From the Mimetic Finite Difference method to the Virtual Element Method

Gianmarco Manzini

Los Alamos National Laboratory
New Mexico, USA

July 27, 2012 - Columbia University

Outline

1 the Virtual Element Method (VEM) for the Laplace operator:

- the degrees of freedom and the local Virtual Element (VE) space;
- the abstract VE formulation;
- the convergence theorem; consistency, stability;
- the mimetic approximation of the VE bilinear form;
- high-order and high-regular extensions.

2. A numerical experiment.
3. Final remarks, future work.

The linear diffusion problem

- Differential formulation:

$$
\begin{aligned}
-\nabla u & =f \text { in } \Omega, \\
u & =g \text { on } \Gamma,
\end{aligned}
$$

- Variational formulation:

Find $u \in H_{g}^{1}(\Omega)$ such that:

$$
\int_{\Omega} \nabla u \cdot \nabla v d V=\int_{\Omega} f v d V \quad \forall v \in H_{0}^{1}(\Omega),
$$

People and References

- People:
the "Pavia team": L. Beirão da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo;

F. Brezzi, A. Buffa, K. Lipnikov, M2AN (2009): the low-order node-based MFD;

People and References

- People:
- the "Pavia team": L. Beirão da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo;
- the "Los Alamos team": K. Lipnikov, D. Svyatskiy, M. Shashkov;

L. Beirão da Veiga, K. Lipnikov, G. Manzini, SINUM (2011): the arbitrary-order node-based MFD;

People and References

- People:
- the "Pavia team": L. Beirão da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo;
- the "Los Alamos team": K. Lipnikov, D. Svyatskiy, M. Shashkov;
- Papers:

1. F. Brezzi, A. Buffa, K. Lipnikov, M2AN (2009): the low-order node-based MFD;
arbitrary-order node-based MFD; principles of VEM; abstract formulation

People and References

- People:
- the "Pavia team": L. Beirão da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo;
- the "Los Alamos team": K. Lipnikov, D. Svyatskiy, M. Shashkov;
- Papers:

1. F. Brezzi, A. Buffa, K. Lipnikov, M2AN (2009): the low-order node-based MFD;
2. L. Beirão da Veiga, K. Lipnikov, G. Manzini, SINUM (2011): the arbitrary-order node-based MFD;
principles of VEM; abstract formulation

People and References

- People:
- the "Pavia team": L. Beirão da Veiga, F. Brezzi, A. Cangiani, D. Marini, A. Russo;
- the "Los Alamos team": K. Lipnikov, D. Svyatskiy, M. Shashkov;
- Papers:

1. F. Brezzi, A. Buffa, K. Lipnikov, M2AN (2009): the low-order node-based MFD;
2. L. Beirão da Veiga, K. Lipnikov, G. Manzini, SINUM (2011): the arbitrary-order node-based MFD;
3. the "six-name paper", M3AS (to appear in January 2013): basic principles of VEM; abstract formulation

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
the degrees of freedom are the vertex values; dim $\nu_{h, P}=N_{p}$ on triangles $\mathcal{V}_{h, p}$ must be the linear Galerkin finite element space

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\mathcal{\nu}}$;
- on triangles $\nu_{h, p}$ must be the linear Galerkin finite element space
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\nu}$;
- on triangles $\mathcal{V}_{h, \mathrm{P}}$ must be the linear Galerkin finite element space $\Rightarrow \mathcal{V}_{h, \mathrm{P}}$ must contain the linear polynomials $1, x, y$;
the local spaces $\nu_{h, p}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\nu}$;
- on triangles $\mathcal{V}_{h, \mathrm{P}}$ must be the linear Galerkin finite element space $\Rightarrow \mathcal{V}_{h, P}$ must contain the linear polynomials $1, x, y$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\mathcal{V}}$;
- on triangles $\mathcal{V}_{h, \mathrm{P}}$ must be the linear Galerkin finite element space
$\Rightarrow \mathcal{V}_{h, \mathrm{P}}$ must contain the linear polynomials $1, x, y$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.
- Remarks:
boundary of P
we will not ask to be able to compute the functions of Vh.p!

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\mathcal{V}}$;
- on triangles $\mathcal{V}_{h, \mathrm{P}}$ must be the linear Galerkin finite element space
$\Rightarrow \mathcal{V}_{h, \mathrm{P}}$ must contain the linear polynomials $1, x, y$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.
- Remarks:
- we will specify the behavior of the functions of $\mathcal{V}_{h, \mathrm{P}}$ on $\partial \mathbf{P}$, the boundary of P;

The Virtual Element approach

- The Virtual Element approach for the Mimetic Finite Difference (MFD) method is based on a local finite element space $\mathcal{V}_{h, \mathrm{P}}$ on P such that:
- the degrees of freedom are the vertex values; $\operatorname{dim} \mathcal{V}_{h, \mathrm{P}}=N_{P}^{\nu}$;
- on triangles $\mathcal{V}_{h, \mathrm{P}}$ must be the linear Galerkin finite element space $\Rightarrow \mathcal{V}_{h, \mathrm{P}}$ must contain the linear polynomials $1, x, y$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue gracefully to give a conformal global finite element space \mathcal{V}_{h}.
- Remarks:
- we will specify the behavior of the functions of $\mathcal{V}_{h, \mathrm{P}}$ on $\partial \mathrm{P}$, the boundary of P;
- we will not ask to be able to compute the functions of $\mathcal{V}_{h, \mathrm{p}}$!

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;
- δ_{i} is continuous;

2. we set:

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;
- δ_{i} is continuous;
- δ_{i} is linear on each edge.

2. we set:
we formally extend piop inside P by the harmonic lifting:
the functions φ_{i} are uniquely determined by the corresponding δ_{i} (we can prove the unisolvency!)

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;
- δ_{i} is continuous;
- δ_{i} is linear on each edge.

2. we set: $\varphi_{i \mid \partial \mathrm{P}}=\delta_{i}$;
3. we formally extend $\varphi_{i l}$ op inside P by the harmonic lifting:
the functions φ_{i} are uniquely determined by the corresponding δ_{i} (we can prove the unisolvency!)

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;
- δ_{i} is continuous;
- δ_{i} is linear on each edge.

2. we set: $\varphi_{i \mid \partial \mathrm{P}}=\delta_{i}$;
3. we formally extend $\varphi_{i \mid \partial \mathrm{P}}$ inside P by the harmonic lifting:
\Rightarrow the functions φ_{i} are uniquely determined by the corresponding δ_{i} (we can prove the unisolvency!)

The local finite element space

We define the local finite element space $\mathcal{V}_{h, \mathrm{P}}$ through a basis.
For each vertex v_{i} we define a function $\varphi_{i} \in H^{1}(P)$:

1. let δ_{i} be the function defined on $\partial \mathrm{P}$ such that:

- $\delta_{i}\left(\mathrm{v}_{j}\right)=1$ if $i=j$, and 0 otherwise;
- δ_{i} is continuous;
- δ_{i} is linear on each edge.

2. we set: $\varphi_{i \mid \partial \mathrm{P}}=\delta_{i}$;
3. we formally extend $\varphi_{i \mid \partial \mathrm{P}}$ inside P by the harmonic lifting:
\Rightarrow the functions φ_{i} are uniquely determined by the corresponding δ_{i} (we can prove the unisolvency!)

$$
\text { Eventually, we set: } \quad \mathcal{V}_{h, P}:=\operatorname{span}\left\{\varphi_{1}, \ldots, \phi_{N^{\mathcal{P}}}\right\}
$$

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i}
\end{aligned} \quad \begin{array}{ll}
\text { on } \partial \Omega .
\end{array}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i}
\end{aligned} \quad \begin{array}{ll}
\text { on } \partial \Omega .
\end{array}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent; - if $w_{h} \in \mathcal{V}_{h, p}$, then $w_{h}=\sum_{i=1}^{N^{p}} w_{h}\left(v_{i}\right) \varphi_{i}$;

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i}
\end{aligned} \quad \begin{array}{ll}
\text { on } \partial \Omega .
\end{array}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue together giving a conformal finite element

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
-\Delta \varphi_{i} & =0 & & \text { in } \Omega \\
\varphi_{i} & =\delta_{i} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- $1, x, y \in \mathcal{V}_{h, p}$;
- the local spaces $\nu_{h, p}$ glue together giving a conformal finite element
- Remarks:

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
-\Delta \varphi_{i}=0 & \text { in } \Omega \\
\varphi_{i} & =\delta_{i}
\end{aligned} \quad \text { on } \partial \Omega .\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- $1, x, y \in \mathcal{V}_{h, p}$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue together giving a conformal finite element space $\mathcal{V}_{h} \subset H_{0}^{1}(\Omega)$.

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i} \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- $1, x, y \in \mathcal{V}_{h, p}$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue together giving a conformal finite element space $\mathcal{V}_{h} \subset H_{0}^{1}(\Omega)$.
- Remarks:

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i} \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- $1, x, y \in \mathcal{V}_{h, p}$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue together giving a conformal finite element space $\mathcal{V}_{h} \subset H_{0}^{1}(\Omega)$.
- Remarks:
- if P is a triangle, we recover the \mathbb{P}_{1} Galerkin elements;

The harmonic lifting

- φ_{i} is the harmonic function on P having δ_{i} as boundary value:

$$
\left\{\begin{aligned}
&-\Delta \varphi_{i}=0 \\
& \text { in } \Omega \\
& \varphi_{i}=\delta_{i} \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

- the functions $\left\{\varphi_{i}\right\}$ are linearly independent;
- if $w_{h} \in \mathcal{V}_{h, \mathrm{P}}$, then $w_{h}=\sum_{i=1}^{N^{\mathcal{P}}} w_{h}\left(\mathrm{v}_{i}\right) \varphi_{i}$;
- $1, x, y \in \mathcal{V}_{h, p}$;
- the local spaces $\mathcal{V}_{h, \mathrm{P}}$ glue together giving a conformal finite element space $\mathcal{V}_{h} \subset H_{0}^{1}(\Omega)$.
- Remarks:
- if P is a parallelogram, we recover the \mathbb{Q}_{1} bilinear elements.

The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is formally given by:

Find $u_{h} \in \mathcal{V}_{h}$ such that

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=F_{h}\left(v_{h}\right) \quad \text { for all } v_{h} \in \mathcal{V}_{h}
$$

where (as usual)

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}
$$

and $F_{h}\left(v_{h}\right)$ is a suitable (and computable!) approximation of $\int_{\Omega} f v$ (that uses only the vertex values of v_{h} and f).

The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is formally given by:

Find $u_{h} \in \mathcal{V}_{h}$ such that

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=F_{h}\left(v_{h}\right) \quad \text { for all } v_{h} \in \mathcal{V}_{h}
$$

where (as usual)

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}
$$

and $F_{h}\left(v_{h}\right)$ is a suitable (and computable!) approximation of $\int_{\Omega} f v$ (that uses only the vertex values of v_{h} and f).

The Harmonic Finite Element Method

The Harmonic Finite Element approximation of our elliptic problems is formally given by:

Find $u_{h} \in \mathcal{V}_{h}$ such that

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=F_{h}\left(v_{h}\right) \quad \text { for all } v_{h} \in \mathcal{V}_{h}
$$

where (as usual)

$$
\mathcal{A}\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}
$$

and $F_{h}\left(v_{h}\right)$ is a suitable (and computable!) approximation of $\int_{\Omega} f v$ (that uses only the vertex values of v_{h} and f).

The Harmonic Finite Element Method

Now, we are very happy, because...
> under reasonable assumptions on the mesh, the harmonic finite element approximation of an elliptic problem using the harmonic space \mathcal{V}_{h} enjoys the usual convergence properties!

The Harmonic Finite Element Method

Now, we are very happy, because...

- ... under reasonable assumptions on the mesh, the harmonic finite element approximation of an elliptic problem using the harmonic space \mathcal{V}_{h} enjoys the usual convergence properties!

The Harmonic Finite Element Method

Now, we are very happy, because...

- ... under reasonable assumptions on the mesh, the harmonic finite element approximation of an elliptic problem using the harmonic space \mathcal{V}_{h} enjoys the usual convergence properties!
- Which assumptions?

The Harmonic Finite Element Method

Now, we are very happy, because...

- ... under reasonable assumptions on the mesh, the harmonic finite element approximation of an elliptic problem using the harmonic space \mathcal{V}_{h} enjoys the usual convergence properties!
- Which assumptions?
- all geometric objects must scale properly: $|\mathrm{P}| \simeq h^{2},|\mathrm{e}| \simeq h$;
number of star-shaped subcells) with respect to an internal ball of
points (see Brenner-Scott, etc);

The Harmonic Finite Element Method

Now, we are very happy, because...

- ... under reasonable assumptions on the mesh, the harmonic finite element approximation of an elliptic problem using the harmonic space \mathcal{V}_{h} enjoys the usual convergence properties!
- Which assumptions?
- all geometric objects must scale properly: $|\mathrm{P}| \simeq h^{2},|\mathrm{e}| \simeq h$;
- each polygon is star-shaped (or the union of a uniformly bounded number of star-shaped subcells) with respect to an internal ball of points (see Brenner-Scott, etc);
- ...

Polygonal meshes

Examples: convex and non-convex polygonal cells

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);
\rightarrow we can also extend it to higher order polynomials (considering additional degrees of freedom)...
... if we do not know how to compute explicitly the basis functions. .

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);
\rightarrow we can also extend it to higher order polynomials (considering additional degrees of freedom)...
...BUT...
... if we do not know how to compute explicitly the basis functions.
we don't know how to compute the stiffness matrix

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);
\rightarrow we can also extend it to higher order polynomials (considering additional degrees of freedom)...
...BUT...
\rightarrow...if we do not know how to compute explicitly the basis functions...
we don't know how to compute the stiffness matrix
and the right-hand side $F_{h}\left(\mathbf{v}_{h}\right)$!
Here, the mimetic technology comes into play!

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);
\rightarrow we can also extend it to higher order polynomials (considering additional degrees of freedom)...
...BUT...
\rightarrow...if we do not know how to compute explicitly the basis functions...
\rightarrow... we don't know how to compute the stiffness matrix

$$
\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j}
$$

and the right-hand side $F_{h}\left(\mathbf{v}_{h}\right)$!
Here, the mimetic technology comes into play!

The Virtual Element Method

\rightarrow So, we have a very nice method that works on polygonal meshes with very general shapes (also non-convex cells) and with a solid mathematical foundation (a priori error estimates, etc);
\rightarrow we can also extend it to higher order polynomials (considering additional degrees of freedom)...
...BUT...
\rightarrow...if we do not know how to compute explicitly the basis functions...
\rightarrow... we don't know how to compute the stiffness matrix

$$
\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j}
$$

and the right-hand side $F_{h}\left(\mathbf{v}_{h}\right)$!
\rightarrow Here, the mimetic technology comes into play!

Mimetic approximation of the bilinear form $\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$

- Let \mathcal{A}_{h} be such approximation, i.e., $\mathcal{A}_{h}\left(\varphi_{i}, \varphi_{j}\right) \approx \mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$.
- If \mathcal{A}_{p} is the restriction of \mathcal{A} to the polygon P it is natural to assume that \mathcal{A}_{h} can be split in the same way:

Mimetic approximation of the bilinear form $\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$

- Let \mathcal{A}_{h} be such approximation, i.e., $\mathcal{A}_{h}\left(\varphi_{i}, \varphi_{j}\right) \approx \mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$.
- If \mathcal{A}_{P} is the restriction of \mathcal{A} to the polygon P

$$
\mathcal{A}\left(v_{h}, w_{h}\right)=\sum_{P} \mathcal{A}_{P}\left(v_{\mid P}, w_{\mid P}\right)=\sum_{P} \int_{P} \nabla v \cdot \nabla w
$$

- Now, we give two conditions on $\mathcal{A}_{h, \mathrm{p}}$ that will guarantee the convergence: consistency and stability.

Mimetic approximation of the bilinear form $\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$

- Let \mathcal{A}_{h} be such approximation, i.e., $\mathcal{A}_{h}\left(\varphi_{i}, \varphi_{j}\right) \approx \mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$.
- If \mathcal{A}_{P} is the restriction of \mathcal{A} to the polygon P

$$
\mathcal{A}\left(v_{h}, w_{h}\right)=\sum_{P} \mathcal{A}_{\mathrm{P}}\left(v_{\mid P}, w_{\mid P}\right)=\sum_{P} \int_{P} \nabla v \cdot \nabla w
$$

it is natural to assume that \mathcal{A}_{h} can be split in the same way:

$$
\mathcal{A}_{h}\left(v_{h}, w_{h}\right)=\sum_{P} \mathcal{A}_{h, \mathrm{P}}\left(v_{h \mid P}, w_{h \mid P}\right) .
$$

- Now, we give two conditions on $\mathcal{A}_{h, \mathrm{p}}$ that will guarantee the
convergence: consistency and stability.

Mimetic approximation of the bilinear form $\mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$

- Let \mathcal{A}_{h} be such approximation, i.e., $\mathcal{A}_{h}\left(\varphi_{i}, \varphi_{j}\right) \approx \mathcal{A}\left(\varphi_{i}, \varphi_{j}\right)$.
- If \mathcal{A}_{P} is the restriction of \mathcal{A} to the polygon P

$$
\mathcal{A}\left(v_{h}, w_{h}\right)=\sum_{P} \mathcal{A}_{\mathrm{P}}\left(v_{\mid P}, w_{\mid P}\right)=\sum_{P} \int_{P} \nabla v \cdot \nabla w
$$

it is natural to assume that \mathcal{A}_{h} can be split in the same way:

$$
\mathcal{A}_{h}\left(v_{h}, w_{h}\right)=\sum_{P} \mathcal{A}_{h, \mathrm{P}}\left(v_{h \mid P}, w_{h \mid P}\right)
$$

- Now, we give two conditions on $\mathcal{A}_{h, \mathrm{P}}$ that will guarantee the convergence: consistency and stability.

Consistency and Stability \Rightarrow Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear
Theorem. Assume that for each polygonal cell P the bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ satisfies the following properties:
(an exactness property on linear polynomials).
Stab itty: there exist two positive constants a* and a independent of P, such that

Consistency and Stability \Rightarrow Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ satisfies the following properties:

- Consistency: for all $q \in \mathbb{P}_{1}(\mathrm{P})$ and for all $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$:

$$
\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}\left(v_{h}, q\right)
$$

(an exactness property on linear polynomials).

- Stability: there exist two positive constants C
independent of P , such that

Consistency and Stability \Rightarrow Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear
Theorem. Assume that for each polygonal cell P the bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ satisfies the following properties:

- Consistency: for all $q \in \mathbb{P}_{1}(\mathrm{P})$ and for all $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$:

$$
\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}\left(v_{h}, q\right)
$$

(an exactness property on linear polynomials).

- Stability: there exist two positive constants α^{*} and α_{*} independent of P, such that

$$
\alpha_{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right) \leq \mathcal{A}_{h, \mathrm{P}}\left(v_{h}, v_{h}\right) \leq \alpha^{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right) .
$$

Consistency and Stability \Rightarrow Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear

Theorem. Assume that for each polygonal cell P the bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ satisfies the following properties:

- Consistency: for all $q \in \mathbb{P}_{1}(\mathrm{P})$ and for all $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$:

$$
\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}\left(v_{h}, q\right)
$$

(an exactness property on linear polynomials).

- Stability: there exist two positive constants α^{*} and α_{*} independent of P, such that

$$
\alpha_{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right) \leq \mathcal{A}_{h, \mathrm{P}}\left(v_{h}, v_{h}\right) \leq \alpha^{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right) .
$$

Let $u_{h} \in \mathcal{V}_{h}$ be such that

$$
\mathcal{A}_{h}\left(u_{h}, v_{h}\right)=F_{h}\left(v_{h}\right) \quad \text { for all } v_{h} \in \mathcal{V}_{h} .
$$

Consistency and Stability \Rightarrow Convergence

Six-name paper: Basic Principles of Virtual Elements, M3AS, to appear
Theorem. Assume that for each polygonal cell P the bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ satisfies the following properties:

- Consistency: for all $q \in \mathbb{P}_{1}(\mathrm{P})$ and for all $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$:

$$
\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}\left(v_{h}, q\right)
$$

(an exactness property on linear polynomials).

- Stability: there exist two positive constants α^{*} and α_{*} independent of P, such that

$$
\alpha_{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right) \leq \mathcal{A}_{h, \mathrm{P}}\left(v_{h}, v_{h}\right) \leq \alpha^{*} \mathcal{A}_{\mathrm{P}}\left(v_{h}, v_{h}\right)
$$

Then:

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h\|u\|_{H^{2}(\Omega)} \text {. }
$$

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P).
using only the vertex values.

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P).
- If $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$, we can compute the following quantity

$$
\overline{\nabla v_{h}}:=\frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} \nabla v_{h}
$$

using only the vertex values.

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P)
- If $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$, we can compute the following quantity

$$
\overline{\nabla v_{h}}:=\frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} \nabla v_{h}
$$

using only the vertex values.

- In fact,

$$
\underbrace{\int_{P} \nabla v_{h}=\int_{\partial P} v_{h} \mathbf{n}_{P}}_{(\text {Gauss-Green })}
$$

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P)
- If $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$, we can compute the following quantity

$$
\overline{\nabla v_{h}}:=\frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} \nabla v_{h}
$$

using only the vertex values.

- In fact,

$$
\int_{\mathrm{P}} \nabla v_{h}=\underbrace{\int_{\partial P} v_{h} \mathbf{n}_{\mathrm{P}}=\sum_{i=1}^{N^{P}}\left(\int_{\mathrm{e}_{i}} v_{h}\right) \mathbf{n}_{\mathrm{P}, i}}_{\text {split the boundary integral }}
$$

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P)
- If $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$, we can compute the following quantity

$$
\overline{\nabla v_{h}}:=\frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} \nabla v_{h}
$$

using only the vertex values.

- In fact,

$$
\int_{\mathrm{P}} \nabla v_{h}=\int_{\partial P} v_{h} \mathbf{n}_{\mathrm{P}}=\sum_{i=1}^{N^{\mathcal{P}}} \underbrace{\left(\int_{\mathrm{e}_{i}} v_{h}\right)}_{v_{h \mid \mathrm{e}} \in \mathbb{P}_{1}(\mathrm{e})} \mathbf{n}_{\mathrm{P}, i}=\sum_{i=1}^{N^{\mathcal{P}}} \underbrace{\frac{v_{h}\left(\mathrm{v}_{i}\right)+v_{h}\left(\mathrm{v}_{i+1}\right)}{2}\left|\mathrm{e}_{i}\right|}_{\text {trapezoidal rule }} \mathbf{n}_{\mathrm{P}, i}
$$

A crucial remark

- How can we define a local bilinear form $\mathcal{A}_{h, \mathrm{P}}(\cdot, \cdot)$ with the properties of consistency and stability? (Remember that we know the functions v_{h} of $\mathcal{V}_{h, \mathrm{P}}$ only on the boundary of P)
- If $v_{h} \in \mathcal{V}_{h, \mathrm{P}}$, we can compute the following quantity

$$
\overline{\nabla v_{h}}:=\frac{1}{|\mathrm{P}|} \int_{\mathrm{P}} \nabla v_{h}
$$

using only the vertex values.

- In fact,

$$
\int_{\mathrm{P}} \nabla v_{h}=\int_{\partial P} v_{h} \mathbf{n}_{\mathrm{P}}=\sum_{i=1}^{N^{\mathcal{P}}}\left(\int_{\mathrm{e}_{i}} v_{h}\right) \mathbf{n}_{\mathrm{P}, i}=\sum_{i=1}^{N^{\mathcal{P}}} \frac{v_{h}\left(\mathrm{v}_{i}\right)+v_{h}\left(\mathrm{v}_{i+1}\right)}{2}\left|\mathrm{e}_{i}\right| \mathbf{n}_{\mathrm{P}, i}
$$

- $\overline{\nabla v_{h}}$ is a constant vector in \mathbb{R}^{2}.

The local projector $\Pi_{n, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

Why not? If P is a triangle, we get the stiffness matrix of the linear Galerkin FEM!

The local projector $\Pi_{n, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\mathcal{A}_{\mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right):=\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}=: \mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)
$$

Why not? If P is a triangle, we get the stiffness matrix of the linear Galerkin FEM!
that

The local projector $\Pi_{n, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\mathcal{A}_{\mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right):=\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}=: \mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)
$$

But $\mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)$ would have rank 2 for any kind of polygons, thus leading to a singular approximation for \mathcal{A}_{n} !

The local projector $\Pi_{h, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\mathcal{A}_{\mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right):=\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}=: \mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)
$$

But $\mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)$ would have rank 2 for any kind of polygons, thus leading to a singular approximation for \mathcal{A}_{n} !

- Key idea: define a local projection operator for each polygonal cell P

$$
\Pi_{h, \mathrm{P}}: \mathcal{V}_{h, \mathrm{P}} \longrightarrow \mathbb{P}_{1}(\mathrm{P})
$$

that
approximates the gradients using only the vertex values:
and preserves the linear polynomials:

The local projector $\Pi_{n, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\mathcal{A}_{\mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right):=\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}=: \mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)
$$

But $\mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)$ would have rank 2 for any kind of polygons, thus leading to a singular approximation for \mathcal{A}_{n} !

- Key idea: define a local projection operator for each polygonal cell P

$$
\Pi_{h, \mathrm{P}}: \mathcal{V}_{h, \mathrm{P}} \longrightarrow \mathbb{P}_{1}(\mathrm{P})
$$

that

- approximates the gradients using only the vertex values:

$$
\nabla\left(\Pi_{h, \mathrm{P}} v_{h}\right)=\overline{\nabla v_{h}}
$$

The local projector $\Pi_{h, \mathrm{P}}$

- Now, we are really tempted to say that

$$
\mathcal{A}_{\mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right):=\int_{\mathrm{P}} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \approx \int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}=: \mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)
$$

But $\mathcal{A}_{h, \mathrm{P}}\left(\varphi_{i}, \varphi_{j}\right)$ would have rank 2 for any kind of polygons, thus leading to a singular approximation for \mathcal{A}_{n} !

- Key idea: define a local projection operator for each polygonal cell P

$$
\Pi_{h, \mathrm{P}}: \mathcal{V}_{h, \mathrm{P}} \longrightarrow \mathbb{P}_{1}(\mathrm{P})
$$

that

- approximates the gradients using only the vertex values:

$$
\nabla\left(\Pi_{h, \mathrm{P}} v_{h}\right)=\overline{\nabla v_{h}}
$$

- and preserves the linear polynomials:

$$
\Pi_{n, P} q=q \quad \text { for all } q \in \mathbb{P}_{1}(P)
$$

The mimetic bilinear form $\mathcal{A}_{h, \mathrm{P}}$

We start writing that

With an easy computation it can be shown that

The mimetic bilinear form $\mathcal{A}_{h, \mathrm{P}}$

We start writing that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h}, v_{h}\right)=\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)+\mathcal{A}_{h, \mathrm{P}}\left(u_{h}-\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right) .
$$

With an easy computation it can be shown that

The mimetic bilinear form $\mathcal{A}_{h, \mathrm{P}}$

We start writing that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h}, v_{h}\right)=\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)+\mathcal{A}_{h, \mathrm{P}}\left(u_{h}-\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right) .
$$

With an easy computation it can be shown that

$$
\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, \Pi_{h, \mathrm{P}} v_{h}\right):=\mathcal{A}_{h, \mathrm{P}}^{0}\left(u_{h}, v_{h}\right)
$$

We will set:

The mimetic bilinear form $\mathcal{A}_{n, \mathrm{P}}$

We start writing that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h}, v_{h}\right)=\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)+\mathcal{A}_{h, \mathrm{P}}\left(u_{h}-\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right) .
$$

With an easy computation it can be shown that

$$
\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, \Pi_{h, \mathrm{P}} v_{h}\right):=\mathcal{A}_{h, \mathrm{P}}^{0}\left(u_{h}, v_{h}\right)
$$

and

$$
\mathcal{A}_{h, \mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h}, v_{h}\right)=\mathcal{A}_{\mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right) \longrightarrow \mathcal{A}_{h, \mathrm{P}}^{1}\left(u_{h}, v_{h}\right)
$$

The mimetic bilinear form $\mathcal{A}_{n, \mathrm{P}}$

We start writing that

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h}, v_{h}\right)=\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)+\mathcal{A}_{h, \mathrm{P}}\left(u_{h}-\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right) .
$$

With an easy computation it can be shown that

$$
\mathcal{A}_{h, \mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, v_{h}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, \Pi_{h, \mathrm{P}} v_{h}\right):=\mathcal{A}_{h, \mathrm{P}}^{0}\left(u_{h}, v_{h}\right)
$$

and

$$
\mathcal{A}_{h, \mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h}, v_{h}\right)=\mathcal{A}_{\mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right) \longrightarrow \mathcal{A}_{h, \mathrm{P}}^{1}\left(u_{h}, v_{h}\right)
$$

We will set:

$$
\mathcal{A}_{h, \mathrm{P}}=\mathcal{A}_{h, \mathrm{P}}^{0}+\mathcal{A}_{h, \mathrm{P}}^{1}=\text { CONSISTENCY }+ \text { STABILITY }
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(\mathrm{P})$; in fact,

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(\mathrm{P})$; in fact,

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right)=\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right)=\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla q}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right)=\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla \boldsymbol{q}}=\left(\int_{\mathrm{P}} \nabla v_{h}\right) \cdot \overline{\nabla q}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\begin{aligned}
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right) & =\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla q}=\left(\int_{\mathrm{P}} \nabla v_{h}\right) \cdot \overline{\nabla q} \\
& =\int_{\mathrm{P}} \nabla v_{h} \cdot \overline{\nabla q}
\end{aligned}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\begin{aligned}
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right) & =\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla q}=\left(\int_{\mathrm{P}} \nabla v_{h}\right) \cdot \overline{\nabla q} \\
& =\int_{\mathrm{P}} \nabla v_{h} \cdot \overline{\nabla q}=\int_{\mathrm{P}} \nabla v_{h} \cdot \nabla q
\end{aligned}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{h, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{h, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\begin{aligned}
\mathcal{A}_{h, \mathrm{P}}^{0}\left(v_{h}, q\right) & =\int_{\mathrm{P}} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla q}=\left(\int_{\mathrm{P}} \nabla v_{h}\right) \cdot \overline{\nabla q} \\
& =\int_{\mathrm{P}} \nabla v_{h} \cdot \overline{\nabla q}=\int_{\mathrm{P}} \nabla v_{h} \cdot \nabla q=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right) .
\end{aligned}
$$

The consistency term $\mathcal{A}_{h, \mathrm{P}}^{0}$

Recall that: $\quad \nabla \Pi_{h, \mathrm{P}} v_{h}=\overline{\nabla v_{h}} \quad \forall v_{h} \in \mathcal{V}_{h, \mathrm{P}} \quad$ and $\quad \Pi_{h, \mathrm{P}} q=q \quad \forall q \in \mathbb{P}_{1}(\mathrm{P})$.

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ is the "constant gradient approximation" of the stiffness matrix:

$$
\mathcal{A}_{h, \mathrm{P}}^{0}\left(\varphi_{i}, \varphi_{j}\right)=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} \varphi_{i}, \Pi_{h, \mathrm{P}} \varphi_{j}\right)=\int_{\mathrm{P}} \nabla \Pi_{\mathrm{h}, \mathrm{P}} \varphi_{i} \cdot \nabla \Pi_{\mathrm{h}, \mathrm{P}} \varphi_{j}=\int_{\mathrm{P}} \overline{\nabla \varphi_{i}} \cdot \overline{\nabla \varphi_{j}}
$$

- $\mathcal{A}_{h, \mathrm{P}}^{0}$ ensures the consistency condition: $\mathcal{A}_{h, \mathrm{P}}\left(v_{h}, q\right)=\mathcal{A}_{\mathrm{P}}\left(v_{h}, q\right)$ for all $q \in \mathbb{P}_{1}(P)$; in fact,

$$
\begin{aligned}
\mathcal{A}_{h, P}^{0}\left(v_{h}, q\right) & =\int_{P} \overline{\nabla v_{h}} \cdot \overline{\nabla q}=|\mathrm{P}| \overline{\nabla v_{h}} \cdot \overline{\nabla q}=\left(\int_{\mathrm{P}} \nabla v_{h}\right) \cdot \overline{\nabla q} \\
& =\int_{P} \nabla v_{h} \cdot \overline{\nabla q}=\int_{P} \nabla v_{h} \cdot \nabla q=\mathcal{A}_{P}\left(v_{h}, q\right) .
\end{aligned}
$$

- the second term $\mathcal{A}_{h, \mathrm{P}}^{1}$ is zero because $\left(I-\Pi_{h, \mathrm{P}}\right) q=0$ if $q \in \mathbb{P}_{1}(\mathrm{P})$.

The stability term $\mathcal{A}_{h, \mathrm{P}}^{1}$

- We need to correct $\mathcal{A}_{h, \mathrm{P}}^{0}$ in such a way that:
- consistency is not upset;
- we get stability;
- we can compute the correction!
- In the six-name paper we show that we can substitute the (non computable!) term $\mathcal{A}_{\mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)$ with
where $\mathcal{S}_{h . P}$ can be any symmetric and positive definite bilinear form that behaves (asymptotically) like \mathcal{A}_{p} on the kernel of $\Pi_{h, P}$

The stability term $\mathcal{A}_{h, \mathrm{P}}^{1}$

- We need to correct $\mathcal{A}_{h, \mathrm{P}}^{0}$ in such a way that:
- consistency is not upset;
- we get stability;
- we can compute the correction!
- In the six-name paper we show that we can substitute the (non computable!) term $\mathcal{A}_{\mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)$ with

$$
\mathcal{A}_{h, \mathrm{P}}^{1}\left(u_{h}, v_{h}\right):=\mathcal{S}_{h, \mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)
$$

where $\mathcal{S}_{h, \mathrm{P}}$ can be any symmetric and positive definite bilinear form that behaves (asymptotically) like \mathcal{A}_{P} on the kernel of $\Pi_{h, \mathrm{P}}$.

The stability term $\mathcal{A}_{h, \mathrm{P}}^{1}$

- We need to correct $\mathcal{A}_{h, \mathrm{P}}^{0}$ in such a way that:
- consistency is not upset;
- we get stability;
- we can compute the correction!
- In the six-name paper we show that we can substitute the (non computable!) term $\mathcal{A}_{\mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)$ with

$$
\mathcal{A}_{h, \mathrm{P}}^{1}\left(u_{h}, v_{h}\right):=\mathcal{S}_{h, \mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)
$$

where $\mathcal{S}_{h, \mathrm{P}}$ can be any symmetric and positive definite bilinear form that behaves (asymptotically) like \mathcal{A}_{P} on the kernel of $\Pi_{n, \mathrm{p}}$.

- Hence:

$$
\mathcal{A}_{h, \mathrm{P}}\left(u_{h}, v_{h}\right):=\mathcal{A}_{\mathrm{P}}\left(\Pi_{h, \mathrm{P}} u_{h}, \Pi_{h, \mathrm{P}} v_{h}\right)+\mathcal{S}_{h, \mathrm{P}}\left(\left(I-\Pi_{h, \mathrm{P}}\right) u_{h},\left(I-\Pi_{h, \mathrm{P}}\right) v_{h}\right)
$$

Arbitrary-order polynomials

Let us integrate by parts on cell P:

$$
\int_{\mathrm{P}} \nabla u \cdot \nabla v=-\int_{\mathrm{P}} \Delta u v+\sum_{\mathrm{e} \in \partial \mathrm{e}} \int_{\mathrm{e}} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v .
$$

Arbitrary-order polynomials

Let us integrate by parts on cell P:

$$
\int_{\mathrm{P}} \nabla u \cdot \nabla v=-\int_{\mathrm{P}} \underbrace{\Delta u}_{\text {not zero! }} v+\sum_{\mathrm{e} \in \partial \mathrm{e}} \int_{\mathrm{e}} \nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}} v .
$$

If u is a polynomial of degree m on P :

- Δu is a polynomial of degree $m-2$;

Arbitrary-order polynomials

Let us integrate by parts on cell P:

$$
\int_{\mathrm{P}} \nabla u \cdot \nabla v=-\int_{\mathrm{P}} \underbrace{\Delta u}_{\text {not zero! }} v+\sum_{\mathrm{e} \in \partial \mathrm{e}} \int_{\mathrm{e}} \underbrace{\nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}}_{\text {not constant! }} v .
$$

If u is a polynomial of degree m on P :

- Δu is a polynomial of degree $m-2$;
- $\nabla u \cdot \mathbf{n}_{\mathrm{P}, \mathrm{e}}$ is a polynomial of degree $m-1$;

Divergence term: internal degrees of freedom

1. We use the moments of \mathbf{v} to express the integral over P :

if

$$
\Delta u=a_{0} 1+a_{1} x+a_{2} y+\ldots \in \mathbb{P}_{m-2}(P)
$$

Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P :
if

$$
\Delta u=a_{0} 1+a_{1} x+a_{2} y+\ldots \in \mathbb{P}_{m-2}(\mathrm{P})
$$

then

$$
\begin{aligned}
\int_{P} \Delta u v=a_{0} \underbrace{\int_{P} 1 v}_{\hat{v}_{P, 0}}+a_{1} \underbrace{\int_{P} x v}_{\hat{v}_{P, 1, x}}+a_{2} \underbrace{\int_{P} y v}_{\hat{v}_{P, 1, y}}+\ldots \\
=a_{0} \hat{\mathbf{v}}_{P, 0}+a_{1} \hat{\mathbf{v}}_{P, \mathbf{1}, x}+a_{2} \hat{\mathbf{v}}_{P, \mathbf{1}, \mathbf{y}}+\ldots
\end{aligned}
$$

Divergence term: internal degrees of freedom

1. We use the moments of v to express the integral over P :
if

$$
\Delta u=a_{0} 1+a_{1} x+a_{2} y+\ldots \in \mathbb{P}_{m-2}(\mathrm{P})
$$

then

$$
\begin{aligned}
\int_{P} \Delta u v & =a_{0} \underbrace{\int_{P} 1 v}_{\hat{v}_{P, 0}}+a_{1} \underbrace{\int_{P} x v}_{\hat{v}_{P, 1, x}}+a_{2} \underbrace{\int_{P} y v}_{\hat{v}_{P, 1, y}}+\ldots \\
& =a_{0} \hat{\mathbf{v}}_{P, 0}+a_{1} \hat{v}_{P, \mathbf{1}, x}+a_{2} \hat{\mathbf{v}}_{P, \mathbf{1}, \mathbf{y}}+\ldots
\end{aligned}
$$

This choice suggests us to define

- $m(m-1) / 2$ internal degrees of freedom $\approx \hat{\mathbf{v}}_{\mathrm{P}, \mathbf{0}}, \hat{\mathbf{v}}_{\mathrm{P}, 1, \mathrm{x}}, \hat{\mathbf{v}}_{\mathrm{P}, \mathbf{1}, \mathbf{y}}, \ldots$

C^{0} high-order approximations

- The " $C^{0}-\mathbb{P}_{1}$ " approximation requires:
- one real number per mesh vertex v;

C^{0} high-order approximations

- The " $C^{0}-\mathbb{P}_{1}$ " approximation requires:
- one real number per mesh vertex v;

- the " $C^{0}-\mathbb{P}_{m}$ " approximations for $m>1$ require
- one real number per mesh vertex v;
- $(m-1)$ real numbers per mesh edge e;
- $m(m-1) / 2$ real numbers per mesh cell P;

Approximations with high regularity

- The " $C^{1}-\mathbb{P}_{2}$ " approximation requires:
- vertex dofs \rightarrow solution and derivatives at each vertex;
- cell dofs \rightarrow solution moments inside the cells;

Approximations with high regularity

- The " $C^{1}-\mathbb{P}_{3}$ " approximation requires:
- vertex dofs \rightarrow solution and derivatives at each vertex;
- cell dofs \rightarrow solution moments inside the cells;
- edge dofs \rightarrow solution and normal derivatives along the edges;

Approximations with high regularity

- The " $C^{2}-\mathbb{P}_{3}$ " approximation requires:
- vertex dofs \rightarrow solution and derivatives at each vertex;
- cell dofs \rightarrow solution moments inside the cells;

Approximations with high regularity

- The " $C^{2}-\mathbb{P}_{4}$ " approximation requires:
- vertex dofs \rightarrow solution and derivatives at each vertex;
- cell dofs \rightarrow solution moments inside the cells;
- edge dofs \rightarrow solution and normal derivatives along the edges;

Numerical experiments

Meshes with non-convex polygons

- Meshes:

- Exact solution: $u(x, y)=e^{-2 \pi y} \sin (2 \pi x)$
- Diffusion tensor

$$
\mathrm{K}(x, y)=\left(\begin{array}{cc}
(x+1)^{2}+y^{2} & -x y \\
-x y & (x+1)^{2}
\end{array}\right)
$$

Continuous approximations

$\alpha=0$, non-convex polygons, $\|\cdot\|_{1, h}$ errors, non-constant K

		$\mathbf{m}=\mathbf{1}$		$\mathbf{m}=\mathbf{2}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	3.544	--	3.007	--
1	7.28910^{-2}	3.046	0.22	8.08110^{-1}	1.89
2	3.64410^{-2}	1.887	0.69	2.07110^{-1}	1.96
3	1.82210^{-2}	1.000	0.92	5.30310^{-2}	1.97
4	9.11110^{-3}	5.15410^{-1}	$\mathbf{0 . 9 8}$	1.34810^{-2}	$\mathbf{1 . 9 8}$

High-regular approximations

$\alpha=1,2$; non-convex polygons, $\|\cdot\|_{1, h}$ errors, non-constant K

		$\alpha=\mathbf{1}, \mathbf{m}=\mathbf{2}$		$\alpha=2, \mathbf{m}=\mathbf{3}$	
n	h	Error	Rate	Error	Rate
0	1.45810^{-1}	8.90110^{-2}	--	1.05410^{-2}	--
1	7.28910^{-2}	1.98310^{-2}	2.26	4.54310^{-4}	4.72
2	3.64410^{-2}	4.81510^{-3}	2.08	4.66310^{-5}	3.36
3	1.82210^{-2}	1.19810^{-3}	$\mathbf{2 . 0 3}$	5.52810^{-6}	$\mathbf{3 . 1 1}$

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathrm{P}$ is given by a polynomial interpolation; experiments.
- VEM wortes for any order of regularity:

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathrm{P}$ is given by a polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.
- VEM works for any order of regularity:

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathbf{P}$ is given by a polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.
- VEM works for any order of regularity:
- the behavior on OP is given by a Hermite-like polynomial interpolation:

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathrm{P}$ is given by a polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.
- VEM works for any order of regularity:
- we use also derivatives as degrees of freedom at vertices and edge nodes
the behavior on $\partial \mathrm{P}$ is given by a Hermite-like polynomial interpolation; ootimal error estimates in the energy norm are confirmed by

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathrm{P}$ is given by a polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.
- VEM works for any order of regularity:
- we use also derivatives as degrees of freedom at vertices and edge nodes
- the behavior on $\partial \mathbf{P}$ is given by a Hermite-like polynomial interpolation;
optimal error estimates in the energy norm are confirmed by

Summary

- VEM is a family of schemes on polygonal meshes: new schemes are generated by changing the stabilization term;
- VEM works for any order of accuracy:
- we can use $\mathbb{P}_{k}(\mathrm{P})$ polynomials for the local VE space;
- "dofs" are vertex values, nodal values on the edges of $\partial \mathrm{P}$ and moments inside P;
- the behavior on $\partial \mathrm{P}$ is given by a polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.
- VEM works for any order of regularity:
- we use also derivatives as degrees of freedom at vertices and edge nodes
- the behavior on $\partial \mathbf{P}$ is given by a Hermite-like polynomial interpolation;
- optimal error estimates in the energy norm are confirmed by experiments.

Summary

- VEM works on degenerate meshes (experiments):

- meshes with convex and non-convex elements; - meshes with very stretched elements;

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- VEM can be generalized to 3-D polyhedral mesh (in progress)

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):
- $C^{0}-\mathbb{P}_{1}$ works in 3-D just using vertex values as degrees of freedom (dofs);

1) requires vertex values and moments on edges,
de p . no need of numerical integration, VEM does not use the basis functions explicitly;

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):
- $C^{0}-\mathbb{P}_{1}$ works in 3-D just using vertex values as degrees of freedom (dofs);
- $C^{0}-\mathbb{P}_{m}(m>1)$ requires vertex values and moments on edges, faces, and inside P ;
- no need of isoparametric mappings, VEM works in the physical domain.

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):
- $C^{0}-\mathbb{P}_{1}$ works in 3-D just using vertex values as degrees of freedom (dofs);
- $C^{0}-\mathbb{P}_{m}(m>1)$ requires vertex values and moments on edges, faces, and inside P;
- no need of numerical integration, VEM does not use the basis functions explicitly;
domain.

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):
- $C^{0}-\mathbb{P}_{1}$ works in 3-D just using vertex values as degrees of freedom (dofs);
- $C^{0}-\mathbb{P}_{m}(m>1)$ requires vertex values and moments on edges, faces, and inside P;
- no need of numerical integration, VEM does not use the basis functions explicitly;
- no need of isoparametric mappings, VEM works in the physical domain.

Summary

- VEM works on degenerate meshes (experiments):
- meshes with convex and non-convex elements;
- meshes with very stretched elements;
- meshes with hanging nodes;
- meshes with collapsing nodes.
- VEM can be generalized to 3-D polyhedral mesh (in progress):
- $C^{0}-\mathbb{P}_{1}$ works in 3-D just using vertex values as degrees of freedom (dofs);
- $C^{0}-\mathbb{P}_{m}(m>1)$ requires vertex values and moments on edges, faces, and inside P;
- no need of numerical integration, VEM does not use the basis functions explicitly;
- no need of isoparametric mappings, VEM works in the physical domain.
- There is no difference between VEM and the mimetic finite difference method, the two families of schemes coincide.

Current/future developments

- full extension to three dimensional problems;

- other differential equations: elasticity, advection-diffusion, Stokes, etc;

Current/future developments

- full extension to three dimensional problems;
- other differential equations: elasticity, advection-diffusion, Stokes, etc;
- understand the role of the mimetic stabilization;

Current/future developments

- full extension to three dimensional problems;
- other differential equations: elasticity, advection-diffusion, Stokes, etc;
- understand the role of the mimetic stabilization;
- justify the numerical results for degenerate meshes (not covered by the

Current/future developments

- full extension to three dimensional problems;
- other differential equations: elasticity, advection-diffusion, Stokes, etc;
- understand the role of the mimetic stabilization;
- justify the numerical results for degenerate meshes (not covered by the

Current/future developments

- full extension to three dimensional problems;
- other differential equations: elasticity, advection-diffusion, Stokes, etc;
- understand the role of the mimetic stabilization;
- justify the numerical results for degenerate meshes (not covered by the theory);

Current/future developments

- full extension to three dimensional problems;
- other differential equations: elasticity, advection-diffusion, Stokes, etc;
- understand the role of the mimetic stabilization;
- justify the numerical results for degenerate meshes (not covered by the theory);

Thank for your attention.

