
�������� �	
�������	
� �
� ����
� �	�

�
��
������� ��
������ �	��	����	
�� �����������

����� �� 	
������
�

�������� �� �
��
�

��
�
 ��������
�

This material is based upon work supported by the National Science Foundation under Grant No. CCR-9701973. This effort
was also sponsored by the Defense Advanced Research Projects Agency, and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-97-2-0021, and by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant number F49620-98-1-0061. This work was also supported in part by the Air
Force Material Command, Rome Laboratory, and the Advanced Research Projects Agency under Contract Number F30602-94-
C-0253. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Air Force Research Laboratory, the Air Force Office of Scientific Research or the U.S.
Government.

�
����� �� 	
�������
 � �������� ����
��

�
�������� �� ������
�� 	���
�

	���
�� �� ������ !�"

#��$���������#�

�
����� �� �������� ����
��

�
�������� �� �����#�

%���#��� �& '((��(! (

)�*���+
�,-$��������#���#�

� �������	�
��

A common architectural style for distributed, loosely-coupled, heterogeneous software systems is a structure based
on event generation, observation and notification. A notable characteristic of an architecture based on events is
that interaction among architectural components occurs asynchronously, thereby simplifying the composition of
autonomous, independently-executing components that may be written in different programming languages and
executing on varied hardware platforms.

There is increasing interest in deploying these kinds of distributed systems across wide-area networks such as
the Internet. For instance, workflow systems for multi-national corporations, multi-site/multi-organization
software development, and real-time investment analysis across world financial markets are just a few of the many
applications that lend themselves to deployment on an Internet scale. However, deployment of such systems at the
scale of the Internet imposes new challenges that are not met by existing technology.

In particular, the technology to support an event-based architectural style is well-developed for local-area
networks (e.g., Field’s Msg [7], SoftBench’s BMS [1], ToolTalk [3] and Yeast [4]), but not for wide-area
networks. One of these systems, Yeast, was built and studied by the first author while he was on the research staff
at AT&T Bell Laboratories. Yeast is a general-purpose platform for building distributed applications in an event-
based architectural style, and it supports event-based interaction quite naturally within local-area networks.
However, its centralized-server architecture limits its scalability to wide-area networks, as does its limited support
with respect to certain issues that are more important for wide-area networks than for local-area networks, such as
naming and security. The experience with Yeast clearly demonstrates that these existing technologies are ill-suited
to networks on the scale of the Internet, and that new technologies are needed to support the construction of large-
scale, event-based software systems for the Internet.

We have been studying the problem of designing an Internet-scale event observation and notification facility
that can serve as a platform for building wide-area distributed systems according to an event-based architectural
style [8]. In this paper we briefly outline our achievements to date. In Section 2, we define more precisely what
we mean by the notion of “Internet scale”. In Section 3, we describe our design framework for an event
observation and notification facility; this framework identifies a spectrum of design choices, which are organized
according to seven models. In Section 4 we evaluate one existing technology, the CORBA Event Service, with
respect to this design framework. We conclude in Section 5 with a discussion of our current work, which focuses
on the design and analysis of architectures and algorithms for Internet-scale event notification.

� ����
���� �� �������� �	���

The primary distinguishing characteristics of an Internet-scale computer network are the vast numbers of
computers in the network and the vast numbers of users of these computers. An important related characteristic is

the worldwide geographical dispersion of the computers and their users. As a consequence of geographical
dispersion, it becomes necessary to address relativistic issues in multiple observations of the same event. For
instance, observers of two events occurring on opposite sides of the world may observe two different orders for
those events. Additionally, an application requesting a notification about an event at roughly the same time as, but
prior to, the occurrence of the event of interest may or may not be notified about the event.

At the scale of the Internet, the vast numbers of geographically-dispersed computers and users also have a
much greater degree of autonomy than in local-area networks. Because of this autonomy, issues of resource usage
are of greater concern, such as accounting for resource usage for observation and notification computations,
placing limits on resource usage, and preventing misuse of resources or intrusiveness on others’ usage of resources.

Related to the issue of autonomy is the security of the computers and users. Mechanisms and policies must be
established that will allow Internet-scale event observation and notification to take place in a manner that is
compatible with security mechanisms such as firewalls, and is consistent with the need to enforce access
permissions and other protection mechanisms.

Finally, concerns related to quality of service obtain much greater visibility at the scale of the Internet.
Because of network latencies, outages and other dynamically-varying network phenomena, an Internet-scale event
observation and notification facility will have to cope with decreased reliability of observations and notifications, as
well as decreased stability of the entities to be observed and notified.

 As a consequence of Internet scale, it would be infeasible to employ many kinds of low-level mechanisms that
are used to support event observation and notification in a local-area network, such as broadcast mechanisms and
vector clocks. Broadcast mechanisms indiscriminately communicate event occurrences and notifications to all
machines on a local network. Vector clocks involve piggybacking a vector timestamp onto each message
exchanged between the communicating processes of an application, in order to aid the identification of causally-
related events; the size of the timestamp is linear in the total number of processes in the application.

� ���
�� ���������

Implicit in event observation and notification is a timeline of basic activities, which occur in sequence:

1. determination of which events will be made observable;

2. expression of interest in an event or pattern of events;

3. occurrence of each event;

4. observation of each event that occurred;

5. relation of the observation to other observations to recognize the event pattern of interest;

6. notification of an application that its pattern of interest has occurred;

7. receipt of the notification by the application; and

8. response of the application to the notification.

To account for these activities, our design framework for Internet-scale observation and notification is organized
around the following seven models, each of which focuses on a different domain of concern in the design:

1. an object model, which characterizes the components that generate events and the components that
receive notifications about events;

2. an event model, which provides a precise characterization of the phenomenon of an event;

3. a naming model, which defines how components refer to other components and the events generated by
other components, for the purpose of expressing interest in event notifications;

4. an observation model, which defines the mechanisms by which event occurrences are observed and
related;

5. a time model, which concerns the temporal and causal relationships between events and notifications;

6. a notification model, which defines the mechanisms that components use to express interest in and receive
notifications; and

7. a resource model, which defines where in the Internet the observation and notification computations are
located, and how resources for the computations are allocated and accounted.

Each of these models has a number of possible realizations, which together define a seven-dimensional design
space for Internet-scale event observation and notification facilities. Of course, these dimensions are not

completely independent, because the models are interrelated in various ways. Because of these interrelationships,
only a proper subset of the points in this space will correspond to adequate designs for Internet-scale facilities.

� �������
�� �� ��� !"#� ����� ����
	�

The Common Object Request Broker Architecture (CORBA) is a general-purpose, Internet-scale software
architecture for component-based construction of distributed systems using the object-oriented paradigm [5,9].
The CORBA specification includes specifications for a number of Common Object Services, one of which is the
CORBA Event Service [6]. The CORBA Event Service defines a set of interfaces that provide a way for objects to
synchronously communicate event messages to each other. The interfaces support a pull style of communication
(in which the consumer requests event messages from the supplier of the message) and a push style of
communication (in which the supplier initiates the communication). Additional interfaces define channels, which
act as buffers and multicast distribution points between suppliers and consumers. The TINA Notification Service
is a similar service defined on top of the CORBA Event Service [10].

The CORBA Event Service lacks support for many aspects of event observation and notification defined in
Section 3. The object model is the object model of CORBA, and an event is simply a message that one object
communicates to another object as a parameter of some interface method. The specification of the CORBA Event
Service does not define the content of an event message, so objects must be pre-programmed with “knowledge”
about the particular event message structure that is to be shared between communicating suppliers and consumers.
Given this view of events, a naming mechanism is unnecessary, as is an observation mechanism, and any attempt
to identify patterns of events is the responsibility of the consumers of event messages. Timestamps can be
associated with events, but the meaning of such timestamps is at the discretion of the objects exchanging the event
messages. Being a message, an event is its own notification. Computational and other resource-related aspects of
events are subsumed by those of CORBA as a whole.

In summary, an event as defined by the CORBA Event Service is nothing more than a parameter in a standard
CORBA method invocation, with options available for multicasting and buffering message parameters. The
application programmer wanting to use this service is still faced with the problem of how to locate events of
interest, how to advertise new kinds of events, how to match patterns of events, and how to create and maintain
networks of event channels to perform matching. Thus, the CORBA Event Service provides only a small subset of
the capabilities needed in an Internet-scale event observation and notification facility.

$ ������ %���

We have begun to design an improved event observation and notification facility. It is clear, based on our
experience, that simply trying to scale a design intended for a local-area network is a flawed approach. The first
step is therefore to formulate new architectures and related algorithms for event notification that are scalable to the
Internet. Starting by adapting known Internet-scale architectures, such as that of Network News and the Domain
Name Service, we simulate event observation and notification performance behavior in a variety of wide-area
network scenarios. To date, four different architectures have been studied together with nine algorithms that
implement both the recognition of event sequence patterns and the delivery of event notifications. The simulation
is carried out by means of a network simulator that we have implemented. Our simulator allows us to configure a
network model, and to define the event facility components, event generators, and event consumers. The simulator
also accounts for computation and network resource usage on a per-host, per-process, and global-network basis.

Our initial target for the event observation and notification facility is the Software Dock [2], which is an agent-
based system we are developing for Internet-scale distributed configuration management and deployment. The
architecture of the Software Dock consists of release docks, representing producer sites, and field docks,
representing consumer sites. The docks communicate through an event facility. The Software Dock is therefore a
prototypical instance of a distributed compositional architecture. As one simple example of how the Software Dock
would use an event facility, consider what happens when the producer of a system releases a bug fix. This would
generate an event that results in notifications being sent to consumer sites interested in bug fixes for that system.
The notification triggers an orchestration of agent activities that configure, retrieve, and install the fix.

As we gain experience in designing and constructing an Internet-scale event observation and notification facility,
we will refine the models to incorporate lessons learned from our experience. A number of these refinements will
likely be made to the observation and notification models, whose realizations will require careful engineering to
ensure efficient and reliable operation on an Internet scale. Such refinements might involve the definition of a
formal calculus of event operations that would support systematic optimization of the configuration of a network of
observers, much in the same way that optimizations are applied to relational database queries in query languages

such as SQL. Some operations that the calculus could support include generation, filtering, observation,
notification, advertising, publication, subscription and reception.

"������	��

[1] C. Gerety, “HP SoftBench: A New Generation of Software Development Tools”, Hewlett-Packard
Journal, vol. 41, no. 3, pp. 48–59, 1990.

[2] R.S. Hall, D. Heimbigner, A.v.d. Hoek, and A.L. Wolf, “An Architecture for Post-Development
Configuration Management in a Wide-Area Network”, Proc. 1997 International Conference on
Distributed Computing Systems, Baltimore, MD, pp. 269–278, 1997.

[3] A.M. Julienne and B. Holtz, ToolTalk and Open Protocols: Inter-Application Communication: Prentice
Hall, 1994.

[4] B. Krishnamurthy and D.S. Rosenblum, “Yeast: A General Purpose Event-Action System”, IEEE
Transactions on Software Engineering, vol. 21, no. 10, pp. 845–857, 1995.

[5] Object Management Group, “The Common Object Request Broker: Architecture and Specification”,
revision 2.0, July 1995.

[6] Object Management Group, “CORBAservices: Common Object Services Specification”, formal/97-07-04,
July 1997.

[7] S.P. Reiss, “Connecting Tools Using Message Passing in the Field Environment”, IEEE Software, vol. 7,
no. 4, pp. 57–66, 1990.

[8] D.S. Rosenblum and A.L. Wolf, “A Design Framework for Internet-Scale Event Observation and
Notification”, Proc. 6th European Software Engineering Conference/5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Zurich, Switzerland, pp. 344–360, 1997.

[9] J. Siegel, CORBA Fundamentals and Programming. New York, NY: Wiley, 1996.
[10] Telecommunications Information Networking Architecture Consortium, “TINA Notification Service

Description”, July 1996.

