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Software testing is about risk management. Typically, engineers use test adequacy

criteria to balance the cost and efficacy of the testing activity. Test adequacy criteria are

rules that provide an objective stopping condition on test input creation by defining a

finite set of test requirements that must be satisfied. While adequacy criteria have been

a focus of research activity for many years, existing testing criteria do not address the

unique features of distributed applications. The contributions of this dissertation are:

(1) a study of reported failure scenarios of seven distributed applications; (2) a novel

testing technique based on discrete-event simulations that serves as a basis for adequacy

criteria for distributed systems; (3) a fault-based analysis technique that allows testers

to addresses the fundamental risks associated with using adequacy criteria; and (4) a

case-study evaluation of the simulation-based and fault-based techniques.

The failure study involves the categorization of test inputs and observations

needed to replicate failures reported by users. The results show that failure-producing

scenarios are amenable to categorization, that simple system topologies are likely to be

quite effective, and that a significant proportion of failure-producing scenarios involve

distributed inputs. Thus, the results confirm our intuition that distributed systems need

their own class of adequacy criteria.

Rather than inventing a new specification formalism, we instead adapt the com-

mon practice of using discrete-event simulations for the design and understanding of

distributed systems to testing. Our key observation is that these simulations can be

viewed as specifications of the expected behavior of the system. Using simulations to

test the implementation of a system is therefore a matter of selecting inputs to cover
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the simulation according to some criterion, and then mapping the inputs into the im-

plementation domain. As simulations are sequential programs themselves, virtually all

black- and white-box criteria can be used with a simulation-based technique.

When using any adequacy criterion for testing, there is generally no way for

engineers to know a priori how effective a test suite or the criterion itself is going

to be on their system. To mitigate this risk within the context of simulation-based

testing, we propose a fault-based analysis technique that uses code mutation operators

to create a set of incorrect simulations. Candidate test cases are executed against each

of these specification mutants and the number killed is used as a surrogate measure of

effectiveness.

We evaluate the simulation-based technique and the companion fault-based anal-

ysis method on 28 implementations of three distributed systems. The results of these

experiments are striking. First, we confirm that discrete-event simulations can indeed

be used in testing, and that white-box techniques based on the simulation are both effec-

tive, and cost-effective when compared to randomly selected test suites of the same size.

Second, in a significant advancement of the state of the art, we demonstrate the power

of the fault-based analyses by improving the effectiveness of adequate suites within each

criterion, and by predicting exactly the overall relationships between different criteria.
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Chapter 1

Introduction

Software testing consists of the dynamic verification of the behavior of
a program on a finite set of test cases, suitably selected from the usu-
ally infinite executions domain, against the expected behavior [BD04].

Software testing is about risk management. No testing technique, method, tool or

process can guarantee that a particular software system is fault free; software cannot

be exhaustively tested. All software producing organizations attempt (rationally or

otherwise) to balance the potential costs of failure of a fielded system and the real costs

of software testing. Concretely, the risk of testing too little is software failure, while the

risk of testing too much is waste of resources. There is no one solution to this problem,

each organization must navigate these waters alone.

A fundamental contribution made by Goodenough and Gerhardt in 1975 to the

practice of software testing was the idea of test adequacy criteria [GG75]. Test adequacy

criteria are rules that provide an objective stopping condition on test input creation by

defining a finite set of test requirements that must be satisfied. For software producers,

test adequacy criteria help decision makers by providing a menu of rational testing

techniques to choose from.

At present, this menu is quite large. Existing criteria operate at all three of the

canonical levels of software testing: unit, integration, and system. Black-box criteria

are based on the external interfaces of a program. White-box criteria are based on both

formal models derived from a program’s source code and specifications of various styles.
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In a perfect world, criteria would be organized into a clear hierarchy in terms of effec-

tiveness, and the costs associated with each would be well understood and predictable.

However, the effectiveness of adequacy criteria cannot be determined analytically, and

empirical data comparing effectiveness and cost is relatively scarce, somewhat inconclu-

sive, and not generalizable. In practice, the choice of adequacy criterion is more art than

science which is precisely the situation that adequacy criteria are supposed to remedy.

Within this context, we are concerned with developing techniques to help organi-

zations that develop distributed software systems test them rationally through the use

of test adequacy criteria. Part of this work is at a relatively low-level and is devoted to

the motivation and creation of a specification-based testing technique that provides a

powerful basis for the definition and application of test adequacy criteria for distributed

systems. At a higher level, the technique that we have developed enables a style of

analysis that supports the engineer in deciding which criterion to use.

Definitions

As our work is primarily concerned with selecting adequate test inputs for the

testing of distributed systems, we begin by defining these terms.

Our view of distributed systems is quite broad and includes any system of inter-

connected components that communicate via message passing over a latent and unreli-

able network. In the literature, distributed systems are understood to have the following

unique characteristics [Sch93, WWWK94]:

separate address spaces – components do not run in the same memory address

space;

communication latency – communication channels between components exhibit sig-

nificant and variable delays;

coarse-grained concurrency – differences in execution speed and latency cause is-
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sues of concurrency to appear when components interact;

partial failure – the lack of central control combined with latent and unreliable com-

munications implies that components can fail without other components realiz-

ing it, and also appear to have failed when in fact they are temporarily separated

from the rest of the system, or just operating slowly; and

variable configuration – many distributed systems can be configured at a high level

with different quantities of components, different component types, and different

interconnections between them. This is not generally recognized as one of the

fundamental characteristics of distributed systems, perhaps because it is shared

with non-distributed component-based systems.

To account for these unique features of distributed systems we take a broad

view of inputs. Traditionally in testing, “inputs” are the set of values that are passed

into a program during execution. In this work we take the view that inputs include

items that do not take on a particular value, but are nevertheless needed to execute

the system. These non-standard inputs include things like system topology, network

behavior, component operating environment, dynamic events like component failures,

etc. Essentially, we include all aspects of a system’s environment and execution that

are controllable by the tester, and that affect the results of the computation performed

by the system. This broad view of inputs is common practice when testing complex

systems, though the nature of the inputs varies. For example, when testing compilers

the inputs consist of traditional valued inputs for options and configuration directives,

and also a set of interrelated source code files.

Note that we do not view distributed systems as completely controllable. In

particular, we do not assume that test executions are deterministic; there are still aspects

of the environment (e.g. the timing of kernel interrupts) that are outside of the control

of the tester.
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In general, inputs to distributed systems can be organized into four categories:

(1) application – valued inputs provided to each component upon initialization.

These typically include data and configuration values.

(2) topological – aspects of the high level configuration of the system: how many

components of each type are needed?

(3) environmental – parameters affecting the operating environment of the whole

system and/or individual components. A ubiquitous environmental input for

distributed systems is the behavior of the network: drop rates, latency, band-

width limitations, etc.

(4) temporal – a crosscutting aspect is the timing of events. Since distributed

systems are reactive in nature, and because many distributed protocols use time

explicitly, changes in the timing of the above inputs can result in a completely

different execution.

In this document, we refer to all inputs in the last three categories as being “distributed”

inputs. Additionally, some application inputs are related to distribution when they are

protocol parameters, or the like. It is distributed inputs that are our focus in this work.

Whenever system-level testing is undertaken for distributed systems, inputs like these

must be selected; this work attempts to move this selection from an ad hoc process to

a rational one.

1.1 Hypotheses and Contributions

Our initial ideas in this area are driven by personal experience developing and

validating distributed systems. We faced the challenges associated with deciding which

topologies to use and which network behaviors to emphasize for testing. Based on this

experience we hypothesize that:
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Hypothesis 1 “Distributed” inputs to a software system play an important role in

causing failures.

To back up this hypothesis, we present the results of a failure study conducted to

understand the failure-producing scenarios of several real systems. From this study,

we contribute a general method for categorizing test cases through the analysis of bug

reports, and trends and observations that emerge from the data.

The use of discrete-event simulations in the design and development of distributed

systems is widespread. For example, they are used to understand network proto-

cols [AF99], engineer distributed systems [LC97, SMLN+03], and improve distributed

algorithms [CMH+02]. They are appealing to developers because of their inherent effi-

ciency and scalability, and because their core abstractions of process and event map

neatly to the component and message concepts inherent to modern-day distributed

systems. Unlike many other development artifacts, simulations seem to be used, and

therefore well maintained, throughout the development process, both as early design

tools and as late evaluation tools.

Given the effort invested in the construction and maintenance of simulations, and

the degree to which developers trust in them, we ask whether they can increase the

rigor with which distributed systems are tested, and make the following hypothesis:

Hypothesis 2 Simulations can be used within a specification-based testing regime to

help developers of distributed systems define and apply effective system-level test suites.

From the research literature, it appears that there are two risks inherent to the use

of adequacy criteria. Part of the challenge of empirically evaluating testing techniques is

the variability in effectiveness exhibited by test suites adequate for a particular adequacy

criterion. This variability is also a problem for practitioners since they generally have no

reliable knowledge of the effectiveness of the suite they select. Similarly, in the published

empirical comparisons of test adequacy criteria [FI98, FWH97, FW93a, BLW04, BPL04]
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Figure 1.1: Idealized Criteria Effectiveness Distributions

there are few conclusive results in which one criterion is better than another for all

experimental subjects.

Figure 1.1 depicts an idealized view of the effectiveness distributions of three

fictional adequacy criteria. In this figure, the x-axis represents effectiveness or fault-

detecting ability, and the y-axis shows the probability. The lines in this figure represent

the probability that a test suite adequate with respect to a criterion has a given ef-

fectiveness. For example, Criterion X has an average effectiveness of 0.3, but some

adequate suites have zero effectiveness, while others go as high as 0.75. The other two

criteria have higher median values, but their distributions have different shapes. Using

this figure the risks are defined as:

Intra-criterion – the risk of selecting an adequate test suite whose effectiveness is on

the low side of the distribution. Since there is generally no way of determining

the effectiveness of a selected suite, developers typically use the first adequate

suite they select and consequently run the risk of selecting a suite that has low

effectiveness.

Inter-criteria – the risk of selecting a criterion whose effectiveness is lower than an-

other applicable criterion. For a given system, there are generally many ade-

quacy criteria that could be used and their relative effectiveness is not predi-

cable. The choice of criterion determines the location on the effectiveness axis,
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and therefore is central in dictating the quality of the testing process.

The execution efficiency and relative simplicity of simulation code versus implementation

code enables the consideration of techniques to mitigate these risks. Therefore, we

contribute a technique based solely on analysis of a DES specification to predict the

relative effectiveness of test suites and criteria. To address intra-criterion risk, we

claim that:

Hypothesis 3 Fault-based analysis of discrete-event simulations can be used to predict

the relative effectiveness of adequate test suites.

For inter-criteria risk, we hypothesize that:

Hypothesis 4 Fault-based analysis of discrete-event simulations can be used to predict

the relative effectiveness of competing criteria.

1.2 Failure Study

To motivate and inform our work, we conducted a study of failures experienced

by the users of seven open-source distributed systems. The goal of our study is to

understand what patterns exist in failure scenarios to guide the definition of an improved

testing method for distributed systems. The raw data are the reports contained in the

publicly available bug tracking databases of the systems considered. As an initial pre-

processing step, we performed a coarse-grained categorization of about 1700 bug reports

in order to separate those describing an actual failure of the system from those submitted

for other purposes. Then, we examined the failure reports more carefully in order to

categorize the nature of the inputs and observations described within.

At a high level, our results indicate that: there is empirical evidence to sup-

port the consideration of a new generation of testing methods that address the failures

due to distribution; the configurations that cause user-reported failures are reason-

ably straightforward to construct; and generic failure observations (i.e., those for which
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reusable techniques can be developed) are strongly correlated to the distributed nature

of system failures. The second two results in particular imply that there is a reasonable

bound on the effort required to organize the testing activity.

1.3 Simulation-based Testing

A key component of this dissertation is the claim that simulations can be treated

as a form of specification, and thereby used within a specification-based testing regime

to provide developers with a basis for defining and applying system-level test adequacy

criteria. The intuition leading to this is based on several observations.

• Simulations are used to understand and evaluate the functionality and perfor-

mance of complex inter-component protocols and algorithms. They abstract

away low-level details of the implementation of a distributed system, as well as

details of the operational environment, yet still provide a faithful model of the

expected behavior of the system in its environment.

• Simulations embody abstractions for the underlying mechanisms and environ-

mental conditions that affect the distribution properties of systems. In addition

to operating on the normal functional inputs of a system, simulations are pa-

rameterized by a set of inputs for controlling a wide range of environmental

phenomena, such as message sequences, delays, and bandwidths.

• Recent frameworks for discrete-event simulation encourage simulations to be

written in one or another common imperative programming language, such as

C++ or Java.1 Therefore, the simulation code itself is amenable to common

program analysis techniques and tools.
1 There are many such simulation frameworks. Examples can be found at http://www.j-sim.org/

and http://www.ssfnet.org/.
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Thus, a simulation is an abstract, executable specification of a distributed system, where

the specification language happens to be a programming language.

In this dissertation, we demonstrate the power of a simulation-based approach

to distributed-system test adequacy criteria by showing how to: (1) define adequacy

criteria with respect to a simulation and (2) evaluate the criteria, again with respect

to a simulation, to determine their effectiveness at causing fault-revealing failures in an

implementation.

Notice that this conforms to the general idea of specification-based testing, where

a fundamental premise is that a specification-adequate test suite can lead to effective

testing of the implementation.

For example, consider the use of finite state machine (FSM) specifications in pro-

tocol testing [BP94, Lai02], where adequacy is established by measuring the extent to

which a test suite exercises the structural or behavioral elements of the FSM specifica-

tion. A state-coverage adequacy criterion may require that all states be visited at least

once. Another criterion might require that the test suite produce all possible outputs

by visiting all arcs in the FSM. Once the adequacy of a given test suite is established

against the specification, it is simply applied to the implementation to perform the

actual tests.

In our case, the structural and behavioral elements of the specification are embod-

ied in the program code of the simulation. Therefore, as a logical first step, we examine

familiar and simple adequacy criteria based on white-box code-coverage metrics, such

as block coverage. (Notice the analogy to FSM-based coverage.) However, we do not

imply nor require that these specification-code-coverage adequacy criteria correlate with

similar implementation-code-coverage criteria. So, for example, a test suite that has an

adequate coverage of the blocks in a simulation-based specification may or may not have

adequate coverage of the blocks in the implementation. Any relationship is irrelevant,

since the program code of each differs substantially from the other. Instead, we are
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interested in the relationship of simulation-code coverage to measures of effectiveness

in causing fault-revealing implementation failures.

As a second, higher-level step in this work we also address the practical question

of how to use simulation-based criteria in the most cost-effective way for each particular

system. The result is a method for evaluating the relative effectiveness of competing

criteria. The method is once again based on the simulation code. In particular, we

perform a fault-based analysis of the simulation code to rank the relative effectiveness of

multiple test suites. Then, by systematically analyzing the test suites that are adequate

with respect to some criteria, we derive the ranking of the relative effectiveness of the

criteria themselves.

To help understand how these techniques can be used in practice, we describe

three usage scenarios:

Conventional The conventional way to use simulation-based testing is to choose a

general-purpose adequacy criterion defined against the simulation code, and

select a single test suite that is adequate with respect to it. In this scenario, the

tester is exposed to both types of risk discussed above. The cost in this scenario

is simply the cost of simulating test cases until an adequacy value is achieved.

Boosting In this scenario, the tester has somehow chosen a particular adequacy crite-

rion, as before, but here they want to reduce the risk of picking an ineffective,

adequate test suite. Thus, they select multiple adequate test suites, use fault-

based analysis to rank the suites by mutant score, and apply the highest-ranked

to the implementation. This usage is more costly than the conventional usage

since multiple adequate suites must be selected, and each selected test case must

undergo a fault-based analysis, but intra-component risk is reduced.

Ranking In this scenario, the tester is looking to rationally decide between multiple

criteria. So, they create many adequate test suites for each candidate criterion,



11

and use fault-based analysis to determine which criterion is likely to be the

most effective. At this point, the tester simply applies the boosting usage to

the adequate test suites already created for the highest-ranking criterion.

1.4 Experimental Evaluation

We validated our hypotheses and substantiated our claims through a series of ex-

periments on three distributed systems. Two of the systems involve a set of faulty stu-

dent implementations of the well-known distributed algorithms “go-back-n” and “link-

state routing”. The third is MaraDNS, which is an open-source implementation of a

recursive, caching Domain Name System (DNS) resolver. We experimented with pub-

lic releases of MaraDNS, which consists of between 15,000 and 24,000 lines of code,

depending on the version.

In our studies, we use the comprehensive experimentation and analysis method

introduced by Frankl and Weiss [FW93a]. Their method involves sampling a large

universe of test cases to randomly construct test suites that are adequate with respect

to different criteria. Statistical inference is then used to test hypotheses about the

relative fault-detecting ability of the criteria. To evaluate the different criteria, we

employ a standard technique in which different testing strategies are simulated, once

the failure data for each test case has been collected. The relative ranking of criteria

is established by using hypothesis testing on the average mutant scores of each pair of

criteria.

In support of these experiments we developed two sets of tools. The first was a

thin adapter layer over the core discrete-event simulation engine provided by simjava2 .

This layer provided a more natural environment for developing simulations of distributed

systems. As part of this package, we also developed analysis tools for instrumenting the

simulation code so that block, branch, and definition-use test requirements could be
2 http://www.dcs.ed.ac.uk/home/hase/simjava/
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determined and traced during execution. The second tool set was used for executing

the simulation runs, mutated simulation runs, test executions and gathering failure and

cost data. Additionally, we developed a program to simulate random, black-box, and

white-box testing procedures and to perform the statistical analysis.

The results of the experiments clearly show that even under the most simplistic

usage scenario our approach performs significantly better than a random selection pro-

cess for test suites. Moreover, the data show clearly that (1) the relative effectiveness

of simulation-based criteria can be determined with a high degree of confidence by ana-

lyzing the simulation alone; and (2) this predictive power can be harnessed by a tester

to make rational decisions about the expected effectiveness of test suites and criteria.

This is an important result that gives developers a powerful new tool for organizing the

testing activity and for tailoring that activity to the distributed system at hand.

1.5 Related Work

The ideas presented in this dissertation build upon several fields of software testing

and software engineering research.

The failure study is unique in that it is aimed at analyzing failure-producing

scenarios, not the root causes of bugs as in studies by Fenton and Ohlsson [FO00] and

Ostrand and Weyuker [OW02]. In orthogonal defect classification (ODC) [CBC+92],

part of the classification addresses the failure-causing scenario which is similar in intent

to the classification we perform, but at a coarser level.

Our use of operational models for testing is inspired by the extensive literature

on protocol testing surveyed by Bochmann and Petrenko [BP94] and Lai [Lai02], The

adequacy criteria we use are discussed in the literature on low-level white-box test

adequacy criteria [ZHM97, FW88].

Our experimental setup is a direct instantiation of the method promoted by Frankl

and Weiss [FW91] and Briand et al. [BLW04].
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Finally, our initial understanding of the risks and limitations of testing with ad-

equacy criteria comes from theoretical work by Hamlet [Ham94] and Hamlet and Tay-

lor [HT90], and by analytical studies by Ntafos and colleagues [DN84, Nta98] and Frankl

and Weyuker [FW93c].

1.6 Document Organization

The rest of this document is organized as follows. The next chapter presents

the failure study. Chapter 3 describes our simulation-based testing technique, and the

related fault-based analyses. Chapter 4 describes the experimental evaluation of these

ideas. Chapter 5 provides background information on the use of test adequacy crite-

ria, specification-based testing, fault-based analyses and testing of distributed systems.

Chapter 6 concludes and describes some directions for future work.



Chapter 2

Failure Study

This chapter presents a study aimed at addressing two fundamental questions

about the development of testing techniques specific to distributed systems: Is it nec-

essary? Is it feasible?

In the distributed testing literature, it is sometimes asserted that distributed

software is inherently different to test than non-distributed software [GM99]. Some of

these differences are related to problems in selecting effective test data for non-standard

inputs, such as the topology of the distributed components and network characteristics

of bandwidth or latency. Other difficulties arise from the challenges associated with

defining and observing system failures in the face of nondeterminism and a possibly

heterogeneous distributed testbed. However, in one of the few published case studies

where traditional software testing techniques are applied to a distributed system [LS01],

the techniques perform reasonably. In light of this, we first wanted to determine how

frequently failures were caused by the effects of distribution.

Furthermore, in considering a testing method, we must find some structure to the

problem that will reduce the effort required of a tester to navigate through an otherwise

intractable space of potential test cases. If no such structure can be found, then there is

simply no basis for defining a method. Thus, we seek to understand the extent to which

there are patterns in failure scenarios, such that one could justifiably define a testing

method for distributed systems.
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Conducting a study of distributed-system failures presents a number of challenges,

but perhaps none more so than simply finding concrete data. While gaining access to

details about any aspect of an organization’s software development process is not easy

(particularly for a commercial organization), reviewing product failure information is

virtually impossible due to its sensitive and potentially damaging nature. Fortunately,

many popular distributed applications are developed as open-source projects having

associated with them publicly accessible defect-tracking systems. It is the failure reports

contained in the defect databases of open-source distributed systems that are the raw

data of this study. The study population consists of seven systems representing a broad

spectrum of distributed-system styles: peer-to-peer, federated, and client/server, as well

as a component library.

The use of open-source software is not only convenient, it is an asset, since most

of these projects function with little or no dedicated QA personnel, in contrast to tra-

ditional closed-source commercial systems. Therefore, open-source software is generally

released having only been tested by developers, providing us with a unique opportunity

to isolate failures that escape this class of testing. Furthermore, although many open-

source developers consistently write and apply unit tests, they rarely if ever document

and publish them, even within the defect-tracking systems. Under these circumstances,

the failure reports originate mainly with users, who naturally concentrate on the fea-

tures and configurations of most importance to them. In a sense, the users are acting as

surrogate QA system-level testers for the purposes of this study, admittedly providing a

broadly user-centric, as opposed to a strictly requirements-centric, prioritization of test

cases. The question here is not how well those pseudo-QA testers may have performed

their job, but rather whether there is something we can learn from the failures they did

manage to uncover.

The testing activity involves two key tasks: (1) selecting inputs that are effective

at causing failures and (2) constructing and applying oracles that are capable of rec-



16

ognizing that a failure has occurred. The method we developed for this study requires

us to identify and classify each scenario described in a failure report in terms of the

overall configuration of components, the specific inputs needed to drive the system to

failure, and the technique used to observe the failure. Further, we attempt to determine

whether each failure scenario was truly distributed or simply multi-component. A multi-

component scenario involves components providing input to each other, while a truly

distributed scenario is a multi-component scenario that also involves properties such

as concurrency, platform heterogeneity, unreliable communication, delays, timeouts, or

the like. This is a critical distinction that helps shed light on the underlying nature of

a failure and the testing techniques that might expose it. We also distinguish between

failure observations that are generic, in the sense that they are largely applicable to most

kinds of systems (e.g., detecting system crashes), and those that are specific, relating to

the functionality of the system (e.g., incorrect content of a message). Clearly, generic

observations can be supported by reusable techniques, while specific observations often

need purpose-crafted techniques.

MX chaining in RemoteDelivery is broken. Basically, the code in place assumes

that a given MessagingException generated while sending mail doesn’t merit a

retry unless it encapsulates an IOException. This doesn’t appear to be the

exception generated when a server refuses a connection. So the exception is

rethrown, and the other SMTP servers are never tried.

Figure 2.1: James Report #66

As an example of the classification we perform, consider the mail server bug

report contained in Figure 2.1. This figure displays the text of James report #66,

entitled “MX Chaining in the RemoteDelivery mailet is broken”. The underlying fault

is in the logic that deals with retrying email delivery when a domain has multiple mail

exchangers (MX DNS records). The steps needed to reproduce this failure, inferred

from the description, are:

(1) start an SMTP server (not necessarily James);
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(2) configure a DNS server with a test domain that has two MX records: the first

points to an invalid address; the second points to the server started in step (1);

(3) run a James server configured to use the DNS server started in step (2);

(4) send an email, through the James server, to an account at the test domain using

an SMTP client;

(5) observe that the SMTP server started in (1) does not receive the email.

The analysis of this report includes the identification of the four inputs and classification

of the observation. We refer to this report and its classification throughout the chapter.

Our observations resulting from this study hold several important implications

for the development of advanced testing methods. First, there is empirical evidence

to support the consideration of a new generation of test methods that address the

significant number of failures due to distribution. Second, the configurations that cause

user-reported failures are reasonably straightforward to identify. This means that testers

are not required to find exceedingly complex or exotic configurations in order to expose

the failures that users would typically encounter. This, in turn, means that there is

a reasonable bound on effort. Third, generic observations are strongly correlated to

the distributed nature of system failures, which means that there is again a reasonable

bound on effort, in this case the effort required to define and construct test oracles.

These results give us some confidence that it is both necessary and feasible to

consider a testing method that targets distributed systems.

2.1 Subject Systems

Our study reviewed failure reports from seven distributed systems. We selected

these systems to represent a broad spectrum of distribution styles: peer-to-peer (P2P),

federated, and client/server. We also included in our study population a component

from a distributed component library.
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2.1.1 Peer-To-Peer

For our purposes, the defining characteristic of P2P applications is their ability

to operate without the resources of a centrally controlled server application. Peers

generally discover each other, and then cooperate to deliver services.

The nature of P2P applications exacerbates the already complex task of conduct-

ing system-level tests of distributed systems. For example, schemes for operating in

the presence of routers acting as firewalls and employing network address translation

(NAT) are almost always adopted; testing these features requires a fairly complicated

testbed. Also, since peers are discovered instead of being manually configured, a tester

must be careful that the desired topology is detected when arranging a scenario.

2.1.1.1 Gtk-Gnutella

Gnutella is a popular protocol for decentralized file sharing. Gtk-Gnutella is

a Unix-based Gnutella client. A client joins the network by locating a single existing

member who can then help bootstrap the new node by sharing its list of known addresses.

A decentralized system of web applications collectively known as the Gnutella Web

Caching System (GWebCache) stores lists of active hosts and other caches; this too is

used for bootstrapping.

The Gnutella protocol runs over both TCP and UDP and includes control mes-

sages for joining the network, issuing queries, and responding to queries. HTTP is used

to download files from peers. Gtk-Gnutella also supports the GWebCache protocol for

retrieving and updating lists of active peers.

In Gnutella, nodes can operate in “ultrapeer” mode or “leaf” mode. Ultrapeers

are typically run on machines having access to large amounts of bandwidth and other

resources. Ultrapeers are able to respond to query messages on behalf of leaf nodes to

which they are connected, thereby reducing the network usage for leaf nodes.
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Gtk-Gnutella is written in C, and supports a rich graphical user interface via

the GTK library. It has a large number of configuration options related to interacting

with peers, joining the network, and controlling the amount of bandwidth used for

uploads and downloads. It is the only application we considered with a dedicated (i.e.,

non-web-based) graphical user interface.

2.1.1.2 JBoss Clustering

JBoss is a fully featured enterprise Java (J2EE) application server. A single in-

stance of JBoss can be used as a servlet and Enterprise JavaBean (EJB) container, and

provides the typical services of a J2EE container, including management of transac-

tions, security policies, and threading. An advanced feature of JBoss is its support for

clustering of multiple JBoss instances to provide load balancing and redundancy. While

JBoss itself is typically considered to be a canonical server application, we consider

its clustering feature in the P2P category, since the clustering module is completely

decentralized and supports automatic discovery of cluster members who cooperatively

provide a service.

JBoss clustering supports replication of HTTP session and EJB state, Java Nam-

ing and Directory Interface (JNDI) replication, failover and load balancing of JNDI and

EJBs, and cluster-wide deployment of J2EE components. JBoss is written in Java.

2.1.2 Federated

Federated applications are similar to P2P applications in that they are able to

cooperate with other programs to collectively deliver a particular service. They differ

from P2P applications in that they also provide services when running alone, and they

must be manually configured to cooperate with other programs.
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2.1.2.1 Elvin

Elvin1 is a content-based publish/subscribe communication middleware applica-

tion [SA97, SAB+00]. In its most basic configuration, an Elvin application consists of

a publishing client and a subscribing client both connected to a single router. The sub-

scriber provides the router with information about its content preferences, and whenever

a publisher sends a notification that matches these preferences, the router forwards it

to the subscriber. Elvin supports federation of routers located in different adminis-

trative domains. It also supports failover, in which routers can cooperate to provide

replication for advanced quality-of-service features. Each Elvin router can optionally

be managed through a web interface. The core Elvin router is written in C and runs

on both Windows and Unix platforms. Client bindings are available in a number of

languages.

2.1.2.2 Squid

Squid is an advanced caching proxy written in C that is able to proxy commu-

nications for the HTTP/HTTPS and FTP protocols, among others. Squid provides

advanced support for integration with other web caches to improve performance and

reliability. Squid can also operate as an HTTP accelerator for a standard web server. It

includes built-in support for management via SNMP, and is able to operate as a caching

DNS resolver.

2.1.3 Client/Server

In the traditional client/server model, a single server program services multiple

client programs without cooperation from other programs. However, there are few

server programs that are truly independent and do not use other services, such as DNS,
1 Depending on the interpretation of the term, Elvin may not be considered truly “open-source”.

However, it has a publicly accessible defect tracking system, which is why it was included in this study.
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sometime during their operation. Therefore, the two applications we selected as servers

primarily operate alone to provide a service, but in some configurations may also act as

clients of other servers.

2.1.3.1 AOLserver

AOLserver is a web server designed to be highly scalable and configurable. It

is developed and used by America On-Line. The server core is written in C and is

configured and programmed using the Tcl API that it exposes. AOLserver also supports

server-side programming through Tcl, and integrates with various popular relational

databases. Management of AOLserver is accomplished through a telnet-like interface.

Through the server-side programming API, AOLserver can act as an email client,

and as an HTTP/HTTPS client to other (not necessarily AOLserver) web servers.

2.1.3.2 James

James is an email server written in Java. It supports SMTP, POP3, and NNTP.

James can also be configured to act as a POP3 client, and supports the use of popular

relational databases for storing email and metadata. Management of a running James

instance is accomplished through a telnet-like interface. As an email server, James

makes extensive use of the DNS system, and has a built-in DNS resolver/cache for this

purpose. James can be customized through its Mailet interface.

2.1.4 Distributed Component

With the advent of server frameworks, distributed application programming is

often accomplished through the development of components designed to operate within

those frameworks. The components are similar to basic code libraries, but they often

support special interfaces required by the framework and they must often be aware of

the design of the advanced services provided by the framework.
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2.1.4.1 OpenSymphony Workflow

The OpenSymphony Workflow component provides advanced support for work-

flows. The component is customized to a particular workflow through a configuration

file, and supports various popular databases for persistence of workflow histories. The

component is written in Java.

OpenSymphony Workflow can be executed in a standalone fashion, but it is also

intended to operate within a J2EE container as a web application (servlet) or EJB.

2.2 Empirical Method

The raw data used in the study are the reports contained in the defect-tracking

systems associated with the systems we considered. The central challenge faced in con-

ducting the study was to transition from the informal application-specific descriptions

submitted by users to generalizable descriptions of a test scenario in an objective man-

ner. The method we used consists of four distinct activities. First, among all user

reports, we isolate the ones describing failures that are suitable for our study; then, for

each suitable report, we describe the architecture of the system in the reported scenario;

we classify the inputs that cause the failure; and finally we classify the observations that

highlight the failure.

2.2.1 Report Classification

Defect-tracking systems are used for many things, and particularly in open-source

projects some of the uses are not necessarily related to reporting failures. Therefore,

our first challenge was to identify a subset of the reports that are relevant to the scope

of our study. For a report to be included in our study it must satisfy the following

criteria:

• it describes a system-level failure;
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• it describes a run-time failure; and

• it is verified by a developer.

Our initial set of reports for each application consisted of all “closed” reports. Using

the querying features of the defect-tracking systems we were able to eliminate some

extraneous reports by only considering those marked as “fixed”. However, such queries

were not available for all defect-tracking systems, so for these systems all closed reports

were classified manually.

Report Type Description %
INSCOPE in-scope report 34.17
IMPROVEMENT code improvement 21.96
STATIC non-run-time failure 14.47
NEI not enough information 11.18
RFE request for enhancement 7.83
UEI user error / ignorance 3.92
UNIT unit test 2.84
WORKSFORME developer cannot replicate 2.72
3RDPARTY failure is in external software 0.91

Table 2.1: Classified Report Types

Table 2.1 shows the report types we used for this initial preprocessing step. In

general, reports are eliminated from consideration because they (1) do not describe a

failure (marked as IMPROVEMENT, RFE, WORKSFORME, 3RDPARTY); (2) describe a compila-

tion or documentation defect (marked as STATIC); (3) do not provide enough details

about the behavior that causes the failure (marked as NEI); or describe replication that

cannot be readily mapped to system-level actions (marked as UNIT).

Most report-type classifications are a straightforward matter of reading through

the initial report and the subsequent dialog between developers and users. However,

there is some subjectivity in making a NEI or UNIT classification. The following two

examples should help clarify how these categorizations are used.
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The following code generates a java.lang.StringIndexOutOfBoundsException
exception: -

MailAddress mailAddr = new MailAddress("A@B.");

The exception is as follows: -

Jul 05 16:59:59 2001: java.lang.StringIndexOutOfBoundsException: String index
out of range: 4
Jul 05 16:59:59 2001: at java.lang.String.charAt(String.java:503)
Jul 05 16:59:59 2001: at org.apache.mailet.MailAddress.<init>
(MailAddress.java:102)

I can only generate this error if the last character is a fullstop.

Figure 2.2: James Report #5
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Figure 2.2 contains the initial description of a defect report for James. This report

was classified as UNIT because it makes no mention of the user-level inputs needed to

reproduce the failure or the user-level observations that would be needed to recognize

the failure.

#0 0x40197d21 in __kill () from /lib/libc.so.6
#1 0x40197996 in raise (sig=6) at ../sysdeps/posix/raise.c:27
#2 0x401990b8 in abort () at ../sysdeps/generic/abort.c:88
#3 0x8061bce in xassert (msg=0x809c4e2 "auth_user_request != NULL",

file=0x809c4c0 "authenticate.c", line=478) at debug.c:250
#4 0x8050778 in authenticateAuthUserRequestLock (auth_user_request=0x0)

at authenticate.c:478
#5 0x8058fd3 in clientRedirectDone (data=0x845de90,

result=0x8211f68 "http://127.0.0.1:2968/") at client_side.c:314
#6 0x8080f34 in redirectHandleReply (data=0x845e600,

reply=0x8211f68 "http://127.0.0.1:2968/") at redirect.c:70
#7 0x806e7e4 in helperHandleRead (fd=7, data=0x8211f20) at helper.c:691
#8 0x8061050 in comm_poll (msec=878) at comm_select.c:434
#9 0x807a8a8 in main (argc=2, argv=0xbffff7ac) at main.c:720

Figure 2.3: Squid Report #198

Similarly, Figure 2.3 shows a report that simply consists of a debugger stack trace

that was classified as NEI. In this report, there is enough detail for the developers to fix

the problem, but there is not enough information to reconstruct the scenario that leads

to the failure.

Table 2.2 shows that after preprocessing we are left with 602 in-scope failure

reports.

There are three major aspects of each scenario that are summarized for each

report: (1) architecture, (2) inputs, and (3) observations. The remainder of this section

describes them in detail.

2.2.2 Architecture

The architecture of a scenario refers to the number and organization of any com-

ponents involved in the failure. The architecture is separated into the configuration of
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System Total Reports In-scope Reports %
AOLserver 196 69 35
Elvin Router 149 67 45
Gtk-Gnutella 337 115 34
James 203 85 42
JBoss Clustering 36 22 61
OpenSymphony 289 37 13
Squid Cache 552 207 38

1762 602 34

Table 2.2: In-Scope Reports by System

the application itself, the configuration of any supporting components, collectively re-

ferred to as the harness, and properties of the underlying network. The harness further

is divided into drivers and services, where a driver component is one that initiates

communication with the system, while a service component instead awaits communi-

cation from the system. In James #66, shown in Figure 2.1, the scenario architecture

consists of one instance of James, one SMTP client driver, one SMTP service, and one

DNS service. There are no special network properties described.

In a few scenarios, the underlying network was required to have certain charac-

teristics. For example, a JBoss Clustering scenario requires that the underlying network

not support IP multicast. We believe that manipulation and configuration of the net-

work is an important class of inputs to these systems that is probably not sampled

extensively by end users of these systems.

# Components %
1 19.60
2 41.20
3 33.39
4 4.82
5 1.00

Table 2.3: Architectural Summary

The scenario architectures we identified involved between one and four application
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instances, between zero and three driver components, and between zero and three service

components. Only seven scenarios required manipulation of the underlying network.

Table 2.3 shows a summary of the architectures described in the reports. The first

column in this table reflects the total number of components involved in a scenario.

For example, a scenario involving an AOLserver instance and an HTTP client, and a

different scenario requiring two Gtk-Gnutella instances are both considered to involve

two components. One notable feature of the data in Table 2.3 is that over 80% of the

scenarios involved more than one component.

2.2.3 Inputs

In addition to the scenario’s architectural elements, we also identify and cate-

gorize the scenario’s inputs. We take a broad view of “inputs” in which we consider

all the installation/configuration settings and run-time actions needed to reproduce the

reported failure. As with the architectural classification, the inputs are separated by

whether the locus of the input is the system, one of the harness elements, or the un-

derlying network. The input categories presented in Table 2.4 were derived from an

examination of the reports themselves. In particular, new categories were created as

needed, to accommodate an aspect of a scenario that did not fit neatly within the ex-

isting ones. Although it is not possible for us to claim that the categories we came up

with are sufficient to represent all possible inputs for distributed systems, they were

sufficient to handle the disparate systems included in the study. Furthermore, the set

of categories is quite stable in that most new categories were created to accommodate

the first few systems; very few categories were added late in the process.

We consider both setup inputs and run-time inputs since both of these affect the

behavior of the system. Setup inputs are those steps that are taken to get components

installed and configured as required by the scenario. This includes building the system,

installation, configuration, customization and finally, execution. Run-time inputs are
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Locus Category Description
System Configuration configuration activities

Customization API programming activities
Execution execution style or command line options
FileData data files contents
FileSystem changes to files or file system structure
Installation compilation and installation activities
OperatingSystem changes to the operating system
Platform specific software platform
UserInterface interaction with the system via interface

Harness Behavior specific network-related behavior
Configuration driver/service configuration
Platform specific software platform
SendMessage send a particular message

Network Manipulation alter underlying network

Table 2.4: Input Categories



29

any actions performed after the programs have been started.

Most categories listed in Table 2.4 are self explanatory. “Customization”, which

appears as a system input, requires further explanation. Customization refers to the

creation of any plug-in-like software that runs within a component in the system or the

harness. For example, many of the failures associated with AOLserver required that a

server-side script be created with particular contents, and hence this was classified as a

customization.

Referring to the report in Figure 2.1, the inputs categorized for James #66 are:

(1) Harness:SendMessage for the DNS response and email and (2) System:Configuration

for the DNS configuration of James.

The initial categorization left us with a brief description of each scenario and

the input categories that are present in the scenario. Next, we consider each input

independently and determine whether it was truly “distributed”. The purpose of this

categorization is to enable us to distinguish between scenarios whose architecture is

multi-component, simply because the system accepts input at run time through the

network interface, and scenarios that actually involve the distributed nature of the sys-

tem. Inputs that are considered to be distributed fell into these three rough categories.

• Inherent: e.g., concurrency; relative differences in processing speed, latency,

and bandwidth; unreliable communication; platform heterogeneity.

• Accidental: e.g., addresses, ports and well-known port assignments; network-

ing resource limits.

• Error simulation: e.g., connection timeouts and termination; invalid or trun-

cated messages.

A scenario was classified as distributed if any of its constituent inputs are distributed.

For example, a number of defects in AOLserver are demonstrated by creating a server-

side script with particular characteristics and then executing the script by sending the
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appropriate HTTP request to the server; these are all classified as non-distributed be-

cause the HTTP client program is only used as a vehicle with which to send inputs to

the server. By contrast, an AOLserver scenario that required a client to connect to the

HTTPS port and simply wait for the connection to timeout is classified as distributed

since in this scenario the HTTP client is used to exercise an aspect of the protocol.

2.2.4 Observations

For a scenario to produce a failure, the anomalous behavior must be observed

during execution. For each scenario, we described and classified the observation that

was made. The categories used are summarized in Table 2.5. As we did for inputs,

we separated our observation categories by whether they are applied to the system

components, to the harness components, or to the network. For example, if a failure is

observed by noticing that the structure or content of a message exchanged by system

components the observation is classified as being applied to the “System”; if, on the

other hand, the content or structure of a message provided to an entity outside the

system boundary (i.e. part of the harness), then the observation is labeled “Harness”.

The fourth column in Table 2.5 shows the percentage of all 602 observations that

fell into each category.

In our initial observation classification, we also produced a succinct summary of

each observation. These summaries were then used in a second refinement phase to fur-

ther categorize each observation category. In all, we identified 29 different subcategories

of observations. Due to its length we do not show the entire list. As an example, the

subcategories of the Message category are as follows.

• Absence: a message was not sent or received when it should have been.

• Content: the data transmitted in a message were somehow invalid.

• Format: the message format was incorrect.



31

Locus Category Description %

System Process application process 28.57
LogOutput log or console messages 17.77
State internal state 12.96
File files or directories 6.48
Performance resource usage 2.16
OperatingSystem operating system elements <1
Message network messages <1

Harness Message network messages 25.41
Networking networking API 1.82
State internal state 1.16
Performance resource usage <1
LogOutput log or console message <1

Network Transport transport-layer aspects <1

Table 2.5: Observation Categories
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• Presence: a message was sent or received when it should not have been.

• Type: a message of a particular type was was observed.

The observation in James #66 was classified as a Message:Absence, since the SMTP

service should have received an email message.

Once we identified all the subcategories, each subcategory was labeled as either

generic or specific, according to the level of specificity of observation that was needed.

Generic observations are those that can be applied to virtually any software system (e.g.,

application crashes, errors appearing in standard system logs, or memory leaks), and

observations that are tied to the application being tested, but still at a high level (e.g.,

the presence or absence of network messages). By contrast, specific observations involve

detailed judgments about computed data values (e.g., contents of message fields). These

observation labels are the basis for our analysis of observations discussed in the next

section.

2.3 Analysis and Discussion

The analysis presented in this section is centered around (1) determining what

general trends exist with respect to the complexity of the failure scenarios and (2) ex-

amining the specificity of observations that detect failure. We examine both of these

aspects from the perspective of two measures of a scenario’s distributedness: (1) how

many different components must cooperate to cause the failure and (2) whether or not

the scenario requires any “distributed” inputs as described in Section 2.2.3. This leads

us to distinguish between multi-component and distributed scenarios in the discussion

below.

After classifying each input as distributed or not we were able to determine that

17% of the 602 scenarios required truly distributed inputs. While 17% is not a par-

ticularly high value, since the scenarios in this study were reported by users it is not
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System # Dist. # Scenario %
AOLserver 14 85 16
Elvin Router 13 69 18
Gtk-Gnutella 23 115 20
James 12 67 18
JBoss Clustering 2 37 5
OpenSymphony 1 22 4
Squid Cache 38 207 18

103 602 17

Table 2.6: Distributed Scenarios by System

unreasonable to treat this as a lower bound. Failures involving concurrency and timing

issues are notoriously hard to replicate even for professional testers. Additionally, as

the data in Table 2.6 show, the percentage of scenarios that are distributed is relatively

consistent across all the systems we studied, lending credence to our belief that this class

of failures is fundamental to distributed systems. In any case, our conclusion is that

a significant fraction of all the failures is directly related to the distributed nature of

the systems. This observation suggests that specialized testing methods and adequacy

criteria are needed to address distribution.

The core assumptions underlying our analysis are that a failure scenario with a

larger number of components is inherently more difficult for a tester to perform, and

that the space of possible test cases grows rapidly as scenarios of higher complexity

are considered since each component can be configured independently. Table 2.3 shows

the overall architectural complexity of the reported scenarios in terms of the number

of components involved. One interesting observation from the data in this table is

that approximately 75% of the scenarios we encountered involved either two or three

components, and that 93% of the scenarios can be accounted for with simple scenario

architectures involving three or fewer components.

Table 2.7 shows the same data for the distributed scenarios. It should be pointed

out that just over 12% of the distributed scenarios actually only required a single system
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# Components %

1 12.62
2 36.89
3 41.75
4 6.80
5 1.94

Table 2.7: Architectural Complexity for Distributed Scenarios

instance. Most of these defects were related to misconfiguration of ports, addresses and

DNS related settings and are thus part of the “accidental” distributed inputs. At a high

level, comparing the values in Table 2.7 with those in Table 2.3 confirms the observation

made above that even for the scenarios requiring distributed inputs, more than 90% of

the scenarios we encountered involved three or fewer components.

# App. Instance # Drivers # Services %
1 1 1 27.57
1 1 0 24.92
1 0 0 19.93
2 0 0 12.62
1 2 0 3.49
1 0 1 3.16
1 1 2 2.33
2 1 0 2.16

Table 2.8: Scenario Diversity

Table 2.8 shows the top 8 scenario architectures as represented by the mix of

application instances, driver instances, and service instances. Altogether, these eight

scenarios account for 96% of those encountered, while the top four alone account for

85%. It is encouraging to note that the four most common scenario architectures involve

only simple harnesses, if at all.

While the inputs to a test determine if a fault will occur, for the scenario to gener-

ate a failure, the fault must be observed. Figure 2.4 shows the percentage of observations

at each level of architectural complexity for the two main observation labels described
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in Section 2.2.4. Data are only shown for scenarios with four or fewer components since

there are so few scenarios with five components. This figure shows the encouraging

result that the proportion of generic observations and specific observations remain

steady as the scenarios become more distributed.

Within the generic observations, we further identified three groupings: (1) catas-

trophic, (2) universal, and (3) general. Observations of catastrophic failures are the

easiest to make since, by definition, the application stops running. Universal observa-

tion are those that can be applied to virtually any software system (e.g. error messages in

system logs), while general observations are system-specific, but still broadly applicable

within the space of possible behaviors of the system (e.g. message format violations).
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Figure 2.5: Generic Observations versus Distribution

Figure 2.5 shows that observations of catastrophic failures are most prevalent

in single-component scenarios, and that their frequency levels off at roughly 25% for

scenarios with more components. The most striking feature of Figure 2.5 is the rise of

the general observations as the scenario complexity increases.
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2.3.1 Implications for Testing

The prevalence of failures that are directly attributable to the distributed nature

of systems suggests that specialized testing methods are needed to address distribution.

As for the complexity of these methods, the implications of our two main findings are

quite encouraging.

First, our analyses of the structural complexity of scenarios uncover the encour-

aging finding that the vast majority of scenarios are accounted for with relatively simple

architectures. This is even true of scenarios that explicitly include inputs related to the

distributed nature of the system. This implies that testers can reasonably prioritize

their attention on the simple configurations.

Next, while the proportion of very specific observations appears to remain rel-

atively constant at about 30%, the need for general purpose oracles for a particular

system appears to increase as scenarios involve more components. This finding also

bears out common sense which dictates that the failures in systems with more com-

munication and interaction will be more subtle to identify, and that techniques and

methods for developing system-level test oracles become more important in these cases.

Finally, at a higher level, the experience of conducting this study and attempting

to impose some level of structure and categorization on the space of distributed system

failures is encouraging. We were able to analyze a large number of failure reports from

seven disparate systems using quite a small set of categories and a relatively simple

model of the scenario architectures. All of this implies that attempting to develop

systematic and rational approaches to high-level testing of distributed systems is not

futile, and that general-purpose methods, tools and techniques can be developed with

at least the possibility of making a positive impact on the quality of such systems.
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2.3.2 Threats to Validity

While we feel confident that the results and their implications found through this

study are reasonable, it is important to recognize threats to their validity.

We state explicitly that we are not claiming that our results can be used to draw

conclusions about the testing of all distributed systems; we are only claiming that our

study shows that there are some systems to which our analysis applies, although we

have tried to look at systems that represent a diversity of distribution styles. There are

a number of reasons why our results might not generalize. For example, the systems

considered in this study all result from open-source development projects that would be

expected to devote fewer resources to quality assurance than would commercial projects.

Thus, failures that may be caught through standard means might have escaped into the

field.

The failures are only those that have been reported using the defect-tracking

systems; it is highly likely that failures are found and fixed by developers while using

the system themselves, or that failures are seen by users, but they simply upgrade to the

newest release or avoid the problem in some way without reporting it. Therefore, the

study is limited to drawing conclusions about the failures that were actually reported

by users. We believe that this probably limits the complexity of the scenarios that are

included in the study, and it is the primary reason that we consider the results to be

applicable to a test goal of exposing major user-visible failures. In other words, even

if all the failures mentioned in this study were fixed, there will likely still be failures in

the systems that can only be found through scenarios that are more complex than those

examined here.

A major threat to validity is the objectivity of the analyst. As pointed out by

El Emam and Wieczorek [EW98], this is a problem with all empirical defect classifica-

tions, since it is by nature a subjective activity. In our study, all classifications were
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performed by a single analyst, and the results might have been unwittingly skewed in

some direction. The process that we have established guards against this by breaking

the classification into small steps so that the analyst can consider each piece indepen-

dent of its scenario description. In the future, we hope to use a collaborative approach

to defect-report classification, where different analysts classify reports independently,

and conflicts are resolved anonymously.

Another major threat to validity is the content of the defect reports themselves.

It is possible that a report contains too much or too little information. If too many

details about a scenario are included in an initial report, and the developer does not

make a note of this, the analysis of the report will include more specifics than are really

warranted. Conversely, if the initial report does not contain enough detail about the

scenario to reliably duplicate the failure, but the developer does not use the defect-

tracking system to gather the necessary information from the reporting user, then the

report will be given a less-specific classification than is warranted.

2.4 Summary

In this chapter we present the results of an empirical study undertaken to un-

derstand and structure the space of failure scenarios reported by users of distributed

systems. Our intent is to motivate new testing techniques tailored to distributed sys-

tems by presenting patterns, commonalities, and correlations in the user inputs and

observations described in defect reports. A secondary goal of our study is to determine

how frequently the distributed nature of an application comes into play when system

failure occurs. Our results indicate that: a new generation of test-adequacy criteria are

needed to address the failures that are due to distribution; the configurations that cause

user-reported failures are reasonably straightforward to identify; and generic failure ob-

servations are strongly correlated to the distributed nature of system failures.

A secondary contribution of this work is the empirical method we developed. As
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far as we know, this is the first empirical study of its kind and the method is generally

applicable to many varieties of software. In particular, we believe that the classification

activities and input and observation categories identified could provide a basis for other

defect report analyses aimed at understanding failure scenarios. Additionally, critical

examination of defect reports is not a purely academic endeavor; practical techniques

derived from our empirical method might provide QA managers with a means of under-

standing shortcomings of their team’s testing processes, analogous to the way root-cause

analysis can help development teams improve and evolve their processes.



Chapter 3

Simulations and Testing

Discrete-event simulations (DES) are commonly used during the design and devel-

opment of distributed systems. Traditionally, simulations are used to help understand

the behavior and performance of complex systems. Here we are interested in using them

to help guide testing.

Discrete-event simulations are organized around the abstractions of process and

event. Briefly, processes represent the dynamic entities in the system being simulated,

while events represent a stimulus applied at a particular time to one of the running

processes. When simulating distributed systems, processes are used to represent the

core components of the system, as well as environmental entities such as the network or

external systems. Events represent messages exchanged by the components and can be

thought of as generic structured data types. Virtual time is advanced explicitly by pro-

cesses to represent “processing time” and advanced implicitly when events are scheduled

to occur in the future. To run a simulation, processes are instantiated, initialized, and

arranged into a particular configuration that is then executed. A simulation executes

until there are no longer events scheduled to occur.

As a brief example, consider a simple client/server system designed to operate in

a network environment with unreliable communication. The simulation of this system

consists of three process types, Client, Server, and Network, and two event types,

Request and Response. The Network process is used as an intermediary through
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which events between clients and servers are scheduled. Network latency is implemented

in the simulation by having the Network process control the scheduling of event de-

liveries. The unreliable nature of the network is implemented by coding the Network

process to probabilistically drop events by ignoring them. A given configuration might

include four process instances: s:Server, c1:Client, c2:Client, and n:Network, com-

municating using an arbitrary number of Request and Response events.

Clearly, the simulation code of this example system can be used to experiment

with network latencies and drop rates under different configurations, as a means to

predict overall performance, and to evaluate scalability and other properties. But, how

can the simulation code be used for testing?

4. Suite
Adequate?

Yes

7. Pass?

Yes

No

No

3. Analyze (Simulate)

2. Select Inputs

8. Release

6. Execute Suite1. Select Criterion

5. Map
Suite

Figure 3.1: Specification-Based Testing Process

Figure 3.1 depicts a simple and generic specification-based testing process. As a

first step, the tester selects a particular adequacy criterion to organize the rest of the

process; we defer discussion of this difficult decision until later, for now assume that a

criterion is being used and the tester must select a test suite that will satisfy it. A test

suite is composed of test cases, each one consisting of an input vector that includes
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direct inputs to the system, representing functional parameters, as well as inputs to

the environment, representing environmental conditions. In the figure, actions 2–4 are

repeated until the criterion is satisfied.

Once a suite has been selected, the tester uses it to test the implementation by

first mapping input vectors into the implementation domain (step 5), and then executing

each test case on the implementation (step 6). The system is ready for release once it

passes all test cases.

The simulation code plays the role of the specification in specification-based test-

ing (i.e., during analysis). Given a candidate test case, an corresponding simulation

is configured and executed to gather coverage data. These data are then aggregated

for the test suite to determine adequacy. The process by which individual test cases

are created or generated is outside the scope of this dissertation. Similarly, we neither

propose nor discuss any specific strategy by which the developer might search the space

of test suites to find an adequate one; our concern is with the decision process, not the

search process.

At a high level, our approach rests on two ideas. The first idea is to use the sim-

ulation code and simulation executions as a basis to formulate general-purpose and/or

system-specific test adequacy criteria. For example, a general-purpose criterion might

call for statement coverage of the simulation code of all non-environmental processes

(Client and Server in the example above), or a system-specific criterion might require

that each event type be dropped at least once during a simulation run. Once a criterion

is defined, the developer can evaluate the adequacy of a test suite by running the test

cases in a suitably instrumented simulation.

Step 1 in Figure 3.1 requires that the developer choose a single adequacy criterion.

However, the developer may not have enough information to make this decision with

confidence. This might be because no good criteria are available or known, due to the

lack of experience with a particular system, or because the developer cannot decide
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which criteria to adopt out of a set of plausible candidates. Even when a criterion has

been selected, the developer might be concerned with selecting an ineffective test suite.

Therefore, the second idea is to provide the developer with a general ranking

mechanism to: (1) fine tune the selection of the most effective suite within the set

of adequate suites, given a chosen criterion; and (2) guide the selection of the most

effective criterion for the system at hand. This ranking mechanism is also based on

the simulation code, and in particular it is derived from a fault-based analysis of the

simulation code.

3.1 Simulation-Based Testing

As with all specification-based testing techniques, we analyze a specification to

select test cases for the implementation. Analysis, in our approach, involves setting up

a simulation configuration and executing it. In the following discussion, we distinguish

four parts of the analysis process:

(1) modeling: the behavior of a system is coded within a discrete-event simulation

environment;

(2) configuration: parameterized configurations of the simulated system are cre-

ated;

(3) simulation execution: parameter values (i.e., test cases) are picked, the con-

figuration is executed, and coverage data are collected; and

(4) aggregation: coverage data are post-processed and aggregated to determine

the adequacy of a collection of executions (i.e., a test suite).

Each set of parameter values derived from this analysis constitutes the input vector of a

test case that is later applied to the implementation during test execution by a suitable

test harness.
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It is important to understand that the analysis process we outline is a conceptual

framework, not a specific tool-set. The concepts central to simulation-based testing

can be applied within many different environments. In fact, part of the power of this

approach is the manner in which it leverages existing tools and techniques. The only

constraint we place on the DES environment is that it is programmed in a language

that is amenable to coverage analysis and mutation. If a common general-purpose

programming language is used for simulation, then there are a wide variety of coverage

analysis tools that can be used off-the-shelf. There is less selection of mutation tools,

but the major imperative languages are supported. Furthermore, the process we outline

above makes no assumptions and imposes on restrictions on the implementation style

of the system.

In order to conduct our experiments, we were compelled to choose a specific DES

environment, specific coverage analysis techniques, and a specific code mutation tool.

Without loss of generality, we describe the technique of specification-based testing in the

context of our experimental environment. Also, to make the discussion more concrete,

we use an example distributed application, GCDService, is a service that computes

the greatest common divisor of two integers upon request. GCDclient components

construct a request message containing the integers of interest and send it over an un-

reliable network to a server. A GCDserver component waits for requests and provides

responses either by looking up a cached copy of the result from previous request of the

same integers; or by computing it directly through the application of Euclid’s algorithm.

Appendix B contains the code for Euclid’s algorithm and the full simulation code

for GCDService. Some of this is duplicated here for clarity.

3.1.1 Modeling

The natural way to represent a distributed software system within a DES is to map

components of the system to DES processes, and to use events to represent the arrival
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of messages at the components. This model is used ubiquitously by distributed-system

researchers and practitioners. With this basic model, it is relatively straightforward to

preserve and represent the fundamental properties of distributed systems.

• Latency: the behavior of the network can be implemented as a process. Mes-

sage propagation delays are implemented by altering the scheduled time of mes-

sage arrival events.

• Separate address spaces: processes in the simulation should not communi-

cate directly (i.e., by invoking methods), but instead use events.

• Partial failure: within a DES environment, processes can stop at any time,

but other processes have no direct way of determining this.

• Concurrency: within DES environments, processes execute independently,

using simple directives to simulate delays or pauses in processing.

For a developer, the challenge of modeling a distributed system is in determining

the level of abstraction at which to implement algorithms and behavior. There is no

rulebook about how to proceed and to a large degree it depends on the intended usage

of the simulation and experience of the simulation developer. Part of the power of

using such a flexible paradigm is that it can easily be tailored to the situation at hand.

For example, with GCDService, the core functionality is provided by Euclid’s GCD

algorithm, and the distributed functionality related to the caching behavior, sending

and receiving messages, etc. is wrapped around it. When modeling this system, the

developer must decide whether to include Euclid’s algorithm and thus have a fairly

complete simulation, or to exclude it to focus on the distributed processing done by the

GCDserver component. This decision is influenced by, and impacts the testing process.

If the simulation developer knows that Euclid’s algorithm is undergoing extensive testing

in isolation, they might abstract away this logic in the simulation, and thereby limit
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the scope of what system-level tests will address. On the other hand, if the developer

performing system-level testing is worried that the testing of this module is incomplete

at lower levels, they can include the algorithm in the simulation and ensure that its

functionality is adequately exercised.

Modeling the network is key decision that developers must make. There are

several possibilities. At one extreme, the developer may model each physical network

link that connects programs in the system, the routers and switches and the like. This

would be appropriate in situations where the behavior of the system was influenced

by individual link properties. At the other extreme, the developer may represent the

entire network as a single process and manipulate delays and drops globally. The DES

paradigm is flexible enough to account for either extreme, and virtually anything in

between.

To simulate the systems we consider in this work, we developed a simple simu-

lation environment that encourages a particular programming style and makes certain

modeling decisions. Foremost, we represent the network as a single process that has ho-

mogeneous drop and delay rates; we do this because our experimental method requires

that we can automate the selection of simulation inputs, and more detailed network im-

plementation would make this difficult. We also chose to include the notion of “ports”

with communication channels to make the simulation implementation have the flavor

of low-level sockets programming. Finally, we adopted a coding style in which message

objects (i.e., events) are limited to being structured data types without methods of their

own. In the next section, we describe in our simulation environment in more detail.

3.1.2 Simulation Environment

In our experiments we use the Java-based DES library simjava1 . From this

library, we use classes representing processes and events, virtual time management, and
1 http://www.dcs.ed.ac.uk/home/hase/simjava/
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the event scheduling framework. We adapt these domain-independent mechanisms to

provide a simulation environment more appropriate for simulating distributed software

systems that exchange messages over an unreliable and latent network.

The primary function of our simulation environment is to provide a more intu-

itive interface for representing communication between processes. This is enabled by

implementing a pluggable framework for coding network behavior. With this in place,

the simulation developer interacts with the network in an intuitive way at appropriate

places within the component logic.

3.1.2.1 Process Model

There are two different paradigms for implementing a DES system: event-based

and process-based, the difference primarily being how the behavior of a process is imple-

mented. In an event-based simulation, process behavior is implemented within callback

functions that are invoked when an event occurs for the process; this accentuates the

reactive nature of the processes. Conversely, in a process-based environment, the be-

havior is implemented within a main routine, and event occurrences must be polled

explicitly. We use the process-based approach, primarily because this results in a more

natural implementation of each process’ behavior.

3.1.2.2 Communication

Many different approaches to representing the network are possible, depending on

the focus of the simulation. We chose to represent the entire network as a single process

that acts like a switchboard between the components. This makes it quite simple to

implement a global behavior for the network.

The simulation environment provides implementations of different communication

paradigms: datagram based, and stream based. During the modeling stage the specifier

need only decide which paradigm to operate within for each interaction; similar to the
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decision to use either the UDP or TCP transport mechanisms. In this work we consider

only systems whose communications can be modeled with datagrams. The behavior of

the network can be specified when a simulation is configured, and we discuss this below.

Components interact with the network through channels. DatagramChannels,

reminiscent of UDP sockets, are bound to a port of the local component either explicitly

or implicitly. Typically, port numbers are explicitly provided for channels that will act

as server ports, if a port number is not provided, an unused one is selected. Messages

arriving at the port are received through a channel object, and the same object may be

used to send messages to other channels. Incoming messages are queued and retrieved in

the order in which they were received. If no messages are available, the receive operation

blocks (with an optional timeout). The send operation does not block.

A component can instantiate as many channels as necessary to implement the

behavior correctly and a select mechanism is provided so that a component can wait for

incoming messages on multiple channels simultaneously.

1 public class GCDclient extends Component
2 {
3 public int main ( Address se rver , int a , int b)
4 throws NoResponseError
5 {
6 DatagramChannel ch = newDatagramChannel ( ) ;
7
8 Request req = new Request ( a , b ) ;
9

10 for ( int i =0; i <3; ++ i ){
11 ch . send ( se rver , req ) ;
12 try {
13 return ( ( Response ) ch . recv ( 0 . 5 ) ) . gcd ;
14 }
15 catch ( TimeoutException e ){}
16 }
17 throw new NoResponseError ( ) ;
18 }
19 }

Figure 3.2: GCDclient Component

Figure 3.2 contains the full implementation of the GCDclient component. Since
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this component is a client (i.e., it initiates connections) it does not provide a port

number in its call to newDatagramChannel in line 6. In line 11, the send operation

of DatagramChannel is used to simulate the sending of a message to the server address,

and in line 13, the channel is used to receive a Response object with a timeout of 0.5.

1 public class Request extends Message
2 {
3 public f ina l int a ;
4 public f ina l int b ;
5
6 public Request ( int a , int b){
7 this . a = a ;
8 this . b = b ;
9 }

10 }
11
12 public class Response extends Message
13 {
14 public f ina l int gcd ;
15
16 public Response ( int gcd ){
17 this . gcd = gcd ;
18 }
19 }

Figure 3.3: GCDService Messages

3.1.2.3 Messages

Messages are implemented as immutable structures. Aside from application-

specific data fields, message objects also contain the source and destination addresses

after being sent across the network. Figure 3.3 contains the code implementing the

Request and Response messages needed to simulate GCDService. Within our sim-

ulation environment, message classes are limited to being structured data types, they

are explicitly prevented from defining methods to operate on their member variables.

In our experience, it is convenient to represent messages at a high-level using

arrays and collections and other advanced data structures as necessary. However, this is

a modeling decision that results in message parsing and formatting logic being left out
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of the simulation and therefore unable to be addressed by simulation-based criteria. The

simulation developer has complete control over the level of abstraction of the simulation

code, and our environment does not preclude, for example, the implementation of all

message content as an unformatted byte array.

3.1.2.4 Components

The core behavior of the system is coded in the components. Components inter-

act with each other by sending message objects through the communication channels

discussed earlier. Within the component, virtually any data and control structures can

be used.

Figure 3.2 contains the full implementation of the GCDclient. This component

is parameterized by the address of its companion GCDserver and the two integers for

which the GCD is desired. Its behavior is quite simple: it instantiates a request object

and then tries three times to send the request to the server and receive the response,

waiting 0.5 virtual time units between each attempt. If a response is received, the GCD

value it contains is returned, otherwise an error is signaled.

As a more complicated example, the implementation of GCDserver is shown in

Figure 3.4. This component is parameterized by the port to listen on, and the upper

size bound of its internal cache. Initially, a channel is bound to the specified port and

the cache data structure is instantiated (lines 5 and 6). Within the main loop, the

logic is divided between the caching functionality and the actual computation of GCD

values with Euclid’s algorithm. For caching, lines 11–14 construct the cache key out of

the values contained in the Request object so that the key will accommodate different

orderings of variables; the code in lines 16–20 checks the cache for a previously computed

result. Lines 37–50 are devoted to cache cleanup logic wherein the least recently used

cache item is removed.

Euclid’s algorithm is implemented in lines 21–33. Line 25 demonstrates the use
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1 public class GCDserver extends Component
2 {
3 public void main ( int port , int cacheS i z e )
4 {
5 DatagramChannel ch = newDatagramChannel ( port ) ;
6 Map cache = new HashMap ( ) ;
7
8 while ( running ( ) ){
9 Request req = ( Request ) ch . recv ( ) ;

10
11 St r ing key = req . a + ” , ” + req . b ;
12 i f ( req . a > req . b){
13 key = req . b + ” , ” + req . a ;
14 }
15
16 In t eg e r gcd = null ;
17 i f ( cache . containsKey ( key ) ){
18 CacheValue cv = ( CacheValue ) cache . remove ( key ) ;
19 gcd = cv . gcd ;
20 } else {
21 // Begin Euc l id ’ s Algorithm
22 int x = req . a ;
23 int y = req . b ;
24 while ( x > 0 && y > 0){
25 pause ( 0 . 1 ) ;
26 i f ( x > y ) {
27 x = x − y ;
28 } else {
29 y = y − x ;
30 }
31 }
32 gcd = new I n t e g e r ( x + y ) ;
33 // End Euc l id ’ s Algorithm
34 }
35 cache . put ( key , new CacheValue (now ( ) , gcd ) ) ;
36
37 i f ( cache . s i z e () > cacheS i z e ){
38 I t e r a t o r i t r = cache . entrySet ( ) . i t e r a t o r ( ) ;
39 Object minKey = null ;
40 double minValue = Double .MAX VALUE;
41 while ( i t r . hasNext ( ) ){
42 Map. Entry entry = (Map. Entry ) i t r . next ( ) ;
43 CacheValue value = ( CacheValue ) entry . getValue ( ) ;
44
45 i f ( va lue . usedAt < minValue ){
46 minKey = entry . getKey ( ) ;
47 }
48 }
49 cache . remove (minKey ) ;
50 }
51 a s s e r t cache . s i z e () <= cacheS i ze ;
52 Response resp = new Response ( gcd . intValue ( ) ) ;
53 ch . send ( req . getSourceAddress ( ) , r e sp ) ;
54 }
55 }
56 }

Figure 3.4: GCDserver Component
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of the explicit time advancement operation “pause”. From its location in the code, the

intent is that the processing time of this computation is proportional to the number of

time through the loop started on line 24. As mentioned earlier, the inclusion of this

algorithm is another modeling decision. If the simulation developer knew that this logic

was the focus of special attention from other testing techniques, then the whole algo-

rithm could be replaced with:

. . .

21 // Begin Euc l id ’ s Algorithm

gcd = new I n t eg e r (−1);

// End Euc l id ’ s Algorithm

. . .

Throughout the rest of this chapter we use code examples that are specific to our

simulation environment. The code is clearly not general, but the concepts related to

configuration, execution and aggregation are.

3.1.3 Configuration

Before a simulation can be run, components must be instantiated and organized

into a particular configuration that represents the real-world situation being simulated.

In our environment, this is accomplished by extending the Simulation class and adding

component instances. In our discussion of configurations, we differentiate between ab-

stract configurations which are parameterized, and therefore unable to be directly

executed, and concrete configurations that supply values for all parameters. In testing

terminology, abstract configurations are test harnesses, and the values included as part

of a concrete configuration comprise the input vector of a test case.

Figure 3.5 contains an abstract configuration, ClientPairTest that consists of a

single server component and two client components. ClientPairTest is parameterized
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1 public abstract class Cl i entPa i rTes t extends Simulat ion {
2 public Cl i entPa i rTes t ( int a1 , int b1 , int gcd1 ,
3 int a2 , int b2 , int gcd2 )
4 {
5 Address addr = new Address ( ” s e r v e r ” , 1 2 3 4 ) ;
6
7 add (new GCDserver ( addr . name , addr . port , 1 0 ) ) ;
8
9 add (new GCDclient ( ” c1” , addr , a1 , b1 ) ,

10 new I n t eg e r ( gcd1 ) , 0 . 0 ) ;
11
12 add (new GCDclient ( ” c2” , addr , a2 , b2 ) ,
13 new I n t eg e r ( gcd2 ) , 5 . 0 ) ;
14
15 setNetworkBehavior (new NetworkBehavior ( 0 . 1 ) ) ;
16 }
17 }
18
19 public class Cl ientPairTest A extends Cl i entPa i rTes t {
20 public Cl ientPairTest A (){
21 super ( 3 , 5 , 1 , 2 , 4 , 2 ) ;
22 }
23 }
24
25 public class Cl ientPai rTest B extends Cl i entPa i rTes t {
26 public Cl ientPai rTest B ( ){
27 super ( 3 , 5 , 1 , 3 , 5 , 1 ) ;
28 }
29 }
30
31 public class Cl ientPai rTest C extends Cl i entPa i rTes t {
32 public Cl ientPai rTest C ( ){
33 super ( 3 , 5 , 1 , 5 , 3 , 1 ) ;
34 }
35 }

Figure 3.5: Example Configuration
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by the values requested by each of the components. Figure 3.5 also contains three

concrete configurations that extend ClientPairTest by supplying parameter values.

In the abstract configuration, the GCDserver instance is added to the simulation

in line 7. In our environment, all components must be instantiated with a unique name

as their first constructor argument, the remaining constructor arguments are passed to

the main routine by our framework. In this case, the server’s port number and maximum

cache size are passed.

GCDclient instances are added to the simulation in lines 9 and 12. These

are instantiated with a name, the server address, and the request values. The second

argument to the add method is the expected return value of the component. This is

used as a high-level oracle in the simulation. The last argument is the start time for the

component; in this example the first component starts at a virtual time of 0.0, while

the second component delays until 5.0.

Finally, on line 15 the configuration specifies the behavior of the network during

simulation. In this case, a simple delay-only network is used, with a small latency. More

advanced behaviors can be specified by extending the NetworkBehavior class; we have

developed generic probabilistic behaviors that drop, delay, and duplicate messages by

arbitrary amounts. We have also implemented more explicit behaviors that drop specific

messages.

The concrete configurations in Figure 3.5 have supplied values for all parameters,

so they are essentially executable simulations. In ClientPairTest A, two different

integer pairs are used; in the second two concrete configurations, the same two integers

are used in requests (3 and 5), but in ClientPairTest B the order is the same, while

in ClientPairTest C, the order is different. These three concrete configurations are

candidate test cases that must be executed before their adequacy as a suite can be

determined.



56

3.1.4 Simulation Execution

The actual means of execution is specific to the DES framework being used, but

all simulations must somehow be executed. In ours the name of a concrete configuration

class is passed to the simulation engine. The simulator loads the class using a custom

class loader that first checks the bytecode to ensure conformance to the implementation

limitations mentioned above, and then instruments the classes so that block, branch,

and definition-use coverage values can be determined.

The simulation classloader uses the Bytecode Engineering Library2 to analyze

bytecode. Using this library, instrumentation for block and branch coverage is essentially

a matter of inserting tracing method calls before each branch instruction, and before

each instruction that is the target of a branch.

Complete data-flow analysis of Java code is quite difficult to accomplish in the

general case. In our implementation, we take advantage of some of the constraints

imposed on the component coding style by our framework to make this task easier.

Therefore, to instrument for definition use coverage, tracing method calls are inserted

before each store instruction, and each load instruction. Method calls are conservatively

treated as object definitions. To conservatively determine the definition-use pairs, we

developed some supporting classes to execute the same data-flow analysis performed

during bytecode verification by the Java compiler [LY99]. The coverage and performance

information collected during a simulation execution is stored in a compressed XML

format.

3.1.5 Aggregation

Each simulation run generates coverage data for a single test case, to determine

adequacy of a test suite, the coverage data must be aggregated properly. To do this

with our simulation environment, we created a reporting tool that parses the simulation-
2 http://jakarta.apache.org/bcel/
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trace files created during execution, and records the coverage of each block, branch and

definition-use pair. By separating the execution and reporting functions in this way, each

simulation is executed once even if the adequacy of different combinations of simulations

are computed multiple times.

The reporting engine provides output in both HTML and XML. The XML output

is used during experimentation when there is no need for graphical examination of the

results. During development of the simulations and especially during the development

of configurations, the HTML output enabled us to graphically examine the white-box

coverages.

Figure 3.6 shows the HTML report created after executing the concrete config-

uration ClientPairTest A detailed in Figure 3.5. The report is organized into four

columns. The first column lists the bytecode PC ranges for each line of source code

(the reporting tool also generates a similar report for the bytecode representation of the

software which is sometimes useful for determining exactly which elements are not be-

ing covered). The second column has the source line number and the text of the source

code. Lines with a yellow background contain statements that have not been executed

(block coverage). The third column contains information about uncovered branches.

Any line with a blue background in the third column is either the source or destination

of a branch that is not executed; the bracketed numbers are used to match branch pairs.

Similarly, column four contains information about uncovered definition use pairs.

3.2 Fault-Based Analyses

In fault-based analysis, testing strategies such as adequacy criteria are compared

by their ability to detect fault classes. Fault classes are typically manifested as mutation

operators that alter a correct formal artifact in well-defined ways to produce a set of

incorrect versions. These mutants, can be used to compare testing strategies.

For example, an implementation might have a fault that causes a particular state
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Figure 3.6: ClientPairTest A Coverage Report



59

change to be missed, where such state changes are represented as transitions in a finite-

state specification. This missing transition fault class is then represented in the

specification domain by all specifications that can be obtained from the original specifi-

cation by removing one of the transitions. Testing strategies that are able to distinguish

incorrect from correct specifications are said to cover that particular fault class. The

underlying assumption of fault-based analysis is that simple syntactic faults in a speci-

fication are representative of a wide range of implementation faults that might arise in

practice, so a testing strategy that covers a particular fault class is expected to do well

at finding this class of faults in an implementation.

A prerequisite of a fault-based analysis is the existence of a set of mutation oper-

ators. Simulations are coded in imperative programming languages and so well suited

to the code-mutation operators developed in the context of mutation testing [DLS78].

These operators make simple syntactic changes to code that may result in semantic

differences.

In our fault-based analysis, we apply standard code-mutation operators to the

component code. Each concrete simulation is then executed against each mutant com-

ponent in turn. A simulation may (1) terminate normally with reasonable results,

(2) terminate normally with unreasonable results, (3) not terminate, or (4) terminate

abnormally. For all but the first situation, the test case (configuration) is recorded

as having killed the mutant. The mutant score of a test suite is computed as the

percentage of mutants killed by at least one test case in the suite.

In most mutation analyses, the exact output from the original version is used

as an oracle against which mutant output is compared. This is not always possible in

this case because simulations of distributed systems are naturally non-deterministic. In

practice, we use assertions and sanity checks in the simulation code to determine which

results are considered “reasonable”.

As an example, consider the implementation of GCDserver shown in Figure 3.4.
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17 i f ( ! cache . containsKey ( key ) ){
18 CacheValue cv = ( CacheValue ) cache . remove ( key ) ;
19 gcd = cv . gcd ;
20 } else {

Figure 3.7: GCDserver with Line 17 Mutation

Line 17 in this figure contains an if-statement that checks if the cache contains the

key corresponding to the request being processed. If a mutation operator inserts a

logical not in this boolean expression the code might appears as shown in Figure 3.7.

When this mutated code is executed, the GCDserver component would retrieve a null

reference from the cache for the very first request processed, ultimately resulting in a

NullPointerException being thrown in line 52, aborting the simulation. Since this

particular mutant would cause the simulation to fail under virtually any configuration,

it is an example of a “pathological” mutant, and is therefore not useful for ranking.

40 double minValue = Double .MAX VALUE;
41 while ( i t r . hasNext ( ) ){
42 Map. Entry entry = (Map. Entry ) i t r . next ( ) ;
43 CacheValue value = ( CacheValue ) entry . getValue ( ) ;
44
45 i f ( va lue . usedAt > minValue ){
46 minKey = entry . getKey ( ) ;
47 }
48 }
49 cache . remove (minKey ) ;
50 }
51 a s s e r t cache . s i z e () <= cacheS i ze ;

Figure 3.8: GCDserver with Line 45 Mutation

Figure 3.8 shows the code obtained from changing the arithmetic operator in line

45 from < to >. In this case the resulting mutant component would never remove items

from the cache, causing the assertion in line 51 to fail. This mutant is only detected

if a configuration causes a GCDserver component to process more requests than the

upper bound on the cache size.

While fault-based analysis is not a new technique, it is typically not used in
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practice because of the computational cost associated with obtaining mutants and ex-

ecuting test cases against each one. However, in our case, two fundamental features of

simulation-based testing enable the use of fault-based analysis. First, when compared

to the execution cost of deploying and executing the real (i.e. non-simulation) imple-

mentation of a distributed system, simulation execution is efficient. Second, because of

the use of abstraction when developing implementations, simulation code is significantly

smaller and simpler than the code needed to implement the actual system (for DNS,

described in the next chapter, the size of simulation code is several orders of magnitude

smaller than the implementation of just one part of the system). In combination, these

two features result in a use fault-based analysis techniques that is actually feasible in

practice.

3.3 Usage Scenarios

We use simulation-based adequacy criteria and fault-based analysis of the simu-

lation code, individually or in combination, to support the identification of effective test

suites. We describe this approach through three different usage scenarios.

3.3.1 Conventional

The conventional way to use simulation-based testing is to choose a an adequacy

criterion defined against the simulation code, and select a single test suite that is ad-

equate with respect to it. In this scenario, the developer has a number of options for

which adequacy criteria to use.

The developer might choose a criterion that depends on observable events from

the environment. For example, the criterion could require that communication links

be used up to their maximum capacity. Or, the developer might choose a classical

white-box code coverage adequacy criterion defined over the simulation. However, in

both cases, the simulation must be suitably instrumented and then executed for the
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adequacy to be determined.

In this scenario, the tester is exposed to both intra-criterion and inter-criteria

risk. The cost in this scenario is simply the cost of simulating a number of test cases

until an adequacy value is achieved.

3.3.2 Boosting

In this scenario, the tester has somehow chosen a particular adequacy criterion,

as before, but here they want to reduce the risk of picking an ineffective, adequate test

suite. Thus, they select multiple adequate test suites, use fault-based analysis to rank

the suites by mutant score, and apply the highest-ranked to the implementation.

This usage scenario obviously applies to the code or environmental criteria de-

scribed in the previous scenario. In this case, the simulation may be used in a first stage

to identify a number of adequate suites, and in a second stage to rank the individual

suites through fault-based analysis.

But, the boosting technique can also be applied to a criterion that depends ex-

clusively on the input vector. In this case, the simulation code is of no use in evaluating

adequacy, and the developer must do that through other means. However, fault-based

analysis of the simulation can still contribute in this scenario by providing a relative

ranking of adequate suites based on mutant score.

This usage is more costly than the conventional usage since multiple adequate

suites must be selected, and each selected test case must undergo a fault-based analysis,

but intra-component risk is reduced.

To make this more concrete, assume that a system has a simulation from which

five mutants are derived. First, the engineer uses the basic specification-based testing

process to independently select two adequate test suites, each of which consist of three

test cases. The rows in Table 3.1 are labeled with the test cases 1.1 – 1.3 and 2.1 –

2.3. The columns in this table contain the results of executing the test cases against
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Mut1 Mut2 Mut3 Mut4 Mut5

Test 1.1
√

×
√ √

×
Test 1.2

√ √ √ √
×

Test 1.3
√ √ √

× ×
√

×
√

× × 60%

Mut1 Mut2 Mut3 Mut4 Mut5
Test 2.1

√ √
×

√
×

Test 2.2
√

×
√ √

×
Test 2.3

√ √
× × ×

√
× × × × 80%

Table 3.1: Example Boosting Scenario

each of the five mutants. A
√

in a cell indicates that the test passed successfully when

executed against the mutant, while an × symbol indicates that the test failed (i.e. the

mutant was killed).

The rightmost column contains the overall mutant score for both test suites. The

first suite has a mutant score of 60% because three of the five mutants are killed; the

second suite has a score of 80% since four of the five mutants are killed. Based on these

results, the engineer decides that suite #2 is more likely to be effective, and chooses to

map tests 2.1, 2.2 and 2.3 into the implementation domain and then execute them.

3.3.3 Ranking

The developer wants to choose a criterion among many applicable criteria for the

particular system under test. Once again, the developer can turn to fault-based analysis

of the simulation code to rank the different criteria. Specifically, the developer creates

adequate suites for each criterion and then selects the suite with the highest mutant

score. At this point, the tester simply applies the boosting usage to the adequate test

suites already created for the highest-ranking criterion.

This scenario is even more costly than the boosting, because many adequate suites

are both selected (using the simulation or not), and then executed against simulation
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mutants.

In summary, through these scenarios, a DES can be used directly to evaluate

the adequacy of a test suite with respect to criteria based on the environment and

on the simulation code. This requires running the test suite through an instrumented

simulation. In addition, the simulation can be used to improve the effectiveness of any

criterion and to guide the programmer in selecting a criterion. This is done by means

of a fault-based analysis of the simulation code.



Chapter 4

Empirical Evaluation

To evaluate our ideas, we follow the experimental method introduced by Frankl

and Weiss [FW93a]. At a high level, this involves sampling a large universe of test cases

to randomly construct test suites that are adequate with respect to different criteria.

Statistical inference is then used to test hypotheses about the relative fault-detecting

ability of competing criteria and their relative cost. We instantiate the different criteria

by employing a technique introduced by Briand et al. [BLW04], in which different testing

strategies are simulated once the failure data for the universe of test cases has been

collected.

We conducted three separate experiments, aimed at evaluating the usage scenar-

ios described in Section 3.3. In the first usage scenario, code-based or environmental

adequacy criteria are instantiated against a simulation which is used to select an ade-

quate test suite. There is an almost infinite variety of specialized adequacy criteria that

could be defined against a simulation, but we believe the typical developer interested

in this conventional scenario would be most interested in applying a simple, general-

purpose simulation-code-coverage criterion. Thus, in Experiment 1, we compare the

cost and effectiveness of three white-box adequacy criteria to randomly selected test

suites of varying size.

Experiment 2 is aimed at determining our ability to improve the effectiveness of

individual adequacy criteria, both white-box and black-box, through fault-based anal-



66

ysis. This corresponds to the boosting usage scenario in which a developer is willing

to incur the cost of creating multiple adequate suites and applying fault-based analysis,

with the expected benefit of improving the effectiveness.

In the third usage scenario, the developer uses fault-based analysis to rank candi-

date criteria. Thus, Experiment 3 is aimed at determining the accuracy with which we

can predict the actual effectiveness relationships between criteria used in the first two

experiments.

4.1 Subject Systems

Our case-study evaluation uses simulations and implementations of three subject

distributed systems. For each system, we created simulations from informal specifi-

cation documents describing their intended inputs and behaviors, and experimented

with available implementations. The first system, GBN, is the “go-back-n” algorithm,

which is used for reliably transferring data over an unreliable communications layer.

The second, LSR, is a link-state routing scheme that uses Dijkstra’s algorithm in each

component of a decentralized collection of routers to compute local message-forwarding

behavior. The third, and most significant, is a recursive, caching Domain Name System

(DNS) resolver.

Implementation of the first two systems were given as programming assignments

in an introductory undergraduate networking course taught at the University of Lugano.

We used the assignment handout provided to students and the Kurose and Ross net-

working textbook [KR04] as source descriptions. For the DNS resolver we used historical

releases of MaraDNS,1 an open-source resolver that implements the core DNS func-

tionality as described by RFCs 1034 and 1035.
1 http://maradns.org
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4.1.1 GBN

As described by Kurose and Ross, GBN involves two processes: a sender that

outputs data packets and waits for acknowledgments, and a receiver that waits for data

packets and replies with acknowledgments. Both processes maintain sequence-number

state to ensure data packets are received in the proper order. The sender also maintains a

sliding window of sent packets from which data can be retransmitted if acknowledgments

are not received within a certain time period. As an additional wrinkle, the student

assignment required the sending window size to grow and shrink as dictated by the

history of acknowledgment packets received.

The go-back-n algorithm is implemented within a simple client/server file trans-

fer application. The client program is invoked with the path to an existing file to be

read and transferred, and the server program is provided the path to a file to be created

and populated with the received data.

4.1.1.1 Simulation

The GBN simulation code consists of two message classes, ACK and DAT, which

represent acknowledgments and data packets, respectively. The Sender component rep-

resents the client program and implements the functionality of a GBN sender. Similarly,

Receiver implements the server side of the algorithm. All together, the specification

consists of approximately 125 non-comment, non-blank lines of Java.

We define an abstract GBN configuration consisting of one sender and one re-

ceiver. This configuration is parameterized by the following three values:

(1) NumBytes: the number of bytes to be transferred, sampled uniformly between

[1, 335760].

(2) DropProb: the probability of a packet being dropped by the network, dis-

tributed uniformly in [0.0, 0.20].
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(3) DupProb: the probability of a non-dropped packet being duplicated, dis-

tributed uniformly in [0.0, 0.20].

NumBytes is passed directly to Sender and also used in an assertion within Receiver

to check that the proper number of bytes is actually received. DropProb and DupProb

are used by the datagram network process to randomly drop and duplicate events. The

network process delays all events by the same amount.

Using MuJava [MOK05], we generated 488 mutants of the simulation; 74 mutants

were from the Receiver component, and the remaining 414 were from the Sender.

The majority of the 488 mutants were caused by mutation operators that inserted and

altered arithmetic and logical operators on integers. After eliminating pathological and

equivalent mutants, we were left with 72 mutants to analyze.

For GBN, the universe of test cases consists of 2500 randomly created parameter

tuples.

4.1.1.2 Implementations

On average, the 19 student implementations of GBN were coded in 129 lines

of C using a framework, itself approximately 300 lines of C code, provided by the

course instructor. This framework handles application-level file I/O and the low-level

socket API calls. The students were responsible for implementing the core go-back-n

algorithm within the constraints imposed by these layers.

We also used our own Java-based implementation of this system, and created 192

faulty versions using the MuJava automatic mutation tool [MOK05]. This implemen-

tation uses the basic sockets facilities provided by the java.net package and consists of

24 classes containing 565 lines of code.

The test harness randomly populates a temporary file with NumBytes bytes and

starts an instance of a simple UDP proxy that mediates packet exchange and drops and
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duplicates packets in the same way the network process does in the simulation. The

test fails if either program exits with an error, or if the file was not duplicated faithfully.

4.1.2 LSR

A link-state routing scheme is one in which each router uses complete global

knowledge about the network to compute its forwarding tables. The LSR system de-

scribed in the student programming assignment utilizes Dijkstra’s algorithm to compute

the least-cost paths between all nodes in the network. This information is then distilled

to construct the forwarding tables at each node. To reduce complexity, the assignment

statement stipulates that the underlying network does not delay or drop messages.

4.1.2.1 Simulation

The LSR simulation code consists of three events, several supporting data struc-

tures, a class implementing Dijkstra’s algorithm, a Router process type, and a Client

process type to inject messages, for a total of approximately 180 lines of Java code. A

router takes as input a list of its direct neighbors and the costs of the links to each of

them.

4-Line 4-Cycle 4-Star 4-Mesh

Duo 3-Line 3-Cycle

Figure 4.1: LSR Topologies

We defined a simulation of LSR, parameterized by the following values:

(1) Topology: an integer in the range [1, 7], representing a particular arrangement

of routers and costs (Figure 4.1 shows each possibility graphically).



70

(2) Message count: an integer in the range [0, 2n], representing the number of

messages to be sent, where n is the number of routers in the topology.

(3) Message source and destination: for each message, the source router and

destination router is selected randomly from the range [1, n] with local messages

allowed.

Hard coded into the simulation are the details of each topology, including statically

computed shortest-path costs for all router pairs. In the simulation, n routers are in-

stantiated and arranged according to the specified topology. Then, mc client instances

(where mc is equal to the message count) are created and scheduled for execution at

regular intervals with the specified source and destination router. Each client publishes

a short text string. As each publication is propagated by a router, a path-cost variable

is updated with the costs of the links traversed. When a router receives a publication

to be delivered locally, it saves the string and its total path cost. When the simula-

tion terminates, assertions ensure that each router received the expected number of

publications, and that the path cost for each is correct.

The universe of test cases for LSR consists of 7000 parameter tuples, 1000 for

each topology, with the message count, sources, and destinations selected randomly.

4.1.2.2 Implementations

Students were again provided with an application framework within which they

implemented the algorithm. On average, the 16 students implemented the LSR logic

within 120 lines of Java and the framework itself is about 500 lines of code.

In the course assignment, this framework merely simulated the network interac-

tion. For our experiments, we reimplemented the framework to run over the (unreliable)

network. This change required some of the supporting classes written by students to be

altered to implement the java.io.Serializable interface. But the interface defines no
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methods, so no algorithmic changes were made to any of the student implementations.

The test harness duplicates the functionality of the simulation setup code faith-

fully. A test fails if any of the router or client programs terminates with an error code,

or if a router does not receive the expected messages.

4.1.3 DNS

The Domain Name System is one of the fundamental underpinnings of the Inter-

net, providing a distributed database that maps names to resources of different types;

the most common mapping is used to translate names into network addresses, but there

are many others. The core algorithms and resource types are defined in RFCs 1034

and 1035. These documents differentiate among several conceptual components of DNS,

including servers, stub resolvers, and recursive resolvers. Briefly, a server has primary

responsibility for a particular subset of the name space. It is capable of responding

directly to queries about names in this space, and providing delegation information

for other names. A stub resolver is a program that delegates the resolution of user

queries to other resolvers. A recursive resolver is a more sophisticated program that

is able to perform the multiple queries needed to successfully resolve names to resources.

Typically this involves following a trail of delegations from the top-level domain servers

(servers responsible for .com and .net, for example) to the “authoritative” servers actu-

ally responsible for the name in question.

Of these three components, the recursive resolver is the most complex, involving

message exchanges with multiple different servers, caching responses, processing name

aliases, and the like. For this reason, we focus on testing the behavior of a recursive

resolver.
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4.1.3.1 Simulation

The simulation code for DNS consists of 10 structures representing the basic

DNS resource record types, a single message type that represents both requests and

responses (as in DNS), 11 low-level procedures for manipulating and comparing names

and resource records, and three classes representing stub resolvers, recursive resolvers,

and servers, for a total of approximately 900 lines of Java code.

Inputs to the simulation consist of the following:

(1) Name space: a generated name space populated randomly with resources,

divided into between 2 and 5 administrative domains randomly assigned to

authoritative servers.

(2) Queries: name and type queries to be issued by stub resolvers randomly se-

lected to include valid mappings, unknown names, and invalid resource types.

(3) DropProb: the probability of a packet being dropped by the network, dis-

tributed uniformly in [0.0, 0.20].

(4) DupProb: the probability of a non-dropped packet being duplicated, dis-

tributed uniformly in [0.0, 0.20].

During simulation, authoritative servers are instantiated with relevant portions of the

name space; some of these servers are root servers that can act as a starting point for

the recursive resolvers. The network error probabilities only affect packets traveling

between recursive resolvers and servers.

Assertions within the simulation ensure that the response to each query is correct

given the generated name space and records. The universe for DNS consists of 2000 test

cases.
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4.1.3.2 Implementations

For implementations of the recursive resolver experimental subjects we used 34

public releases of MaraDNS, starting with version 1.0.0.0 and ending with 1.2.07.1.

MaraDNS is implemented in C. The source code for the entire MaraDNS package ranges

from roughly 15KLOC to 24KLOC, depending on the release. MaraDNS also provides

the functionality of a server, with a lot of the supporting code is shared between the

resolver and server subsystems.

During test executions we used version 2.0.1 of dnsjava2 as a stub resolver

implementation, and the tinydns server included with version 1.0.5 of djbdns3 as a

server implementation; we assume these programs are correct.

For each simulation run, a control file is generated that contains the definition of

the name space, server configurations, recursive resolver configuration, and the number

and behavior of stub resolvers. This file is also read by the test harness that sets up the

system using a localhost network, and executes the tests.

4.2 Experimental Method

We primarily compare adequacy criteria by their effectiveness, E. Effectiveness

is measured as the average proportion of faulty implementations found by adequate

test suites; a test suite that fails on 6 out of 10 subject implementations has E = 0.6.

Others define and measure effectiveness on a per-implementation basis as the proportion

of adequate test suites that fail. Our metric is simply an extension to this that is more

appropriate for specification-based testing since it accounts for the breadth of a suite’s

effectiveness. In other words, since adequacy is measured with respect to coverage of the

specification, an adequate test suite should perform well against any implementation of

the specification. Therefore, we consider a suite that finds three faulty implementations
2 http://www.dnsjava.org/
3 http://cr.yp.to/djbdns.html
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to be three times as effective as a suite that finds just one.

For cost, C, we use total execution time, including both analysis time (ca) and

test execution time (ce). As we assume the existence of a suitable simulation, we do

not consider the cost of developing this. In many situations a specification-based test

suite will be executed multiple times (e.g., by different testers during QA, as regression

tests, or as part of a regularly scheduled automated test strategy). To account for this,

we define M , the multiplier; we fix M = 10 for these experiments. The overall cost for

a particular test suite is given by equation 4.1.

C = ca + M ∗ ce (4.1)

In the literature, cost is measured in a number of different ways, with suite size

being the most common. In our experiments, resource usage (i.e., time, memory, cycles,

and bandwidth) varied significantly among test cases, so we did not feel that suite size

would capture a suite’s cost meaningfully. Also, by using execution time, we are able

to include the analysis cost naturally.

Of course, random and input-partitioning criteria have ca = 0 since input values

can simply be picked that satisfy a particular criterion. For white-box criteria, ca

consists of the total simulation execution time of all test cases considered plus the time

needed to compute aggregated coverage for each of the intermediate suites examined.

For example, supposed we consider five test cases, but discard the second and third

because they do not cover any new elements. The analysis cost is the time needed to

run five simulations plus the time taken to determine coverage of the combinations:

(1, 2), (1, 3), (1, 4), (1, 4, 5). Note that this puts white-box criteria at a disadvantage,

since it assumes the tester has no intuition about the relation between input values and

coverage, which is not usually the case in practice.

To determine statistically significant effectiveness relationships, we apply hypoth-
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esis testing to each pair of criteria and compute the p-value. The p-value can be

interpreted as the smallest α at which the null hypothesis would be rejected, where α

is the probability of rejecting the null hypothesis when it in fact holds. For example, to

determine if criterion A is more effective than criterion B, we propose a null hypothesis

H0 and an alternative hypothesis Ha:

H0 : A ≤ B

Ha : A > B

where > means “more effective than”. Although we do not know the actual distribution

of effectiveness values, we take advantage of the central limit theorem and assume

that the distribution of the normalized form of our test statistic E approximates a

normal distribution. We can use this theorem comfortably with sample sizes larger

than 30 [Dev95]. Therefore, we compute the z value for this hypothesis and use the

p-value formula for high-tailed hypothesis tests (i.e., when the rejection region consists

of high z values):

z =
ĒA − ĒB

σEA
/
√

n

p = 1− Φ(z)

where ĒA and ĒB are the average effectiveness values for criteria A and B respectively,

σEA
is the sample standard deviation of effectiveness values of A, n is the sample

size, and Φ is the standard normal cumulative distribution function. Typically, with

p-values less than 0.05 or 0.01 one rejects H0 and concludes that A > B.

4.2.1 Preparation

Following the terminology of Briand et al. [BLW04], we first prepare our data

by executing and analyzing all test cases individually. This entails the management of

three different executions: (1) simulations, (2) implementations, and (3) mutants.
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Test cases are generated randomly from the input domain of each system and

are applied to the simulation code through concrete configurations, as described in

Section 3.1.3. For the implementations, we developed test harnesses that mimic the

simulation configuration faithfully. These test harnesses contain high-level test oracles.

For example, the service provided by the GBN system is file transfer. The high-level

oracle for this system is simply a direct comparison between the original file and the

copy. The sophistication of the oracle plays a significant role in determining the absolute

effectiveness of a testing technique. The experimental method we adopt requires oracles

to be automated which is why we could not employ more detailed oracles.

To manage the preparation step, we developed a sophisticated execution script

that enabled us to stop and start the process as necessary, and that helped organize and

optimize the large amount of data generated during this step. Careful management of

the implementation and mutant executions is especially important since both executions

can enter infinite loops or otherwise hang. We used timeouts to handle these situations.

For the mutant executions, the timeout we used is triple the longest non-mutant sim-

ulation run. For the implementations, we determined timeout values conservatively

starting with high timeouts (e.g., 5 minutes) and gradually lowering the values.

4.2.1.1 Simulations

Executing the simulation tests is simply a matter of instantiating each concrete

configuration within the simulation environment and running it. During execution,

coverage information for blocks, branches and definition-use pairs is recorded along

with the wall-clock time used by each simulation run.

4.2.1.2 Implementations

Next, we execute each test case against all implementations. We record the result

of each test case in terms of success or failure, along with the test execution time.
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As the goal of these experiments is to differentiate between testing techniques, we

eliminate implementations with high failure rates since a test suite of any reasonable size

will always detect failures, regardless of the technique used to select its cases. We do this

by initially executing 100 randomly selected test cases against each implementation and

eliminate from further consideration those with failure rates higher than 20%. The same

approach is used by others in empirical studies [FI98] to focus attention on faults that are

hard to detect. After executing all test cases, we also excluded correct implementations

(i.e., those without failures) from further analysis.

IUT %
stud07 0.28
stud06 0.32
stud08 0.40
stud15 3.16
stud09 3.40
stud18 4.72
mutROR15 16.96
mutLOI35 17.00

IUT %
stud07 5.04
stud16 5.15
stud03 5.21
stud08 7.70
stud01 7.94
stud06 8.02
stud14 8.48
stud15 12.17
stud09 12.42

IUT %
1.0.29 9.15
1.1.59 15.25
1.1.91 17.30
1.2.03.3 17.45
1.1.60 17.55
1.2.01 18.00
1.2.03.5 18.20
1.2.07.1 18.40
1.2.00 18.45
1.1.61 18.70
1.2.03.4 18.90

(a) GBN (b) LSR (c) DNS

Table 4.1: Implementation Failure Rates

Table 4.1 lists the 28 remaining faulty, non-pathological implementations along

with the percentage of test cases that fail on each. The GBN and LSR implementations

with names beginning with “stud” are student implementations. For GBN, the two be-

ginning with “mut” are mutants of our own Java implementation.4 For DNS, the names

correspond the version numbers of the releases. In these tables, the implementations

are ordered by failure rate.
4 On principle we avoid using implementation mutants as subjects, since we use the same operators

to mutate simulation code. We generated mutants of our GBN implementation only after determining
that there were not enough student implementations with appropriate failure rates.
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4.2.1.3 Mutants

Mutants are generated from the simulation code by applying all conventional

mutation operators provided by the MuJava tool [MOK05] to the component classes

and supporting logic classes (excluding message structures) in the simulation code. As

with simulation executions, here we simply instantiate each concrete configuration and

run it. We use Java’s class loader path to ensure that the compiled mutants are loaded

instead of the original, correct version.

This step is quite computationally expensive, and as we did with implementations,

we mitigate this by aggressively excluding mutants with high failure rates. “Patholog-

ical” mutants are identified by initially simulating a small sample of test cases against

all mutants. Any mutants with failure rates higher than 50% are excluded from further

consideration. Eliminating these mutants is justified because we measure the effective-

ness of test suites, not test cases, and mutants with high failure rates are killed by

virtually all test suites with more than a few members. After this initial sampling,

we examined the code of mutants with zero kills and eliminated any ones semantically

equivalent to the original code.

System NM Ne Np Nu

GBN 488 74 342 72
LSR 58 2 41 15
DNS 234 0 99 135

Table 4.2: Generated Mutants

Table 4.2 contains the details of mutants generated for each system. The second

column, labeled NM , is the total number of mutants generated by MuJava. The third

and fourth column, labeled Ne and Np, are the number of equivalent and pathological

mutants. The fifth column, Nu, contains the number of mutants for each system used

during analysis. We attribute the comparatively large NM for GBN to the amount of

integer arithmetic used in this algorithm. The most striking aspect of these data is the
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number of pathological mutants we were able to eliminate. For GBN and LSR, these

mutants account for 70% of the total, for DNS 42% of the mutants were pathological.

By eliminating these early in the execution process, we were able to realize significant

savings in terms of execution time. Interestingly, there were no equivalent mutants for

DNS. We confirmed this by examining the differences between each mutant and the

original and determined that all mutants were in face semantically different.

System N Nm Ni Ts Ti T Te

GBN 2500 146 8 4.12 (s) 35.2 (s) 25 (d) 17 (d)
LSR 7000 17 8 2.66 (s) 6.9 (s) 8 (d) 4.5 (d)
DNS 2000 135 11 7.37 (s) 11.8 (s) 26 (d) 23 (d)

Table 4.3: Total Preparation Time

Still, the preparation phase of our experimental method is quite expensive compu-

tationally. Table 4.3 gives a rough estimate of the amount of computation time required.

The columns in this table are: N , the universe size; Nm, the number of non-pathological

mutants; Ni, the number of faulty, non-pathological implementations; Ts, the average

simulation time; Ti, the average test execution time; T the total computation time as

computed by equation 4.2.

T = N ∗ Ts ∗ (Nm + 1) + N ∗ Ti ∗Ni (4.2)

The total numbers are quite large. Fortunately, test-execution is highly parallelizable,

especially simulation, and we executed on two machines in parallel, one for simulations

and mutants, and the other for tests. Thus, the effective time, Te is the longer of the

two terms in equation 4.2. For GBN and DNS, the simulation and mutant execution

was significantly more expensive than the test execution time. For LSR, the two terms

were about equal. In practice, we developed the simulation of each system early in

the process, and let the simulations run while working on the test harnesses for test

execution.
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4.2.2 Implementation Fault Characterization

In the failure study, a scenario’s architecture and inputs are classified as either

“distributed” or not. Section 2.2.3 describes in detail what input types are classified

as distributed. There, we found that a significant proportion of user-reported failures

required distributed inputs and scenarios.

Here we are concerned with determining the extent to which the failures we

encountered during preparation depend on the distributed nature of the inputs that

caused them. To do this we take a careful look at the the distributed inputs for each

system, and examine whether there is a correlation between an increase in a test case’s

“distributedness” and the probability that it causes a failure.

IUT Med. DropProb Med. DupProb
stud07 0.17 0.14
stud06 0.17 0.13
stud08 0.17 0.12
stud15 0.03 0.13
stud09 0.12 0.11
stud18 0.18 0.1
mutROR15 0.14 0.1
mutLOI35 0.13 0.1

Table 4.4: GBN Distributed Input Characteristics

Of the three inputs to GBN, we consider NumBytes, the number of bytes trans-

ferred from sender to receiver to be a non-distributed input, while DropProb and Dup-

Prob, the probability that a message is dropped and duplicated, to be distributed.

DropProb and DupProb values are uniformly selected from the range [0.0, 0.20], where

0.0 corresponds to a scenario in which no messages are dropped or duplicated and 0.20

corresponds to a scenario where on average one in five messages are dropped or du-

plicated. For these two input parameters, the level of distributedness increases as the

values approach 0.2. Thus, we seek to determine if the failures that occurred are more

likely to occur in scenarios with values on the high side (i.e., > 0.1) of the range.
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Table 4.4 contains the median DropProb and DupProb values for failing test cases

of the eight implementations. The data in this table are computed by first separating

out the the failing test cases for each implementation, and then computing the median of

the range of these two inputs. Considering the DupProb values in the second column, all

implementations except stud15 have a median value that is greater than 0.1, and several

have median DropProb values quite close to the upper bound. Recalling the definition

of median, a DropProb value of 0.17 as a median means that 50% of the failing test

cases have DropProb values above 0.17. Similarly, for most of the implementations, the

median DupProb value is above 0.1. In particular, the median DupProb for stud15

is above 0.1. Thus, all eight GBN implementations are more likely to fail when tested

with high values for at least one of the distributed inputs.

IUT Overall % N-D % D % H-D %
(7000) (2000) (3000) (2000)

stud07 5.04 0.45 10.83 0.95
stud16 5.15 0.30 11.23 0.90
stud03 5.21 0.45 11.37 0.75
stud08 7.70 0.35 3.63 21.15
stud01 7.94 0.65 3.83 21.40
stud06 8.02 0.45 3.80 21.95
stud14 8.48 0.45 4.60 22.35
stud15 12.17 0.40 2.13 39.00
stud09 12.42 0.65 2.60 38.95

Table 4.5: LSR Distributed Input Characteristics

For LSR, the distributed nature of a scenario is largely dictated by the topology

used to test the system. The seven topologies considered are shown in Figure 4.1. Of

these, we consider Duo and 3-Line to be non-distributed, 3-Cycle, 4-Line and 4-

Star to have average distribution, and 4-Cycle, and 4-Mesh to be highly distributed.

Thus for LSR, we determine for each implementation, the failure rates within the non-

distributed, distributed, and highly-distributed regions of the input space. These data

are shown in Table 4.5. In this table, the second column contains the overall failure rate



82

for each implementation, duplicated from Table 4.1 for comparison. The third column,

labeled N-D, contains the failure percentage for non-distributed topologies. The fourth

column, labeled D contains the failure percentage of averagely distributed topologies,

and the fifth column contains the failure percentage for highly-distributed topologies

which are labeled H-D. The number in parentheses underneath the column labels is

the number of test cases that fall within the each of the distribution regions; thus for

each row, the value in the second column is the weighted average of the three columns

to the right. For six of the nine implementations, test cases selected from the highly-

distributed partition have a significantly higher probability of causing a failure. For

the other three implementations, topologies with medium distribution have the highest

probability of failure. Non-distributed topologies are not effective at causing failures for

any of the implementations.

IUT Med. DropProb Med. DupProb
1.0.29 0.11 0.10
1.1.59 0.12 0.10
1.1.60 0.11 0.10
1.1.61 0.11 0.10
1.1.91 0.11 0.10
1.2.00 0.11 0.10
1.2.01 0.11 0.10
1.2.03.3 0.11 0.10
1.2.03.4 0.11 0.10
1.2.03.5 0.11 0.10
1.2.07.1 0.11 0.10

Table 4.6: DNS Distributed Input Characterization

Due to the relative simplicity of the GBN and LSR systems, the inputs are fairly

easy to classify as either distributed or functional. For DNS, the core inputs are not as

easy to classify, so here we concentrate, as we did with GBN, on the network DropProb

and DupProb parameters. These parameters are selected from the same range as for

GBN, and have the same effect in the simulation. Table 4.6 contains the median values
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for DropProb and DupProb. For DNS, we see that for all implementations the median

DropProb value is slightly higher than 0.1, indicating that this region of the input space

has a better chance at causing failures. Interestingly, the median DupProb value is

exactly 0.1 for all implementations. This makes sense when you consider that the DNS

protocol has no special provisions for handling duplicate packets.

4.2.3 Technique Simulation

The white-box criteria used in our experiments are the well-known all-blocks,

all-branches, and all-uses coverages [FW88] applied to simulation code. Specifically,

we apply these criteria in aggregate to the entire simulation code base, excluding classes

that are part of the discrete-event simulation core and our API layer.

System all-blocks all-branches all-uses
GBN 100.0% 96.9% 91.5%
LSR 98.4% 94.6% 96.3%
DNS 96.0% 92.0% 95.0%

Table 4.7: Adequacy Targets

During simulation execution, coverage data are collected and stored for each test

case. In order to determine target values for each criterion (100% was typically not

possible due to infeasible paths), we created a test suite out of 50 test cases and verified

that any uncovered elements are truly infeasible. We did this iteratively during the

generation of test cases to ensure that our random generator was not missing subtle

cases. Table 4.7 contains the target adequacy values used in the experiments.

We create adequate suites for these criteria by randomly selecting test cases from

the universe and including them if they improve the coverage value. Specifically, for

white-box techniques we employed the following algorithm for each suite:

(1) initialize coverage-value to zero

(2) randomly select a candidate test case from the universe
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(3) determine the aggregate coverage value for the suite consisting of previously

selected members plus the candidate

(4) if the computed coverage value improves with the addition of the candidate,

add it to the suite, otherwise discard the candidate and try again

(5) stop when the coverage value meets the target value

As mentioned above, the analysis cost for white-box techniques includes the simulation

time for each candidate test case selected in step #2, plus the time needed to compute

the aggregate coverage for each candidate suite in step #3.

For fault-based experiments, we use system-specific black-box criteria that are

defined with respect to the input domain of the simulations. We construct test suites

for these criteria similarly by randomly adding test cases that will cover a previously

uncovered partition. This does not result in minimal test suites, but we feel that it is a

reasonable approximation of the way in which a developer would try to accomplish this

task without the aid of a specialized tool.

For the null criterion (i.e., random testing) all suites of a particular size are

adequate. Construction of a random suite of size n is simply a matter of selecting n

unique test cases randomly from the universe.

Once a test suite has been selected, its effectiveness score is computed by deter-

mining the proportion of implementations that fail on at least one test case in the suite.

Analogously, the mutant score is the proportion of mutants for which at least one test

case fails. In our experiments we generated 200 adequate suites for each criterion, and

compute the sample average and standard deviation for effectiveness and cost.

4.3 Experiment 1: Effectiveness

The first experiment we describe is aimed at verifying that test suites adequate

with respect to simple white-box simulation-code-coverage criteria are effective at testing
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implementations. To do this, we compare white-box techniques to randomly selected

test suites of fixed size in several different ways.

System Criterion Size E

GBN all-blocks 3.1 0.19
all-branches 4.1 0.22
all-uses 4.7 0.35

LSR all-blocks 1.60 0.46
all-branches 3.05 0.64
all-uses 2.92 0.61

DNS all-blocks 9.92 0.936
all-branches 12.76 0.98
all-uses 12.21 0.933

Table 4.8: White-Box Effectiveness and Size

Table 4.8 contains the initial data obtained from analyzing adequate suites for

each criterion. In Table 4.8, the second column contains the average size of the adequate

suites, measured in test cases, and the third column contains the average effectiveness of

the same suites. The differences in effectiveness shown in these tables are all statistically

significant, except for that between all-branches and all-uses for DNS. Therefore, for

GBN the criteria ranking is the canonical ranking one would expect from the literature:

all-blocks < all-branches < all-uses.

For LSR the ranking is:

all-blocks < all-uses < all-branches.

Finally, for DNS the ranking is:

all-blocks < all-branches

all-uses < all-branches.

We believe that all-uses is not significantly more effective than all-branches for LSR

and DNS because the simulations of these two systems make extensive use of collections

such as lists and maps to store data resulting in an imprecise data-flow analysis. We
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do not believe that these inconsistent relationships are due to a failing in specification-

based testing, but rather are fundamental to the use of adequacy criteria. Experimental

results reported by others support this observation: all-uses is shown to be better than

all-branches on average, but not universally [FW93a].
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Figure 4.2: Absolute White-Box Effectiveness

To evaluate the absolute effectiveness of the white-box techniques, we generate

random suites with sizes corresponding to the average sizes of the white-box techniques.

Figure 4.2 shows plots of suite size versus effectiveness for the random and white-box

criteria. In this figure, the DNS plots are on the upper right-hand side, GBN is on

the lower left, and LSR is in the middle left. Notice that in each case the white-box

line is above the random line, graphically demonstrating our claim. Hypothesis testing

rigorously corroborates this result by showing that the improvement in effectiveness of

white-box techniques compared to same-sized random suites is statistically significant.

Random testing is a general approach to testing and can be considered an ade-

quacy criterion only with respect to a particular universe of test cases and a particular

target suite size. In other words, “random testing” provides no way to objectively de-
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termine if test cases are suitably broad (i.e., that the test-case generation method is

good), and it gives no means of rationally deciding when enough testing has been done.

When using random testing, a software system is tested until it must be released, as

determined by other factors; this is the inverse of criteria-based approaches in which

software is released when objective stopping conditions are satisfied. However, because

both the cost and effectiveness of a randomly selected suite is determined completely

by its size, it can be used as a scale against which to fix the effectiveness of other, more

rational, techniques.

So, to evaluate cost effectiveness, we first randomly select 200 random suites for a

range of different suite sizes and determine their effectiveness and cost. Then, for each

white-box criterion we use statistical inference to determine the relationship, if any, that

exists between the white-box technique and the random suites.

Random Size
Criterion 3 4 5 6 7 8 9 10 11 12

all-blocks C - + + + + + + + + +
E + = - - - - - - - -

all-branches C - - + + + + + + + +
E + + - - - - - - - -

all-uses C - - - - + + + + + +
E + + + + + + + = = -

Table 4.9: GBN White-Box Cost Effectiveness

Table 4.9 contains the results of this analysis for GBN. In this table, the columns

represent random suites of the labeled size. The rows represent either the cost, labeled

C, or effectiveness, labeled E for each criterion. The cells of these tables contain either

“-”, “=”, or “+” which are interpreted generally as, “worse than”, “equivalent to”, and

“better than”, respectively. So, for cost rows, cells having a “-” symbol indicate that

the white-box technique is worse (i.e., more expensive) than the random suite of that

size. Similarly, in effectiveness rows, cells marked with a “+” symbol, indicate that the

white-box technique is significantly better than random suites. Finally, cells marked
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with “=” symbols indicate that there is no statistically significant relationship between

the two criteria, in either direction.

In Table 4.9 there are some general trends that help understand what is being

displayed. First, each of the white-box criteria are worse in terms of cost than small

random suites. Recall from Section 4.2, white-box techniques have an additional cost

component due to analysis, Ca. This means that all else being equal, white-box tech-

niques do worse in terms of cost than random suites of the same size. Moving to the

right in the cost rows, there is eventually a point at which the white-box technique

breaks-even or is better than random suites. Intuitively, this happens when the random

suites become sufficiently large that their execution cost overcomes the analysis cost

incurred by the white-box technique.

Conversely, in terms of effectiveness, the white-box techniques start off better

than the random suites. This is a combination of the white-box suite being bigger, and

also being inherently more effective. Moving to the right, there comes a point at which

the two techniques are equivalent and white-box techniques are worse than random

ones. Intuitively, this occurs when the random suites become large enough to overcome

the inherent advantage of the white-box analysis.

The data shown in Figure 4.2 already establish that white-box techniques are

inherently more effective than random suites of the same size. Here we are interested

in determining if cost of analysis needed to obtain the white-box suite is so large that

it would be more cost effective to simply use randomly selected suites. In other words,

we are trying to determine if the tester would have a more effective test suite had they

simply used the analysis time needed to select white-box suites to instead execute more

tests.

Reading this from the tables is simply a matter of determining if the point at

which the white-box technique breaks even in terms of cost is at a suite size less than

or equal to the break-even point of effectiveness. If so, then the technique is not only
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effective, but also cost effective. For example, all-blocks with GBN becomes cheaper

at suites of size 4, and at size four all-blocks has equivalent effectiveness, therefore

it is more cost effective than random testing. Following this procedure, all-branches

for GBN has equivalent cost effectiveness since both measures break even at the same

point. Lastly, all-uses for GBN is much more cost effective than random testing since

its cost breaks even at size 7, but not until random suites contain 12 test cases do they

become more effective.

Random Size
Criterion 1 2 3 4 5 6

all-blocks C - + + + + +
E + - - - - -

all-branches C - - - - + +
E + + + + = -

all-uses C - - - - + +
E + + + = - -

Table 4.10: LSR White-Box Cost Effectiveness

The same data are shown for LSR in Table 4.10. These data show that all-blocks

has equivalent cost effectiveness, all-branches is more cost effective than random, and

all-uses is less cost effective. Again, we believe that all-uses is not effective for LSR

because of the use of collections.

Similarly, the cost effectiveness data for DNS is listed in Table 4.11. Here, all-

blocks and all-branches are significantly more cost-effective, and all-uses is more

cost-effective. This is interesting because in terms of absolute effectiveness, all-blocks

and all-uses are statistically indistinguishable, but when the analysis cost is considered,

all-blocks is better.

4.4 Experiment 2: Boosting Criteria

Experiment 2 is aimed at determining if the fault-based analysis technique can be

used to improve the effectiveness of white-box and black-box criteria. This experiment
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Random Size

Criterion 12 13 14 15 16 17 18 19 20 21 . . . 26
all-blocks C - + + + + + + + + + + +

E + + + = = - - - - - - -
all-branches C - - - - - + + + + + + +

E + + + + + + + + + = = -
all-uses C - - - - + + + + + + + +

E + + + = = - - - - - - -

Table 4.11: DNS White-Box Cost Effectiveness

corresponds to the boosting usage scenario in which a developer selects more than one

adequate suite during analysis, and then uses the mutant score to decide which one to

use on the implementation. There are two costs associated with this usage, the first

comes from having to select multiple adequate test suites, and the second is the cost

of performing the fault-based analysis by executing each test case on all specification

mutants. Thus, the main goal of this experiment is to determine the smallest number

of additional suites at which the developer sees a statistically significant improvement

in effectiveness.

For this experiment, we devised two black-box test criteria for each system. The

intent with these criteria is that they are plausible alternatives to white-box techniques

that a developer might consider using. Details of these black-box criteria are provided

below. These criteria are all similar in that they define their test requirements with

respect to the function and distribution inputs spaces rather than the code of the simu-

lation. Nevertheless, the presence of the simulation code is critical to the technique, as

we explain below.

The black-box criteria are:

• GBN IP-1: This criterion simply divides value ranges of each parameter into

four equally sized partitions. A suite is adequate for this criterion when each

partition is represented by at least one test case value.
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• GBN IP-2: This criterion divides the NumBytes value range into seven equally

sized partitions. For DropProb and DupProb, the value range [0,0.1) is split in

half, while the range [0.1,0.2) is split into four bins, thereby placing an emphasis

on higher drop and duplication rates. Again, a test suite is adequate for this

criterion when each partition is accounted for. The underlying intuition here

is that higher drop and duplication rates make a test exercise more of the

retransmission and window manipulation code.

• LSR Pair-50: This criterion ensures that paths between pairs of routers are

well represented by a test suite. A test suite is adequate for this criterion if all

topologies are represented and 50% of the possible router pairs are accounted

for.

• LSR Quartet: This criterion simply requires that all 4-router topologies in

Figure 4.1 are represented. The intuition behind this is that 4-router topologies

are more complicated and therefore will make better test scenarios.

• DNS All-resource-types: This criterion requires that a query is made for

each of the core DNS resource types. Intuitively, this exercises the breadth of

the user inputs.

• Typical usage: This criterion attempts to exercise the DNS features that are

used most often. Thus, it requires a valid query, a name-error query, and a

no-data query to be issued for A records (maps names to addresses) and MX

records (maps domain names to mail exchanges). These two record types are

those most often used, and so this criterion targets this narrow usage pattern.

For this experiment we use the 200 adequate suites for the white-box techniques

that were created for experiment 1, and we create 200 new suites for each of the black-

box techniques. To underscore the inherent variability in the adequate test suites, we
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Figure 4.3: GBN Criteria Effectiveness Distributions
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show the probability distributions for each of the criteria in Figures 4.3, 4.4 and 4.5.

Each of these plots has effectiveness on the x-axis, and probability on the y-axis, the

average effectiveness is shown as a vertical dashed line. The height of each bar in

the plots represents the probability that an adequate test suite has the corresponding

effectiveness. For instance, consider the plot shown in Figure 4.3a, the distribution for

all-blocks for GBN. The bar at 0.25 on the x-axis has a height of 0.25 indicating that

for this criterion, there is a 25% chance that an adequate suite will have an effectiveness

score of 0.25. Since the average effectiveness of all-blocks for GBN is only 0.19, selecting

a suite, by chance, that actually had 0.25 effectiveness would result in a significant

benefit for the tester. This is exactly the kind of improvement that we are trying to

achieve by using fault-based analysis to predict where candidate test suites fall in the

effectiveness distribution.

To reiterate, the procedure we follow for this experiment is as follows:

(1) Choose M suites at random from the set of suites adequate for the criterion in

question.

(2) Select the suite with highest mutant score, and determine its effectiveness.

We perform this procedure 100 times each with values of M starting at 2 and stopping

at a value at which the fault-based technique is statistically better than the baseline

effectiveness of the criterion (with α = 0.05).

Criterion min M E E+
all-blocks 2 0.19 0.27
all-branches 2 0.22 0.29
all-uses – 0.34 0.34
IP-1 2 0.29 0.32
IP-2 3 0.37 0.41

Table 4.12: Boosting GBN Criteria

Tables 4.12, 4.13 and 4.14 shows the results of these experiments. In these tables,
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Criterion min M E E+
all-blocks 2 0.46 0.51
all-branches 3 0.64 0.69
all-uses 2 0.61 0.68
Quartet 3 0.84 0.87
Pair-50 3 0.89 0.92

Table 4.13: Boosting LSR Criteria

Criterion min M E E+
all-blocks 8 0.936 0.9545
all-branches – 0.973 0.973
all-uses 2 0.933 0.9678
Resources 4 0.642 0.69
TypicalUsage 4 0.722 0.823

Table 4.14: Boosting DNS Criteria
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the second column contains the number of adequate suites needed to achieve a significant

boost in the effectiveness, the third column contains the baseline effectiveness and the

fourth column the boosted effectiveness. The min M values reported in the second

column of these tables is the total number of adequate suites needed, including the

suite needed for the conventional usage scenario.

For GBN, shown in Table 4.12, three of the five criteria needed only one additional

adequate suite to improve the effectiveness and one, IP-2 needed two additional suites.

For all-uses, we examined up to seven additional adequate suites without achieving a

significant boost in effectiveness.

The data shown in Tables 4.13 and 4.14 for LSR and DNS are very similar to

this. For many of the criteria, the minimum multiplier M is 3 or less, meaning that

the developer first sees significant improvement of effectiveness with only 2 additional

adequate suites. For DNS, all-blocks is harder to boost than the others, requiring

seven additional test suites before a significant improvement is achieved. Also for DNS,

we were unable to boost all-branches, even trying up to seven additional suites. For

DNS, all-branches is the most effective criterion we evaluated with an effectiveness

of 0.98. Referring to the distribution of adequate suites shown in Figure 4.5(b), it is

understandable that this criterion would be difficult to boost since virtually all adequate

test suites are in the rightmost bin.

While conducting this experiment, we also tested the opposite hypotheses, which

is that the effectiveness drops when increasing the number of suites considered. This

never occurred.

An important aspect of this result is that the technique works for both black-box

and white-box adequacy criteria. If a developer prefers not to use the simulation code

as a basis for defining adequacy, then they can still use it to improve the effectiveness

of any other test suites with which they are working.
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Hypothesis m. p-value e. p-value
IP-1>all-blocks < 0.001 < 0.001
IP-1>all-branches < 0.001 < 0.001
IP-2>all-uses < 0.001 0.004
all-branches>all-blocks < 0.001 0.002
all-uses>all-blocks < 0.001 < 0.001
IP-2>all-blocks < 0.001 < 0.001
all-uses>all-branches < 0.001 < 0.001
IP-2>all-branches < 0.001 < 0.001
IP-2>IP-1 < 0.001 < 0.001
all-uses>IP-1 < 0.001 < 0.001

Table 4.15: GBN Experiment 3 Data

4.5 Experiment 3: Ranking Criteria

Our final experiment, Experiment 3, is aimed at determining how effective the

fault-based analysis technique is at predicting relationships between criteria. This ex-

periment corresponds to the Ranking usage scenario in which a developer is interested

in evaluating several plausible adequacy criteria to determine which to use.

From the previous two experiments we have 200 adequate suites for 5 criteria for

each of the systems. Figure 4.6 depicts all statistically significant relationships with

α = 0.05. For example, Figure 4.6a indicates that all-uses has a significantly higher

effectiveness than IP-1, which is itself higher than all-branches and all-blocks, etc.

This figure underscores the difficulty practitioners face when choosing between criteria:

there is no rational way for a developer to know where IP-1 and IP-2 fall with respect

to the white-box criteria.

To determine our ability to predict these same relationships, we simply compute

the mutant scores for each of adequate suites, and apply hypothesis testing using the

average and standard deviation of these values instead of effectiveness.

Our experiments show that the fault-based analysis predicts the actual relation-

ships almost perfectly. Since the predicted relationship graphs are virtually identical
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Figure 4.6: Criteria Relationships

Hypothesis m. p-value e. p-value
Quartet>all-blocks < 0.001 < 0.001
Pair-50>all-blocks < 0.001 < 0.001
all-branches>all-uses < 0.001 0.01
all-branches>all-blocks < 0.001 < 0.001
Quartet>all-uses < 0.001 < 0.001
all-uses>all-blocks < 0.001 < 0.001
Pair-50>Quartet 0.02 < 0.001
Pair-50>all-uses < 0.001 < 0.001
Quartet>all-branches < 0.001 < 0.001
Pair-50>all-branches < 0.001 < 0.001

Table 4.16: LSR Criteria p-values
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Hypothesis m. p-value e. p-value
all-branches>Resources < 0.001 < 0.001
all-uses>Resources < 0.001 < 0.001
all-branches>TypicalUsage < 0.001 < 0.001
all-uses>TypicalUsage < 0.001 < 0.001
TypicalUsage>Resources < 0.001 < 0.001
all-branches>all-uses < 0.001 < 0.001
all-blocks>Resources < 0.001 < 0.001
all-blocks>TypicalUsage < 0.001 < 0.001
all-branches>all-blocks < 0.001 < 0.001
all-uses>all-blocks < 0.001 0.5980946

Table 4.17: DNS Criteria p-values
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to those shown in Figure 4.6, we do not report them here. Instead, Tables 4.15, 4.16

and 4.17 show the computed p-values for relationships between the criteria. Each row

Table 4.15 corresponds to an edge in Figure 4.6a.

The hypothesized relationship between the criteria are listed in the first column.

For each relationship, the second column reports the p-value for the mutant score

(simulation) while the third column reports the p-value for the effectiveness (imple-

mentation). Notice that the correspondence is virtually exact with p-values all lower

than 0.02. In particular, for LSR the fault-based analysis accurately predicts the reversal

of the relation between all-uses and all-branches.

For DNS, the relationship between these two criteria represents the only situa-

tion in which the predicted relationship does not match the actual relationship; this is

highlighted in the bottom row of Table 4.17. In this situation, the fault-based analysis

predicts, with a strong level of confidence, that all-uses will be more effective than all-

blocks. However, this relationship is not borne out by the effectiveness data from the

implementations. So, in statistical terms the fault-based technique would have caused

the engineer to favor a criterion that was not actually more effective than another one

considered. However, we should point out, that in real terms, the average effectiveness

of the two criteria is practically identical, as show in Table 4.8.

4.6 Summary of Results

The results of the three experiments presented above are compelling and provide

strong validation for the ideas we present in this dissertation. The results of Experiment

1 show that discrete-event simulations can be used effectively as the basis for definition

and evaluation of adequacy criteria for implementation testing. The three white-box

techniques we evaluated are some of the simplest available, and the data show that

they are clearly more effective than the baseline provided by randomly selected suites.

Additionally, our cost effectiveness analysis shows that time spent to simulate and select
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white-box test suites is small enough that for most of the criteria it does not put it at

a disadvantage compared to random testing.

The results from Experiment 2 show that for virtually all of the white-box and

black-box adequacy criteria we evaluated, a fault based analysis of the simulation code

can be used to boost effectiveness significantly.

Finally, we show that for the collection of arbitrarily selected adequacy criteria

that we use here, we can predict the actual effectiveness relationships very accurately

through analysis and execution of the simulations.

Collectively, these results validate our research hypotheses that (1) discrete-event

simulations can be used effectively to test implementations, (2) fault-based analysis

can be used to predict the relative effectiveness of adequate test suites, and (3) the

fault-based technique can also be used to predict the relative effectiveness of adequacy

criteria.

4.7 Threats to Validity

While we feel confident that the experimental method we used in conducting this

research is sound and that the results are valid, we highlight potential threats to our

conclusions.

The chief threat to the construct validity of our approach is in the definition of

effectiveness that we adopt. We assume that a specification-based testing technique is

most effective when it is able to identify a broad range of faulty implementations, but

others might see this differently. For example, implementation failure rates could be

used to include the relative difficulty of finding bugs in the effectiveness score.

The main internal threat is that our experiments validate our claims because the

simulation code mimics the structure of implementation code closer than it would in

practice. This is not likely, considering that the simulations were created by the author,

who had no contact with the students or the materials they were presented with before
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receiving the implementations of GBN and LSR. Similarly for the implementation of

DNS.

Finally, as the scope of our empirical study is limited to three systems, it is

difficult to argue that our results are externally valid. However, we view this work as a

necessary first step in establishing the utility of simulation-based testing for distributed

systems, and make no claims about its broad applicability. More work is required to

understand the conditions under which our techniques are applicable and effective, but

it seems clear that it is both applicable and effective on the systems described here.



Chapter 5

Related Work

The ideas presented in this dissertation are primarily based on a rich corpus of

research related to test adequacy criteria. Since the seminal papers by Goodenough and

Gerhart [GG75, GG77], the development of techniques and theories of test adequacy

has been a major focus of the research community; important results in this area are

presented in Section 5.1.2. Other foundational research areas are empirical fault studies,

mutation analysis and experimental evaluation of testing techniques which are discussed

in Section 5.1.1, Section 5.1.3 and Section 5.1.4 respectively.

Other specification based techniques and system-level testing techniques, and

testing methods specifically targeted at distributed systems are discussed in Section 5.2.

5.1 Foundations

The work represented by this dissertation is built upon several different areas

of software engineering. The fault study we conducted was inspired and assisted by

the reports of others who have attempted to classify defects in an effort to inform and

improve software testing. The literature in this area is surveyed in Section 5.1.1. For

our main idea of simulation-based testing, the rich literature on test adequacy criteria

was critical, and the fault-based analysis we performed is based on work in the area

of mutation analysis. Finally, we base our entire experimental framework on long-

established methods. We now discuss each of these areas in more detail.
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5.1.1 Fault Studies

There is a large body of work devoted to the use of defect reports to inform the de-

velopment of testing techniques and methodologies. For the most part, these are aimed

at studying the faults themselves rather than the failure-producing scenarios that are

the target of our study. For example, Fenton and Ohlsson [FO00] describe an extensive

study of faults found both pre- and post-release in two releases of a large commercial

software system. This is an interesting study in which the data are used to confirm and

refute various hypotheses representing the conventional wisdom about fault location,

module complexity and fault predictability. Similarly, Ostrand and Weyuker [OW02]

describe a similar empirical study of many releases of a large commercial system. They

present a number of interesting results related to correlations between module size and

fault-proneness and the relationships between pre- and post-release faults in modules.

In a subsequent study of the same system [OWB04] they develop a predictor for fault-

prone files. As pointed out by Ostrand, Weyuker and Bell [OWB04], their research goal

is to determine where to concentrate testing effort. By contrast, our study is aimed at

understanding how to test, and for this the failure scenarios, rather than the underlying

faults are considered.

In their study, Leszak, Perry, and Stoll examine both bug reports and subsequent

change requests to determine the root cause of the defects across all phases and activ-

ities in the development process [LPS00, LPS02]. As part of their root-cause analysis,

Leszak, Perry and Stoll describe the development of countermeasures to help improve

the development effort. One of the countermeasures listed was improving unit test-

ing. However, this is motivated by the root-cause information not the test scenario

information that could have potentially been gleaned from the initial defect reports.

In orthogonal defect classification (ODC) [CHBC93, CBC+92], both a defect

type and a defect trigger are identified for each defect. The defect type is similar to
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a root cause, and is recorded by the software engineer making the changes needed to

fix the defect. Conversely, the defect trigger is a coarsely grained categorization of the

circumstances that lead to the defect being reported. At a high level, the defect trigger

is used to improve the verification process by determining why the circumstances that

caused the defect where not seen during testing. Our input classification is similar in

intent to the defect trigger classification. However, ours is more detailed, as well as

being more directly targeted at distributed systems. ODC is a general-purpose defect

analysis technique that is targeted at improving the software development process for

a project in general, while we are primarily concerned with exploring the feasibility of

creating a new testing method.

More recently, Li et al. [LSH+04] studied user defect reports from several open

source projects, and fault and failure reports from commercial software, to study defect

occurrence models for large, multi-release software systems, including operating systems

and a distributed middleware system. While the raw data for their study are similar to

ours, Li et al. are primarily interested in frequency data. Interestingly, they also note

that user defect reports in open source systems often contain duplicates and invalid

reports, though in their study, these reports are considered in scope, since a developer

has to review each one, regardless of its ultimate utility.

5.1.2 Test Adequacy Criteria

In 1972 Dijkstra noted that while testing might demonstrate the presence of bugs

in a software system, it could never demonstrate the absence of bugs [Dij72]. Following

this, Goodenough and Gerhart [GG75, GG77] identified the problem of determining

when “enough” testing has been done as a central problem in software testing. The de-

velopment of test adequacy criteria, also called “coverage” criteria in the literature, has

been a major focus of research. Adequacy criteria have been developed to structure the

testing process in three ways: (1) providing quantitative measures of the effectiveness
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of existing test cases, (2) serving as objective stopping criteria for the test-case creation

activity, and (3) specifying the observations that must be made to compute the metrics

used in (1) [ZHM97]. In their 1997 survey, Zhu, Hall and May identified two orthogonal

dimensions for test adequacy criteria: (1) source of information and (2) underlying test-

ing approaches. While their survey is focused on unit testing criteria, we have adopted

this terminology in the following sections, where we summarize important criteria at

each of the common levels of testing: unit, integration, and system. The sources of

information mentioned by Zhu, Hall and May are:

• program – test criteria are based on the full source of the program being tested;

• interface – criteria are based on only the interface information, namely the

types and valid ranges of inputs to the software; and

• specification – test criteria are based features of the software’s specification.

While the underlying testing strategies are:

• structural – criteria are based on elements of structures in the source of infor-

mation being used;

• fault-based – criteria are based on the fault-detecting ability of the tests; and

• error-based – criteria are based on knowledge of where errors typically occur.

There are a few important terms associated with adequacy criteria that we in-

troduce before proceeding. First, an important property of an adequacy criteria is its

finite applicability [ZH93]. A criterion is finitely applicable if it can be satisfied by

a finite test set. This obviously has bearing on the practicality of a criterion, since the

use of testing goals that cannot be attained in a finite amount of time do not make

sense from a management perspective. As an example, structural program-based crite-

ria (discussed below) are not finitely applicable in the presence of code that cannot be
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exercised by any valid inputs, often called infeasible or dead code [ZHM97]. These

criteria are usually redefined to cover only the so-called feasible elements, which brings

them into conflict with undecidability since it is not decidable if a particular program

element is feasible [ZHM97].

Second, when comparing different criteria, the subsumes relation often comes

into play. A criterion A subsumes another criterion B if B is always satisfied when A

is satisfied.

5.1.2.1 *

Unit Test Adequacy Criteria

Unit testing focuses on evaluating software at a low enough level that each unit

can be tested in isolation [BD04]. Historically, test adequacy criteria for unit testing

has received the most attention from the research community. As mentioned earlier, a

comprehensive summary of this topic was produced by Zhu, Hall and May [ZHM97],

so this section merely summarizes the structural criteria that have received the most

attention and are most directly related to this work.

Structural criteria come in two flavors, program-based and specification-based.

Program-based structural criteria are typically based on the flow-graph model of pro-

gram structure. Briefly, a flow-graph is a graph representing the flow of control through

a procedure. Nodes in the flow-graph represent basic blocks of statements, while edges

represent transfer of control between the basic blocks. Generally, each edge is associated

with a predicate that guards the transfer of control between the nodes it connects.

The most basic adequacy criterion is statement coverage [Het84]; this requires

that each node in a program’s flow-graph be executed, corresponding to each individual

statement in the source being executed. Branch coverage is slightly more stringent

and requires that each edge in the control flow graph be exercised by a test suite. Branch

coverage subsumes statement coverage [Het84]. Both statement and branch coverage



109

can be made finitely applicable by excluding dead code, as mentioned above.

The next criterion in this progression is path coverage which requires that

all distinct paths through the flow-graph are exercised. This criteria is not finitely

applicable and for this reason is not generally useful. Instead, heuristic approaches were

created to test some “interesting” set of paths. These approaches include strategies to

limit the length of the paths [Gou83], their level [Pai75, Pai78], and to find “linearly

independent” paths through the code [McC76, McC83, MS83].

The criteria mentioned above are collectively referred to as “control based” since

they are defined with respect to the basic flow-graph. The other major family of unit

test adequacy criteria are termed “data based” since they refer to a flow-graph that

has been augmented with information about the data definitions and uses. Informally,

a variable is defined when it appears on the left-hand side of an assignment operator,

and it is used when it appears on the right-hand side of an assignment, as an actual

parameter to a procedure call (computation use), or in a predicate (predicate use).

With these definitions, a flow-graph is augmented so that each node can be marked as

a definition or use node with respect to a particular variable.

Basic data flow coverage criteria are all-definitions, all-uses and all-definition-

use-paths (all-DU-paths) [FW88]. In all-definitions coverage, the set of execution

paths through the augmented flow-graph must contain at least one path from each defi-

nition node to a use node that is covered by that definition. Similarly, all-uses coverage

requires that the set of execution paths covers all use nodes of variables; this subsumes

all-definitions. Finally, all-DU-paths requires that all paths between definitions and

uses of variables are covered. All-DU-paths coverage subsumes all-uses, and is sub-

sumed by path coverage. Rapps and Weyuker [RW85], also defined coverage criteria

that emphasize computation and predicate uses differently, these are all-c-uses/some-

p-uses, all-p-uses/some-c-uses, all-p-uses, and all-c-uses.

Other families of data-flow criteria are based on the interactions of variables [Nta84],
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and on combinations of definitions [LK83]. Podgurski and Clarke extended control- and

data-based testing strategies by introducing the notions of semantic and syntactic de-

pendence and then defining coverage of these relations [PC89, PC90].

Other structural testing strategies are based on specifications and we discuss these

techniques in Section 5.2.1.

While we primarily focused on the use of discrete-event simulations because of

practitioner acceptance, it seems clear from the long and rich history of research into

unit-level adequacy criteria that testers have more experience testing software artifacts,

and thus would be more comfortable creating tests for a relatively simple program

like a discrete-event simulation than other formal artifacts. While this is a qualitative

argument that is hard to justify, clearly any of the unit-level techniques discussed in

this section could be applied directly to the code of a discrete-event simulation.

5.1.2.2 *

Integration Test Adequacy Criteria

As the name implies, integration testing involves the verification of combinations

of units and components and is typically performed after the units have been tested.

Faults that are due to problems in the interfaces between units cannot be identified

by any amount of unit testing; so integration testing techniques are typically geared

towards these faults.

One approach to integration testing involves testing combinations of procedures

(the typical “units” of many procedural languages) [HS89, HS91]. This technique is

based on augmenting traditional flow-graphs with interprocedural information related

to procedure call and return sites. With these interprocedural flow-graphs in place, the

basic coverage criteria used for intraprocedural flow-graphs can be used for procedure

combinations.

Memon, Soffa and Pollack have proposed a suite of coverage criteria for test-
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ing graphical user interfaces (GUIs) [MSP01]. They present a model of GUIs that

divides the interface into components that react to events. They define three criteria

for testing individual components: event, event-interaction, and length-n-event-

sequence. Event coverage specifies that the set of event sequences used to test a GUI

must contain all events at least once. Event-interaction coverage requires that after

a particular event, e, all events that interact with e are exercised. Length-n-event-

sequence coverage requires that all possible event sequences of length n are used to test

the GUI. Memon, Soffa, and Pollack also define three criteria for testing combinations of

components: invocation, invocation-termination, and inter-component-length-

n-event-sequence. Informally, invocation coverage ensures that each component can

launch all other components that it interacts with. Similarly, invocation-termination

coverage ensures that each component can launch all other components that it in-

teracts with, and that those components can terminate immediately. Finally, inter-

component-length-n-event-sequence coverage requires that all event sequences that

start in one component, and end in another component of length n are included in the

test inputs.

Kapfhammer and Soffa [KS03], have defined a family of data-flow based criteria

for database applications. These criteria are defined with respect to a “database in-

teraction control flow graph” (DICFG). Kapfhammer and Soffa use static analysis to

determine a set of database interaction points that can be categorized as either defining,

defining-using, or using. The SQL commands DELETE and UPDATE are categorized

as either defining or defining-using, INSERT interaction points are defining, and

SELECT interaction points are considered to be using. Using this information the cov-

erage criteria are similar to the traditional all-DU-paths criterion mentioned above,

except that instead of being defined with respect to different variables, these criteria

are defined at different levels of granularity. For instance, at the “database” level, an

INSERT into any table of a database is considered to define that database, and any
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subsequent SELECT from any table in that database is a use. The other levels of

granularity used are relations, attributed, records, and attribute values.

Jin and Offutt considered adequacy criteria for integration testing based on classes

of coupling between software units [JO98]. They defined four types of coupling that are

useful for testing: call coupling, parameter coupling, shared data coupling, and

external device coupling. Using these coupling types and the data-flow graphs for

each unit individually, they define a number of criteria that refer to procedure calls,

shared data, shared media and the definitions/uses between them.

While not specifically addressed in our experiments, we feel that applying some

of the low-level integration techniques to pairs or clusters of processes in the discrete-

event environment could be a powerful means of selecting tests that address the specific

interactions that exist between components of distributed systems.

5.1.3 Mutation Analysis

In mutation analysis, models of likely or potential faults are used to guide the

testing process. In mutation testing [DLS78], the engineer applies mutation opera-

tors [OLR+96] to the source code to systematically create a set of programs that are

different from the original version by a few statements. A mutation-adequate test suite

is one that is able to “kill” all of the non-equivalent mutants.

Mutation testing is based on two complementary theories [DLS78]. The com-

petent programmer hypothesis states that an incorrect program will differ by only

a few statements from a correct one; intuitively, this means that in realistic situations

a program is close to being correct. The coupling effect states that tests that are

effective at killing synthetic mutants will also be effective at finding naturally occurring

faults in an implementation.

Traditionally, mutation analysis has been targeted at syntactic structures within

the body of procedures or methods. Recently, work has been done to define mutation
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operators for object-oriented (i.e., inter-class) constructs as well [MKO02, MOK05].

5.1.4 Empirical Evaluation of Testing Techniques

The comparison of competing testing strategies has been the focus of research for

decades. Theoretical studies using simulation-based [DN81, HT90, Nta98] and analyti-

cal [FW93b, FW93c, Hie02, WJ91] methods have been conducted. Definitive results for

general relationships among testing strategies are not generally available, and the focus

of more recent work has been empirical evaluations.

An experimentation and analysis method was presented by Frankl and Weiss

15 years ago [FW91, FW93a]. This method relies on the generation of a large universe

of test cases from which many adequate suites can be selected by the criteria being

evaluated. For each criterion, the proportion of fault-detecting suites is computed,

and statistical inferences is used to test hypotheses about the relative effectiveness of

criteria. Frankl, Weiss, and colleagues have used this method to compare all-uses

and all-edges [FI98, FW91, FW93a], and all-uses and mutation testing [FWH97].

Hutchins et al. [HFGO94] used a similar empirical framework to compare all-edges and

all-DUs. Recently, Briand et al. [BLW04] extended the basic experimental approach by

introducing a simulation step in which different testing strategies are simulated after the

initial data are collected. In this study, we employ the Frankl and Weiss experimental

method with the test strategy simulation introduced by Briand et al.

Briand and colleagues have also recently conducted a study of the use of automat-

ically generated mutants as subjects in empirical studies. This is certainly a useful tool

for researchers, since it provides the ability automatically generate a large number of

potentially faulty implementations. Andrews et al. used some of the canonical examples

from the testing literature for which there were naturally occurring bugs, hand-seeded

bugs, and automatically generated mutants [ABL05]. The goal of their study is to deter-

mine which method of introducing faults is more representative of naturally occurring
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bugs: hand seeding or mutation. They conclude that using mutation operators results

in subject systems that are more representative since hand-seeded faults are often more

subtle and harder to uncover than natural faults.

5.2 Related Work

While there are few testing techniques that are in direct competition with the

simulation-based technique we present here, there is a significant body of research on

specification-based techniques, fault-based testing, and various methods related to test-

ing distributed systems. We discuss each of these below.

5.2.1 Specification-Based Testing

The work of Richardson, O’Malley, and Tittle [ROT89] is generally accepted

as the beginning of research into formal specification-based testing techniques. Ear-

lier, interface-based techniques, such as random testing and the category-partition

method [OB88], are also based on specifications, though not necessarily formal ones.

In general, the appeal of specification-based testing is that tests can be constructed

to check that an implementation does what it is required to do, rather than what

programmers want it to do. However, these techniques are viewed as complementing

implementation-based techniques, not replacing them.

There have been a number of studies of general-purpose specification-based test-

ing techniques, including the work of Chang and Richardson [CR99, CRS96] on using a

function-level assertion-based language to guide testing. Offutt and Liu [OL99] describe

the generation of test data from a higher-level, object-oriented specification notation.

Offutt et al. [OLAA03] describe the use of generic state-based specifications (e.g., UML

and statecharts) for system-level testing. Harder et al. [HME03] describe the operational

difference technique, which uses dynamically generated abstractions of program prop-

erties to aid in test selection. While these general-purpose techniques certainly can be
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applied to low-level testing of distributed systems, our focus is on system-level testing.

Thus, we concentrate on higher-level specifications used in the areas of communication

protocols and software architecture.

In protocol testing, each side of a two-party interaction is represented by a finite

state machine (FSM) specification. Surveys by Bochmann and Petrenko [BP94] and

Lai [Lai02] describe many of the algorithms that have been developed to generate test

sequences for FSM specifications. These algorithms can be classified by the guarantees

they provide with respect to different fault models (effectiveness), and by the length of

sequences they create (cost). Fault models differ in the set of mutation operators they

allow (e.g., output faults only) and in assumptions they make about implementation

errors (e.g., by bounding the number of states that are possible in an implementation).

Once abstract test sequences have been chosen using these algorithms, the test suite is

adapted for a particular implementation and executed to demonstrate conformance.

The chief problem with these techniques is the limited expressivity of the FSM

formalism. Extended FSMs, which are FSMs with minor state variables used in guard

conditions and updated during state transitions, are used to represent protocol behavior

more accurately, but as pointed out by Bochmann and Petrenko, these extensions are

not handled by basic FSM techniques. The greater expressiveness of discrete-event sim-

ulations compared to FSM models could be what attracts practitioners to simulations.

More recently, software architectures have been studied as a means to describe

and understand large, complex systems [PW92]. A number of researchers have stud-

ied the use of software architectures for testing. Richardson and Wolf [RW96] propose

several architecture-based adequacy criteria based on the Chemical Abstract Machine

model. Rice and Seidman [RS98] describe the ASDL architecture language and its

toolset, and discuss its use in guiding integration testing. Jin and Offutt [JO01] define

five general architecture-based testing criteria and applied them to the Wright ADL.

Muccini et al. [MBI04] describe a comprehensive study of software architectures for
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implementation testing. Their technique relies on Labeled Transition System (LTS)

specifications of dynamic behavior. They propose a method of abstracting simpler,

abstract LTS (ALTS) from the monolithic global LTS in order to focus attention on

interactions that are particularly relevant to testing. Coverage criteria are then defined

with respect to these ALTS, and architectural tests are created to satisfy them. Fi-

nally, architectural tests are refined into implementation tests and executed against the

implementation.

The main difference between our work and the approaches above is the nature

of the specifications being used. Simulations are encoded in languages that are more

expressive than FSMs, allowing more details of the system to be included in the analysis.

Conversely, simulations operate at a lower level of abstraction than software architecture

descriptions and use an imperative style to express functional behavior. Finally, and

most importantly for distributed systems, simulations deal with such things as time and

network behavior explicitly.

5.2.2 Fault-based Testing

Mutation testing is usually described in the context of implementation testing,

but more recently researchers have proposed the application of mutation testing to spec-

ifications by defining mutation operators for statecharts [FMSM99] and Estelle specifi-

cations [SMFS99]. This work differs from ours in that their goal is specification testing,

while ours is specification-based implementation testing. The mutation operators pro-

posed in those papers could certainly be used to measure the effectiveness of test suites

or testing techniques, but we know of no results in this area.

In closely related work, Ammann and Black [AB01] use a specification-based

mutant score to measure the effectiveness of test suites. Their method employs a model

checker and mutations of temporal logic specifications to generate test cases. They

use this metric to compare the effectiveness of test suites developed using different
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techniques. This work differs from ours in two important ways: (1) their specification

must be appropriate for model checking, namely it must be a finite-state description and

the properties to check must be expressed in temporal logic, while our specification is a

discrete-event simulation, and (2) their focus is solely on the comparison of candidate

test suites, while ours also includes the comparison of testing criteria.

Finally, fault-based testing has been studied extensively with respect to specifi-

cations in the form of boolean expressions. In this context, a number of specification-

based testing techniques have been experimentally evaluated [RT93, WGS94]. Recently,

a fault-class hierarchy has been determined analytically and used to explain some of the

earlier experimental results [Kuh99, TK02]. We are targeting a more expressive speci-

fication method whose fault classes (mutation operators) are not amenable to a general

analytical comparison.

5.2.3 Testing Distributed Systems

A major motivating factor of our work is the lack of any general-purpose, disci-

plined, and effective testing method for distributed systems. This being said, a number

of studies and research efforts are aimed at understanding the issues surrounding testing

distributed systems and at developing methods and tools to improve the state of the

art.

Several authors describe their experience and highlight the issues related to test-

ing distributed systems [LS01, Dow89, GM99]. In particular, Ghosh and Mathur [GM99]

list a number of differentiating factors between distributed and non-distributed software

which are representative of the those mentioned by other authors: distributed systems

have a larger scale, heterogeneity, monitoring and control is more difficult, nondeter-

minism, concurrency, scalability and performance, and partial failure (fault tolerance).

Of these, tool support for monitoring and controlling distributed tests has re-

ceived considerable attention. Some tools support primarily functional testing [HGC04,
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GBCK01, GBGR02, HWS95]; others are specifically target at performance testing [DPE04,

GCL05]. While this is important work, it addresses only the accidental issues associated

with distributed system testing, and does not address the more fundamental questions

having to do with what and how best to test a system.

Several studies concentrate on distributed component based systems. Gosh and

Mathur present an adequacy criterion targeted at covering CORBA component inter-

faces. Krishnamurthy and Sivilotti also specifically target CORBA components and

present a method for specifying and testing progress properties of components [KS01].

Williams and Probert apply techniques of pairwise interaction testing to component

based systems [WP01, WP96]. By its nature, work targeting distributed component

systems is restricted to a limited level of distribution since much of the complexity of

developing these systems is handled by the container infrastructure.

We now discuss some of these areas in more detail.

5.2.4 Distributed Testing Frameworks and Testbeds

One focus with testing distributed applications has been the development of

testbeds that are appropriate for evaluating large scale distributed applications.

PlanetLab [PACR03], is a popular global-scale testbed for distributed systems. To

use PlanetLab, an engineer interacts with each of the hosts associated with their “slice”,

using SSH to perform the necessary configuration and execution. There are hundreds

of PlanetLab nodes spanning the globe. PlanetLab is relies on the actual conditions of

the global Internet to provide variability and realistic (by definition) conditions.

Another fully featured testbed for distributed systems, Netbed/Emulab [WLS+02],

is designed to operate on a cluster of computer all occupying the same local network. In

order to achieve “realistic” conditions within the cluster, Netbed provides an integrated

emulation and simulation environment that support the use of traffic-shaping tech-

niques. The Netbed management system provides ways for the engineer to distribute
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software onto the hosts used in their experiment.

Neither of these systems provides explicit support for testing, however, with the

integration of some additional management and reporting software, they would provide

test engineers with many of the tools they needed to exercise a distributed application

under varying network conditions.

5.2.5 Early-phase Performance Evaluation

Another aspect of distributed application testing that has received significant at-

tention from the research community lately is performance evaluation of systems based

on architectural and design specifications. For example Grundy, Cai, and Liu [GCL01]

discuss the SoftArch/MTE system. This system enables the automatic generation of

prototype distributed systems based on high-level architectural objectives. These gener-

ated systems are deployed on a dedicated testbed and performance metrics are gathered

while the system is exercised. The SoftArch/MTE system is targeted at prototype sys-

tems created early in the design process.

More recently, Denaro, Polini and Emmerich have presented similar ideas that are

targeted at generating test cases for exercising middleware configurations as a surrogate

for the functioning system during early phases of development [DPE04].

5.2.6 Distributed Component Unit Testing

As mentioned earlier, unit testing is intended to verify the most basic program

units in isolation before more complicated and comprehensive tests at the integration-

and system-level are conducted. Unfortunately, some modules simply cannot be tested

in complete isolation since they depend heavily on other modules for a portion of their

functionality. For example, in an object-oriented paradigm, if one class delegates part

of its core functionality to another class, it is difficult to test this top-level object in

isolation. A technique for dealing with this, called “mock object testing,” has grown out
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of the extreme programming movement [MFC00]. In mock object testing, stub classes

are created that allow the tester to control the behavior of a dependency so that all

expected behavior of the low-level module can be mimicked.

While mock object testing was not specifically developed for distributed applica-

tions, it has proved quite useful for testing distributed component software where the

modules are intended to run inside a container like a servlet engine or CORBA object

request broker (ORB). In these types of systems, hooks into the container are usually

provided through an object that is passed in at runtime. Testing inside a running con-

tainer can be time consuming and complicated, so mock versions of the container hooks

are created to allow unit testing of these classes without running any container software.



Chapter 6

Conclusion

Testing is a discipline of software engineering that, like all engineering activities, is

governed by the tradeoff between time and resources on the one hand, and completeness

and quality on the other. Given this, it is vital that methods be developed with an eye

toward helping testers manage the risks associated with the testing activity. Through

this dissertation we have attempted to develop a testing technique that is: (1) aimed at

tackling a problem that exists in real world systems; and (2) that works in conjunction

with tools and techniques favored by practitioners.

The failure study we undertook surveyed the failures reported by users of seven

sophisticated, widely used, distributed systems. Through carefully examination of the

failure reports we were able to categorize the architecture of the failure-producing sce-

narios and the lower level inputs and observations needed to replicate them. The results

of this study convinced us that techniques were needed to rationally select distributed

inputs for this class of systems.

Next, based on our experience designing, developing and researching distributed

systems we were aware of the broad acceptance of discrete event simulations in this

area. We observe that discrete event simulations of distributed systems can be viewed

as specifications of the expected behavior of a system, and conjecture that they can be

possibly be used within a specification based testing regime as the basis for definition

and application of test adequacy criteria. We validate this claim by verifying that even
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the simplest white-box adequacy criteria when applied to simulation code are both

effective and cost-effective at testing implementations.

However, although adequacy criteria are quite prevalent in the research literature

they are much less widely used in practice. We believe one of the reasons for this is

that there is little or no experimental data that can help guide testers to use adequacy

criteria that are likely to be well suited to their system. There is also a disconnect

between general-purpose technique like white-box adequacy criteria, and more system

specific techniques that testers are tempted to use on their systems. This observation,

in conjunction with much of the literature on analytical and experimental evaluation of

testing technique effectiveness, led us to identify two risks that practitioners face when

using adequacy criteria.

The first risk is that of selecting an ineffective, adequate test suite, purely by bad

luck. Using fault-based analysis of simulation code and candidate test suites, a tester

can expend the effort necessary to mitigate this risk.

The second risk is that the tester will choose, through no fault of their own, an

adequacy criterion that happens to be ineffective for their system, and thereby limit the

quality of their testing efforts. This risk can be addressed by applying still more effort

to perform the same fault-based analysis on several candidate adequacy criteria to first

determine their relative effectiveness.

The experiments we conducted, though necessarily limited in scope, are encour-

aging and show that techniques we developed can be used to produce their intended

result. Although we believe this work can stand on its own, we are motivated to con-

tinue to refine and develop the ideas we begin here. In the following section, we describe

some of the directions we hope to explore in the future.
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6.1 Future Work

The work presented in this dissertation can be extended along several different

avenues. Within the simulation-based paradigm, there are several direct extensions to

the work presented here. At a higher-level, we propose several other research directions

around the idea of providing techniques and rules for software producers to use when

selecting which testing techniques to use.

6.1.0.1 Extensions to Simulation-Based Testing

The simulation-based testing technique presented in this dissertation is really a

platform that can be used to advance several different areas of testing for distributed

systems.

Advanced Adequacy Criteria

Perhaps the most direct extension to this work is in the definition of new criteria

that utilize the other aspects of the simulation structure and dynamic nature. For ex-

ample, as the simulation executes messages are exchanged between processes. Patterns

in the interleaving of these messages could be used to define criteria targeting issues of

concurrency. Another example would be to derive inter-process control- and data-flow

graphs using message exchange as the procedure-call mechanism.

Probabilistic Oracles

The oracle problem is challenging, even for non-distributed systems; for dis-

tributed systems the influence of environmental inputs makes this even more difficult.

For the experiments described in this dissertation, we used “high-level” oracles in which

there is enough state at a particular component to determine if the system performed

correctly. For instance, after a GBN data exchange we ensure that the data file written

by the receiving process matches the original file exactly. This type of oracle works for

some failures, but not others. If there was a fault in the implementation of the sizing
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of the sliding window that did not affect the overall data transfer, the oracle would not

detect the failure.

For distributed systems, message exchange is appealing as a basis for defining

oracles since it is straightforward to monitor and record network traffic during a test

execution. A major complication, however, is the inherent variability in the message

ordering that arises from latency and non-determinism in the network stack. Process-

based discrete-event simulations (as opposed to event-based) exhibit non-determinism

due to the thread scheduling algorithms typically used in their implementation. There-

fore, it would be interesting to investigate the training of a hidden Markov model with

the message streams obtained from simulation. If there was a direct mapping between

simulated messages and implementation messages, these Markov models could then be

used to determine the probability that a given implementation message exchange cor-

responds to a valid message exchange as determined by the simulation. We believe this

idea holds a lot of promise and plan on pursuing it vigorously.

6.1.1 Test Adequacy Criteria Selection Methods

While the subject of test adequacy criteria is widely addressed by the research

community, the issues associated with actually using adequacy criteria in practice are

not addressed at all. There is concern in the research community that in the 20+ years

since the most basic white-box test adequacy criteria were defined, there has been little

adoption of advanced adequacy criteria by practitioners [LO96]. We believe that one

reason for this is that in the absence of clear results or processes for selecting between

adequacy criteria, practitioners prefer to use something that is clearly understood and

widely discussed.

If there were some clear rules and/or experimental results that practitioners could

use to make rational decisions about which advanced testing techniques to use, we

believe that the impact of testing on practice could be raised significantly.
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Application of Fault-Based Techniques

The fault-based analysis technique we present here is not limited in applicability to

simulation-based techniques. It may be applied to any specification-based technique in

which adequate test suites can be selected without executing the implementation. This

restriction rules out techniques such as structural specification-based testing [CRS96]

in which test requirements are derived from a specification and mapped to the im-

plementation domain in the form of instrumentation since the implementation must be

executed on each candidate test case to determine adequacy.

Another prerequisite of using our fault-based technique is the existence of a family

of mutation operators for the specification language being used. Due to the popularity of

mutation testing (among researchers, at least), there are a number of specification lan-

guages that have a defined set of mutation operators. Fabbri and colleagues alone have

defined operators for Estelle [SMFS99], Statecharts [FMSM99], Petri nets [FMM+96],

and finite-state machines [FDMM94]. Since these specification techniques are all exe-

cutable, this would be an interesting place to start.

Broad Empirical Studies

While fault-based predictive approaches might work for some specification-based

techniques, there is no substitution for extensive and broad empirical studies to establish

some general results for the testing community.

In existing empirical studies, comparisons are made between testing techniques

that operate at the same level (i.e., unit, cluster, integration or system). This exper-

imental framework excludes comparisons of the type that are perhaps most useful to

practitioners: what combinations of high-level (system, integration) and low-level (clus-

ter, unit) techniques are most effective. To do this type of experimentation, we advocate

an approach whereby entire systems are tested at each level by multiple different tech-

niques. With this data at hand, comparison could be made within and between levels.

Open-source projects would be a valuable source of systems to experiment with; indeed,
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savvy project leaders would recognize this as an opportunity to gain extensive testing

of their software.

Once enough data had been collected, there would be an opportunity to look

for models based on different aspects of implementations and specifications that could

reliably predict which techniques work well for different systems.
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Appendix A

Elvin Bug Report 1008

Location: http://www.mantara.com/support/bugzilla/show_bug.cgi?id=1008

Mantara

Bugzilla Bug 1008 slave dying causes master to die

Query page Enter new bug

----------------------------------------------------------------------------------------------

croy(at)

Bug#: 1008 Platform: [All ] Reporter: dstc-dot-edu-dot-au-nospam

(Clinton Roy)

Product: [Elvin Router ] OS: [All ] Add CC: [ ]

Component: [Failover ] Version: [CVS ] CC:

Status: RESOLVED Priority: [P1]

Resolution: FIXED Severity: [major ]

ilister(at) Target

Assigned To: mantara-dot-com-nospam Milestone: [4.1b4]

(Ian Lister)

URL: [ ]

Summary: [slave dying causes master to die ]

+-----------------------------------------------------------------------+

| Attachment | Type | Modified | Status | Actions |

|------------------------------------------------------------+----------|

| Create a New Attachment (proposed patch, testcase, etc.) | View All |

+-----------------------------------------------------------------------+

Bug 1008 depends on: [ ] Show dependency tree

Bug 1008 blocks: [ ] Show dependency graph

Additional Comments:

[ ]

(*) Leave as RESOLVED FIXED

( ) Reopen bug

( ) Mark bug as VERIFIED

( ) Mark bug as CLOSED

Commit
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View Bug Activity | Format For Printing

Description: Opened: 2002-11-07 15:24

----------------------------------------------------------------------------------------------

Set up a failover pair like thus:

[Master] <-------------- [Slave]

Kill the slave, the Master dies.

backtrace:

#0 strncat (s1=0xbfffdc08 "", s2=0x0, n=80) at ../sysdeps/generic/strncat.c:52

#1 0x080a6cc6 in elvin_i18n_message_set_string (msg=0xbfffdb30, argnum=0,

argval=0x0) at i18n.c:699

#2 0x0807bec6 in connection_failed (failover=0x820e8f8, error=0x81e68c0) at

failover.c:1026

#3 0x0807a94d in handle_Disconn (failover=0x820e8f8, packet=0xbfffeaa0,

error=0x81e68c0) at failover.c:555

#4 0x0807b743 in failover_recv_cb (endpoint=0x82115f0, recv_rock=0x820e8f8,

error=0x81e68c0) at failover.c:921

#5 0x0807bad3 in offer_recv_cb (endpoint=0x82115f0, recv_rock=0x820e8f8,

error=0x81e68c0) at failover.c:961

#6 0x080a28a6 in process_pending (endpoint=0x82115f0, error=0x81e68c0) at

endpoint.c:167

#7 0x080a298d in ep_recv_cb (rock=0x82115f0, reentry_is_safe=1,

buffer=0x820ce08 "\2202@\2202@\020", length=12, error=0x81e68c0) at endpoint.c:206

#8 0x080db70b in elvin_tcp_recv_cb (handler=0x8211cb8, fd=8, active_mask=8,

would_block_out=0xbffff5f8, rock=0x820f3a8, error=0x81e68c0) at tcp_transport.c:1971

#9 0x080a7699 in elvin_io_handler_dispatch (io_handler=0x8211cb8,

active_mask=8, would_block_out=0xbffff5f8, error=0x81e68c0) at io_handler.c:292

#10 0x080a78ff in io_handler_set_dispatch (set=0x81f5af0, error=0x81e68c0) at

io_handler.c:594

#11 0x080a7879 in elvin_io_handler_set_dispatch (set=0x81f5af0, error=0x81e68c0)

at io_handler.c:537

#12 0x08086576 in server_loop_once (error=0x81e68c0) at main.c:1268

#13 0x0808766b in server_main_loop (ee=0x81e68c0) at main.c:1847

#14 0x08087a83 in main (argc=3, argv=0xbffff6f4, env=0xbffff704) at main.c:1998

#15 0x4021c336 in __libc_start_main (main=0x8087994 <main>, argc=3,

ubp_av=0xbffff6f4, init=0x804a474 <_init>, fini=0x80ddf70 <_fini>,

rtld_fini=0x4000d2fc <_dl_fini>, stack_end=0xbffff6ec)

at ../sysdeps/generic/libc-start.c:129

------- Additional Comment #1 From Ian Lister 2002-12-05 16:19 -------

I cannot reproduce this crash. Can you please provide more details on:

* the failover.* lines in your elvind.conf files

* the order in which you started the servers

* how you killed the slave
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Ian

------- Additional Comment #2 From Clinton Roy 2002-12-05 16:34 -------

For the Master:

failover yes

failover.protocol efo:/tcp,none,xdr/0.0.0.0:2915

failover.submissive no

For the Slave:

failover yes

failover.url efo:/tcp,none,xdr/localhost:2915

failover.submissive yes

I can crash the Master regardless of which server starts first.

I killed the Slave by ^C.

------- Additional Comment #3 From Ian Lister 2002-12-06 11:11 -------

Fixed in failover.c revision 1.31.

=====8<-----

--- failover.c 2002/11/14 01:33:35 1.30

+++ failover.c 2002/12/06 01:06:28

@@ -1026,7 +1026,7 @@

ELVIND_LOG_FAILOVER_CONN_LOST(loghandle,

ELVIN_LOG_WARNING,

(self->peerident == NULL) ?

- "<null>" : self->remote_url_str);

+ "<null>" : self->peerident);

}

/* Clean up the endpoint, if we still have one, but don’t purge

=====8<-----

Ian

----------------------------------------------------------------------------------------------

Query page Enter new bug

This is Bugzilla: the Mozilla bug system. For more information about what Bugzilla is and what

it can do, see bugzilla.org.

Actions: New | Query | Find bug # [ ] | Reports New Account | Log In
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Example: GCDService

This example distributed application, GCDService, is a service that computes

the greatest common divisor of two integers upon request. GCDclient components

construct a request message containing the integers of interest and send it over an

unreliable network to a server. A GCDserver component waits for requests and provides

responses either by finding a cached copy of the result from previous request of the same

integers; or by computing it directly through the application of Euclid’s algorithm.

B.1 Euclid’s Algorithm

1 public class GCD {
2 public stat ic int gcd ( int x , int y ) {
3 while ( x > 0 && y > 0) {
4 i f ( x > y ){
5 x = x − y ;
6 } else {
7 y = y − x ;
8 }
9 return x + y ;

10 }
11 }
12 }

Figure B.1: Euclid’s Algorithm

Figure B.1 contains the code for a simple iterative implementation of Euclid’s

algorithm for computing the greatest common divisor of two integers.
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B.2 Messages

There are two message types, show in exchanged by client and server components:

Request and Response.

1 public class Request extends Message
2 {
3 public f ina l int a ;
4 public f ina l int b ;
5
6 public Request ( int a , int b){
7 this . a = a ;
8 this . b = b ;
9 }

10 }
11
12 public class Response extends Message
13 {
14 public f ina l int gcd ;
15
16 public Response ( int gcd ){
17 this . gcd = gcd ;
18 }
19 }

Figure B.2: Message Implementations

Request data members are simply the two integers for which the GCD is required. The

Response contains the computed GCD result value.

B.3 GCDclient Processing

The processing performed by the GCDclient component is simple. The compo-

nent is provided with the network address of the server to use and the integer values

for which the GCD is desired. The client sends the request to the configured server and

waits 500 milliseconds for a response; if a response is not received within the timeout,

the client repeats this sequence 2 more times. The client terminates by returning the

response or signaling an error if no response is received.
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1 public class GCDclient extends Component
2 {
3 public int main ( Address se rver , int a , int b)
4 throws NoResponseError
5 {
6 DatagramChannel ch = newDatagramChannel ( ) ;
7
8 Request req = new Request ( a , b ) ;
9

10 for ( int i =0; i <3; ++ i ){
11 ch . send ( se rver , req ) ;
12 try {
13 return ( ( Response ) ch . recv ( 0 . 5 ) ) . gcd ;
14 }
15 catch ( TimeoutException e ){}
16 }
17 throw new NoResponseError ( ) ;
18 }
19 }

Figure B.3: GCDclient Component
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B.4 GCDserver Processing

The processing performed by a GCDserver component is more complicated due

to its caching behavior.

Each GCDserver has a cache with fixed upper size limit, cacheSize. The cache

is a map from the input values to the computed result value. Since the GCD algorithm

is symmetric with respect to the ordering of the two input integers, the cache key is

an encoding of the values that matches either ordering. Once the upper size limit is

reached, the least recently used entry is removed before the new entry is added. This

implies that the GCDserver must keep track of the use time of each cache entry.

B.5 CacheTest Configuration
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1 public class GCDserver extends Component
2 {
3 public void main ( int port , int cacheS i z e )
4 {
5 DatagramChannel ch = newDatagramChannel ( port ) ;
6 Map cache = new HashMap ( ) ;
7
8 while ( running ( ) ){
9 Request req = ( Request ) ch . recv ( ) ;

10
11 St r ing key = req . a + ” , ” + req . b ;
12 i f ( req . a > req . b){
13 key = req . b + ” , ” + req . a ;
14 }
15
16 In t eg e r gcd = null ;
17 i f ( cache . containsKey ( key ) ){
18 CacheValue cv = ( CacheValue ) cache . remove ( key ) ;
19 gcd = cv . gcd ;
20 } else {
21 // Begin Euc l id ’ s Algorithm
22 int x = req . a ;
23 int y = req . b ;
24 while ( x > 0 && y > 0){
25 pause ( 0 . 1 ) ;
26 i f ( x > y ) {
27 x = x − y ;
28 } else {
29 y = y − x ;
30 }
31 }
32 gcd = new I n t e g e r ( x + y ) ;
33 // End Euc l id ’ s Algorithm
34 }
35 cache . put ( key , new CacheValue (now ( ) , gcd ) ) ;
36
37 i f ( cache . s i z e () > cacheS i z e ){
38 I t e r a t o r i t r = cache . entrySet ( ) . i t e r a t o r ( ) ;
39 Object minKey = null ;
40 double minValue = Double .MAX VALUE;
41 while ( i t r . hasNext ( ) ){
42 Map. Entry entry = (Map. Entry ) i t r . next ( ) ;
43 CacheValue value = ( CacheValue ) entry . getValue ( ) ;
44
45 i f ( va lue . usedAt < minValue ){
46 minKey = entry . getKey ( ) ;
47 }
48 }
49 cache . remove (minKey ) ;
50 }
51 a s s e r t cache . s i z e () <= cacheS i ze ;
52 Response resp = new Response ( gcd . intValue ( ) ) ;
53 ch . send ( req . getSourceAddress ( ) , r e sp ) ;
54 }
55 }
56 }

Figure B.4: GCDserver Component
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1 public class CacheTest extends Simulat ion {
2 public CacheTest (double l a t ency ) {
3 Address addr = new Address ( ” s e r v e r ” , 1 2 3 4 ) ;
4
5 add (new GCDserver ( addr . name , addr . port , 1 ) ) ;
6
7 add (new GCDclient ( ” c1” , addr , 3 , 5 ) ,
8 new I n t eg e r ( 1 ) , 0 . 0 ) ;
9

10 add (new GCDclient ( ” c2” , addr , 5 , 3 ) ,
11 new I n t eg e r ( 1 ) , 5 . 0 ) ;
12
13 add (new GCDclient ( ” c3” , addr , 2 , 4 ) ,
14 new I n t eg e r ( 2 ) , 1 0 . 0 ) ;
15
16 setNetworkBehavior (new NetworkBehavior ( l a t ency ) ) ;
17 }
18 }

Figure B.5: CacheTest Configuration


