Upscaling for the Laplace problem using a Discontinuous Galerkin Method THEOPHILE CHAUMONT-FRELET (INSA Rouen) in collaboration with H. Barucq (INRIA), C. Gout (INSA), J. Diaz (INRIA), V. Peron (INRIA)

Problem

We consider the Laplace problem on the open unit square $\Omega = (0, 1)^2$.

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Meshes

We define two meshes on Ω : a coarse mesh \mathcal{T}_H and a fine mesh \mathcal{T}_h . We use a $N \times N$ regular cartesian mesh of the unit square.

$$\mathcal{T}_{H} = \left\{ K^{i} \right\}_{i=1}^{N^{2}}, \quad \bigcup_{i=1}^{N^{2}} K^{i} = \Omega$$

Each coarse cell K^i is subdivided with a $M \times M$ regular cartesian submesh.

$$\mathcal{T}_{h}^{i} = \left\{ K_{j}^{i} \right\}_{j=1}^{M^{2}}, \quad \bigcup_{j=1}^{M^{2}} K_{j}^{i} = K^{i}$$

The fine mesh is the reunion of all submeshes.

$$\mathcal{T}_h = \bigcup_{i=1}^{N^2} \mathcal{T}_h^i$$

Polynomial spaces

We define four polynomial spaces. The coarse and the fine polynomial spaces V_H and V_h are classical Discontinuous Galerkin discretisation spaces.

$$V_H = \left\{ v \in L^2(\Omega) \mid v|_{K^i} \in \mathbb{Q}_1(K^i) \; \forall K^i \in \mathcal{T}_H \right\}$$
$$V_h = \left\{ v \in L^2(\Omega) \mid v|_{K^i_j} \in \mathbb{Q}_1(K^i_j) \; \forall K^i_j \in \mathcal{T}_h \right\}$$

The space $V_{H,h}^i$ contains functions of V_h with support in the coarse cell K^i satisfying a Dirichlet boundary condition on ∂K^i .

$$V_{H,h}^{i} = \left\{ v \in V_{h} \mid \text{supp } v \subset K^{i} \text{ and } v |_{\partial K^{i}} = 0 \right\}$$

We set $V_{H,h} = \bigoplus_{i=1}^{N^2} V_{H,h}^i$. The upscaling discretisation space is then defined as the direct sum $V_{ups} = V_H \oplus V_{H,h}$. The following inclusions hold

 $V_H \subset V_{ups} \subset V_h.$

Discontinuous Galerkin method

We note \mathcal{F}_h^{int} and \mathcal{F}_h^{ext} the set of internal and external edges of the fine mesh \mathcal{T}_h . We also note $\mathcal{F}_h =$ $\mathcal{F}_h^{int} \cup \mathcal{F}_h^{ext}$ the set of all edges. If $u \in V_h$ and $v \in (V_h)^2$ are scalar and vector functions, the jump of u and the mean of v through an internal edge $e = \partial K \cap \partial J \in \mathcal{F}_h^{int}$ are defined as

$$[[u]]_e = u_K|_e - u_J|_e, \quad \{\{v\}\}_e =$$

For an external edge $e = \partial K \cap \partial \Omega \in F_h^{ext}$, we set $[[u]]_e = u_K|_e$ and $\{\{v\}\} = v_K|_e \cdot n$. We use the Internal Penalty Discontinuous Galerkin bilinear form defined by Arnold et al. (2002), for $u, v \in V_h$ as

$$a_h(u,v) = \sum_{K\in\mathcal{T}_h} \int_K \nabla u \cdot \nabla v dx - \sum_{e\in\mathcal{F}_h} \int_e [[u]] \{\{\nabla v\}\} ds - \sum_{e\in\mathcal{F}_h} \int_e \{\{\nabla u\}\} [[v]] ds + \sum_{e\in\mathcal{F}_h} \int_e \gamma [[u]] [[v]] ds.$$

We are lead to the following variational problem. Find $u \in V_{ups}$ satisfying

$$a_h(u,v) = L(v) = \int_{\Omega} fv dx$$

Upscaling algorithm

Following the idea presented in Arbogast et al. (1998), we seek the solution $u \in V_{ups}$ of (2) under the form $u = \bar{u} + \hat{u}$ with $\bar{u} \in V_H$ and $\hat{u} \in V_{H,h}$. Then, the variational formulation (2) is equivalent

$$\begin{cases} a_h(\bar{u} + \hat{u}, \bar{v}) = L(\bar{v}) & \forall \bar{v} \in V_H \\ a_h(\bar{u} + \hat{u}, \hat{v}) = L(\hat{v}) & \forall \hat{v} \in V_{H,h}. \end{cases}$$

$$a_h(\hat{u}, \hat{v}) = L(\hat{v}) - a_h(\bar{u}, \hat{v}) \quad \forall \hat{v} \in V_{H,h}$$

We have $\hat{u} = \sum_{i=1}^{N^2} \hat{u}^i$ with $\hat{u}^i \in V^i_{H,h}$. We show that $a_h(\hat{\phi}^i, \hat{\phi}^j) = 0$ if $(\hat{\phi}^i, \hat{\phi}^j) \in V_{H,h}^i \times V_{H,h}^j$ with $i \neq j$, therefore we have

$$a_h(\hat{u}^i, \hat{v}^i) = L(\hat{v}^i) - a_h(\bar{u}, \hat{v}^i) \quad \forall \hat{v}^i \in V_{H,h}^i$$

This equation provides us $\hat{u}^i(\bar{u})$ and then $\hat{u}(\bar{u})$ in terms of \bar{u} . We eventually obtain the upscaling system

 $\begin{aligned} a_h(\bar{u} + \hat{u}(\bar{u}), \bar{v}) &= L(\bar{v}) & \forall \bar{v} \in V_H \\ a_h(\hat{u}^i, \hat{v}^i) &= L(\hat{v}^i) - a_h(\bar{u}, \hat{v}^i) & \forall \hat{v}^i \in V_{H,h}^i \end{aligned}$

Reference

H. Barucq, T. Chaumont-Frelet, J. Diaz, V. Peron. Upscaling for the Laplace problem using a Discontinuous Galerkin Method. J. of Computational and Appliad Mathematics, to appear 2012.

Matricial form

obtain

 (K_c)

$$\frac{v_K|_e + v_J|_e}{2} \cdot n_K.$$

$$\forall v \in V_{ups}.$$

Using the notation presented in Minkoff et al. (2006), we note K the stiffness matrix. The matricial form of the variational problem (2) is KU = F. We apply the decomposition

$$\begin{pmatrix} K_{cc} & K_{cf} \\ K_{cf}^T & K_{ff} \end{pmatrix} \begin{pmatrix} U_c \\ U_f \end{pmatrix} = \begin{pmatrix} F_c \\ F_f \end{pmatrix}$$

where K_{cc} and K_{ff} are the stiffness matrix on the spaces V_H and $V_{H,h}$. Using a Schur complement, we

$$c - K_{cf}^{T} K_{ff}^{-1} K_{cf} U_{c} = F_{c} - K_{cf}^{T} K_{ff}^{-1} F_{f}$$
$$U_{f} = K_{ff}^{-1} (F_{f} - K_{cf} U_{c})$$

The matrix K_{ff} is block diagonal. The diagonal blocks are the matrices K_{ff}^i $(i = [|1, N^2|])$. Each block K_{ff}^{i} is associated with the space $V_{H,h}^{i}$.

Coarse part \bar{u}

(2)

Fine part \hat{u}

Slice at Y = 0.48

