Generalized Barycentric Coordinates

Kai Hormann

Faculty of Informatics
Università della Svizzera italiana, Lugano

Cartesian coordinates

René Descartes
(1596-1650)
point $(2,2)$ with

- x-coordinate: 2
- y-coordinate: 2
mathematically:

$$
\begin{aligned}
(2,2)= & 2 \cdot(1,0) \\
& +2 \cdot(0,1)
\end{aligned}
$$

in general:

$$
\begin{aligned}
(x, y)= & x \cdot(1,0) \\
& +y \cdot(0,1)
\end{aligned}
$$

x - and y-coordinates
w.r.t. base points
$(1,0)$ and $(0,1)$

Barycentric coordinates

point (a, b, c) with
3 coordinates w.r.t.

August Ferdinand Möbius (1790-1868)

base points A, B, C mathematically:

$$
\begin{aligned}
(a, b, c)= & a \cdot A \\
& +b \cdot B \\
& +c \cdot C
\end{aligned}
$$

where

$$
\begin{aligned}
& A=(1,0,0) \\
& B=(0,1,0) \\
& C=(0,0,1)
\end{aligned}
$$

and

$$
a+b+c=1
$$

Barycentric coordinates

system of masses w_{i} at positions v_{i}
position of the system's barycentre:
w_{i} are the barycentric coordinates of v

$$
v=\frac{\sum_{i} w_{i} v_{i}}{\sum_{i} w_{i}}
$$

- not unique

Barycentric coordinates

Theorem [Möbius, 1827] :

The barycentric coordinates w_{1}, \ldots, w_{d+1} of $v \in \mathbb{R}^{d}$ with respect to v_{1}, \ldots, v_{d+1} are unique up to a common factor
example: $d=2$

$$
\begin{gathered}
v=\frac{w_{1} v_{1}+w_{2} v_{2}+w_{3} v_{3}}{w_{1}+w_{2}+w_{3}} \\
\Longleftrightarrow \\
w_{i}=\eta A\left(v, v_{i+1}, v_{i+2}\right)
\end{gathered}
$$

Computing areas

area of triangle $\triangle_{1}=\left[v, v_{2}, v_{3}\right]$ with vertices

$$
v=(x, y), \quad v_{2}=\left(x_{2}, y_{2}\right), \quad v_{3}=\left(x_{3}, y_{3}\right)
$$

$$
w_{1}=2 A\left(v, v_{2}, v_{3}\right)=\operatorname{det}\left(v_{2}-v, v_{3}-v\right)
$$

$$
=\operatorname{det}\left(\begin{array}{ll}
x_{2}-x & x_{3}-x \\
y_{2}-y & y_{3}-y
\end{array}\right)
$$

$$
=\left(x_{2}-x\right)\left(y_{3}-y\right)-\left(x_{3}-x\right)\left(y_{2}-y\right)
$$

similar for the triangles $\triangle_{2}=\left[v, v_{3}, v_{1}\right]$ and $\triangle_{3}=\left[v, v_{1}, v_{2}\right]$

$$
\begin{aligned}
& w_{2}=2 A\left(v, v_{3}, v_{1}\right)=\left(x_{3}-x\right)\left(y_{1}-y\right)-\left(x_{1}-x\right)\left(y_{3}-y\right) \\
& w_{3}=2 A\left(v, v_{1}, v_{2}\right)=\left(x_{1}-x\right)\left(y_{2}-y\right)-\left(x_{2}-x\right)\left(y_{1}-y\right)
\end{aligned}
$$

Barycentric coordinates for triangles

normalized barycentric coordinates

$$
b_{i}(v)=\frac{w_{i}(v)}{w_{1}(v)+w_{2}(v)+w_{3}(v)}
$$

properties

- partition of unity
- reproduction
- positivity
- Lagrange property
application
- linear interpolation of data $F(v)=\sum_{i=1}^{3} b_{i}(v) f_{i}$

Generalized barycentric coordinates

finite-element-method with polygonal elements

- convex
- weakly convex
- arbitrary
[Wachspress 1975]
[Malsch \& Dasgupta 2004]
[Sukumar \& Malsch 2006]

interpolation of scattered data
- natural neighbour interpolants
- " - of higher order

Dirichlet tessellations
[Sibson 1980]
[Hiyoshi \& Sugihara 2000]
[Farin 1990]

Generalized barycentric coordinates

parameterization of piecewise linear surfaces

- shape preserving coordinates
- discrete harmonic (DH) coordinates
- mean value (MV) coordinates
[Floater 1997]
[Eck et al. 1995]
[Floater 2003]

other applications
- discrete minimal surfaces
colour interpolation
- boundary value problems
[Pinkall \& Polthier 1993]
[Meyer et al. 2002]
[Belyaev 2006]

Arbitrary polygons

barycentric coordinates $w_{1}(v), \ldots, w_{n}(v)$

$$
v=\frac{\sum_{i=1}^{n} w_{i}(v) v_{i}}{\sum_{j=1}^{n} w_{j}(v)}
$$

normalized coordinates

$$
b_{i}(v)=\frac{w_{i}(v)}{\sum_{j=1}^{n} w_{j}(v)}
$$

properties
linear precision

- partition of unity
= reproduction

$$
\left.\begin{array}{rl}
\sum_{i=1}^{n} b_{i}(v)=1 \\
\sum_{i=1}^{n} b_{i}(v) v_{i}=v
\end{array}\right\} \Rightarrow \sum_{i=1}^{n} b_{i}(v) \phi\left(v_{i}\right)=\phi(v)
$$

Convex polygons

[Floater, H. \& Kós 2006]
Theorem: If all $w_{i}(v)>0$, then

- positivity
- Lagrange property
- linear along boundary

$$
b_{i}(v)>0
$$

$$
b_{i}\left(v_{j}\right)=\delta_{i j}
$$

$$
\left.b_{i}\right|_{\left[v_{i}, v_{i+1}\right]} \in \pi_{1}
$$

application

- interpolation of data given at the vertices
$F(v)$ inside the convex hull of the f_{i}
- direct and efficient evaluation

$$
F(v)=\sum_{i=1}^{n} b_{i}(v) f_{i}
$$

Università

Examples

Wachspress (WP) coordinates

$$
w_{i}=\frac{\cot \gamma_{i-1}+\cot \beta_{i}}{r_{i}^{2}}
$$

- mean value (MV) coordinates

$$
w_{i}=\frac{\tan \left(\alpha_{i-1} / 2\right)+\tan \left(\alpha_{i} / 2\right)}{r_{i}}
$$

discrete harmonic (DH) coordinates

$$
w_{i}=\cot \beta_{i-1}+\cot \gamma_{i}
$$

Normal form

[Floater, H. \& Kós 2006]
Theorem: All barycentric coordinates can be written as

$$
w_{i}=\frac{c_{i+1} A_{i-1}-c_{i} B_{i}+c_{i-1} A_{i}}{A_{i-1} A_{i}}
$$

with certain real functions c_{i}
three-point coordinates

${ }^{\prime} c_{i}=f\left(r_{i}\right)$ with $r_{i}=\left\|v-v_{i}\right\|$
Theorem: Such a generating function

$$
f: \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

exists for all three-point coordinates

Three-point coordinates

Theorem: $w_{i}(v)>0$ if and only if f is

- positive

$$
f(r)>0
$$

- monotonic

$$
f^{\prime}(r) \geq 0
$$

- convex
$f^{\prime \prime}(r) \geq 0$
sub-linear

$$
f^{\prime}(r) \leq f(r) / r
$$

examples

- WP coordinates

$$
f(r)=1
$$

- MV coordinates

$$
f(r)=r
$$

DH coordinates

$$
f(r)=r^{2}
$$

Università

Wachspress

$f(r)=1$
mean value

$f(r)=r$
discrete harmonic

$f(r)=r^{2}$
poles, if $W(v)=\sum_{j=1}^{n} w_{j}(v)=0$, because $b_{i}(v)=\frac{w_{i}(v)}{W(v)}$

Star-shaped polygons

Theorem: $W(v) \neq 0$ if and only if f is

- positive
super-linear

$$
\begin{aligned}
& f(r)>0 \\
& f^{\prime}(r) \geq f(r) / r
\end{aligned}
$$

- examples
- MV coordinates $\quad f(r)=r$
- DH coordinates $\quad f(r)=r^{2}$

Theorem: $W(v)=0$ for some v if f is

- strictly super-linear $\quad f^{\prime}(r)>f(r) / r$

Università

Mean value coordinates

[H. \& Floater 2006]
Theorem: MV coordinates have no poles in \mathbb{R}^{2}

$$
W(v)=\sum w_{j}(v)=\sum \kappa_{i}(v) \neq 0
$$

Mean value coordinates

properties

- well-defined everywhere in \mathbb{R}^{2}
- Lagrange property

$$
b_{i}\left(v_{j}\right)=\delta_{i j}
$$

- linear along boundary

$$
\left.b_{i}\right|_{\left[v_{i}, v_{i+1}\right]} \in \pi_{1}
$$

- linear precision
$\sum_{i} b_{i}(v) \phi\left(v_{i}\right)=\phi(v) \quad$ for $\quad \phi \in \pi_{1}$
smoothness C^{0} at v_{i}, otherwise C^{∞}
similarity invariance

$$
b_{i}=\widehat{b}_{i} \circ \psi \text { for } \widehat{\Omega}=\psi(\Omega)
$$

application

- direct interpolation of data $\quad F(v)=\sum_{i=1}^{n} b_{i}(v) f_{i}$

Implementation

Mean Value coordinates

$$
w_{i}=\frac{\tan \left(\alpha_{i-1} / 2\right)+\tan \left(\alpha_{i} / 2\right)}{r_{i}}
$$

$$
\begin{aligned}
\tan \left(\alpha_{i} / 2\right) & =\frac{\sin \alpha_{i}}{1+\cos \alpha_{i}}=\frac{r_{i} r_{i+1} \sin \alpha_{i}}{r_{i} r_{i+1}+r_{i} r_{i+1} \cos \alpha_{i}} \\
& =\frac{\operatorname{det}\left(s_{i}, s_{i+1}\right)}{r_{i} r_{i+1}+\left\langle s_{i}, s_{i+1}\right\rangle}=t_{i} \\
w_{i} & =\frac{t_{i-1}+t_{i}}{r_{i}}
\end{aligned}
$$

Implementation

function $F(v)$
01 for $i=1$ to n do
$02 \quad s_{i}:=v_{i}-v$
03
04
05
06 for $i=1$ to n do
07
08
09
10
$r_{i}:=\left\|s_{i}\right\|$
if $r_{i}=0$ then
return f_{i}
$A_{i}:=\operatorname{det}\left(s_{i}, s_{i+1}\right)$
$D_{i}:=\left\langle s_{i}, s_{i+1}\right\rangle$
if $A_{i}=0$ and $D_{i}<0$ then $/ / v \in e_{i}$ return $\left(r_{i+1} f_{i}+r_{i} f_{i+1}\right) /\left(r_{i}+r_{i+1}\right)$

11 for $i=1$ to n do
$12 \quad t_{i}:=A_{i} /\left(r_{i} r_{i+1}+D_{i}\right)$
$/ / v=v_{i} \quad 13 \quad f:=0$
$14 W:=0$
15 for $i=1$ to n do
$16 \quad w:=\left(t_{i-1}+t_{i}\right) / r_{i}$
$17 \quad f:=f+w f_{i}$
$18 \quad W:=W+w$
19 return f / W
efficient and robust evaluation of the function $F(v)$

Università
vizzera italiana

Colour interpolation

Vector fields

Smooth shading

Rendering of quadrilateral elements

Transfinite interpolation

mean value coordinates

H

K

radial basis functions

H

K

Università

Image warping

original image

mask

warped image

- MV coordinates in 3D

- negative inside the domain
- positive MV coordinates
- only C^{0}-continuous
- no closed form
[Ju et al. 2005]

