Università Faculty Blended barycentric coordinates of Informatics della Svizzera **Dmitry Anisimov** italiana

Introduction

Given an arbitrary polygon P with vertices $v_1, ..., v_n$, we can write any point $v \in \mathbb{R}^2$ as an affine combination of these vertices

$$v = \sum_{i=1}^{n} b_i(v)v_i \qquad \text{with} \qquad \sum_{i=1}^{n} b_i(v) = 1$$

Task

To obtain barycentric coordinates that are well-defined everywhere, have at least C^1 - continuity at the vertices and have a simple closed form.

Blended WP and MV coordinates

The weights $b_i(v)$ are the *barycentric coordinates* of v.

Types of coordinates

We can define three different types of coordinates by specifying the weight functions $w_i = d_{i-1}A_{i-2} - d_iB_i + d_{i+1}A_{i+1}$

and choosing functions d_i to be

$$d_{i}^{WP} = \frac{1}{A_{i-1}A_{i}}$$
 $d_{i}^{MV} = \frac{r_{i}}{A_{i-1}A_{i}}$

where
$$q_i = r_i + r_{i+1} - ||v_{i+1} - v_i||$$
 and

Finally by normalizing weight functions w_i as follows

$$b_i = \frac{W_i}{W}, \qquad W = \sum_{i=1}^n W_i$$

we get coordinates b_i .

To reach the goal we can blend Wachspress and Mean Value coordinates. They have all necessary properties except C^1 - continuity if three or more vertices are collinear. $b_{i}^{BL} = \mu b_{i}^{WP} + (1 - \mu) b_{i}^{MV}$

$$\mu = \frac{dZ^2}{dZ^2 + dV^2}$$

where

$$dZ = dist(v, Z) = \frac{W^{WP}}{\nabla W^{WP}}, \quad Z = \left\{ v : W^{WP}(v) = 0 \right\}$$

Then

Shared properties

- 1. Affine precision
- 2. Partition of unity
- 3. Lagrange property
- 4. Linearity along edges
- 5. Simple closed form

Non shared properties

Blend function μ

Blended basis function

Type of coordinates	Poles	Positivity inside convex polygons	Continuity at the vertices	Invariance
$b_i(v)$	W(v) = 0	$b_i(v) \ge 0$	C^m	If $P' = \varphi(P)$ then $b_i(v) = b'_i(\varphi(v))$
Wachspress	Yes	Yes	C^{1^*}	φ - affine
Mean Value	No	Yes	C^0	φ - similarity
Blended WP and MV	No	Yes	$C^{1^{**}}$	φ - similarity
Metric	No	No	C^1	φ - similarity
Blended MV and Metric***	No	Yes	C^1	φ - similarity

* Only for convex polygons. For concave polygons they are discontinuous at the zero set of W.

** These coordinates are C^1 continuous only if P does not contain 3 or more collinear vertices. *** Future work.

Future work

References

By blending Mean Value and Metric coordinates we can avoid the problem with collinear vertices.

[1] K. Hormann, M. S. Floater: Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics, 25(4):1424-1441, 2006.

[2] N. Sukumar, E. A. Malsch: Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering, 13(1):129-163, 2006.

[3] G. Taubin: Distance approximations for rasterizing implicit curves. ACM Transactions on Graphics, 13(1):3-42, 1994.