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Our weights obtain all properties… 
Harmonic 

Coordinates 
[Joshi et al. 2005] 

Our Bounded 
Biharmonic Weights 
[Jacobson et al. 2011] 

Shepard 
interpolation 
[Shepard 1968] 

Natural 
neighbors 

[Sibson 1981] 

Smoothness - � � - 

Non-negativity � �(Explicitly) � � 

Shape-aware � � - - 
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No local extrema � �* - � 

*Empirically confirmed 
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Harmonic functions obey maximum principle 
Harmonic 

Coordinates 
[Joshi et al. 2005] 

Unconstrained 
biharmonic 

[Botsch and Kobbelt 2004] 

Shepard 
interpolation 
[Shepard 1968] 

Natural 
neighbors 

[Sibson 1981] 

Smoothness - � � - 

Non-negativity � - � � 

Shape-aware � � - - 

Locality, sparsity - - - � 

No local extrema � - - � 

�u = 0
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●  Harmonic representative  
"  Linear solve ~O(milliseconds) 

●  Conic optimization 
"  2D ~O(milliseconds), 3D ~O(seconds) 

Again, functions are precomputed 
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