

Polygonal Finite Elements: Cubature and application to Reissner – Mindlin Plates S Natarajan^a, D R Mahapatra^a, T Rabczuk^b and S Bordas^c

Bauhaus-Universität Weimar

^aDepartment of Aerospace Engineering, Indian Institute of Science, Bangalore, INDIA ^bInstitute of Structural Mechanics, Bauhaus-Universitat, Weimar, GERMANY ^cInstitute of Mechanics and Advanced Materials, Cardiff University, Wales, UK

ABSTRACT

The use of polygonal elements with more than four sides can provide flexibility and better accuracy¹. A brief overview of different cubature rules over arbitrary polygons is given. Polygonal finite elements with Wachspress interpolants are employed to study the response of plates based on first order shear deformation theory. A technique is outline to suppress shear locking.

POLYGONS IN NATURE

Honey comb

Animal skin covered with polygons

Ho-Mg-Zn quasi crystal

APPROXIMATION OVER POLYGONS²

Using length and area measures – Wachspress interpolants

- o Natural neighbour interpolants
- Maximum entropy approximant
- o Barycentric coordinates

Green – Gauss Quadrature⁵

$$\iint_{\Omega} f(x,y) \, dx dy = \oint_{\partial \Omega} \mathcal{F}(x,y) \, dy \,, \ \mathcal{F}(x,y) = \int f(x,y) \, dx$$

APPLICATION TO REISSNER-MINDLIN PLATES

Free Vibration

 $W_{max} = -0.001406$

Plate with holes

Panel Flutter

Static Bending

Non-dimensional aerodynamic pressure, λ

REFERENCES

¹N Sukumar and A Tabarraei, A conforming polygonal finite elements, IJNME, 61 (2004), 2045-2066.

²N Sukumar and EA Malsch, Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Meth. Engng., 13 (2006), 129-163.

³S Natarajan, et al., Numerical integration over arbitrary polygons, IJNME, 80 (2009), 103-134.

⁴KY Dai, et al., An n-sided polygonal smoothed finite element method, FEAD, 43 (2007), 847-860.

⁵A Smmoriva and M Vianello, *Product Gauss cubature over polygons based on Green's integration formula, BIT Numerical* methods, 47 (2007), 441-453.

⁶Picture source: <u>http://en.wikipedia.org/wiki/Polygon</u>

D Kumar Patel, D Roy Mahapatra, Polygonal finite element based scheme to model honeycomb sandwich panels. NSF Workshop poster presentation, Columbia University, July 25-27, 2012.

Acknowledgements

S Natarajan is a recipent of NSF Travel Fellowship. S Natarajan acknowledges the financial support from the organizers of the workshop. S Natarajan would like to thank the partial support of SID PC 99205: "Multiscale modelling of next Gen Engine alloys-Fatigue".

Contact

Sundararajan Natarajan

Post-doctoral research fellow, Department of Aerospace Engineering, Indian Institute of Science, Bangalore Email: sundararajan.natarajan@gmail.com