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Abstract

Uniformly sampling nodes from deployed peer-to-peer (P2P) networks has proven
to be a difficult problem, as current techniques suffer from sample bias and limited
applicability. A sampling service which randomly samples nodes from a uniform
distribution across all members of a network offers a platform on which it is easy
to construct unstructured search, data replication, and monitoring algorithms. We
present an algorithm which allows for uniform random sampling, by the use of
biased random walks, over the peers of any P2P network. Our algorithm, called
doubly stochastic converge (DSC), iteratively adjusts the probabilities of crossing
each link in the network during a random walk, such that the resulting transition
matrix is doubly stochastic. DSC is fully decentralized and is designed to work on
physically directed networks, allowing it to work on any P2P topology. Our simu-
lations show that DSC converges quickly on a wide variety of topologies, and that
the random walks needed for sampling are short for most topologies. In simulation
studies with FreePastry [7], we show that DSC is resilient to extremely high levels
of churn, while incurring a minimal sample bias.

1 Introduction

Our overarching goal is to create a generic, plug-and-play framework for sampling prop-
erties of arbitrary P2P networks. Given a topology of links, we want to sample some
set of properties (bandwidth, load, etc.) of the connected peers. Ideally, the resulting
measurements should give an unbiased view of the current distribution of the properties
over the network, which is useful for immediate parameter tuning, and will hopefully lead
to a correct understanding of network dynamics over multiple sample runs.

In this paper we focus on a fundamental component of such a framework. Specifi-
cally, we implement uniform sampling over a P2P system of an arbitrary topology. This
amounts to choosing a peer at random from the uniform distribution over all peers in a
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network with an unknown link distribution. In addition to serving as a basis for moni-
toring, uniform random sampling is a useful building block in distributed systems, where
it is used to support search, maintenance, replication, and load-balancing [9, 17, 24].

Existing techniques for uniform sampling rely on biased random walks: a node is
selected at the end of a sufficiently long random walk in which the probabilities of fol-
lowing each edge (the transition probabilities) are adjusted to obtain a uniform visita-
tion distribution across the network. Current algorithms, such as Metropolis-Hastings
and maximum-degree, use the ratio between a node and its neighbors’ link-table size to
compute new weights for the transition probabilities of each link, and generate doubly
stochastic transition matrices [2, 6, 24]. These algorithms are able to do this because
the ratio of link-table sizes is directly proportional to the nodes’ visitation probabilities,
which is a local property in undirected topologies.

Others have suggested using gossip-based peer-sampling techniques [13]. While often
useful for implementing services associated with sampling, such as search, load-balancing,
and peer membership, we find that gossip peer-sampling does not offer an appropriate
interface for other sampling related tasks such as monitoring. In particular, Gossip-based
services do not provide sampling that is independent and identically distributed, and do
not handle bursts of sampling well, both properties we desire.

Our contribution is to remove the assumption of bidirectional links in the network, so
called undirected topologies. Existing algorithms are only efficient in such an environment,
restricting the design space of the underlying network, and forcing the maintenance of
bidirectional links in an Internet where NAT and middle-boxes are common. P2P topolo-
gies which do not need bidirectional links for every connection, i.e. directional topologies,
can therefore benefit from a sampling algorithm that does not need them either. An
algorithm that works well in the absence of bidirectional links, yet can utilize them to
improve performance when they are available, is clearly ideal.

The algorithm we propose is fully distributed. The main idea is to avoid the calcu-
lation of each node’s visitation probability, and instead to adjust link transition proba-
bilities iteratively, converging to a state in which the sum of input probabilities at each
node is equal. The resulting transition matrix is said to be doubly stochastic, and induces
uniform visitation probabilities with sufficiently long random walks. We find that the
algorithm performs well on both static and dynamic topologies, and is able to keep the
ratio of most and least likely to be sampled node below 1.2 for realistic churn conditions.
Further, our algorithm generates link-biases that keep the expected sample walk length
reasonably short, between 20-35 hops for 100 node static topologies, and around 23 hops
for 1000 node Pastry networks.

In Section 2 we review the relevant background necessary to explain our algorithm
and related work. Section 3 reviews previous work on P2P sampling. Section 4 presents
a basic version of our doubly stochastic converge algorithm (DSC ) and a proof of its
convergence. A more advanced variant that reduces the length of the random walks and
deals with failure is then presented. Section 5 evaluates DSC in both simulations on
static topologies, and with FreePastry [7]. Finally, Section 6 concludes with a discussion
of future work.
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2 Background Theory

We briefly discuss Markov Chains and their properties in order to introduce concepts used
in the review of related work and then the presentation and analysis of our algorithm.
For an excellent introduction to both general and ergodic Markov chains, see Grinstead
and Snell [10], and Norris [19].

2.1 Basic Definitions

We model a P2P topology as a labeled directed graph G = (V,E) of N = |V | vertices.
Each edge (u, v) ∈ E is labelled with a probability puv ∈ [0, 1]. For any given vertex u,
puv is the probability of transitioning along the edge (u, v), with puv = 0 if (u, v) /∈ E, and
∑

v∈V puv = 1. We form a stochastic N × N matrix P, where P(u, v) = puv, representing
the transition matrix of the Markov chain across the vertices of G.

Finally, we define two sets that will be useful throughout the paper: the predecessors
of a node u, N(u) , {v ∈ V : (v, u) ∈ E ∧ v 6= u}, and the successors, S(u) , {v ∈ V :
(u, v) ∈ E ∧ v 6= u}. It will prove convenient to exclude u from being a predecessor or
successor of itself.

2.2 Stationary Distribution

Given a probability distribution x across the states in the Markov chain described by P,
one can calculate the successive distribution after an additional step in a walk across the
chain, with xt+1 = xtP. If the Markov chain is ergodic, the probability to be at a given
node u after a sufficiently long walk stabilizes to a unique stationary distribution written
as π. A Markov chain is ergodic if it is both irreducible and aperiodic, such that there
exists a time q for which ∀u∀v ∈ V,∀n ≥ 0 : Pq+n(u, v) > 0. The mixing-time of P is the
minimal length of a walk that achieves the desired level of uniformity, a topic addressed
in Section 5.1.

A P2P topology that is both strongly connected and aperiodic—reasonable assumptions—
will have an ergodic Markov chain. In such a topology, the value of the stationary dis-
tribution for a given node u, π(u), gives the probability to be at u after a random walk
of a sufficient length, independent of the starting node. Our goal is to achieve a uniform
stationary distribution.

2.3 Uniform Stationary Distributions

One way to assure that an ergodic Markov chain has a uniform stationary distribution is
to set the puv values in its transition matrix P in such a way that the sum of transition
probabilities over the incoming edges is 1 for all vertices. Thus,

∑

u∈V puv = 1 for all
v. In this case P is doubly-stochastic, and the Markov chain has a uniform stationary
distribution. Defining 1 as the row vector [1, . . . , 1] of dimension N :

Theorem 2.1. Let P be a doubly stochastic transition matrix, and x0, . . . ,xt, . . . be a
sequence where xt+1 = xtP. Then as t → ∞, xt → π = 1

N
1.
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Proof. Assume xt = 1
N
1 is a probability distribution across the vertices of G. Since

xt+1 = xtP, the following holds ∀v ∈ V :

xt+1(v) =
∑

u∈V

xt(u)puv =
1

N

∑

u∈V

puv =
1

N

The last reduction comes from the fact that each column sums to 1. Therefore,
the value at each index of xt+1 equals 1/N , and the distribution is stationary. Since
the Fundamental Limit Theorem of Markov Chains states there is a unique stationary
distribution for any given matrix [19], π = 1

N
1 is the sole stationary distribution for all

doubly stochastic matrices, and any initial x0 must converge to π.

Snell offers another proof of this theorem [22]. From Theorem 2.1, we set the goal
of DSC to bias the transition probability of edges in an ergodic graph G such that the
transition matrix P′ representing the transformed graph G′ is doubly stochastic.

We note that the properties discussed in this section assume a static topology, or at
least a topology that changes so infrequently that the random walks used for sampling
are never affected by churn. However, such conditions are not likely to exist in real
P2P networks. Therefore, we make the simplifying assumption that churn events affect
the network in a fairly localized manner, and that the stationary distribution does not
change radically after most churn events. Indeed, we show in Section 5.2 that DSC quickly
corrects for high rates of churn and that sampling is largely unaffected.

3 Related Work

P2P researchers have recently looked at sampling generic undirected structures, but the
suggested techniques do not work for directed topologies. Several topology specific meth-
ods for directed networks have been suggested, but we are interested in a generic solution
to the problem.

3.1 Undirected Topologies

There are two broad classes of undirected sampling techniques. The first uses random
walks to sample nodes, while the second uses local caches of node identifiers that are
exchanged and shuffled via a gossip protocol.

Most previous work on uniform sampling in P2P networks has focused on using ran-
dom walks in undirected topologies. While many P2P networks do not actively maintain
bidirectional connections, the assumption that such connections exist, or can be created
on demand, simplifies biasing the transition probabilities on links. This is because the
probability of selecting a node u, after a significantly long walk, in the Markov chain
representing an undirected topology is a local topological property, π(u) = D(u)

2|E|
, where

D(u) = |{v ∈ V : (u, v) ∈ E}|.
Most existing techniques utilize this property and work in two steps. First, a node

u distributes it’s edge count d(u) to all neighbors. Then, after receiving edge counts
from all adjacent neighbors, each node biases all edges appropriately [2, 6, 24, 25]. The
most common bias technique uses the Metropolis-Hastings algorithm. Assuming each
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node initially assigns a uniform transition probability to adjacent neighbors, Metropolis-
Hastings compares the degree of adjacent nodes and then reduces the probability of
transition across (u, v) if D(u)

D(v)
< 1, with p′uv = D(u)

D(v)
puv. Any lowering of transition

probability to neighbors is balanced by adding the remaining probability to a self-loop,
(u, u), assuring in- and out-probabilities sum to 1.

Another related set of techniques are gossip protocols, particularly peer-sampling
and membership-management protocols [13]. Gossip techniques have proven useful in
topology construction and maintenance [12], and maintaining estimates of global proper-
ties [14]. Gossip-based peer-sampling works by mixing sets of peer references randomly
via periodic exchange between neighboring peers, and returning nodes from the local
peer cache when a sample is requested. However, the interface offered by such protocols
is inappropriate for a general sampling service. For example, when monitoring a P2P
network, we desire to understand the current state of the network, a task which can oc-
casionally require large numbers of near-simultaneous samples. In order to support such
sampling, a gossip-based scheme would need to keep a large local peer cache, yet could
not significantly lower the exchange interval unless churn was low. Further, only the first
sample operation from the gossip-algorithm peer cache is independent and identically
distributed, often a desirable or necessary property. Further samples are returned from
distributions that deviate further and further from the expected.

3.2 Directed Topologies

While we know of no other general algorithm for sampling directed P2P networks, there
are algorithms to sample classes of topologies. King and Saia present a method to select
an uniformly random peer from any DHT that supports the standard lookup interface,
where get(x) returns the closest peer to id x [15]. Similarly, there are various general
techniques to sample web-sites during web-crawls, and from search-engines via random
queries [3, 11]. Such techniques typically transform the directed graph of web-links into
an undirected graph by adding reverse links, and then use techniques such as Metropolis-
Hastings to sample uniformly.

Studies of churn dynamics in DHTs often make the assumption that random peers
can be sampled by looking up randomly selected ids in the address space [4]. However,
many DHTs show a preference toward storing long-lived nodes in routing tables in order
to increase reliability, which biases the selection toward such nodes. Further, random
differences in the distribution of IDs biases toward peers responsible for larger amounts
of ID-space. In general, any technique which samples peers in a manner correlated with
session length will lead to biased results [23, 24].

In general, our vision is to create a topology-agnostic solution for sampling directed
P2P networks. This would make studying and maintaining current and new networks
simple and less error prone. Further, the basic version of our algorithm only assumes
it can communicate in the same direction as the logical links in the host P2P topology,
making it ideal for situations when reverse packet flows are expensive or undesirable.
When reverse flows are available, we use them to optimize performance. Although not
covered in this paper, We have also designed DSC so that it can be used in a opportunistic
manner, such that by piggy-backing on existing traffic it generates no or minimal extra
packets.
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(a) (b)

Figure 1: An example ergodic graph. (a) Labeled with initial transition probabilities.
(b) Balanced using a self-loop.

4 The DSC Algorithm

One can uniformly sample a network by first assigning transition probabilities to edges
so that the stationary distribution is uniform, and then performing random walks of a
sufficient lengths, bounded by the mixing-time. In this section we discuss an algorithm
that solves the first of these requirements.

4.1 Basic DSC

As stated in Section 2.1, P is stochastic by definition, as each node’s outgoing edges have
a total probability of 1. Our task is to assign those probabilities so that, for each node,
the probabilities of the incoming edges also add up to 1, thereby transforming P to be
doubly stochastic. We introduce several constraints on the transformation of P. First,
the transformation from P to P′ should be non-destructive, such that if an edge existed
in P, it will also exist in P′. Second, we limit the creation of new edges to self-loops,
ensuring that any existing constraints on network packet flows are not violated. We refer
to the entire process as balancing.

In a fully-decentralized balancing algorithm, a node v can not directly control the
probabilities assigned to its incoming edges, which are controlled by v’s predecessors. In
fact, v may only know about a subset or even none of its predecessors. Even if v could
control the probability of some of its incoming edges, changing one of these probabilities
would affect the balance of probabilities for other nodes. To gain some degrees of freedom
for the purpose of balancing, we introduce an extra edge, the self-loop, linking each vertex
back to itself. The self-loop is both an incoming and outgoing edge, and therefore can be
used by a node to make up deficits in its own incoming probability.

Figure 1(a) exemplifies the difficulties in balancing, and the use of the self-loop. Nei-
ther node B or C can be balanced without removing edge (A,C). B has a deficit of
incoming probability, yet A cannot rebalance its out-probability to satisfy B without
removing all probability from (A,C). Conversely, C has too much incoming probability,
and B has no other edge on which to place excess probability. Setting pAC = 0 balances
all in- and out-probabilities, but the graph becomes periodic, and hence no longer ergodic.

In Figure 1(b), we use the self-loop (B,B) to increase the in-probability of B to
1, inadvertently reducing the in-probability of C to 1, and balancing P and keeping G
ergodic. This leads directly to the core intuition of DSC: increasing the self-loop for nodes
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with in-probability deficits, and therefore reducing the probability across their outgoing
edges, decreases the excess in-probability of other nodes.

More formally, we define the sum of in- and out-probability at a vertex v as

In(v) , pvv +
∑

u∈N(v)

puv; Out(v) , pvv +
∑

u∈S(v)

pvu

where pvv is the self loop. Both In(v) and Out(v) must sum to 1 in order for P to be
doubly stochastic. Clearly, increasing or decreasing the self-loop forces v to decrease or
increase, respectively, the sum of probability across both N(v) and S(v).

At any given time t, vertices are in one of three states:

V + , {v ∈ V : In(v) > 1}

V = , {v ∈ V : In(v) = 1}

V − , {v ∈ V : In(v) < 1}

The total amount of surplus in-probability of v ∈ V + equals the total deficit of in-
probability of v ∈ V −. This stems from the fact that ∀v ∈ V , Out(v) = 1, and therefore
the mean of In(v) must equal 1. Any in-probability over 1 at a particular vertex v must
result in a deficit at some other vertex u, and vice-versa.

If we can move vertices from V − to V =, we will also force vertices from V + into V =,
leading to V = = V and P to become doubly stochastic. Promoting vertices from V − to
V = is extremely simple: increase the self-loop pvv by 1 − In(v), bringing In(v) = 1. This
is the strategy of the basic version of DSC, with each node v ∈ V executing the following
steps:

1. Every t seconds, v updates its self-loop pvv. When In(v) < 1, the self-loop is
increased by 1 − In(v). If In(v) ≥ 1 no action is taken.

2. Every t/f seconds, v sends updates to all u ∈ S(v), notifying them of their current
transition probability, (1− pvv)/|S(v)|. Successor nodes store this value, using it to
calculate In(v) in step 1.

When step 1 is executed we say there has been an update. The time t should be
selected with bandwidth and network latency in mind, with a short t leading to faster
convergence, but leading to missed updates if latency is high. The frequency of updates,
f , can be set higher when packet loss or latency is a problem, or to 1 if on-time delivery
is assured.

This basic version of DSC sends evenly balanced probabilities in step 2. In most
situations this is not optimal, and we discuss a change to the algorithm which generally
performs better in Section 4.3. However, in situations where receiving feedback from
nodes in S(v) is not possible, or it is inconvenient to do so in a timely manner, the basic
version of DSC will still converge quickly in practice, if to a less optimal state.

4.2 Convergence of Basic DSC

We now prove that basic DSC changes the transition probabilities in any network topology
such that they converge to a uniform stationary distribution. It accomplishes this by
iteratively reducing the distance between P and a doubly stochastic matrix.

7



Theorem 4.1. If G is an ergodic graph, DSC updates P iteratively in such a way that,
in the limit, P converges toward doubly stochastic.

Proof. Let D(P) measure a distance form P to a doubly stochastic matrix as follows:

D(P) ,
∑

v∈V

d(v), where d(v) = |1 − In(v)|

We show that, after i iterations of the DSC algorithm, D(P) must decrease by a factor
of (1 − ǫ)i where ǫ > 0 and ǫ does not depend on i. Therefore, limi→∞ D(Pi) = 0 and P
becomes doubly stochastic.

Let D(P0) > 0 be the initial distance, and therefore |V +| ≥ 1∧|V −| ≥ 1. Let u ∈ V −

be the node with the maximal in-probability deficit d(u) = 1 − In(u), and consider the
execution of DSC on u. The effect of u updating its self-loop is to spread u’s deficit onto
its successors’ in-probabilities. A successor node q ∈ S(u) can be in one of the following
states:

• q ∈ V = or q ∈ V −: in these cases, q has to completely relay u’s deficit (along with
its own) to its successors. There is no net reduction in D(P).

• q ∈ V +: in this case some or all of the deficit passed from u to q will be absorbed
by q’s surplus, with a corresponding net reduction in D(P).

As DSC updates continue, and u’s deficit is relayed two and more hops away from u,
more of that deficit may be absorbed by other nodes in V +. However, in order to find
a minimum reduction in deficit (and therefore distance) in a bounded amount of steps,
we focus on the node w ∈ V + with the maximal in-probability surplus s(w), and we
determine the minimum amount of d(u) that gets absorbed by s(w), and in how many
steps. To do that, we focus on the shortest path from u to w.

Since G is ergodic, the length of the shortest path from u to w is at most N − 1.
At each hop along that path, the deficit is evenly divided among the all successors, and
therefore is progressively reduced. Since at each hop there are at most N − 2 successors,
the deficit that reaches w must be at least d(u)/(N − 2)N−1, which can be absorbed
completely or up to s(w). Therefore, after N − 1 iterations, the overall distance D(P) is
reduced by at least min(d(u)/(N − 2)N−1, s(w)).

Now, since d(u) is the maximal deficit, and since there are at most N − 1 nodes in
V −, it must be that d(u) ≥ D(P0)

1
2(N−1)

. For the same reason, s(w) ≥ D(P0)
1

2(N−1)
.

This gives us a lower bound for the reduction of D(P) after N − 1 iterations

D(PN−1) ≤ D(P0) (1 − ǫ) where

ǫ = min

(

1

2(N − 1)(N − 2)N−1
,

1

2(N − 1)

)

This means that D(Pi) decreases after a fixed number of steps (N − 1) by at least a
factor 1 − ǫ that does not depend on time. Therefore D(Pi) converges exponentially to
0.

This is an extremely loose bound, and convergence is much faster in practice. Further,
the ordering of node updates can play a role in determining the rate of convergence. For
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example, in Figure 1, updating A and C first is clearly not optimal. We have observed
that different update ordering may change the rate of convergence by a factor of 2 for
large topologies.

While the basic version of the algorithm works, it has several undesirable properties.
We work on fixing these by introducing feedback and relaxation.

4.3 Feedback

Basic DSC does not use information about the state of a node’s successors. This can
have the effect of slowing convergence and, more seriously, increasing the mixing-time.
Figure 1(b) provides an example of the second of these effects, as the naive balancing leads
to a large self-loop for node B. If A was aware that C was in V +, it could weight edges
(A,B) and (A,C) more appropriately, for example, pAB = 2/3, pAC = 1/3. Convergence
can be slowed for similar reasons. For example, a node in V + can wait for reductions of
in-probability that could be made immediately if their predecessors were aware of their
state.

As the name suggests, feedback attempts to intelligently weight the probability on
edges using feedback sent by successors. In addition to storing the transition probability
sent by a predecessor v, a node u now replies with an acknowledgement containing In(u).
v then uses this value to bias pvu and rebalance all transition probabilities. This happens
in two steps:

(1) p′vu = pvu/In(u)
(2) ∀q ∈ S(v) : p′vq = (pvq/

∑

q∈S(v) pvq)(1 − pvv)

The weighting is only applied once every t seconds, no matter how high f may be, so
that lossy links are not inappropriately biased against.

4.4 Failure and Relaxation

Nodes joining or leaving the network both have the effect of increasing self-loops. Any
node in V = or in V − can be driven back into V + by the addition of a new predecessor.
Such nodes find themselves in the peculiar state of having a self-loop greater than 0, but
also an in-probability greater than 1, an impossible state without churn.

Nodes leaving the network have a similar effect. Predecessors of a leaving node u
will increase their probabilities across remaining out-edges, while successors will have to
increase their self-loop to make up for lost in-probability. Just as when a node joins the
network, the node u leaving can force some v ∈ S(q) : q ∈ N(u) back into V + while
having a non-zero self-loop.

Taken together, these two phenomena paint a picture of ever increasing self-loops.
Clearly, if we aim to keep a reasonable mixing-time in a network with churn, we cannot
rely on an algorithm that only increases self-loops. We therefore allow DSC to also
lower self-loops. In particular, when a node v ∈ V + ∧ pvv > 0, pvv is decreased by
max(−pvv, 1− In(v)). In other words, the value of the self-loop is lowered to 0 if possible,
or as close to 0 if not.

Clearly the transition probability across (v, u), u ∈ S(v) must be raised proportionally.
In turn, this can cause q ∈ S(u) to also lower their self-loop, and so on. However, the
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Figure 2: Maximum ratio in visitation probability r after i/N updates. The median,
10th, and 90th percentile are given.

effect is dampened each successive step away from v, and is unlikely to propagate to the
entire network, as small increases in probability are absorbed by nodes in V − or V = with
non-zero self-loops.

Relaxation is essential to the current function of DSC in a network experiencing churn,
with or without feedback. Without it, self-loops will approach 1, and the probability
to transition to other nodes will approach 0, leading sample walk lengths to approach
∞. Unlike feedback, relaxation does not necessitate a channel of communication in the
opposite direction of the network links, allowing it to work with either basic or full DSC.

5 Simulation Analysis

In order to both ensure correctness, and better understand its properties under ideal
conditions, we ran DSC across a wide range of static topologies commonly used to model
different types of P2P networks. We then studied the dynamics of DSC under churn
using a concrete implementation of DSC. This implementation, which includes feedback
and relaxation, is done in Java and is integrated with FreePastry [7], a widely used open
source implementation of Pastry [20]. We find that DSC improves the uniformity of the
stationary distribution in FreePastry networks under churn often by several orders of
magnitude, using as little as 1 packet per link per second.

When studying both the static and dynamic topologies, we focus on how peers are
sampled, and claim that this is equivalent to studying how a given property is sampled. To
sample properties instead of peers, one would perform one extra action beyond sampling
the peer-id, and sample the property at the same time. Importantly, we allow for the same
node to be sampled multiple times, allowing for an accurate description of properties. For
a discussion of accurate property sampling, see Stutzbach et. al. [24].

5.1 Static Topologies

In order to confirm that DSC works on a large range of possible network topologies, we
simulate it over a diverse set of statically generated graphs. In particular, we look at
three types of topologies:
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Figure 3: (a) Maximum expected hop count for different convergence levels. (b) Second
eigenvalue for two different algorithms: DSC, and a linear programming model (lp),
given for each topology type (BA = Barabási-Albert, ER = Erdős-Rényi, and Klein =
Kleinberg). The minimum, 10th percentile, median, 90th percentile, and maximum are
plotted.

• Kleinberg: Each node is connected in a grid to neighbors at lattice distance p = 1,
along with q long distance links, each chosen with probability inversely proportional
to the squared distance.

• Erdős-Rényi: Edges are selected independently with a given probability p.

• Barabási-Albert: Vertices are connected preferentially with high-degree vertices,
creating topologies with power-law degree distributions. We use a preferential at-
tachment factor of 1/2.

Both the Kleinberg and Barabási-Albert fall under the category of small-world topolo-
gies, which are often cited as modeling current P2P networks, as well as offering a promis-
ing source for future topological structures. For more information on these models, see the
excellent survey by Albert and Barabási [1] and Kleinberg’s description of his model [16].
We have used directed variations of the standard constructions, and confirmed that all
graphs are strongly connected. All generated graphs have (as close as possible) the same
number of vertices N = 100 and edges |E| = N log N . This is a similar node-edge ratio
to what is seen in many deployed systems. We run two versions of the algorithm: basic
DSC and full DSC, which includes feedback and relaxation. We analyze the state of the
network after every round of N updates.

5.1.1 Convergence

Figure 2 shows the convergence, measured by the maximum ratio in π, r = max(π)/ min(π).
This metric does not fully characterize the stationary distribution π. Rather, it is in-
tended to characterize the worst-case difference in sampling probability independently of
the network size.

We display i/N on the x-axis, where i is the number of updates completed, emphasiz-
ing that updates happen in parallel. We ran simulations over 50 topologies of each type.
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Figure 2 shows the median maximum ratio r along with its 10th and 90th percentile values
(error-bars). In all situations, DSC converges exponentially fast to a uniform distribution,
with a maximum ratio of r = 1.

For Erdős-Rényi and Kleinberg topologies, full DSC outperforms basic DSC in terms
of speed of convergence, reaching an extremely tight ratio in π of less than 1.00001
in slightly under 3600 total updates. Since updates are performed in parallel, this is
equivalent to each node updating 36 times, easy to accomplish in under a minute if each
node in a P2P network updates once every second.

Barabási-Albert topologies have rather different behavior. Full DSC converges faster
for the first 46 update rounds, but then basic DSC then moves ahead, until finally con-
verging somewhat higher than full DSC. We are not completely satisfied with our under-
standing of this behavior, but at least some of the effect is from in-probabilities oscillating
on low in-degree nodes when using full DSC: a node u with low in-degree may see its
total in-probability bounce between In(u) < 1 and In(u) > 1 at each update round,
causing its own out-probability to also oscillate, which in turn may cause downstream
peers to also suffer from the same behavior. This effect is dampened by the feedback
function each update round, but the behavior clearly indicates there is improvement to
be made for topologies that exhibit small in-degrees. One possibility is to include the
estimated in-degree during feedback, suppressing the rebalancing if successors are found
to be vulnerable to oscillations.

5.1.2 Expected Walk Length

While a uniform stationary distribution allows one to sample uniformly, it does not
guarantee that such sampling will be cheap. This is a property of the mixing-time,
the speed at which a random walk becomes independent of its starting location. We
studied the mixing-time by randomly choosing a starting node and multiplying the initial
state distribution x0 repeatedly with a converged P generated with DSC. This simulates
running an infinite number of walks starting at the randomly selected node. After each
multiplication, xt = xt−1P, we compute r and the expected hop count, E[h] = t(1 − y),
where t is the current step and y is the relative weight of all the self-loops in the topology,
y =

∑

v∈V pvv/N .
We use twenty random starting locations for each topology, and measure the maximum

expected walk length max(E[h]) over the ten runs. We do this for each of the 50 topologies
used to study convergence, and for a set of target average values r. Specifically, we create
a set of target average values {r0, . . . , rn}, and then iterate the matrix multiplication until
the distribution satisfies each target.

Figure 3(a) shows the results of this analysis. Full DSC performs as well or better than
basic DSC for both Erdős-Rényi and Kleinberg topologies, with Erdős-Rényi performing
significantly better. Reasonable values of r are achievable in less than 28 hops for either
topology for full DSC. We discuss ways to improve this length below, and note that it
is topology dependant, with full DSC unable to reduce self-loops in the highly regular
Kleinberg topologies.

Barabási-Albert topologies are not graphed. Basic DSC can see max(E[h]) approach
over 107 for r = 1.05. All of our Barabási-Albert topologies have several extremely weakly
connected nodes with very low initial visitation probability, typically < 10−6, which then
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develop extremely high self-loops (often puu > 0.995).

5.1.3 Walk Length Optimality

To try and understand how far from optimal DSC is in terms of walk length, we cast the
approximate optimal solution as a linear programming problem. Our objective function
minimizes the self-loops, while trying to balance out-going probability evenly across out-
going edges:

Minimize w0

∑

u∈V

puu + w1

∑

u∈V

max(|puv − puw|)

s.t. ∀u ∈ V :
∑

v∈V

puv = 1

∀u ∈ V :
∑

v∈V

pvu = 1

The second term in the objective function is linearized with an auxiliary variable. We
do not list other, less important constraints due to lack of space. w0 and w1 were varied
so as to obtain the best solutions over all topologies, with w0 = 1.0, w1 = 0.5 proving
to be a good weighting. Since minimizing the mixing time is a non-linear problem, we
expect the linear-programming solution to be sub-optimal. However, for many of the
Erdős-Rényi, and a few of the Kleinberg topologies, the linear-programming solver found
solutions with no self-loops, leading us to believe they are likely close to optimal.

Figure 3(b) compares DSC’s ability to minimize walk length with the linear-programming
solution, and graphs the second-largest eigenvalue λ1 of P. The second-largest eigenvalue
modulus bounds the mixing time by O( 1

1−λ1

), and therefore the walk length, of an ergodic
graph [21].

It is clear from Figure 3(b) that there is room for improvement in the way DSC assigns
probability across edges. This isn’t particularly surprising, as we have not dedicated much
time to minimizing self-loops. It should be easy to iteratively improve DSC’s weightings
by integrating more information into feedback, with the goal of moving transition prob-
ability from high to low in-probability neighbors [2].

5.2 FreePastry Simulations

Pastry [20] is a fault tolerant, locality aware DHT. Each node in a Pastry network random
chooses a id in an 128-bit identifier space when joining the network, and then proceeds
to bootstrap both a leaf-set of the closest l neighbors in both directions of the id-space,
and a route table containing ⌈log2b N⌉ rows with (2b − 1) entries each, where b is the
base of the network. Each successive row in the table halves the distance in the id-space,
allowing for greedy routing of node lookups in O(log2b N) hops.

Due to processing and time constraints, we use N = 100, 1000 node Pastry networks
for our simulations. In each simulation run there are two phases: first, nodes join the
network as fast as possible. As soon as the last node has joined, a churn process is started.
Our churn model closely follows the findings of Stutzbach and Rejaie and their study of
a DHT based on Kademlia [23, 18]. In particular, we model node session time as random
variates of a Weibull distribution, with the shape parameter ks = 0.4 and the scale
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Figure 4: Maximal relative difference in visitation probability: min, 10th percentile,
median, 90th percentile, and max. The four columns in each setting of DSC represent
different churn levels, 0, 1, 2, and 4, respectively, from left-to-right.

λs = 30/c. We refer to c as the churn parameter ; the higher c, the shorter the average
session length. Node inter-arrival time is modeled by a second Weibull distribution, with
ka = 0.65, λa = µs/(NΓ(1 + 1

ka
)), where µs is the mean session time, and Γ(x) is the

Gamma function. Both distributions model time in minutes.

5.2.1 Convergence with Pastry

The graphs in Figure 4 show the maximum ratio max(π)/ min(π) for different levels of
churn of FreePastry topologies. Different values of c control the scale parameter of the
inter-arrival time and mean session length, creating various levels of churn. Networks with
value c = 1.0 have very similar dynamics to those measured by Stutzbach and Rejaie [23].
Samples of r are only collected after the fast join period is complete, as during this period
r is much higher than would be seen in a normal network.

Our networks are quite small compared to the size of some currently deployed DHTs.
This small size means that there is significant overlap between the FreePastry leaf-set and
routing table at each node, particularly for N = 100. Our implementation of DSC only
counts each logical directed link once, but most nodes have similar in-degrees because of
the overlap. Nevertheless, we find in Figure 4(a) that 100-node Pastry networks exhibit
a maximum sampling ratio in π of up to r = 6, with medians around r = 2.8. 1000-node
networks are even worse, with r > 14 in the worst case, and medians in the range of
8 < r < 8.5. Clearly, naively sampling such a network without biased links would lead
to a highly uneven sample of any property.

The largest contributor to the large value of r in Pastry are small perturbations in the
distribution of nodes in the id-space. While the distribution of ids is uniformly random,
within small id-ranges non-uniformities can be dominant. Often one finds the largest
differences in π are between nodes that are extremely close together in the id-space, with
one node receiving many links from id-space distant peers, while the other is only in
the routing tables of id-close neighbors and has a significantly lower in-degree. Other
contributors to differentiation of in-degree include proximity neighbor selection, and the
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Figure 5: Maximum of r as a function of the maximum expected necessary walk length.

length of time a node has been present in the network [8].
Two different DSC cycle times over the churn workloads are shown in both graphs in

Figure 4. For all workloads we ran DSC with the frequency parameter f set to 2, so the
2- and 4-second-cycle runs send 1 and 0.5 messages per second, respectively. Figure 4
clearly show that DSC significantly shrinks the gap between the least and most likely to
be sampled nodes. DSC keeps r under 2 for both 100 and 1000 node networks for more
than 50% of the topologies under all churn levels, and does even better a realistic level
of churn.

DSC’s cycle-time is designed to compensate for increased churn load. Figure 4(b)
clearly shows DSC using a 2-second cycle under strain, even at c = 1. Lowering the cycle-
time should fix this problem. DSC has to work faster to keep up because the diameter
of the topology is larger, and updates have to propagate further, both during normal
convergence, and during relaxation. These effects can be mitigated (or exacerbated) by
the topology: if a topology has moderate or high local clustering, local changes will have
less effect on nodes further away, with the inverse holding as well.

5.2.2 Expected Walk Lengths

We studied mixing-time in Pastry topologies using the same methodology described in
Section 5.1.2. Figure 5 displays the data for both N = 100 and N = 1000 Pastry
topologies, with varying levels of churn.

Overall, Figure 5 show that DSC biases Pastry in a manner consistent with short
sampling walks. Pastry at either size, with or without churn, has shorter or comparable
walk lengths than any of the static topologies at N = 100. The graph comparing the 100
and 1000 node topologies appears to show sub-linear growth in the length of the walk, even
though cycle-length of 2000 is slightly to low (see Section 5.2.1). Unfortunately, running
larger topologies to check this trend is currently beyond our computational capacity.

6 Conclusion

We have presented DSC, a distributed algorithm which balances the transition proba-
bilities of peers in directed P2P topology such that random walks uniformly sample the
network. We gave a proof of convergence for DSC, and showed, through simulations,
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that the rate of convergence is usable in many concrete scenarios, and remains so under
realistic levels of churn. Further, we found the sample-length of DSC-biased topologies
to be acceptable, and that churn had minimal affects on sampling.

Active development continues on DSC. First, we are continuing to simulate DSC on
networks of increasing sizes to study its scaling properties. In particular, we want to
determine how scalable relaxation is for different topology types. Further, we would like
to better understand the dynamics of the stationary distribution under churn.

Second, DSC has been designed such that it can be used in an opportunistic manner,
so as to use little or no overhead by piggy-backing on existing P2P traffic. We are working
to integrate such piggy-backing with FreePastry.

We would like to return to a more theoretical analysis of DSC, first considering the
effects of feedback and relaxation on convergence, and then trying to tighten the bounds
on convergence. We are also very interested in trying to improve the biasing. Compared
to approximate linear programming solutions, DSC biasing produce longer walks, and a
method similar to the one presented by Awan et. al could be appropriate [2]. Another
option to is to explore distributed approximations of various iterative minimizations of
the mixing time [5].

Finally, we want to explore a merger of Metropolis-Hastings and DSC. Most P2P
topologies are largely undirected, and such sub-topologies could use Metropolis-Hastings,
while peers or sub-topologies of directed nodes could use DSC. A merger of the two should
prove interesting and useful.
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