega} f(\mathbf{x}) d \mathbf{x}$
(convex domains)

Discontinuous Quadratures

$$
\begin{aligned}
& \mathcal{Q}_{d}(f(\mathbf{x}))=\sum_{i=1}^{n} w_{i} f\left(\mathbf{x}_{i}\right)=\int_{\Omega} f(\mathbf{x}) H(\mathbf{x}) d \mathbf{x}=\int_{\Omega^{+}} f(\mathbf{x}) d \mathbf{x}-\int_{\Omega^{-}} f(\mathbf{x}) d \mathbf{x} \\
&\left(\begin{array}{c}
\int_{\Omega} H(\mathbf{x}) \phi_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega} H(\mathbf{x}) \phi_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} H(\mathbf{x}) \phi_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{m}\left(\mathbf{x}_{1}\right) & \phi_{m}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
\end{aligned}
$$

Discontinuous Quadratures

$$
\begin{aligned}
& \mathcal{Q}_{d}(f(\mathbf{x}))=\sum_{i=1}^{n} w_{i} f\left(\mathbf{x}_{i}\right)=\int_{\Omega^{\prime}} f(\mathbf{x}) H(\mathbf{x}) d \mathbf{x}=\int_{\Omega^{+}} f(\mathbf{x}) d \mathbf{x}-\int_{\Omega^{-}} f(\mathbf{x}) d \mathbf{x} \\
& \left(\begin{array}{c}
\int_{\Omega} H(\mathbf{x}) \phi_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega} H(\mathbf{x}) \phi_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} H(\mathbf{x}) \phi_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{m}\left(\mathbf{x}_{1}\right) & \phi_{m}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
\end{aligned}
$$

Discontinuous Quadratures

$$
\begin{aligned}
& \mathcal{Q}_{d}(f(\mathbf{x}))=\sum_{i=1}^{n} w_{i} f\left(\mathbf{x}_{i}\right)=\int_{\Omega^{\prime}} f(\mathbf{x}) H(\mathbf{x}) d \mathbf{x}=\int_{\Omega^{+}} f(\mathbf{x}) d \mathbf{x}-\int_{\Omega^{-}} f(\mathbf{x}) d \mathbf{x} \\
& \left(\begin{array}{c}
\int_{\Omega} H(\mathbf{x}) \phi_{1}(\mathbf{x}) d \mathbf{x} \\
\int_{\Omega} H(\mathbf{x}) \phi_{2}(\mathbf{x}) d \mathbf{x} \\
\vdots \\
\int_{\Omega} H(\mathbf{x}) \phi_{m}(\mathbf{x}) d \mathbf{x}
\end{array}\right)=\left(\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{1}\left(\mathbf{x}_{n}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{2}\left(\mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\phi_{m}\left(\mathbf{x}_{1}\right) & \phi_{m}\left(\mathbf{x}_{2}\right) & \ldots & \phi_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)
\end{aligned}
$$

$$
\int_{\Omega} f(\mathbf{x}) H(\mathbf{x}) d \mathbf{x}= \begin{cases}2 \int_{\Omega^{+}} f(\mathbf{x}) d \mathbf{x}-\int_{\Omega^{\prime}} f(\mathbf{x}) d \mathbf{x} & \text { if } \Omega^{+} \text {is convex. } \\ \int_{\Omega} f(\mathbf{x}) d \mathbf{x}-2 \int_{\Omega^{-}} f(\mathbf{x}) d \mathbf{x} & \text { if } \Omega^{-} \text {is convex. }\end{cases}
$$

[Mousavi and Sukumar, Comp. Mech., 2011]

Discontinuous Quadratures

order $=1$, numx $=15, \epsilon=10^{-11}$

order $=6$, numx $=28, \epsilon=10^{-11}$

order $=3$, numx $=20, \epsilon=10^{-15}$
[Mousavi and Sukumar, Comp. Mech., 2011]

Weighted Quadratures: mass matrix

Typical element mass matrix $\quad M^{e}={ }_{\Omega_{0}} N\left(» ;^{\prime}\right)^{\top} N\left(» ; ;^{\prime}\right) \operatorname{det}(J) d » d^{\prime}$

$$
x={ }_{i=1}^{x^{n}} N_{i}\left(>;^{\prime}\right) x_{i} ; \quad y={ }_{i=1}^{x^{n}} N_{i}\left(>;^{\prime}\right) y_{i}
$$

Polygonal basis functions

$$
N_{i}=\frac{p\left(» ;^{\prime}\right)}{Q} \quad\left(e . g ., \text { for hexagon: } Q=3 i>^{2} i^{\prime 2}\right)
$$

$$
\Rightarrow \quad \operatorname{det}(\mathrm{J}) » \frac{1}{\mathrm{Q}^{3}}
$$

$$
\Longrightarrow M_{I J}^{e}=\int_{\Omega_{0}} \frac{p(\xi, \eta)}{Q^{5}} d \xi d \eta
$$

Weighted Quadratures: stiffness matrix

Element stiffness matrix

$$
\begin{aligned}
\mathrm{K}^{\mathrm{e}} & ={ }_{\Omega}^{\mathrm{B}(\mathrm{x} ; \mathrm{y})^{\top} \mathrm{B}(\mathrm{x} ; \mathrm{y}) \mathrm{dxdy}} \\
& ={ }_{\Omega_{0}}\left(\mathrm{Ji}{ }^{1} \mathrm{~B}\left(» ;^{\prime}\right)\right)^{\top}\left(\mathrm{J}^{i} \mathrm{~B}\left(» ;^{\prime}\right)\right) \operatorname{det}(\mathrm{J}) \mathrm{d} » \mathrm{~d}^{\prime}
\end{aligned}
$$

Inverse of the Jacobian

$$
\begin{aligned}
& \operatorname{det}(J)=\frac{P\left(» ;^{\prime}\right)}{Q^{3}} \\
& J^{i 1}=\frac{Q^{3}}{P\left(» ;^{\prime}\right)}\left[\frac{p\left(» ;^{\prime}\right)}{Q^{2}}\right]=\frac{Q}{P\left(» ;^{\prime}\right)}\left[p\left(» ;^{\prime}\right)\right] \quad(2 £ 2)
\end{aligned}
$$

Basis function derivative

$$
\mathrm{B}_{\mathrm{i}}=\frac{\mathrm{QN}_{\mathrm{i}}}{@}=\frac{\frac{\varrho \mathrm{Q}}{@} \mathrm{Q}_{\mathrm{i}} \frac{@}{@} \mathrm{p}}{\mathrm{Q}^{2}}
$$

$$
\Rightarrow \quad K_{l j}^{e}=\Omega_{\Omega_{0}} \frac{\mathrm{P}\left(» ;^{\prime}\right)}{\mathrm{P}\left(\gg ;^{\prime}\right) \mathrm{Q}^{5}} \mathrm{~d}>\mathrm{d}^{\prime}
$$

Weighted Quadratures: Accuracy

Number of integration points for different n -gons

order	Expected	Obtained			
		$n=5$	$n=6$	$n=7$	$n=8$
5	7	8	8	7	8
10	22	23	23	24	24
20	77	81	81	80	82
30	166	165	165	185	166

Displacement Patch Test

Displacement Patch Test

Conclusions

q Polygonal quadratures are more efficient than triangulation
q Polygonal quadratures need one level of mapping, whereas partitioning requires two levels of mapping
q For higher accuracies, weighted quadratures are more efficient than polynomial precision polygonal quadratures

