High-quality weight functions via constrained optimization

Alec Jacobson

ETH Zurich

Coordinate-based deformation is a special case of Linear Blend Skinning

$$
\mathbf{x}^{\prime}=\sum_{j \in H} w_{j}(\mathbf{x}) \mathbf{h}_{j}^{\prime}
$$

August 1, 2012

Coordinate-based deformation is a special case of Linear Blend Skinning

$$
\mathbf{x}^{\prime}=\sum_{j \in H} w_{j}(\mathbf{x}) \mathbf{h}_{j}^{\prime}
$$

linear precision (reproduction)

$\mathbf{x}=$

 $w_{j}(\mathbf{x}) \mathbf{h}_{j}$
 $j \in H$

ETH

191

Coordinate-based deformation is a special case of Linear Blend Skinning

restricted to translation

linear precision (reproduction)
 $\mathbf{x}=\sum w_{j}(\mathbf{x}) \mathbf{h}_{j}$
 $j \in H$

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Coordinate-based deformation is a special case of Linear Blend Skinning

$$
\mathbf{x}^{\prime}=\sum_{j \in H} w_{j}(\mathbf{x}) T_{/} j \mathbf{x}
$$

August 1, 2012

Coordinate-based deformation is a special case of Linear Blend Skinning

$$
\mathbf{x}^{\prime}=\sum w_{j}(\mathbf{x}) T_{j} \mathbf{x}
$$

August 1, 2012

Bounded Biharmonic Weights for Real-Time Deformation SIGGRAPH 2011

Alec Jacobson ${ }^{1,2} \quad{ }^{1}$ New York University, ${ }^{2}$ ETH Zurich
Ilya Baran³
Jovan Popović ${ }^{4}$ ${ }^{3}$ Disney Research Zurich
${ }^{4}$ Adobe Systems
Olga Sorkine ${ }^{1,2}$

Each handle type has a specific task, more than just different modeling metaphor

Each handle type has a specific task, more than just different modeling metaphor

Each handle type has a specific task, more than just different modeling metaphor

Cages can often be tedious to build and control

Cages can often be tedious to build and control

Points can only provide crude scaling

Points can only provide crude scaling

Skeletons may be too rigid or too cumbersome

Skeletons may be too rigid or too cumbersome

We want to compute weights that unify points, skeletons and cages

Weights should be smooth, shape-aware, positive and intuitive

Weights should be smooth, shape-aware, positive and intuitive

Weights should be smooth, shape-aware, positive and intuitive

196

Weights should be smooth, shape-aware, positive and intuitive

Weights must be smooth everywhere, especially at handles

Our method

Extension of Harmonic Coordinates [Joshi et al. 2005]

Weights must be smooth everywhere, especially at handles

Weights must be smooth everywhere, especially at handles

191

Shape-awareness ensures respect of domain's features

Our method

Non-shape-aware methods
e.g. [Schaefer et al. 2006]

August 1, 2012

Shape-awareness ensures respect of domain's features

Our method

Non-shape-aware methods
e.g. [Schaefer et al. 2006]

Non-negative weights are mandatory

Our method

Unconstrained biharmonic [Botsch and Kobbelt 2004]

Non-negative weights are mandatory

Our method

Unconstrained biharmonic [Botsch and Kobbelt 2004]

Weights must maintain other simple, but important properties

$$
\sum_{j \in H} w_{j}(\mathbf{x})=\left.1 \quad w_{j}\right|_{H_{k}}=\delta_{j k}
$$

w_{j} is linear along cage faces
Partition of unity
Interpolation of handles

Weights must maintain other simple, but important properties

Partition of unity
Interpolation of handles

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

$\Delta w_{j}=0$

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Borsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

$$
\Delta^{2} w_{j}=0
$$

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

Inverse distance, weighted least-squares

Inverse distance methods

 inherently suffer from fall-off effect
Inverse distance methods

 inherently suffer from fall-off effect
Inverse distance methods inherently suffer from fall-off effect

Inverse distance methods

 inherently suffer from fall-off effect

Inverse distance methods inherently suffer from fall-off effect

Shepard

Our method

Inverse distance methods inherently suffer from fall-off effect

Shepard

Our method

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

Support bones and cages?
Shape-aware?

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Borsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

$$
\Delta^{2} w_{j}=0
$$

Bounded biharmonic weights enforce properties as constraints to minimization

$\begin{aligned} \underset{w_{j}}{\arg \min } & \frac{1}{2} \int_{\Omega}\left\|\Delta w_{j}\right\|^{2} d V \\ \left.w_{j}\right|_{H_{k}} & =\delta_{j k}\end{aligned}$
W_{j} is linear along cage faces

Bounded biharmonic weights enforce properties as constraints to minimization

$\underset{w_{j}}{\arg \min } \frac{1}{2} \int_{\Omega}\left\|\Delta w_{j}\right\|^{2} d V$
$\left.w_{j}\right|_{H_{k}}=\delta_{j k}$
W_{j} is linear along cage faces

Constant inequality constraints
$0 \leq w_{j}(\mathbf{x}) \leq 1$
Partition of unity

$$
\sum_{j \in H} w_{j}(\mathbf{x})=1
$$

Bounded biharmonic weights enforce properties as constraints to minimization

$\underset{w_{j}}{\arg \min } \frac{1}{2} \int_{\Omega}\left\|\Delta w_{j}\right\|^{2} d V$
Constant inequality constraints
$0 \leq w_{j}(\mathbf{x}) \leq 1$
Solve independently, normalize

196

Weights optimized as precomputation at bind-time

$\underset{w_{j}}{\arg \min } \frac{1}{2} \int_{\Omega}\left\|\Delta w_{j}\right\|^{2} d V$
$\left.w_{j}\right|_{H_{k}}=\delta_{j k}$
w_{j} is linear along cage faces
$0 \leq w_{j}(\mathbf{x}) \leq 1$

FEM discretization
2D \rightarrow Triangle mesh
3D \rightarrow Tet mesh

Weights optimized as precomputation at bind-time

$\underset{w_{j}}{\arg \min } \frac{1}{2} \int_{\Omega}\left\|\Delta w_{j}\right\|^{2} d V$
$\left.w_{j}\right|_{H_{k}}=\delta_{j k}$
w_{j} is linear along cage faces
$0 \leq w_{j}(\mathbf{x}) \leq 1$

Sparse quadratic programming 2D ~O(milliseconds) per handle 3D ~0(seconds) per handle

Weights in 3D also retain nice properties

Weights in 3D also retain nice properties

Weights in 3D also retain nice properties

Variational formulation allows additional, problem-specific constraints

Variational formulation allows additional, problem-specific constraints

Previous methods only partially satisfactory

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Borsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

$$
\Delta^{2} w_{j}=0
$$

Our weights obtain all properties...

	Harmonic Coordinates [Joshi et al. 2005]	Our Bounded Biharmonic Weights [Jacobson et al. 2011]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	\checkmark (Explicitly)	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	\checkmark^{*}	-	\checkmark
No local extrema	\checkmark	\checkmark^{*}	-	\checkmark

*Empirically confirmed

August 1, 2012

... or so we thought

	Harmonic Coordinates [Joshi et al. 2005]	Our Bounded Biharmonic Weights [Jacobson et al. 2011]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	\checkmark (Explicitly)	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	\checkmark^{*}	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

Smooth Shape-Aware Functions with Controlled Extrema SGP 2012

Alec Jacobson ${ }^{1}$
Tino Weinkauf²
Olga Sorkine ${ }^{1}$

${ }^{1}$ ETH Zurich

${ }^{2}$ MPI Saarbrücken

Spurious extrema cause distracting artifacts

unconstrained Δ^{2}
[Botsch \& Kobbelt 2004]

O local max
O local min

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Spurious extrema cause distracting artifacts

unconstrained Δ^{2}
[Botsch \& Kobbelt 2004]

O local max
O local min

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Bounds help, but don't solve problem

bounded Δ^{2}
[Jacobson et al. 2011]

O local max
O local min

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

We explicitly prohibit spurious extrema

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

We explicitly prohibit spurious extrema

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Ideal discrete problem is intractable

$\arg \min E(f)$
 f

Ideal discrete problem is intractable

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=\text { known } \\
& f_{\min }=\text { known }
\end{array}
$$

Ideal discrete problem is intractable

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=\text { known } \\
& f_{\min }=\text { known } \\
& f_{j}<f_{\max } \\
\text { linear } & f_{j}>f_{\min }
\end{array}
$$

August 1, 2012

Ideal discrete problem is intractable

$\underset{f}{\arg \min }$	$E(f)$
s.t.	$f_{\text {max }}=$ known
	$f_{\min }=$ known
	$f_{j}<f_{\text {max }}$
	$f_{j}>f_{\min }$
	$f_{i}>\min _{j \in \mathcal{N}(i)} f_{j}$
nonlinear	
	$f_{i}<\max _{j \in \mathcal{N}(i)} f_{j}$

August 1, 2012

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Assume we have a feasible solution

$\arg \min E(f)$

$f_{\text {min }}=$ known
"Representative function" U

$$
\begin{aligned}
& u_{j}<u_{\max } \\
& u_{j}>u_{\min } \\
& u_{i}>\min _{j \in \mathcal{N}(i)} u_{j} \\
& u_{i}<\max _{j \in \mathcal{N}(i)} u_{j}
\end{aligned}
$$

Copy "monotonicity" of representative

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=k n o w n \\
& f_{\min }=k n o w n \\
& \left(f_{i}-f_{j}\right)\left(u_{i}-u_{j}\right)>0 \quad \text { linear } \quad \forall(i, j) \in \mathcal{E} \\
& \\
& \\
& \\
& \\
\text { At least one edge in either } \\
\text { direction per vertex }
\end{array}
$$

Rewrite as conic optimization

Conic

Optimize with MOSEK

Harmonic functions obey maximum principle

	Harmonic Coordinates [Joshi et al. 2005]	Unconstrained biharmonic [Botsch and Kobbelt 2004]	Shepard interpolation [Shepard 1968]	Natural neighbors [Sibson 1981]
Smoothness	-	\checkmark	\checkmark	-
Non-negativity	\checkmark	-	\checkmark	\checkmark
Shape-aware	\checkmark	\checkmark	-	-
Locality, sparsity	-	-	-	\checkmark
No local extrema	\checkmark	-	-	\checkmark

$\Delta u=0$

Final algorithm is simple and efficient

- Harmonic representative
- Linear solve ~O(milliseconds)

Final algorithm is simple and efficient

- Harmonic representative
- Linear solve ~O(milliseconds)

Conic optimization

- 2D ~O(milliseconds), 3D ~O(seconds)

Final algorithm is simple and efficient

- Harmonic representative
- Linear solve ~0(milliseconds)

Conic optimization

- 2D ~O(milliseconds), 3D ~0(seconds)

Again, functions are precomputed

Our weights attach appendages to body

Extrema glue appendages to far-away handles

[Botsch \& Kobbelt 2004, Jacobson et al. 2011]

Extrema glue appendages to far-away handles

[Botsch \& Kobbelt 2004, Jacobson et al. 2011]

Our weights attach appendages to body

August 1, 2012

Extrema distort small features

Extrema distort small features

Bounded Δ^{2} [Jacobson et al. 2011]

weight of middle point

"Monotonicity" helps preserve small features

Bounded Δ^{2} [Jacobson et al. 2011]

Our Δ^{2}

Conclusion: variational framework allows explicit control over desired properties

- Shape-aware smoothness energy

Conclusion: variational framework allows explicit control over desired properties

- Shape-aware smoothness energy
- Explicit bounds
- Implicit locality, sparsity

Conclusion: variational framework allows explicit control over desired properties

- Shape-aware smoothness energy
- Explicit bounds
- Implicit locality, sparsity
- Explicit monotonicity

Future work and discussion

Continuous formulation of monotonicity?

Future work and discussion

- Continuous formulation of monotonicity? Explicit sparsity? Linear precision?

Acknowledgements

We thank Kenshi Takayama, Yang Song, Jaakko Lehtinen, Bob Sumner and Denis Zorin.

This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

High-quality weight functions via constrained optimization

Alec Jacobson jacobson@inf.ethz.ch

MATLAB Demos and more:
http://igl.ethz.ch/projects/bbw/
http://igl.ethz.ch/projects/monotonic/

