Anisotropic Voronoi diagrams from distance graphs

Bert Jüttler ${ }^{a}$, Mario Kapl ${ }^{a}$, Wolfgang Aigner ${ }^{b}$ and Franz Aurenhammer ${ }^{b}$ ${ }^{a}$ Institute of Applied Geometry, Johannes Kepler University, Linz

${ }^{b}$ Institute for Theoretical Science, University of Technology, Graz

Abstract

We present a new type of an anisotropic Voronoi diagram, constructed from a distance graph, which is a set of distances between given points. Our anisotropic Voronoi diagram is a generalization of the Euclidean Voronoi diagram, using an anisotropic metric, which approximates a given distance graph best in the sense of least squares.
The anisotropic metric is based on a 2-dimensional, continuous one-to-one embedding into \mathbb{R}^{m} for $m \geq 2$. This embedding is constructed from the distance graph via a fitting procedure which is based on the Gauss-Newton algorithm.

Mathematical Background

Voronoi diagram (cf. [1])

Let $m \in \mathbb{Z}_{+}$with $m \geq 2$ and let $\mathbf{P}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots\right\}$ with $\mathbf{p}_{i} \in \mathbb{R}^{m}$. Let D be a metric on \mathbb{R}^{m}. Then we define the Voronoi cell $V_{D}^{i}(\mathbf{P})$ of the point $\mathbf{p}_{i} \in \mathbf{P}$ as follows

$$
V_{D}^{i}(\mathbf{P})=\left\{\mathbf{p} \in \mathbb{R}^{m}: D\left(\mathbf{p}, \mathbf{p}_{i}\right)<D\left(\mathbf{p}, \mathbf{p}_{j}\right) \text { for all } j \neq i\right\} .
$$

Then the Voronoi diagram $V_{D}(\mathbf{P})$ is given by

$$
V_{D}(\mathbf{P})=\mathbb{R}^{m} \backslash\left(\cup_{i} V_{D}^{i}(\mathbf{P})\right) .
$$

We denote the Voronoi diagram using the Euclidian metric by $V(\mathbf{P})$. We call a Voronoi diagram orphan-free if each Voronoi cell is connected.

Anisotropic metric framework

Let $m \in \mathbb{Z}_{+}$with $m \geq 2$ and let $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{m}$ be a continuous one-to-one embedding with $\mathbf{x}(u, v)=\left(x_{1}(u, v), \ldots, x_{m}(u, v)\right)$. Let $d(r)$ for $r \geq 0$ be a scalar-valued function with the following properties

- $d(0)=0$,
- $d^{\prime}(r) \geq 0$ for $r \geq 0$,
- $d(r)>0$ for $r>0$, $\bullet \frac{d(r)}{r}$ for $r \geq 0$ is monotonic decreasing.

Then we define the distance $D: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ between two points $\mathbf{u}_{1}=\left(u_{1}, v_{1}\right) \in \mathbb{R}^{2}$ and $\mathbf{u}_{2}=\left(u_{2}, v_{2}\right) \in \mathbb{R}^{2}$ as follows
$D\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=d\left(\left\|\mathbf{x}\left(u_{1}, v_{1}\right)-\mathbf{x}\left(u_{2}, v_{2}\right)\right\|\right)$.

Lemma

The distance D, given by ($\mathbb{1}$), defines a metric on \mathbb{R}^{2}.

Anisotropic graph fitting

Distance graph

Let $n \in \mathbb{Z}^{+}$, let $\mathbf{I}=[0,1]^{2}$ and let $\mathbf{Q}=\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right\}$ be a set of points in \mathbf{I}. In addition, let \mathbf{Y} be a set of double indices

$$
\mathbf{Y}=\{(y, z)\} \subset\{1, \ldots, n\}^{2}
$$

satisfying $y<z$ for all $(y, z) \in \mathbf{Y}$. Then a distance graph \mathcal{G} is given by the points of \mathbf{Q} and by the edges $\mathbf{e}_{y, z}=\left(\mathbf{q}_{y}, \mathbf{q}_{z}\right)$ for $(y, z) \in \mathbf{Y}$ with assigned lengths $l_{y, z}$. The lengths $l_{y, z}$ are not the real lengths of the corresponding edges $\mathbf{e}_{y, z}$ in \mathbf{I}, rather appropriate distances between the points \mathbf{q}_{y} and \mathbf{q}_{z}, fulfilling the triangle inequality for existing triangles in the distance graph \mathcal{G}.

Goal: Construction of a continuous one-to-one embedding $\mathbf{x}(u, v)$, given by a B-spline surface of degree $\left(p_{1}, p_{2}\right)$, i.e.

$$
\mathbf{x}(u, v)=\sum_{j=0}^{n_{1}} \sum_{k=0}^{n_{2}} \mathbf{c}_{j, k} M_{j}^{p_{1}}(u) N_{k}^{p_{2}}(v)
$$

with $\mathbf{c}_{j, k} \in \mathbb{R}^{m}$, which approximates a given distance graph best in the sense of least squares. For simplicity we choose $d(r)=r$.

Construction of the embedding $\mathbf{x}(u, v)$
We compute the unknown coefficients $\mathbf{c}=\left(\mathbf{c}_{0,0}, \ldots\right)$ by solving the minimization problem

$$
\mathbf{c}=\arg \min \sum_{(y, z) \in \mathbf{Y}} \underbrace{\left\|\mathbf{x}\left(\mathbf{q}_{y}\right)-\mathbf{x}\left(\mathbf{q}_{z}\right)\right\|^{2}-l_{y, z}^{2}}_{\left.R_{y, z} \mathbf{(}\right)^{2}} .
$$

We solve this non-linear optimization problem by using the Gauss-Newton algorithm, which minimizes in each iteration step the following objective function

$$
\left(\sum_{(y, z) \in \mathbf{Y}}\left(R_{y, z}\left(\mathbf{c}^{0}\right)+\nabla R_{y, z}\left(\mathbf{c}^{0}\right)\left(\Delta \mathbf{c}-\mathbf{c}^{0}\right)\right)^{2}\right)+\omega\left\|\Delta \mathbf{c}-\mathbf{c}^{0}\right\|^{2}
$$

with respect to $\Delta \mathbf{c}$, where \mathbf{c}^{0} denotes the solution from the last step, $\Delta \mathbf{c}$ the update, $\nabla R_{y, z}$ is the row vector given by the partial derivatives of $R_{y, z}$ with respect to the control points and $\omega>0$ is the parameter for the Tikhonov regularization term.

Anisotropic Voronoi diagram computation

By using an anisotropic metric D, given by (1), we can construct an anisotropic Voronoi diagram $V_{D}(\mathbf{P})$ in \mathbb{R}^{2}.

Computation of the anisotropic Voronoi diagram $V_{D}(\mathbf{P})$

- Given the points $\mathbf{P}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots\right\}$ with $\mathbf{u}_{i} \in \mathbb{R}^{2}$, we first compute the corresponding points $\mathbf{x}_{i}=\mathbf{x}\left(\mathbf{u}_{i}\right)$
- Then we construct for the set of points $\mathbf{P}_{\mathbf{x}}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right\}$ an Euclidean Voronoi diagram $V\left(\mathbf{P}_{\mathbf{x}}\right)$ in \mathbb{R}^{m}.
- By intersecting the resulting Voronoi cells with $\mathbf{x}(u, v)$ we obtain a Voronoi diagram on $\mathbf{x}(u, v)$, which defines for the corresponding parameter values $(u, v) \in \mathbb{R}^{2}$ the anisotropic Voronoi diagram $V_{D}(\mathbf{P})$ in \mathbb{R}^{2}.

Lemma

Let $m=2$. The anisotropic Voronoi diagram $V_{D}(\mathbf{P})$ is orphan-free.

Lemma

Let $m=3$ and let $\mathbf{x}(u, v)$ be also C^{2}-smooth. If the set of points $\mathbf{P}_{\mathbf{x}}=$ $\left\{\mathbf{x}\left(\mathbf{u}_{1}\right), \mathbf{x}\left(\mathbf{u}_{2}\right), \ldots\right\}$ is a 0.18 -sample of $\mathbf{X}=\mathbf{x}\left(\mathbb{R}^{2}\right)$, then the resulting anisotropic Voronoi diagram $V_{D}(\mathbf{P})$ is orphan-free.

References

[1] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Handbook of computational geometry, pages 201-290. NorthHolland, Amsterdam, 2000,

