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ABSTRACT

In ‘Adaptively Weighted Numerical Integration” (AW), for a given set of
basis functions, quadrature points, order and domain of integration, the
guadrature weights are obtained by solving a system of suitable moment
fitting equations In least square sense. The adaptivity of weights to the
domain Is ensured by incorporating a shape sensitivity term In
formulating the moment fitting equations. Thus, the adaptivity of weights
allow accurate integration over arbitrary 2D and 3D domains without
excessive domain subdivision, which is useful in many applications and
meshfree analysis in particular. Experimental results (in 2D) indicate that
adaptively weighted integration compares favorably with more traditional
approaches.

OBJECTIVE

To develop an efficient method to numerically
integrate a scalar valued continuous function f(x)
over an arbitrary 2D/3D domain (£,) with no/
minimal domain subdivision:
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MOMENT FITTING EQUATIONS

A quadrature in R? is an equation of the form

D=1 Wif(xy) = an W (x)f(x) dQ,; where, W(x) is a non-negative
weighting function.

The position {x;}!-; & weights {w; }~; of the quadrature points can be
determined by solving the following set of non-linear moment fitting
equations for a preselected set of basis functions {f .} :
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« Such nonlinear equations can’t be solved easily. However, fixing the
position of quadrature points {x;};-, turn the equations linear.

* Thus, quadrature weights can be obtained by solving Eq. (1) in least
square sense as :
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APPROXIMATION OF MOMENTS
« Shape Sensitivity Analysis (SSA)

The integrals in the moment vector {L} (with W(x) = 1)

can be approximately computed over a polygonal/polyhedral domain
(©2,) that is homeomorphic to the arbitrary domain (£2,) using Shape
Sensitivity Analysis (SSA) [3] as follows:

Li= | fi(x)dQ%~ | fi(x)dQ, +
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where, V,, = t v,, ; with t = time parameter & v,, = Design Velocity

Gauss Divergence

Further, integral of the basis functions
over the polygonal/polyhedral domain (Q,)
can be computed efficiently as a
boundary integral by the application of
‘Gauss Divergence Theorem’ [1] as:
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Figure 1: A reference polygon/polyhedron
homeomorphically mapped to the arbitrary
domain in order to approximate {L} using SSA

where, n, is the number of edges/faces in the approximating
polygon/polyhedron, £.,'is an integral (w.r.t. ’x’) that can be evaluated
symbolically, and n ¥ is the x-component of the normal to the

‘kt" edge/face.

* Final Expression

Substituting Eq. (4) in Eq(3), we get the approximation to the moments

on (), to be an integral over the polygonal/polyhedral boundary (I7,):
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‘AW’ ALGORITHM

Pre-Computations

* For the required order of integration, select an appropriate set of basis
functions {f;(x)} (one simple choice is the bivariate [xPy"] / trivariate
[xPy"zs] polynomials).

« Compute [AT] symbolically for the chosen basis functions & desired
order of integration and then write it to a file [one time computation].

Main Computations (0(ny))

« Choose the quadrature
points ({x;}~,) appropriately [say using ‘Scaled
Cartesian product rule’ — Fig. 2(a)].
Choose a Polygon (in 2D) / Polyhedron (in 3D) _ »

. . . Figure. 2(a) (Scaled)
that is a reasonable approximation & Cartesian Product Rule
homeomorphic to the domain (£,) (Fig. 2(b)).

Compute the moments ({L}) approximately
using Eq. (5) — an integral over the boundary of
the polygon/polyhedron.

Read the appropriate [Af] matrix from the file and
evaluate it at the selected quadrature points.
With [AT] and {L} now known, solve the moment fitting
equations [Eq. (2)] for the (geometrically adaptive) weights (wy).
Use the computed weights (w;) to approximate the integral over the
arbitrary domain as :
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RESULTS AND DISCUSSION

« The algorithm for 2D domains was implemented in MATLAB and
comparisons were made between ‘AW’, the (Scaled) Cartesian
Product Gauss Quadrature (‘C’), Direct Application of Shape Sensitivity
(‘'SS’) to Eq. (*) and Geometrically Adaptive Method (‘GA) [4].
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Figure 3(a). A ‘notched’ domain along
with its polygonal approximation.

Figure 3(b). Relative error (in integral) comparison for
various quadrature rule — ‘notched’ domain
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Figure 4(a). Quadtree decomposition of a ‘wavy’ Figure 4(b). Integral value comparison for various
domain along with the polygonal approximation of  levels of quadtree decomposition — ‘wavy ‘domain.
its boundary cells.

An arbitrary function 'f = x%y? + x?y3 + x3 + 100x + 10y + 2’

was integrated over a ‘Notched’ domain (Fig. 3(a)) and a ‘Wavy’
domain (Fig. 4(a)) using ‘AW’, ‘'SS’, 'C'/ ‘GA" (3-pt quadrature) and
MATLAB’s symbolic toolbox.

The results indicate that ‘AW’ requires fewer function evaluations than
‘C’ to achieve a desired accuracy (Fig. 3(b)).

Also, ‘AW’, when used in quadtree boundary cells, significantly
decreases the number of subdivisions required to resolve the geometry
(for a prescribed accuracy) when compared to ‘GA’ (Fig. 4(b)).

‘AW’ is as accurate as ‘SS’. However, unlike ‘SS’, ‘AW’ has the
advantage of not requiring integrand evaluation outside the domain
(Q,) or design velocity computation inside the domain (Q,).

Apart from being accurate and fast, the AW method has several
advantages including being meshless (w.r.t geometric adaptivity),
representation independent, easy to implement eftc.
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