

Pezhman Mardanpour and Dewey H. Hodges **Georgia Institute of Technology**

Air Force Research Laboratory through Bihrle Applied Research, Inc. **National Science Foundation**

Effect of Engine Placement on Aeroelastic Trim and Stability of Flying Wing Aircraft

**

*

Introduction & Theory

Flying wings

- High performance *
 - Drag reduction due to a smooth outer surface and the lack of a vertical tail \triangleright
- **Directional instability** (yawing instability) **
 - Rotation of the aircraft in the horizontal plane \succ
- Aeroelastic instability (body-freedom flutter) **
 - Symmetric first elastic bending and torsion modes coupled with the aircraft short-period mode \succ
- A high-aspect-ratio flying wing *
 - Undergo large deformation, geometrically nonlinear behavior \triangleright
 - Inaccuracy of linear aeroelastic analysis, the importance of nonlinear aeroelastic analysis \succ
 - > NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft)
- NATASHA is formulated based on Nonlinear Composite Beam Theory
- Fully Intrinsic Beam Equations (no displacement or rotation in the formulation no singularities) * $F'_B + \widetilde{K}_B F_B + f_B = \dot{P}_B + \widetilde{\Omega}_B P_B$

$$M'_{B} + \tilde{K}_{B}M_{B} + (\tilde{e}_{1} + \tilde{\gamma})F_{B} + m_{B} = \dot{H}_{B} + \tilde{\Omega}_{B}H_{B} + \tilde{V}_{B}P_{B}$$

1.5

(using classical Goland cantilevered wing)

Closed form formula, Hodges et al

Minimum Kinetic Energy & Effect of **Sweep Backward**

Speed (MPH)

all

85.5

Case Study

✤ Model

- Geometry: similar to Horten IV \geq
- > Fuselage modeled as rigid body; mass and inertial properties
- Two engines with mass and angular momentum \succ Structural and aerodynamics properties linearly varying from root to tip of the wing
- same as wing roots Concentrated mass (pilot, cargo or equipment) at the aircraft plane of

Mode

non-oscillatory yawing instability

body freedom flutter

(first bending and torsion mode coupled with aircraft short period mode)

11.14" -

34.61

□ Aeroelastic result

***** For the case of clean wing $(\eta = 0)$

Minimum Kinetic Energy

✤ In the absence of

- Engines \succ
- Aerodynamic force ($\rho = 0$)
- \blacktriangleright Gravitational force (g = 0)

✤ Kinetic energy per unit length of the aircraft symmetric free-free mode

- Lowest region at 60% of the span
- Increase in modal frequency ~ 3.5 Hz

Effect of Sweep Backward

Engines at

Frequency

0.05 (rad/s)

2.9 (Hz)

symmetry

- \blacktriangleright Root, middle and tip of the wings ($\eta = 0$, 0.5 and 1)
- > No offset from elastic axis of the wing
- ▶ B.F.F with 2.8 Hz

Effect of Engine Placement

Given States of Engine Placement

b

- Engines with known mass, moment of inertia and angular momentum
- offset from plane of symmetry of the aircraft, η
- offset from elastic axis, ξ , in the order of mean semi-chord

Engine Placement at 60% Span

- Flutter speed
 - Higher flutter speed at forward and above e.a.
 - Flutter speed is the highest at this location

with no offset

engine forward = b_{ave}

2.

2.

C Engine Placement at the Tip of the Wings ($\eta = 1$) Flutter speed

- Higher flutter speed at aft and above e.a.
- The most lowest flutter speed for entire placements
- Engines at the farthest distance from e.a.
 - o another sym. bending mode , on the stability boundary with 0.08 Hz, with no apparent regularity

