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Research Objectives

Conclusions
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To apply topology optimization to the field of structural engineering through high-rise building design
Utilize manufacturing and layout constraints to make results more meaningful
Address the importance of achieving a balance between engineering and architecture for efficient, sustainable design

Historical examples of structures by architects with strong 
and innovative engineering concepts
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Goal: overcome dichotomy between architectural aesthetics 
and engineering efficiency using topology optimization

Introduction: Engineering and Architecture

[1-3] Multiple websites
Antonio Gaudi¹ Buckminster Fuller² Felix Candela³
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Topology optimization using barycentric-elements can be a valuable tool to bridge 
the gap between engineering and architecture in the design industry. Moreover, re-
sulting designs will be more efficient and sustainable, by optimizing the material 
consumption.

Optimal design problem:

Example: Minimum Compliance

Basic Topology Optimization Framework
Other Criteria:

Eigenmodes
Deflection (P-Δ)
Buckling load
Natural frequency
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Polygonal elements in nature:
Bio-Inspired Design: Zendai Competition (China)

Picture of physical model using topology optimization results (courtesy of SOM) and resemblance to spider websClockwise: Giant’s Causeway (Ireland), honeycomb, 
giraffe’s skin, dragonfly wings [Multiple websites]

Polygonal Finite Elements

Application of Barycentric Elements: 
Polygonal Meshes for Design

3D Voronoi mesh (CVT):

After Lloyd’s AlgorithmInitial Voronoi Mesh

Laplace shape functions using natural neighbors:

Polygonal shape function

 C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes. “Polygonal finite elements for topology optimiza-
tion: A unifying paradigm.” IJNME. Vol 82, No. 6, pp. 671-698, 2010.
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Figure 8. Sparsity pattern for the stiffness of polygonal mesh with 500 elements and 1002 nodes before
RCM resequencing (left) and after resequencing (right). The bandwidth is reduced from 966 to 75.

Figure 9. For a convex polygon, every interior point is a natural neighbor to all the vertices. The geometric
quantities si and hi used to define the Laplace shape functions are shown here.

Furthermore, it can be shown that these functions are linearly precise:

∑
i∈I

xi�i (x)=x (8)

In this expression, xi represents the location of node qi . This property along with constant precision
(partition of unity) ensures the convergence of the Galerkin method for second-order partial
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