Anisotropic Voronoi diagrams from distance graphs

Bert Jüttler^{*a*}, Mario Kapl^{*a*}, Wolfgang Aigner^{*b*} and Franz Aurenhammer^{*b*} ^{*a*}Institute of Applied Geometry, Johannes Kepler University, Linz ^bInstitute for Theoretical Science, University of Technology, Graz

Abstract

We present a new type of an anisotropic Voronoi diagram, constructed from a distance graph, which is a set of distances between given points. Our anisotropic Voronoi diagram is a generalization of the Euclidean Voronoi diagram, using an anisotropic metric, which approximates a given distance graph best in the sense of least squares.

The anisotropic metric is based on a 2-dimensional, continuous one-to-one embedding into \mathbb{R}^m for $m \geq 2$. This embedding is constructed from the distance graph via a fitting procedure which is based on the Gauss-Newton algorithm.

Mathematical Background

Voronoi diagram (cf. [1])

Let $m \in \mathbb{Z}_+$ with $m \geq 2$ and let $\mathbf{P} = {\mathbf{p}_1, \mathbf{p}_2, \ldots}$ with $\mathbf{p}_i \in \mathbb{R}^m$. Let D be a metric on \mathbb{R}^m . Then we define the Voronoi cell $V_D^i(\mathbf{P})$ of the point $\mathbf{p}_i \in \mathbf{P}$ as follows

Construction of the embedding $\mathbf{x}(u, v)$ We compute the unknown coefficients $\mathbf{c} = (\mathbf{c}_{0,0}, \ldots)$ by solving the minimization problem

$$\mathbf{c} = \arg\min\sum_{(y,z)\in\mathbf{Y}} \underbrace{||\mathbf{x}(\mathbf{q}_y) - \mathbf{x}(\mathbf{q}_z)||^2 - l_{y,z}^2}_{R_{y,z}(\mathbf{c})^2}.$$

We solve this non-linear optimization problem by using the Gauss-Newton algorithm, which minimizes in each iteration step the following objective function

$$\left(\sum_{(y,z)\in\mathbf{Y}} (R_{y,z}(\mathbf{c}^0) + \nabla R_{y,z}(\mathbf{c}^0)(\Delta \mathbf{c} - \mathbf{c}^0))^2\right) + \omega ||\Delta \mathbf{c} - \mathbf{c}^0||^2$$

with respect to Δc , where c^0 denotes the solution from the last step, Δc the update, $\nabla R_{y,z}$ is the row vector given by the partial derivatives of $R_{y,z}$ with respect to the control points and $\omega > 0$ is the parameter for the Tikhonov regularization term.

Anisotropic Voronoi diagram computation

 $V_D^i(\mathbf{P}) = \{\mathbf{p} \in \mathbb{R}^m : D(\mathbf{p}, \mathbf{p}_i) < D(\mathbf{p}, \mathbf{p}_i) \text{ for all } j \neq i\}.$

Then the **Voronoi diagram** $V_D(\mathbf{P})$ is given by

 $V_D(\mathbf{P}) = \mathbb{R}^m \setminus (\bigcup_i V_D^i(\mathbf{P})).$

We denote the Voronoi diagram using the Euclidian metric by $V(\mathbf{P})$. We call a Voronoi diagram orphan-free if each Voronoi cell is connected.

Anisotropic metric framework

Let $m \in \mathbb{Z}_+$ with $m \ge 2$ and let $\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^m$ be a continuous one-to-one embedding with $\mathbf{x}(u, v) = (x_1(u, v), \dots, x_m(u, v))$. Let d(r) for $r \ge 0$ be a scalar-valued function with the following properties

• d(0) = 0, • $d'(r) \ge 0$ for $r \ge 0$, • d(r) > 0 for r > 0, • $\frac{d(r)}{r}$ for $r \ge 0$ is monotonic decreasing.

Then we define the distance $D: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ between two points $\mathbf{u}_1 = (u_1, v_1) \in \mathbb{R}^2$ and $\mathbf{u}_2 = (u_2, v_2) \in \mathbb{R}^2$ as follows

 $D(\mathbf{u}_1, \mathbf{u}_2) = d(||\mathbf{x}(u_1, v_1) - \mathbf{x}(u_2, v_2)||).$

Lemma

The distance D, given by (1), defines a metric on \mathbb{R}^2 .

By using an anisotropic metric D, given by (1), we can construct an anisotropic Voronoi diagram $V_D(\mathbf{P})$ in \mathbb{R}^2 .

Computation of the anisotropic Voronoi diagram $V_D(\mathbf{P})$

- ullet Given the points $\mathbf{P} = \{\mathbf{u}_1, \mathbf{u}_2, \ldots\}$ with $\mathbf{u}_i \in \mathbb{R}^2$, we first compute the corresponding points $\mathbf{x}_i = \mathbf{x}(\mathbf{u}_i)$.
- Then we construct for the set of points $\mathbf{P}_{\mathbf{x}} = \{\mathbf{x}_1, \mathbf{x}_2, \ldots\}$ an Euclidean Voronoi diagram $V(\mathbf{P}_{\mathbf{x}})$ in \mathbb{R}^m .
- By intersecting the resulting Voronoi cells with $\mathbf{x}(u, v)$ we obtain a Voronoi diagram on $\mathbf{x}(u, v)$, which defines for the corresponding parameter values $(u,v) \in \mathbb{R}^2$ the anisotropic Voronoi diagram $V_D(\mathbf{P})$ in \mathbb{R}^2 .

Lemma

Let m = 2. The anisotropic Voronoi diagram $V_D(\mathbf{P})$ is orphan-free.

Lemma

(1)

Let m = 3 and let $\mathbf{x}(u, v)$ be also C^2 -smooth. If the set of points $\mathbf{P}_{\mathbf{x}} = \mathbf{x}$ $\{\mathbf{x}(\mathbf{u}_1), \mathbf{x}(\mathbf{u}_2), \ldots\}$ is a 0.18-sample of $\mathbf{X} = \mathbf{x}(\mathbb{R}^2)$, then the resulting anisotropic Voronoi diagram $V_D(\mathbf{P})$ is orphan-free.

Examples 6

Anisotropic graph fitting

Distance graph

Let $n \in \mathbb{Z}^+$, let $\mathbf{I} = [0, 1]^2$ and let $\mathbf{Q} = \{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ be a set of points in \mathbf{I} . In addition, let \mathbf{Y} be a set of double indices

 $\mathbf{Y} = \{(y, z)\} \subset \{1, \dots, n\}^2,$

satisfying y < z for all $(y, z) \in \mathbf{Y}$. Then a **distance graph** \mathcal{G} is given by the points of Q and by the edges $\mathbf{e}_{y,z} = (\mathbf{q}_y, \mathbf{q}_z)$ for $(y, z) \in \mathbf{Y}$ with assigned lengths $l_{u,z}$. The lengths $l_{u,z}$ are not the real lengths of the corresponding edges $e_{u,z}$ in I, rather appropriate distances between the points q_u and q_z , fulfilling the triangle inequality for existing triangles in the distance graph \mathcal{G} .

Goal: Construction of a continuous one-to-one embedding $\mathbf{x}(u, v)$, given by a B-spline surface of degree (p_1, p_2) , i.e.

 $\mathbf{x}(u,v) = \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} \mathbf{c}_{j,k} M_j^{p_1}(u) N_k^{p_2}(v)$

with $\mathbf{c}_{i,k} \in \mathbb{R}^m$, which approximates a given distance graph best in the sense of least squares. For simplicity we choose d(r) = r.

Examples of distance graphs.

Resulting embeddings into \mathbb{R}^3

Resulting Voronoi diagrams for a set of points P

References

[1] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Handbook of computational geometry, pages 201–290. North-Holland, Amsterdam, 2000.