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Outline 

1.  Pervasive fracture and fragmentation 
2.  Random meshes and a polyhedral finite-element formulation 
3.  Assessing mesh convergence in a probabilistic sense 
4.  Summary 



blast induced structural collapse dynamic pervasive fracture 

Pervasive Fracture 

•  crack branching 
•  crack coalescence 
•  tortuous crack paths  
 (sensitivity to material heterogeneity) 

•  stochastic behavior 

bird strike 
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Geomechanics Applications 

Engineered Geothermal Nuclear Waste Isolation 

Source: NTS Smart Grid Blog 
Derek Sept. 2009 

CO2 Sequestration 

Compressed Air Energy 
Storage 

http://www.hydraulicfracturing.com 

Hydraulic Fracturing 
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spectrum of fracture problems 

•  well defined deterministic propagation path 
•  analytical solutions 
•  enrichment methods (GFEM, XFEM, . . .) 

•  crack branching 
•  crack coalescence 
•  tortuous crack paths  

 (sensitivity to material heterogeneity) 
•  stochastic behavior 

single crack pervasive fracture 

Spectrum of Fracture Problems 

How far can we extend the computational tools 
used for one end of the spectrum to the other? 

impact, fragmentation 
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Computational Challenges to Allowing 
Cracks to Grow Arbitrarily 

What about 3D? 

•  Do we restrict branching? 
•  Do we restrict initiation? 

- from surface only? 
- from crack tips only? 
- from existing cracks only? 

•  Constraints on turning angles? 
•  Constraints on crossing angles? 
•  Constraints on minimum fragment size? 
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Computational Approach 

•  Random Voronoi tessellation (mesh) 
•  Polyhedral finite-elements 
•  Fracture only allowed at element edges.  
•  Dynamic mesh connnectivity 
•  Insert cohesive tractions on new fracture surfaces (fracture energy). 

TI,II,III 

Δu 

TI,II,III 

changing mesh connectivity 

cohesive tractions at 
crack tip 

Pandolfi, A. and M. Ortiz, 2002, Engineering with 
Computers, 18: p. 148-159. 
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•  need to use ‘random’ 
discretizations 

•  statistically isotropic 
(distribution of edge orientations 
passes KS test against the 
uniform distribution) 

Why a Random Voronoi Mesh? 

Structured grids can result in 
strong mesh induced bias 
(nonobjective). 

Voronoi tesselation of 
with random seeding 

Bolander, J.E. and S. Saito, 1998, Fracture analyses using spring networks with random 
geometry. Engineering Fracture Mechanics, 61(5-6): p. 569-591. 
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Voronoi Texture Augments Material Variability 

Probability Density 
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Voronoi Mesh Generation 

dual Voronoi Delaunay triangulation Poisson process  
•  constraint on min. dist. 
•  seed until ‘max’ packing 

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’ 
Engineering Fracture Mechanics, 61, 569-591 

•  Note that each Voronoi junction is randomly oriented. 
•  Most Voronoi junctions are triples.  
•  Average interior angles are 120°. 
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3D Randomly Close-Packed Voronoi 

11	
  

minimum edge 
to diameter 
ratio = 10-4 



Equations of Motion 
•  Shape functions, their derivatives, and the 

integration points are defined in the initial 
configuration (Ωo, Γo). 

•  All integrations of the weak form are from the 
original configuration (total-Lagrangian formulation). 

P  is the first Piola-Kirchhoff stress tensor. 
X  is the position vector of a material point. 
x  is the spatial vector. 
u = x − X, is the displacement vector 
f  is the body force vector per unit mass. 

Momentum strong form 

Momentum weak form 

Ωo 
Ω x 

X u 

Γo 
Γ 

However, most material models are hypoelastic. 

TFJP −σ=
X
x
∂
∂

=F
)det(FJ =

1−

∂
∂

=
∂
∂ F

X
v

x
v

deforma1on	
  gradient	
   rate	
  of	
  deforma1on	
  
TFPJ 1−=σ

PK1	
  stress	
   Cauchy	
  stress	
   Lots	
  of	
  mul1plica1ons	
  
by	
  F	
  and	
  F-1 (3×3) 
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Harmonic Functions 

02 =ϕ∇

A harmonic function is a solution of Laplace’s equation. 

02

2

2

2

2

2

=
∂
ϕ∂

+
∂
ϕ∂

+
∂
ϕ∂

zyx
or 

example in 2D 
example in 3D 

Can solve efficiently using 
BEM, or can just use FEM. 
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Construction of Harmonic Shape Functions in 3D 
(Joshi, 2007) 

0=ϕI
02 =ϕ∇ I

node I 

0=ϕI

0=ϕI

0=ϕI

Iϕ linear 
linear Iϕ

0=ϕI0=ϕI

02

2

=
ϕ
ds
d I1=ϕI

boundary 
conditions 

1Γ

2Γ

3Γ

1Γ
ϕ

2Γ
ϕ

3Γ
ϕ

node I 

node I node I 
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Harmonic Shape Function  Properties 

•  partition of unity and reproduce space 

•  Kronecker delta property at nodes 
•  shape functions defined on original 

configuration (no mapping to ‘parent’ shape) 

xxxx =ψ=ψ ∑∑ I
I

I
I

I )(,1)(

even for the discrete harmonic solution 

IJJI δ=ψ )(x

xxxx =ψ=ψ ∑∑ I
I

h
I

I

h
I )(,1)(

shape functions 
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Harmonic Shape Function Examples 

Only need to store shape functions and derivatives at integration points. 
Discard everything else. 
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Accuracy of Harmonic Shape Functions? 

R0 

R1 

Base tetrahedral 
subdivision 

R2 

1 : 8 subdivision 

1 : 8 subdivision 
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Comments and Questions 

1.  What accuracy is needed in the solution of the harmonic shape functions 
and their derivatives? 

2.  How to integrate the weak form?   

These questions are intimately related! 
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Element Integration 
•  Due to computational expense of plasticity models, want to minimize the 

number of integration points. 
•  Follow approach of Rashid and Selimotec, 2006. 
•  Each node is associated with a “tributary” volume, connected to the 

centroid.  
•  Number of integration points is equal to the number of vertices.  

centroid of element 

integration point xk = centroid of tributary volume 

tributary volume for node I 

integration point weight wk = tributary volume 

centroid of face 

midpoint of edge 

Sufficient to eliminate any zero energy modes. 

∑∫
=Ω

≈Ω
M

k
kk

e fwdf
e 1

)(x
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“Engineering” Patch Test 
The patch test verifies “completeness”, a necessary condition for convergence. 

Conversely, a constant stress field should be produced within each 
element when such a field is prescribed on the boundary surface. 

and, strain field should be constant. 

patch of elements Failed patch test! 

(Displacement field can represent rigid body motions and a constant strain state.) 

strain error ~ 20% 



Element Stiffness Matrix (Linear Example) 

∫
Ω

Ω=
e

dTe DBBkFrom the weak form we get the 
element stiffness matrix 
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ddd zJxIyJxIxJxI

I 

ΩI = support	
  of	
  node I 

 KIJ = global	
  s1ffness	
  matrix	
  

J 

Row I column J of KIJ  contains	
  terms	
  like:  

For	
  patch	
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Requirements to Pass the Patch Test 

global	
  equilibrium	
  
equa1ons:	
  

(Krongauz and Belytschko, 1997) 
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(Krongauz and Belytschko, 1997) 
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Integration Consistency 
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is equivalent to 

ϕI = 0 on ΓI 

IΓ

∫∫
ΓΩ

Γϕ=Ωϕ
ee

dnd xIxI ,

I 

n 

volume integration point at xk 
with weight wk 

surface integration point at 
xj with weight wΓ

j 

Approximate integration will 
cause failure of patch test for 
first-order integration. 
Would need a large number of 
integration points and accurate 
shape function derivatives to 
satisfy patch test. 

. . . too expensive! 

Instead, let’s “tweak” the 
shape function derivatives 
to satisfy the patch test. 

Divergence Theorem 

Satisfaction of discrete form of 
Divergence Theorem requires “=“ 
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Let’s “tweak” the Shape Function Derivatives 

kI
z

kI
y

kI
x aaa ,,, ,, be the new shape function derivatives for the I-th 

shape function at integration point k. 

How to calculate                         ? kI
z

kI
y

kI
x aaa ,,, ,,

Minimize the sum of the squares of the 
difference w.r.t to the original derivatives. 
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Modified Shape Function Derivatives 
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3D Verification:  Engineering Patch Test 

random patch 

without derivative correction with derivative correction 

strain error = Ο(10-1) strain error = Ο(10-8) 
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Patch Test with Nonconvex Elements 
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3D exact linear elasticity solution, (Barber, 2010) 

From this stress field → strain field → integrate to get 
displacement field using compatibility equations. 

Von Mises stress field 

Verification Test:  Beam with a Transverse 
       End-Load 
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Randomly Close-Packed Voronoi Meshes 

point spacing = 0.5 

beam dimension = 1 × 1 × 5 

point spacing = 0.25 point spacing = 0.125 

point spacing = 0.0625 

minimum edge 
to diameter 
ratio = 10-4 
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Randomly Close-Packed Voronoi Meshes 

mesh statistics 

median 24 nodes per element median 14 faces per element median 5 nodes per face 
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deformed shape, Von Mises stress 

Typical FEM Solution 



33	
  

Verification Test:  Beam with a Transverse End-Load 

ν = 0.3 
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Verification Test:  Beam with a Transverse End-Load 

No reduction in convergence 
rate as ν → 1/2. 

Standard mean-dilation 
formulation for nearly 
incompressible behavior 
(Nagtegaal, 1974) 
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Effect of Shape Function Accuracy 

R0 

R1 

R2 

R1 

R2 

R0 
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Dynamic Mesh Connectivity 
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Quasi-Brittle Material Impact 
(Bishop, J., 2009, Computational Mechanics, v. 44) 
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Impact Example 
(Bishop, J., 2009, Computational Mechanics, v. 44) 



Time 

10-15 second 

103 years 
(or more) 

102 m 10-1 m 10-5 m 10-9 m 

 
Field Scale 

  
Continuum Scale 

 
Pore Scale 

 
Nanoscale 

Focus Area 1 Focus Area 2 Focus Area 3 Focus Area 4 

CFSES: Center for Subsurface Energy Security 
( www.utcfses.org ) 



injec1on	
  well	
  abandoned	
  well	
   fault	
  

caprock	
  
storage	
  
zone	
  

caprock	
  join1ng	
  

Poten&al	
  Leakage	
  Paths	
  for	
  CO2	
  

1 km Scale:	
  

Primary	
  CO2	
  trapping	
  mechanism	
  is	
  structural.	
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Hydromechanical Coupling in Fractured Rock 

Fractured Porous Rock 

•  scale dependence 
•  history dependence 
•  precipitation 
•  dissolution 

crack-tip cohesive properties 

fracture contact properties 

σs 
Δus 

σ′n = σn − p 

Δun 

σs 

Δus 

σ′n 

σ′n 

Δun },{
},{

nsnn

nsss

uu
uu
ΔΔσʹ′=σʹ′

ΔΔσ=σ

bulk constitutive properties 
(Sandia GeoModel 
Fossum & Brannon, 2004) 

TI,II,III 

Δu 

TI,II,III 

additional challenges 
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(Ebeida, M.,  Knupp, P., Vitus Leung, Sandia National Laboratories) 

Fractured Rock 

MeshingGenie (Trilinos) 
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increasing stress 
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p(x, t) 

q(t) 

CO2 injection 

p1(t) 

q(t) 

p2(t) 

caprock 

leak rate 

pore pressure 

Fluid Flow in 2D Discrete Fracture Networks 
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  P3 

P1 

P2 

Q = 0 

Q = 0 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
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µ
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⎭
⎬
⎫

⎩
⎨
⎧

2

11

P
PT

Q
Q

11
11

2

Q = flow rate 
P = pressure 
µ  = viscosity 
T = transmissibility 

21

2
2

2
1 1
6 hhL
hhT

+
=

Fluid Link 

length L 
1 2 

Solve fluid network to get nodal pressures and flow rates. 

Fluid Flow in 2D Discrete Fracture Networks 

h1 
h2 

Qin 
Qout 

Reynold’s lubrication equation 
( )

( )ghph
ρ−∇

µ
−=

=ρ∇

12

0
3

Q

Q

s 

P(s) 
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h1 
h2 

Qin 
Qout 

Fluid Flow in Discrete Fracture Networks 

Reynold’s lubrication equation 

( )

( )ghph
ρ−∇

µ
−=

=ρ∇

12

0
3

Q

Q

s 

P(s) 
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p(t) 

t 

Hydraulic Fracture Simulation 

Coupled fluid flow in 
fracture networks 
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increasing	
  stress	
  

play movie 

48	
  



Outline 

1.  Pervasive fracture and fragmentation 
2.  Random meshes and a polyhedral finite-element formulation 
3.  Assessing mesh convergence in a probabilistic sense 
4.  Summary 

(Bishop, J. and Strack, O., 2011, IJNME, v. 88) 
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Example: Explosively Loaded Cylinder 

p(t) 

p(t) 

t 
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t = 0 t = 2 ms t = 20 ms 
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realization 1 realization 2 
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h=32 h=16 h=8 

converging ? 

Mesh Convergence? 
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)(xf probability distribution function 

X = random variable  

)(xF cumulative distribution function 

(an engineering quantity of interest) 

PDF 

CDF 

dx
dFxf =)(

Review of Probability 

f (
x)

 
F 

(x
) )(Pr)( xXxF <=

∫
∞−

ʹ′ʹ′=
x

xdxfxF )()(
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Definitions of Statistical Convergence 

( ) 0Prlim
0

=ε>−
→

xxhh

convergence in probability 

)()(lim
0

xFxFhh
=

→

convergence in distribution 

( ) 0lim
0

=−
→

r
hh
xxE

convergence in r-mean 

increasing 
strength 

almost sure convergence 

1limPr
0

=⎟
⎠
⎞

⎜
⎝
⎛ =

→
xxh

h
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)2cos(1)( xnxfn π−=

)2sin(
2
1)( xn
n

xxFn π
π

−=

xxFnn
=

∞→
)(lim

sequence of random variables Xn , n = 1, 2, 3, … 
 

Example  

convergence-in-probability: 

convergence-in-distribution: for each x (pointwise) 

( ) 0Prlim =ε>−
∞→

XXnn

? ( ) )(2Pr εΟ+
π

=ε>− XXn
for all n 

PDF 

CDF 

YES 

NO 

n = 1 n = 2 n = 3 n = 4 
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)()(lim
0

xFxFhh
=

→

How to Assess Convergence-in-Distribution? 

|)()(|sup),( xFxFFFL h
x

h −=∞

use L∞ norm: 

use L∞ norm: 

? 

engineering quantity-of-interest 
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What about finite sampling effects? 

empirical CDF, )(xSN

NSDN 

Strong Law of Large Numbers: 

)()(lim xFxSNN
=

∞→
(almost surely) 

⎪
⎩

⎪
⎨

⎧

<

−=<<

<

≡ +
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Nrxxx
N
r
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N

rrN

1

1,,1

,0

)( 1

1

…
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Finite Sampling Fluctuations in CDF 

)()(sup xFxSD N
x

N −=
What is the distribution for DN? 

continuous CDF 
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Kolmogorov-Smirnov Statistic 

0.95 

1.36 

%9536.1Pr =⎟
⎠

⎞
⎜
⎝

⎛
<

N
DN

%9019.1Pr =⎟
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⎞
⎜
⎝

⎛
<

N
DN

%9963.1Pr =⎟
⎠

⎞
⎜
⎝
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<

N
DN

)()(sup xFxSD N
x

N −=

(conservative to within 2% for N > 50)  
(tabulated for N < 50) 

•  independent of distribution 
•  only for continuous CDFs 

∑
∞

=

−

∞→
≡−−−=<

1

221 )()2exp()1(21)Pr(lim
j

j
NN

zpzjNzD

confidence 
bounds 
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Kolmogorov-Smirnov Statistic 

N = 50 N = 500 

95% confidence bounds 
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How to use KS-statistic to assess convergence-
in-distribution with finite sample sizes? 

j

j

i

i
NNNNji N

z
N
zDDdd

jiji
+=+≤− ,.

(Bishop, J. and Strack, O., 2011, IJNME, v. 88) 
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Summary 

1.  Presented a finite-element method for modeling pervasive fracture 
in materials and structures based on random meshes. 

2.  Presented a polyhedral finite-element formulation for both convex 
and nonconvex elements. 

3.  If engineering quantities-of-interest are extremely sensitive to initial 
conditions and system parameters, need to embrace a probabilistic 
description. 

4.  Presented a statistical-method for verifying and validating nonlinear 
dynamical systems in this regime including pervasive fracture. 


