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Pervasive fracture and fragmentation
Random meshes and a polyhedral finite-element formulation

Assessing mesh convergence in a probabilistic sense

Summary
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Pervasive Fracture i) s

blast induced structural collapse dynamic pervasive fracture bird strike

crack branching

crack coalescence

tortuous crack paths

(sensitivity to material heterogeneity)
stochastic behavior
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Geomechanics Applications L

Nuclear Waste Isolation CO, Sequestration

Engineered Geothermal

Field Scale

Saline Formation

geothermal reservoir

Private Well

Municipal Water Well:
<1,000 ft.

Compressed Air Energy
Storage SR

J Protective Steel Casing

NOT TO SCALE " .
Approximate distance

from surface: 8,000 feet

http://www.hydraulicfracturing.com 4
ep S




Sandia
Spectrum of Fracture Problems )l

- impact, fragmentation

spectrum of fracture problems

Sing|e crack <E> pervasive fracture

« crack branching
« crack coalescence
* tortuous crack paths
(sensitivity to material heterogeneity)
« stochastic behavior

» well defined deterministic propagation path
 analytical solutions
» enrichment methods (GFEM, XFEM, . . .)

O A= == = = = O

How far can we extend the computational tools
used for one end of the spectrum to the other?




Computational Challenges to Allowing
Cracks to Grow Arbitrarily

* Do we restrict branching?
« Do we restrict initiation?
- from surface only?

- from crack tips only? What about 3D?

- from existing cracks only?
« Constraints on turning angles?
 Constraints on crossing angles?
 Constraints on minimum fragment size?

i\
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Computational Approach

Random Voronoi tessellation (mesh)
Polyhedral finite-elements

Fracture only allowed at element edges.  p,nyoi6i A and M. Ortiz, 2002, Engineering with
Dynamic mesh connnectivity Computers, 18: p. 148-159.

Insert cohesive tractions on new fracture surfaces (fracture energy).

\Aopia o)

changing mesh connectivity

T, LI

cohesive tractions at
crack tip

Y

Au
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Why a Random Voronoi Mesh? L[

Bolander, J.E. and S. Saito, 1998, Fracture analyses using spring networks with random
geometry. Engineering Fracture Mechanics, 61(5-6): p. 569-591.

Structured grids can result in
strong mesh induced bias
(nonobjective).

* need to use ‘random’
discretizations

« statistically isotropic
(distribution of edge orientations
passes KS test against the
uniform distribution)

Voronoi tesselation of
with random seeding




Voronoi Texture Augments Material Variability

PDF
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Probability Density

Weibull Prabability Density, [ = 25
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Voronoi Mesh Generation i) feors

Bolander, J., Saito, S., 1998, ‘Fracture Analyses using Spring Networks with Random Geometry,’
Engineering Fracture Mechanics, 61, 569-591

Poisson process Delaunay triangulation dual Voronoi

e constraint on min. dist.
* seed until ‘max’ packing

* Note that each Voronoi junction is randomly oriented.
« Most Voronoi junctions are triples.
 Average interior angles are 120°. 107

number of elements
S
o
|

2 3 4 5 6 7 8 9 10
number of edges
10
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3D Randomly Close-Packed Voronoi

minimum edge
to diameter
ratio = 104
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Equations of Motion

r » Shape functions, their derivatives, and the
Q integration points are defined in the initial
u )l — configuration (., I',).
’ , « All integrations of the weak form are from the
// original configuration (total-Lagrangian formulation).

P is the first Piola-Kirchhoff stress tensor.
X is the position vector of a material point.
L 4ok = oo x is the spatial vector.

ox Pl = he u=1x—X, is the displacement vector

f is the body force vector per unit mass.

Momentum strong form

Momentum weak form

/poii-au A% :/to-(Su dFO+/p0f-8u A —/poP:(a((Su)/BX) A%
o o 20 2

However, most material models are hypoelastic.

deformation gradient  rate of deformation PK1 stress Cauchy stress o
ox v av r . Lots of multiplications
F=— (3)(3) —=—F_1 P=JoF o=J PF byFandF'l
X ox 09X J = det(F)
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Harmonic Functions

A harmonic function is a solution of Laplace’s equation.

2 2 2
Vch — O or @ + @ + @ =( Can solve efficiently using
x> ay2 97> BEM, or can just use FEM.

example in 3D

example in 2D

S




Construction of Harmonic Shape Functions in 3D () i
(Joshi, 2007)

6

< node/ q, linear
@ linear v /\
Vi, =0
¢, = i

¢, =0 boundary

conditions
_1 d2(P1
Vi ds*
@

node / node 1
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Harmonic Shape Function Properties

« partition of unity and reproduce space Ew,(x) =1, E%(X) X, =X
Ji Ji

even for the discrete harmonic solution Ew'}(x) =1, Elp’} (X)X, =X
Ji 1

- Kronecker delta property at nodes Y, (x,)=9,

» shape functions defined on original
configuration (no mapping to ‘parent’ shape)

N WYY

shape functions




Harmonic Shape Function Examples (i) &=,

Only need to store shape functions and derivatives at integration points.
Discard everything else. 16
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Accuracy of Harmonic Shape Functions? i)

Base tetrahedral
subdivision RO
1 : 8 subdivision

R1
1 : 8 subdivision

R2

17
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Comments and Questions

1. What accuracy is needed in the solution of the harmonic shape functions
and their derivatives?

2. How to integrate the weak form?

These questions are intimately related!




Element Integration ) ien

» Due to computational expense of plasticity models, want to minimize the
number of integration points.

» Follow approach of Rashid and Selimotec, 2006.

« Each node is associated with a “tributary” volume, connected to the
centroid.

* Number of integration points is equal to the number of vertices.

tributary volume for node /

centroid of face

midpoint of edge centroid of element

integration point x, = centroid of tributary volume

integration point weight w, = tributary volume

[ d = S 15

Sufficient to eliminate any zero energy modes.

19




. . ” ﬁg{]igi?al
“Englneerlng PatCh TeSt m Laboratories

The patch test verifies “completeness”, a necessary condition for convergence.
(Displacement field can represent rigid body motions and a constant strain state.)

Conversely, a constant stress field should be produced within each
element when such a field is prescribed on the boundary surface.

and, strain field should be constant.

patch of elements Failed patch test!

strain error ~ 20%




Element Stiffness Matrix (Linear Example) () i

From the vyeak form we getthe e _ fBTDB do ¢,, 0 0]
element stiffness matrix Do ¢,, O
D contains elastic material constants. 0 0 ®;.
®r: P,
0 o,
¢ . 0

Contains terms Iike:chI,xcPJ,x ds2, fCPI,xCPJ,y ds2, fCPI,xCPJ,Z ds2,
Q° Q° Q°

M
But ffdge = ZW/« J(X)  What's the effect of this approx.?




Requirements to Pass the Patch Test (i) &=,
(Krongauz and Belytschko, 1997)

global equilibrium EKUuJ =F,
equations: 7
K,,= global stiffness matrix
For patch test, u(x,y,z)=a,x+a,y+a,z+a,
need u,(x,y,2)=b x/+b,y+b;z+b,

u(x,y,z)=cx+c,y+c,z+c,

to be a solution of Ku = F when applied as boundary conditions.

Row 7/ column J of K, cgntains terms like:

fcpl,xcpJ,x dQ, fcpl,xcpJ,y ds2, f(pl,xcpJ,z dQ ,
Q, Q, Q,

Q2, = support of node /

A
r N

For example, need E f PP (ali Ta)); a3z, + a4)d§2 =0
J O




Requirements to Pass the Patch Test () i

Laboratories
(Krongauz and Belytschko, 1997)
(7 X

EICPz,xCPJ,Z(ali +a,y,+a,z, +a4)dg2 -0
J Q

1yt

f(plxchjzaxj+a2yj+a3zj+a4 dg O

g

>

N N N
recall E'XJ(PJZ 0 EyJ(sz =0 EZJCPJZ =1
~ 7= =

Q, These integration properties
of the shape function

. ¢, dQ2=0 @, dQ=0 derivatives must hold in
similarly E!: ’ g!: order to pass the patch test.

w, = integration weight
= integration point




Integration Consistency i) ot

@,=0on I’

Laboratories

Divergence Theorem

r fcp],x dQ2=0 isequivalentto f(PI,x ds2 = chI n, dl
Q

= support of node /

volume integration point at x,
with weight w,

x; with weight w,

Satisfaction of discrete form of
Divergence Theorem requires “=*

Approximate integration will
cause failure of patch test for
first-order integration.

Would need a large number of
integration points and accurate
shape function derivatives to

surface integration pointat 52’y patch test.

. too expensive!

Instead, let’s “tweak” the
shape function derivatives
to satisfy the patch test.




Let’s “tweak” the Shape Function Derivatives (i) i

(pseudo-derivatives)

Let al* q'* g+  bethe new shape function derivatives for the /-th
© ¥ 27V ?7F  gshape function at integration point k.

How to calculate a'*,a’*,a’* ?

2 y 2 z

Minimize the sum of the squares of the ™
difference w.r.t to the original derivatives.

Nen M

L= ; ;(CPz,x(Xk) - ai’k)z > solve use Lagrange

multipliers
with “integration constraints”

< 1.k < I
Zwk At = Swig,(x)n(x;)=0 =1 N,
=1 J=1

/
25




Modified Shape Function Derivatives

Introduce Lagrange multipliers A, , I=1, ...,
N,, and form the augmented Lagrangian L,

N, M N,, M ; My -
L= 3 3o (x) M| St = 3wl g, (x ), (x)
T=1 &=1 i= =1 =1

L

0 IAk =0, I=1-,N,, k=1--M
necessary condition for da,’
local minimum oL

A _0, ]=1,.. ,Nen

}\’I

same for (), and (), , only need to factor once for each element

Sandia
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Laboratories
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3D Verification: Engineering Patch Test ()&=,

random patch

with derivative correction

U

without derivative correction

™y

r

strain error = 0(108) 27

l strain error = O(10")
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Patch Test with Nonconvex Elements




Verification Test: Beam with a Transverse
End-Load

(: |

»

A

3D exact linear elasticity solution, (Barber, 2010)

Oxx = Oyy=0zy=10
Fy
Ozy — I—azy&
2F,a®> v = (=1)" nmr sinh(™%Y)
Oz - 2I 1—|—V Zl ng S1I1 a )COSh(i)
F, |1, 5, 5 1 202 v = (—-1)" . nmx smh(—y
.= Moo 302 — - ‘
Ty L,g{Q( v)+ 6(& a)1+u 7r21+unzl n? sin( a ) —b

From this stress field — strain field — integrate to get
displacement field using compatibility equations.

Sandia
National
Laboratories

Von Mises stress field

29
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Randomly Close-Packed Voronoi Meshes ) S

beam dimension=1x1x5

v

point spacing = 0.5 point spacing = 0.25 point spacing = 0.125

minimum edge
to diameter
ratio = 104

point spacing = 0.0625
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Randomly Close-Packed Voronoi Meshes (=,

mesh statistics

350 350
10000 -
300} 300
2 8 8000 -
c 250} c 250}
© ) 2
£ £ O
D 200} D 200} B 6000+
)] [ q6
[V —
5 2 150 o
w 150 — o
@ @ 2 000t
o -g €
>
% 100 5 100} c
[ [
2000 -
50 | 50}
0 T |I| IIT T 1 0 T T T 0
0 4 8 12 16 20 24 28 32 36 40 44 0 2 4 6 8 10 12 14 16 18 20 22 24 001 2 3 4 5 6 7 8 9 10 11 12
number of nodes number of faces number of nodes

median 24 nodes per element  median 14 faces per element median 5 nodes per face
31
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Typical FEM Solution

deformed shape, Von Mises stress
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Verification Test: Beam with a Transverse End-Load () e

Data shown for 20 randomly
close-packed Voronoi meshes. v=03
%E@D
0.1
=
p—
%) 0.01 -
2
bqN
0.001
: e o o \ith derrivative correction
o o o without derrivative correction
0.0001 . . : . —
0.1 0.2 0.4 0.6 0.8 1

max element diameter

33
- _________________________________________________________________________________________________________________
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Verification Test: Beam with a Transverse End-Load ) Joses,

—eo—o =3
0.1 F e——e——>o v =049
——— v =0.499

v =0.4999

Standard mean-dilation
formulation for nearly
incompressible behavior
(Nagtegaal, 1974)

E
= K
2
<) 1.9
L Data is average of 20 randomly No reduction in convergence
0.001 ¢ close-packed Voronoi meshes. rate as v — 1/2.
0.0001 : : —
0.1 0.2 0.4 06 08 1

max element diameter

34
- _________________________________________________________________________________________________________________



Effect of Shape Function Accuracy ) e,

RO RO
/¢
e
0.1 F .~ R2
i e
— R1
)
:]N 0.01 — R1
:E s
~ 7
) 1.9
Data is average of 20 randomly
0.001 close-packed Voronoi meshes.
R2
0.0001 ' ' ' ' e
0.1 0.2 0.4 06 08 1

max element diameter
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Dynamic Mesh Connectivity L

(a) before mesh modification ‘
Q e = edge

| =intact
F = fractured
» = global node

—

[
Q.
«Q
@
£

(e) after mesh modification




Quasi-Brittle Material Impact

(Bishop, J., 2009, Computational Mechanics, v. 44)

Time = 0.0000

S
N
i & \\
v N
2 N
/'/ N,
Ry
N "
Y X,
\\ N
N
s N,
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. N
AN e
N N
% R
N ™
p Y .
N
N
% N
\\
\\. \\
. L
\ .
% \\.
N
\,\ N\ .
A= N
R LY
A, \\
R \,
b
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% >
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Impact Example rh)

(Bishop, J., 2009, Computational Mechanics, v. 44)

Time = 0.00000
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CFSES: Center for Subsurface Energy Security .

( www.utcfses.org )

M- €O, Injection —r l

103 years
(or more)

10-1° second

Pore Scale Continuum Scale

10° m 10° m 10'|1m 10?m
| |
| | | |
Focus Area 1 Focus Area 2 Focus Area 3 Focus Area 4
Nanoscale Pore Scale Continuum Scale Field Scale




caprock

Potential Leakage Paths for CO,

Primary CO, trapping mechanism is structural.

Scale: |ﬂ|

abandoned well injection well
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caprock jointing

- —

~

/ ]
storage ]"&\ /
/ I !

zone ,
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Hydromechanical Coupling in Fractured Rock i) tmat

Fractured Porous Rock

bulk constitutive properties

(Sandia GeoModel
Fossum & Brannon, 2004)

fracture contact properties
u= 0 =P

w i

—1
/

| |
crack-tip cohesive properties  Fx
T A

ﬂ_\m o, =0 {Au ,Au,}
Ty Au, o, =0, {Au,Au,}

(O T

Au OJn

Au

additional challenges

\

» scale dependence

* history dependence
* precipitation 41
« dissolution
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MeshingGenie (Trilinos)

(Ebeida, M., Knupp, P., Vitus Leung, Sandia National Laboratories)

Fractured Rock
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increasing stress




Fluid Flow in 2D Discrete Fracture Networks () .

CO, injection

¥
leak rate
q(?) q(?)
caprock ;\
— ||= p(X, 1) pi(®)  py(D)
- —
<~ || — pore pressure




Fluid Flow in 2D Discrete Fracture Networks  (rh) i

Laboratories

Solve fluid network to get nodal pressures and flow rates.

_— Fluid Link

QI} T[1 -1(P
— h, =——> 1 e o 2 { =_[ ]

Q. : 2 Quu length L Q) wl-1 1|5
P, N

6L h +h,

Reynold’ s lubrication equation

V(pQ)=0 O = flow rate
P P = pressure
Q= -m(Vp - pgh) u = viscosity

T = transmissibility
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Fluid Flow in Discrete Fracture Networks

Q. Quu
0.8
Reynold’ s lubrication equation -
|
V(pQ)=0 £ 0
i =
Q=-—(Vp-pgh) I
12 ¥
5 04
o P(s) .
) Tteell 0.2
> ¢
— O 1
0 0.2 0.4 0.6 0.8 1

Position along link, x/L
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Hydraulic Fracture Simulation e

Coupled fluid flow in
fracture networks

max_p
5.00
3.75

250
1.25 47

-
0.00



increasing stress

play movie

max_p

8.00
6.00
4.00
2.00
0.00
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Outline

Pervasive fracture and fragmentation
Random meshes and a polyhedral finite-element formulation

Assessing mesh convergence in a probabilistic sense

Summary

(Bishop, J. and Strack, O., 2011, I/NME, v. 88)




Example: Explosively Loaded Cylinder
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realization 1

realization 2




Mesh Convergence? i) o
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Review of Probability ) 5.

X = random variable

(an engineering quantity of interest)

PDF 2
f(x) probability distribution function
dFf OF
=52 =
dx
0 .
0 0.5 1
CDF N
F(x) cumulative distribution function
F(x)=Pr(X <x) = o0s.
R
0

F(x)= [f(x)dx oo
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Definitions of Statistical Convergence

almost sure convergence

Pr(limxh=x)=1

h—0
convergence in »-mean /\
%irr(}E(‘xh - X r)= 0
- increasing
strength

convergence in probability

%iirgPr(}xh —x‘ > 8)= 0

i convergence in distribution
| lim 77, (x) = F'(x)




Example ) e

Laboratories

sequence of random variables X ,n=1,2,3, ...

n=1 n=72 n=73 n=4
27 ] 7 :
PDF
f.(x) =1-cos(2mnx) g1 - . IRNENANAS
0 T
0 05 10 0.5 10 05 10 0.5 1

CDF "

1 . ~
F,(x) = x - ——sin(2mnx) Zos
21tn

YES  convergence-in-distribution: |im F (x)=x for each x (pointwise)

n—0

-~

NO convergence-in-probability: limPr(‘X —X‘ > g) 0 Pr(‘Xn - X‘ > e)= g + O(¢)
" 7T

n—0oo

for all n 56
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How to Assess Convergence-in-Distribution?

?
lim F, (x) = F(x)

CDF

engineering quantity-of-interest

use L, norm: L (F,,F)=sup|F,(x)-F(x)]
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What about finite sampling effects?

empirical CDF, S, (x)

0, X <X

Sy(x)= % x <x<x, r=1L..,N-1

CDF

1 Xy <X
Strong Law of Large Numbers:

}vlg;lo Sy(x) =F(x) (almost surely)
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Finite Sampling Fluctuations in CDF

1

08 r
506 |
O D, =sup|S, (x)-F(x)
T Yo 5 | What is the distribution for D,?
S 04 r
02 k continuous CDF
sample, N, =50
sample, N, =50
0 |
0.4 0.6 0.8 1 1.2 1.4
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Kolmogorov-Smirnov Statistic
D, =sup|S,(x) - F(x)|

lim Pr(D,, <z/\/N) =1- 25(-1)1'-1 exp(=2/°2%) = p(z)

1
0.95 —
Pr(DN < L3y _ 99%
0.8 | \/N
Pe( D, < 1.36 _9s0, L_ confidence
06 - JN bounds
¥ 1.19
0a L Pr(DN < ﬁ) = 90%
2T - independent of distribution
« only for continuous CDFs
0 1 1 1

(conservative to within 2% for N > 50)

(tabulated for N < 50)
60




Kolmogorov-Smirnov Statistic h) s,

95% confidence bounds
N =50 N =500

1
/
09 0.9
o8¢ N - 0.8
0.7 0.7
0.6 0.6
~
§ \E 0.5
& 05 | @
@) Q
04 04
03 /) 0.3
/
o2 b ___ ————  Weibull 0.2 ——  Weibull
| ——— eCDF,N=50 eCDF, N = 500
01 S - 95% confidence band 0.1 o — — == 95% confidence band
0 | 1 1 1 1 | 1 0 1 | 1 | | | |
0 02 04 06 0.8 1 1.2 14 16 1.8 2 0 02 04 06 08 1 1.2 14 16 138 2
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How to use KS-statistic to assess convergence- ) e
in-distribution with finite sample sizes?

— I
—— sample J ———m———

confidence

0.8 band

0.6 Z -
> d . -d ,|<D, +D, =24
. N;°N; N; N.
& ! / o JN [N
@) J
0.4
0.2

(Bishop, J. and Strack, O., 2011, IJNME, v. 88)
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Summary

Presented a finite-element method for modeling pervasive fracture
in materials and structures based on random meshes.

Presented a polyhedral finite-element formulation for both convex
and nonconvex elements.

If engineering quantities-of-interest are extremely sensitive to initial
conditions and system parameters, need to embrace a probabilistic

description.

Presented a statistical-method for verifying and validating nonlinear
dynamical systems in this regime including pervasive fracture.

63



