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Introduction

This work deals with developing optimal iterative solvers
for linear systems arising from XFEM.

I XFEM is an attractive approach to model
discontinuities e.g. fracture

I Smooth basis functions are enriched with appropriate
discontinuities

I AMG is an optimal solver/preconditioner for elliptic
PDEs discretized with FEM

I However, AMG loses its optimality for XFEM

I We present approaches to adapt AMG/XFEM to
retain convergence properties

I 3D cracks, material nonlinearity and parallel
implementation are considered.

Algebraic Multigrid

I Iterative smoothers can rapidly damp high-frequency
errors but are much less effective for low-frequency
“smooth” errors.

I Multigrid uses a hierarchy of discretizations to
attenuate errors across a wide spectrum of frequencies

I Algebraic Multigrid builds the hierarchy and
grid-transfer operators from the graph of stiffness A

Figure: Multigrid V-cycle

Algebraic Multigrid for XFEM

Why does not “out-of-the-box” AMG work for
XFEM ?

I XFEM matrix graph patterns do not follow cracks
=⇒ non-conforming AMG aggregates.

I Coarse representation of discontinuities in AMG
hierarchy not accurate.

I Additional low energy modes from fractured domains.

I Bad conditioning arising from tip singularity functions.

I XFEM block size is variable =⇒ non-standard AMG.
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Figure: CG convergence

How to improve AMG performance for XFEM?
I Schur complements[1]: XFEM enrichments may

condensed out.

I Domain Decomposition[2]: Geometrically partition
domain to “cracked” and “healthy”

I Phantom node representation[3]: XFEM basis is
transformed to decouple stiffness across
discontinuities.

The last method is extended to 3D + nonlinear
materials. MPI parallel implementation with parFEAP.
Linked with Sandia’s Trilinos framework.

Phantom node representation

Phantom node representation decouples the stiffness
matrix terms across the crack resulting in conforming
multigrid aggregates.

I Phantom node representation:

up =
∑

NIuI +NIΨIauIa +NIΨIbuIb

I Phantom basis functions:

Ψα =

{
1 in Ωα

0 otherwise

I Original XFEM:

u(x) =
nel∑
i=1

Niui +
nel∑
i=1

NiΨai

I Modified shifted enrichment XFEM:

u(x) =
nel∑
i=1

Niui +
nel∑
i=1

Ni

1

2
(|Ψ−Ψi|) ai

I The above enrichment form allows for an easy
transformation from XFEM to phantom-node form.

Linear system transformation

A simple transformation exists for modified XFEM to
phantom-node representation:(

GTAG
)

(G−1u) = (GTf)

=⇒ Āū = f̄

I The transformation matrix has a block-sparse structure
- it is an identity matrix with off-diagonal “-1” terms
corresponding to the Heaviside enrichments.
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I The original nullspace vectors also are represented in

the transformed space:

N̄Θ = G−1NΘ

I The original solution may be obtained from a simple
back-transformation:

u = Gū

Figure: (a) G sparsity (b) GTAG (c) AMG aggregates in 2D

Numerical Results

Linear Elastic Brittle Fracture:

I AMG used as preconditioner to CG. Table shows number of
iterations and time to reduce residual norm by a magnitude of
1e− 7.

Case Direct CG-brute AMG XAMG
time(s) nits time(s) nits time(s) nits time(s)

1 0.11 - - 58 0.15 25 0.07
2 0.13 - - 80 0.25 27 0.09
3 4.16 51 2.49 50 0.58 22 0.29
4 5.44 192 4.17 69 0.86 29 0.42
5 77.76 102 11.88 70 3.04 23 1.17
6 100.05 191 17.03 101 4.82 27 1.49
7 292.88 77 25.43 57 4.46 25 2.23
8 345.65 78 25.90 64 4.99 26 2.32
9 313.90 - - 138 12.25 35 3.45

Fracture in Elasto-Plastic Material:

I In this case, each solve involves multiple sub-iterations (plits) to
converge stress to yield-surface.

Load CG-brute AMG XAMG
step plits cgits time plits cgits time plits cgits time

1 3 501 7.20 2 77 2.26 2 31 2.23
2 3 501 14.17 2 77 4.30 2 31 4.20
3 3 501 21.15 2 77 6.33 2 31 6.15
4 3 501 28.13 2 77 8.36 2 31 8.11
5 4 1006 39.07 4 153 12.34 4 59 11.94
6 10 1445 60.96 10 475 22.90 10 183 21.66
7 10 1767 84.53 10 499 33.64 10 192 31.44
8 12 3582 120.17 12 665 47.01 12 251 43.35
9 24 3181 171.29 24 774 69.52 23 306 64.70

10 26 3654 227.72 26 921 94.57 26 357 88.93

Summary & Conclusions

I AMG applied to transformed XFEM system works
extremely well.

I This method does not require invasive modifications of
AMG.

I Transformation involves additional expense, however
relatively low because of simple block sparsity
structure of G.

I Sophisticated implementations need not explicitly
compute and store G, computations could be done
on-the-fly.
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