Connection between DEC and FEEC

Kaushik Kalyanaraman and Anil N. Hirani
Department of Computer Science, University of Illinois, Urbana-Champaign

Basic Idea

- Lowest order FEEC compared with DEC
- Mass matrix in FEEC replaced by DEC Hodge star
- Experiments with scalar and vector Laplacians, and harmonic forms

Finite Element Exterior Calculus

L^{2} de Rham Complex Examples

Poisson's Equation

Mixed formulation: Given f, find (σ, u, p) such that:

$$
\begin{gathered}
\sigma=\delta u, \quad \mathrm{~d} \sigma+\delta \mathrm{d} u=f-p \text { in } \Omega, \\
\operatorname{tr} * u=0, \quad \operatorname{tr} * \mathrm{~d} u=0, \text { on } \partial \Omega \\
u \perp \text { harmonics } .
\end{gathered}
$$

Weak mixed formulation:

$$
\begin{aligned}
\langle\sigma, \tau\rangle-\langle\mathrm{d} \tau, u\rangle & =0, \\
\langle\mathrm{~d} \sigma, v\rangle+\langle\mathrm{d} u, \mathrm{~d} v\rangle+\langle v, p\rangle & =0, \\
\langle u, q\rangle & =0,
\end{aligned}
$$

where q is in discrete harmonics.

FEM Matrix Form

Find $\left(\sigma_{c}, u_{c}\right)$ such that:

$$
\left[\begin{array}{cc}
* & -\mathrm{d}^{T} * \\
* \mathrm{~d} & \mathrm{~d}^{T} * \mathrm{~d}
\end{array}\right]\left[\begin{array}{l}
\sigma_{c} \\
u_{c}
\end{array}\right]=\left[\begin{array}{c}
0 \\
*\left(f_{c}-p_{c}\right)
\end{array}\right]
$$

$$
\text { subject to: } Q^{T} * u_{c}=0
$$

where p_{c} is the harmonic part of f and Q is a basis for discrete harmonics.

Discrete Exterior Calculus

Primal-Dual Hodge
$*_{p}$ is a diagonal matrix with $*_{p}(i, i)=\operatorname{vol} \star \sigma_{i} /$ vol σ_{i} where σ_{i} is a p-simplex and $\star \sigma_{i}$ is its dual.

PyDEC Software

Nathan Bell and Anil N. Hirani. PyDEC: Algorithms and software for Discretization of Exterior Calculus. ACM Transactions on Mathematical Software, (To appear), 2012.

$$
\begin{aligned}
& \text { n=3: } 0 \longrightarrow H^{1} \xrightarrow{\text { grad }} H \text { (curl) } \xrightarrow{\text { curl }} H(\text { div }) \xrightarrow{\text { div }} L^{2} \longrightarrow 0 \\
& \text { n=3: } 0 \longleftarrow L^{2} \underset{\text {-div }}{\longleftarrow} \dot{H}(\text { div }) \underset{\text { curl }}{\longleftarrow} \dot{H}(\text { curl }) \underset{- \text { grad }}{H^{1}} \check{H}^{1} \longleftarrow 0 \\
& n=2: \begin{array}{l}
0 \longrightarrow H^{1} \xrightarrow{\text { grad }} H(\text { rot }) \underset{\text { ret }}{\text { rot }} L^{2} \longrightarrow 0 \\
0 \longleftarrow L^{2} \leftrightarrows(\text { div } \\
\\
\\
\\
\text { curl }
\end{array}
\end{aligned}
$$

Experiments

Scalar Laplacian with Dirichlet Boundary Condition

Scalar Laplacian with Neumann Boundary Condition

Vector Laplacian with Dirichlet and Neumann B.C.

Harmonic Forms

