High-quality weight functions via constrained optimization

Alec Jacobson

ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 1, 2012

 $\mathbf{x}' = \sum w_j(\mathbf{x})\mathbf{h}'_j$ $j \in H$

 $\mathbf{x}' = \sum w_j(\mathbf{x})\mathbf{h}'_j$ $j \in H$

linear precision (reproduction)

$$\mathbf{x} = \sum_{j \in H} w_j(\mathbf{x}) \mathbf{h}_j$$

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 1, 2012

OIGL

August 1, 2012

🔿 ıgl

August 1, 2012

🔘 ıgl

August 1, 2012

Bounded Biharmonic Weights for Real-Time Deformation SIGGRAPH 2011

Alec Jacobson^{1,2} Ilya Baran³ Jovan Popović⁴ Olga Sorkine^{1,2}

O Igl

INTERACTIVE GEOMETRY LAB

¹New York University, ²ETH Zurich ³Disney Research Zurich ⁴Adobe Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Each handle type has a specific task, more than just *different modeling metaphor*

August 1, 2012

Each handle type has a specific task, more than just *different modeling metaphor*

August 1, 2012

Each handle type has a specific task, more than just *different modeling metaphor*

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 1, 2012

Cages can often be tedious to build and control

August 1, 2012

Cages can often be tedious to build and control

Points can only provide crude scaling

August 1, 2012

Points can only provide crude scaling

August 1, 2012

Skeletons may be too rigid or too cumbersome

Skeletons may be too rigid or too cumbersome

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 1, 2012

We want to compute weights that unify points, skeletons and cages

August 1, 2012

August 1, 2012

August 1, 2012

August 1, 2012

August 1, 2012

Weights must be smooth everywhere, *especially* at handles

	Our method	Extension of Harmonic Coordinates [Joshi et al. 2005]		
Ial	August 1, 2012	Alec Jacobson	# 22	El

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Weights must be smooth everywhere, *especially* at handles

August 1, 2012

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Weights must be smooth everywhere, *especially* at handles

Our method

Extension of Harmonic Coordinates [Joshi et al. 2005]

August 1, 2012

Shape-awareness ensures respect of domain's features

Our method

Non-shape-aware methods e.g. [Schaefer et al. 2006]

August 1, 2012

Shape-awareness ensures respect of domain's features

Our method

Non-shape-aware methods e.g. [Schaefer et al. 2006]

OIGL

August 1, 2012

Alec Jacobson

26

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Non-negative weights are mandatory

Non-negative weights are mandatory

) igl

August 1, 2012

Weights must maintain other simple, but important properties

$$\sum_{j \in H} w_j(\mathbf{x}) = 1$$

$$w_j\Big|_{H_k} = \delta_{jk}$$

 w_j is linear along cage faces

Partition of unity

Interpolation of handles

Weights must maintain other simple, but important properties

Partition of unity

Interpolation of handles

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	√	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

$$\Delta w_j = 0$$

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	✓	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

$$\Delta^2 w_j = 0$$

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	1	✓
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	1	-	-	✓

Inverse distance, weighted least-squares

Inverse distance methods inherently suffer from *fall-off effect*

August 1, 2012

Inverse distance methods inherently suffer from *fall-off effect*

August 1, 2012

Inverse distance methods inherently suffer from *fall-off effect*

August 1, 2012

Inverse distance methods inherently suffer from *fall-off effect*

August 1, 2012

Inverse distance methods inherently suffer from *fall-off effect*

Our method

August 1, 2012

Inverse distance methods inherently suffer from *fall-off effect*

Our method

August 1, 2012

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	✓	-
Non-negativity	1	-	✓	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

Support bones and cages? Shape-aware?

🔘 ıgl

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	✓	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

$$\Delta^2 w_j = 0$$

Bounded biharmonic weights enforce properties as constraints to minimization

$$\arg \min_{w_j} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV$$
$$w_j\Big|_{H_k} = \delta_{jk}$$
$$w_j \text{ is linear along cage faces}$$

Bounded biharmonic weights enforce properties as constraints to minimization

$$\arg \min_{w_j} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV$$
$$w_j\Big|_{H_k} = \delta_{jk}$$
$$w_j \text{ is linear along cage faces}$$

Constant inequality constraints $0 \leq w_j(\mathbf{x}) \leq 1$

Partition of unity

$$\sum_{\sigma H} w_j(\mathbf{x}) = 1$$

Bounded biharmonic weights enforce properties as constraints to minimization

$$\arg \min_{w_j} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV$$
$$w_j\Big|_{H_k} = \delta_{jk}$$
$$w_j \text{ is linear along cage faces}$$

Constant inequality constraints $0 \leq w_j(\mathbf{x}) \leq 1$

Solve independently, normalize $w_j(\mathbf{x}) = rac{w_j(\mathbf{x})}{\sum\limits_{i\in H_k} w_i(\mathbf{x})}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Weights optimized as precomputation at bind-time

$$\arg \min_{w_j} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV$$
$$w_j \Big|_{H_k} = \delta_{jk}$$
$$w_j \text{ is linear along cage faces}$$
$$0 \le w_j(\mathbf{x}) \le 1$$

FEM discretization 2D \rightarrow Triangle mesh 3D \rightarrow Tet mesh

August 1, 2012

Weights optimized as precomputation at bind-time

$$\arg \min_{w_j} \frac{1}{2} \int_{\Omega} \|\Delta w_j\|^2 dV$$
$$w_j \Big|_{H_k} = \delta_{jk}$$
$$w_j \text{ is linear along cage faces}$$
$$0 \le w_j(\mathbf{x}) \le 1$$

Sparse quadratic programming 2D ~O(milliseconds) per handle 3D ~O(seconds) per handle

Weights in 3D also retain nice properties

Weights in 3D also retain nice properties

August 1, 2012

Weights in 3D also retain nice properties

August 1, 2012

Variational formulation allows additional, problem-specific constraints

August 1, 2012

Variational formulation allows additional, problem-specific constraints

August 1, 2012

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	✓	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

$$\Delta^2 w_j = 0$$

Our weights obtain all properties...

	Harmonic Coordinates [Joshi et al. 2005]	Our Bounded Biharmonic Weights [Jacobson et al. 2011]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	✓ (Explicitly)	1	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	✓*	-	✓
No local extrema	1	✓*	-	1

*Empirically confirmed

... or so we thought

	Harmonic Coordinates [Joshi et al. 2005]	Our Bounded Biharmonic Weights [Jacobson et al. 2011]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	✓ (Explicitly)	1	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	✓ *	-	1
No local extrema	1	-	-	1

Smooth Shape-Aware Functions with Controlled Extrema SGP 2012

Alec Jacobson¹ Tino Weinkauf² Olga Sorkine¹

¹ETH Zurich ²MPI Saarbrücken

Spurious extrema cause distracting artifacts

unconstrained Δ^2 [Botsch & Kobbelt 2004]

August 1, 2012

Spurious extrema cause distracting artifacts

unconstrained Δ^2 [Botsch & Kobbelt 2004]

$$\mathbf{x}_{i}^{\prime} = \sum_{j=1}^{H} f_{j}(\mathbf{x}_{i}) T_{j} \mathbf{x}_{i}$$

August 1, 2012

Bounds help, but don't solve problem

Alec Jacobson

August 1, 2012

H $\mathbf{x}_i' = \sum f_j(\mathbf{x}_i) \, T_j \, \mathbf{x}_i$ j=1

58

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

We explicitly prohibit spurious extrema

August 1, 2012

We explicitly prohibit spurious extrema

63

August 1, 2012

= 1 -Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 1, 2012

🔘 ıgl

August 1, 2012

•

August 1, 2012

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Assume we have a feasible solution

 $\operatorname{arg\,min} E(f)$ s.t. $f_{\max} = known$ $f_{\min} = known$ $f_j < f_{\max}$ $f_j > f_{\min}$ $f_i > \min_{j \in \mathcal{N}(i)} f_j$ $f_i < \max_{j \in \mathcal{N}(i)} f_j$

"Representative function" $\, \mathcal{U} \,$

 $\begin{array}{l} u_j < u_{\max} \\ u_j > u_{\min} \end{array} \quad \begin{array}{l} \text{handles} \\ u_i > \min_{j \in \mathcal{N}(i)} u_j \\ u_i < \max_{j \in \mathcal{N}(i)} u_j \end{array} \quad \text{interior} \end{array}$

Copy "monotonicity" of representative

Rewrite as conic optimization

Optimize with MOSEK

August 1, 2012

Harmonic functions obey maximum principle

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	✓	1	-
Non-negativity	1	-	1	1
Shape-aware	1	✓	-	-
Locality, sparsity	-	-	-	1
No local extrema	1	-	-	1

$$\Delta u = 0$$

Final algorithm is simple and efficient

- Harmonic representative
 - Linear solve ~O(milliseconds)

Final algorithm is simple and efficient

- Harmonic representative
 - Linear solve ~O(milliseconds)
- Conic optimization
 - 2D ~O(milliseconds), 3D ~O(seconds)

Final algorithm is simple and efficient

- Harmonic representative
 - Linear solve ~O(milliseconds)
- Conic optimization
 - 2D ~O(milliseconds), 3D ~O(seconds)

Again, functions are precomputed

August 1, 2012

Our weights attach appendages to body

August 1, 2012

Extrema glue appendages to far-away handles

[Botsch & Kobbelt 2004, Jacobson et al. 2011]

August 1, 2012

Extrema glue appendages to far-away handles

[Botsch & Kobbelt 2004, Jacobson et al. 2011]

August 1, 2012

Our weights attach appendages to body

August 1, 2012

Extrema distort small features

August 1, 2012

Extrema distort small features

"Monotonicity" helps preserve small features

OIgl

August 1, 2012

Conclusion: variational framework allows explicit control over desired properties

Shape-aware smoothness energy

Conclusion: variational framework allows explicit control over desired properties

- Shape-aware smoothness energy
- Explicit bounds
 - Implicit locality, sparsity

Conclusion: variational framework allows explicit control over desired properties

- Shape-aware smoothness energy
- Explicit bounds
 - Implicit locality, sparsity
- Explicit monotonicity

Future work and discussion

Continuous formulation of monotonicity?

Future work and discussion

- Continuous formulation of monotonicity?
- Explicit sparsity? Linear precision?

Acknowledgements

We thank Kenshi Takayama, Yang Song, Jaakko Lehtinen, Bob Sumner and Denis Zorin.

This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

'High-quality weight functions via constrained optimization

-

Alec Jacobson jacobson@inf.ethz.ch

MATLAB Demos and more: http://igl.ethz.ch/projects/bbw/ http://igl.ethz.ch/projects/monotonic/