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Abstract—Test adequacy criteria provide the engineer with guidance on how to populate test suites. While adequacy criteria have
long been a focus of research, existing testing methods do not address many of the fundamental characteristics of distributed
systems, such as distribution topology, communication failure, and timing. Furthermore, they do not provide the engineer with a means
to evaluate the relative effectiveness of different criteria nor the relative effectiveness of adequate test suites satisfying a given
criterion. This paper makes three contributions to the development and use of test adequacy criteria for distributed systems: 1) a
testing method based on discrete-event simulations, 2) a fault-based analysis technique for evaluating test suites and adequacy
criteria, and 3) a series of case studies that validate the method and technique. The testing method uses a discrete-event simulation
as an operational specification of a system in which the behavioral effects of distribution are explicitly represented. Adequacy criteria
and test cases are then defined in terms of this simulation-based specification. The fault-based analysis involves mutation of the
simulation-based specification to provide a foil against which test suites and the criteria that formed them can be evaluated. Three
distributed systems were used to validate the method and technique, including the Domain Name System (DNS).

Index Terms—Distributed systems, discrete-event simulation, test adequacy criteria, fault-based analysis.

1 INTRODUCTION

ONSIDER entry #851 in the Squid Web cache bug
database:!
DNS retransmits too often. The DNS retransmissions does [sic.]

not decay by time as documented but is [sic.] always at their
shortest interval.

Fig. 1 presents a high-level view of the components
involved in this scenario. As a Web proxy, Squid sits
between a browser program and a server program. The
browser sends HTTP requests to the Squid program, which
sends them on to the proper Web server if the response has
not previously been cached. Integration with the Domain
Name System (DNS) is crucial for the operation of Squid; it
can be configured to use a built-in DNS resolver or to access
DNS through an external program. When using the internal
resolver, Squid is supposed to double the interval between
repeat DNS requests, but this bug report indicates that the
time between them erroneously remains constant.

1. http:/ /www.squid-cache.org/bugs/show_bug.cgi?id=851.
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Why was this failure not caught during testing? More
specifically, what testing method would have led the
engineer to create and run a test case that could reveal
this error? Consider the sequence of steps needed to
reproduce the Squid failure:

1. Configure the scenario:

e The browser is configured to use a Squid
instance.
e Squid is configured to use its internal DNS
resolver.
2. Cause the browser to issue an HTTP request that
requires a DNS lookup.
3. Cause the DNS request packet to be dropped or
ignored.
4. Wait long enough to observe that the time between
DNS requests does not increase.
This bug and the steps needed to reproduce it demonstrate
why distributed systems are so difficult to test: There are
multiple interacting components (the browser, the server,
and Squid), each individually configured and then com-
bined into an overall system topology (the browser making
requests to the server through Squid); there are interactions
with external systems (DNS); the network must be
controlled (packets dropped); and the behavior is time
dependent (the retransmission interval must be measured).
Aside from being difficult, distributed systems can be
especially costly to test, if for no other reason than the
significantly greater space of behaviors they exhibit
compared to other kinds of systems.

Published by the IEEE Computer Society
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Fig. 1. Squid bug #851 configuration.

Our aim is to develop a rigorous testing method for
distributed systems. As a first step, this paper looks at test
adequacy criteria. Adequacy criteria are used as a means of
organizing the testing activity, serving both as stopping
conditions on testing and as measures of progress toward
that goal. In particular, test suites (i.e., prescribed sets of
test cases) are constructed with respect to such criteria. To
date, adequacy criteria have been studied in the context of
sequential (e.g., Frankl and Weyuker [20]) and concurrent
(e.g., Carver and Tai [6]) systems, but not in the context of
distributed systems.

Historically, the development of adequacy criteria has
been an evolutionary process: A new criterion of some sort
is proposed and then evaluated against prior criteria to
understand its relative effectiveness at causing fault-
revealing failures in an implementation. Our contribution
in this work is not to propose specific criteria, but rather to
provide a framework in which criteria can be used and
evaluated. The most basic capability, of course, is to
determine whether a given test suite is adequate with
respect to a given criterion. But, it is well known (e.g., from
the work of Frankl and Weiss [18]) that otherwise adequate
test suites constructed using the same criterion might
exhibit relative differences in their effectiveness. Moreover,
the relative effectiveness of test adequacy criteria them-
selves are not universal. Instead, they are dependent upon
the peculiarities of the system under test. In other words,
for system S, criterion C; might be better at guiding the
selection of effective test suites than criterion C5, but might
be worse than C5 for system 5.

This uncertainty places the engineer at risk. One strategy
would be for the engineer to execute multiple adequate test
suites corresponding to one or more adequacy criteria. But
this ignores the cost involved, which, as we point out
above, is particularly great for distributed systems. What
the engineer needs, therefore, is a means to predict the
effectiveness of candidate test suites and the adequacy
criteria from which they are formed without having to
execute the test suites on the system.

Test adequacy criteria are usually defined with respect
to a model of the system under test. Common models in use
today include some form of flow or dependence graph
derived from the implementation or an abstract specifica-
tion of behavior, such as a finite-state machine (FSM). To
capture the critical characteristics of distributed systems,
we require a richer model, one that can be used to specify
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not just the basic behavior of the system, but its behavior in
the context of an operational environment. We propose
discrete-event simulation for this purpose.” Specifically, we
propose using simulation as the model of both the intended
behavior of a distributed system and the ways in which the
operational environment affects that behavior. In the case of
Squid, for example, the engineer would develop a simula-
tion of the three main functional components and the
network that connects them; inclusion of the network
allows the engineer to explicitly model such things as
packet drops and time delays.

The intuition that led us to a simulation-based model
arises from the following observations:

e Simulations are already commonly used to under-
stand and evaluate the functionality and perfor-
mance of complex distributed systems. For example,
they are used to understand network protocols [1],
tune distributed systems [39], [55], and improve
distributed algorithms [9]. They can abstract away
irrelevant details of the implementation of a
distributed system, as well as irrelevant details of
the operational environment, yet still provide a
faithful model of the expected behavior of the
system in its environment. They are appealing to
engineers because of their inherent efficiency and
scalability. Unlike many other development arti-
facts, simulations seem to be used, and, therefore,
well maintained, throughout the development pro-
cess, both as early design tools and as late evalua-
tion tools.

e Simulations embody abstractions for the underlying
mechanisms and environmental conditions that
affect the distribution properties of systems. In
addition to modeling the normal functional inputs
of a system, simulations are parameterized by a set
of inputs for controlling a wide range of environ-
mental phenomena, such as message sequences,
delays, failures, and bandwidths.

e Recent simulation frameworks encourage simula-
tions to be written in one or another common
imperative programming language, such as C++ or
Java.®> Therefore, the simulation code itself is
amenable to common program analysis techniques
and tools.

In summary, a simulation is an abstract, executable
specification of a distributed system, where the specifica-
tion language happens to be a programming language.

Using our method, adequacy criteria are defined in

terms of the simulation-based model. Notice that this
conforms to the general idea of specification-based testing,
where a fundamental premise is that a specification-
adequate test suite can lead to effective testing of the
implementation. For example, consider the use of FSM
specifications in protocol testing [4], [38], where adequacy
is established by measuring the extent to which a test suite

2. Below, when we use the term “simulation,” we are referring
exclusively to “discrete-event simulation.”

3. There are many such simulation frameworks. Examples can be found
at http:/ /www j-sim.org/ and http://www.ssfnet.org/.
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exercises the structural or behavioral elements of the FSM
specification. A state-coverage adequacy criterion may
require that all states be visited at least once. Another
criterion might require that the test suite produce all
possible outputs by visiting all arcs in the FSM. Once the
adequacy of a given test suite is established against the
specification, it is simply applied to the implementation to
perform the actual tests.

In our case, the structural and behavioral elements of the
specification are embodied in the code of the simulation.
Therefore, as a logical first step, we are led to examine
familiar and simple adequacy criteria based on white-box
code-coverage metrics such as block coverage. (Notice the
analogy to FSM-based coverage.) However, we do not
imply nor require that these specification-code-coverage
adequacy criteria correlate with similar implementation-
code-coverage criteria. So, for example, a test suite that has
an adequate coverage of the blocks in a simulation-based
specification may or may not have adequate coverage of the
blocks in the implementation. Any relationship is irrelevant
since the program code of each differs substantially from
the other. Instead, we are interested in the relationship of
simulation-code coverage to measures of effectiveness. We
demonstrate below that a test suite with a higher level of
simulation-code coverage, under a valid adequacy criter-
ion, will have a greater effectiveness at causing fault-
revealing failures in the implementation.

The primary conceptual contribution of this paper is the
notion that simulations can be used to define and evaluate
adequacy criteria for system-level testing of distributed
systems. We give baseline experimental evidence that valid
adequacy criteria do indeed exist. Yet, as mentioned above,
it is highly probable that criteria will differ in their
effectiveness for different systems. This should be espe-
cially true of distributed systems, whose differences are
only exaggerated by the complicating factors of topology,
timing, and the like. Therefore, we also address the
practical question of how to use simulation-based criteria
in the most cost-effective way for a given system. The result
is a second contribution of this paper in which we
demonstrate a method for predicting the relative effective-
ness of competing criteria. The method is once again based
on the simulation code. In particular, we perform a fault-
based analysis of the simulation code to rank the relative
effectiveness of multiple test suites. Then, by systematically
analyzing the test suites that are adequate with respect to
some criteria, we derive the ranking of the relative
effectiveness of the criteria themselves.

We validated our hypotheses and substantiated our
claims through a series of experiments on three distributed
systems. Two of the systems involve a set of faulty student
implementations of the well-known distributed algorithms
“go-back-n” and “link-state routing.” The third is MaraDNS,
which is an open-source implementation of a recursive,
caching DNS resolver. We experimented with 34 releases
of MaraDNS, which consists of between 15,000 and 24,000
lines of code, depending on the version.

In our studies, we used the comprehensive experimenta-
tion and analysis method introduced by Frankl and Weiss
[18]. Their method involves sampling a large universe of

test cases to randomly construct test suites that are
adequate with respect to different criteria. Statistical
inference is then used to test hypotheses about the relative
fault-detecting ability of competing suites and criteria. To
evaluate the different criteria, we employ a technique
described by Briand et al. [5] in which different testing
strategies are emulated once the failure data for each test
case has been collected.*

The results of the experiments clearly show that, even
under the most simplistic usage scenario, our approach
performs significantly better than a random selection
process for test suites. Moreover, we are able to show that
we can successfully establish an effectiveness ranking
among adequate test suites, as well as among the adequacy
criteria themselves. This presents the engineer with a
powerful new tool for organizing the testing activity and
for tailoring it to the distributed system at hand.

In the next section, we present the details of our
approach to establish simulation-based test adequacy
criteria. In discussing this, we take the perspective of the
engineer of a distributed system and consider several ways
in which they might approach the problem of testing their
implementation. Section 3 reviews the experimental setup
and subjects. The details of the experiments, their results,
and threats to validity are presented in Section 4. Section 5
reviews related work. Section 6 concludes with a brief look
at future work.

2 SIMULATIONS AND TESTING

As noted above, discrete-event simulations are commonly
used during the design and development of distributed
systems. Traditionally, simulations are used to help under-
stand the behavior and performance of complex systems.
Here, we are interested in using them to help guide testing.

Discrete-event simulations are organized around the
abstractions of process and event. Briefly, processes repre-
sent the dynamic entities in the system being simulated,
while events are used by processes to exchange informa-
tion. When simulating distributed systems, processes are
used to represent the core components of the system, as
well as environmental entities such as the underlying
network or external systems. Typically, events represent
the arrival of a network message at one of the processes.
Virtual time is advanced explicitly by processes to
represent “processing time” and advanced implicitly when
events are scheduled to occur in the future. To run a
simulation, processes are instantiated, initialized, and
connected into a particular configuration which is then
executed.

Consider a simple client-server system designed to
operate over a network with unreliable communication. A
simulation of this system might consist of three process
types, Client, Server, and Network, and two event
types, Request and Response. The Network process is
used as an intermediary through which events between
clients and servers are scheduled. Network latency is

4. Briand et al. use the term “simulation” in their paper to describe the
method of evaluating different techniques; here, we use “emulation” to
avoid confusion with our use of the term “simulation.”
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Fig. 2. The specification-based testing process.

represented in the simulation by having the Network
process control the scheduling of event deliveries. The
unreliable nature of the network is represented by having
the Network process fail to propagate events with a certain
probability. A given simulation might include four process
instances: s:Server, cl:Client, c2:Client, and
n:Network, communicating using an arbitrary number
of Request and Response events.

Clearly, the simulation code of this example system can
be used to experiment with network latencies and drop
rates under different configurations, both as a means to
predict overall performance and to evaluate scalability and
other properties. But, how can the simulation code be used
for testing?

2.1 Basic Concepts

Fig. 2 depicts a simple and generic specification-based
testing process. As a first step, the engineer selects a
particular adequacy criterion to organize the rest of the
process; we defer discussion of this difficult decision. For
now, assume that a criterion is being used and the engineer
must select a test suite that will satisfy it. A test suite is
composed of test cases, each one consisting of an input
vector which includes direct inputs to the system, repre-
senting functional parameters, as well as inputs to the
environment, representing environmental conditions. In
the figure, actions 2 through 4 are repeated until the
engineer determines that the suite is adequate. Once a suite
has been selected, the engineer uses it to test the
implementation by first mapping input vectors into the
implementation domain (step 5) and then executing each
test case on the implementation (step 6). The testing activity
is completed by reviewing the test results (step 8).

The simulation code plays the role of the specification in
specification-based testing. Therefore, simulation is used to
decide the adequacy of the test suite (step 3). The engineer
does this by running simulations, using the parameters
given by the test cases in the suite, and collecting coverage
data on the simulation code. The failure-inducing test case
associated with Squid bug #851, for example, would
involve the appropriate DNS configuration, browser re-
quest, packet drops, and time delays. Ideally, this test case
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would be found in the test suite. Note, however, that the
process by which individual test cases are created or
generated is outside the scope of this paper. Similarly, we
do not propose or discuss any specific strategy by which
the engineer might search the space of test suites to find an
adequate one; our concern is with the decision process, not
the search process.

At a high level, our approach rests on two ideas. The
first idea is to use the simulation code and simulation
executions as a basis to formulate general-purpose and/or
system-specific test adequacy criteria. For example, a
general-purpose criterion might call for statement coverage
of the simulation code of all nonenvironmental processes
(Client and Server in the example above) or a system-
specific criterion might require that each event type be
scheduled at least once during a simulation run. Once a
criterion is defined, the engineer can evaluate the adequacy
of a test suite by running the test cases in a suitably
instrumented simulation.

This use of simulation, as with all adequacy-based
testing techniques, requires the engineer to choose a
particular criterion and to select test cases that comprise
only a single adequate test suite. Making each of these
decisions exposes the engineer to risk. First, there is little
empirical or analytical data that an engineer can use for
guidance in selecting an adequacy criterion that is likely to
be effective for their particular system. Therefore, they run
the risk of selecting a criterion that happens to be less
effective than another candidate criterion; we refer to this
as intercriterion risk. Second, there is often significant
variability in the effectiveness of test suites adequate with
respect to a particular criterion, exposing the engineer to
the risk of selecting a less-effective, adequate test suite; we
refer to this as intracriterion risk.

Therefore, the second ideais to provide the engineer with a
general mechanism to: 1) guide the selection of the most
effective criterion for the system at hand and 2) fine tune the
selection of the most effective suite within the set of adequate
suites, given a chosen criterion. This mechanism is also based
on the simulation code and, in particular, it is derived from a
fault-based analysis of the simulation code.

2.2 Fault-Based Analysis

In fault-based analysis, testing strategies such as adequacy
criteria are compared by their ability to detect fault classes.
Fault classes are typically manifested as mutation operators
that alter a correct specification in well-defined ways to
produce a set of incorrect versions of the specification.
These mutants can be used to compare testing strategies.
For example, an implementation might have a fault that
causes a particular state change to be missed, where state
changes are represented as transitions in a finite-state
specification. This missing transition fault class is then
represented in the specification domain by all specifications
that can be obtained from the original specification by
removing one of the transitions. Testing strategies that are
able to distinguish incorrect from correct specifications are
said to cover that particular fault class. The underlying
assumption of this kind of fault-based analysis, known as
the coupling effect [10], is that simple syntactic faults in a
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specification are representative of a wide range of
implementation faults that might arise in practice, so a
testing strategy that covers a particular fault class is
expected to do well at finding this class of faults in an
implementation.

A prerequisite of a fault-based analysis is the existence of
a set of mutation operators that can be applied to the
specification. Simulations are typically coded in imperative
programming languages and thus are well suited to the
code-mutation operators developed in the context of
mutation testing [10]. These operators make simple
syntactic changes to code that may result in semantic
differences.

In our fault-based analysis, we apply standard code-
mutation operators to the simulation code, thereby obtain-
ing a set of specifications. Each individual test case is then
applied to each mutant in turn. That is, for each test case,
we run a simulation using each mutated version of the
simulation code. A simulation may

1. terminate normally with reasonable results,
2. terminate normally with unreasonable results,
3. not terminate, or

4. terminate abnormally.

For all but the first situation, the test case is recorded as
having killed the mutant. The mutant score of a test suite is
computed as the percentage of mutants killed by at least
one test case in the suite.

In most mutation analyses, the exact output from the
original version is used as an oracle against which mutant
output is compared. This is not always possible with
simulation-based testing because simulations of distributed
systems are naturally nondeterministic. In practice, we use
assertions and sanity checks in the simulation code to
determine which results are considered “reasonable.”

2.3 Usage Scenarios

We propose using fault-based analysis of the simulation
code and simulation-based adequacy criteria, individually
or in combination, to support the identification of effective
test suites. We describe this approach through three usage
scenarios.

Conventional. The conventional way to use simulation-
based testing is to choose a general-purpose adequacy
criterion defined against the simulation and select a single
test suite that is adequate with respect to it. In this scenario,
the engineer is exposed to both types of risk, intercriterion
and intracriterion, discussed above. The cost in this
scenario is simply the cost of simulating test cases until
an adequacy value is achieved.

Boosting. In this scenario, the engineer has somehow
chosen a particular adequacy criterion, as before, but here
they want to reduce the risk of picking an adequate but
less-effective test suite. Thus, they select multiple adequate
test suites, use fault-based analysis to relate the suites by
mutant score, and apply the highest scoring suite to the
implementation. This usage is more costly than the
conventional usage since multiple adequate suites must
be selected and each selected test suite must undergo a
fault-based analysis. On the other hand, intracriterion risk
is reduced.

Ranking. In this scenario, the engineer is looking to
rationally decide between multiple criteria. So, the engineer
creates many adequate test suites for each candidate
criterion and uses fault-based analysis to determine which
criterion is likely to be the most effective, thereby reducing
intercriterion risk. At this point, the engineer simply uses
boosting on the adequate test suites already created for the
highest ranking criterion.

In summary, simulation can be used directly to evaluate
the adequacy of a test suite with respect to criteria based on
the environment and on the simulation code. This requires
running the test suite through an instrumented simulation.
In addition, the simulation can be used to improve the
effectiveness of any criterion and to inform the engineer in
selecting a criterion. This is done by means of a fault-based
analysis of the simulation code. In Section 4, we experi-
mentally evaluate the benefits of these techniques.

In terms of cost, the test selection process we propose is
advantageous because it only requires the execution of
simulations and therefore avoids the cost of setting up the
system under test over complex distributed testbeds [57].
Specifically, deciding whether a test suite is adequate with
respect to a given criterion requires only one execution of
the simulation for each test case. Fault-based analysis is
more expensive as it requires multiple simulation execu-
tions (one for each mutant) for each test case in a test suite.

3 SUBJECT SYSTEMS

Our study uses simulations and implementations of three
well-known distributed algorithms and systems. The first
system, GBN, is the “go-back-n” transport protocol, which
provides reliable data transfer over an unreliable commu-
nication channel. The second, LSR, is a “link-state routing”
scheme in which each router broadcasts its adjacent
connections to every other router in the network. In this
way, all routers assemble the same global view of the
network and can then use Dijkstra’s algorithm to compute
routes to each destination. The third, and most significant,
is a recursive, caching DNS resolver.

For each system, we created simulations and experi-
mented with available implementations. To create the
simulations, we followed the specifications given in the
Kurose and Ross networking textbook [37] as well as the
relevant Internet RECs (the mechanism by which standard
Internet protocols are published).

Implementation of the first two systems was given as
programming assignments in an introductory undergrad-
uate networking course taught at the University of Lugano.
We used the assignment handout provided to students and
the Kurose and Ross networking textbook as source
descriptions. For the DNS resolver, we used historical
releases of MaraDNS,® an open-source resolver that
implements the core DNS functionality as described by
RFCs 1034 and 1035.

To simulate each system, we used the simjava discrete-
event simulation engine.® In the course of this work, we
developed a thin layer over the discrete-event core that

5. http:/ /maradns.org.
6. http:/ /www.dcs.ed.ac.uk/home/hase/simjava/.



provides a more natural way to schedule and receive
events. This layer also includes a process implementing the
behavior of a probabilistically unreliable network.

3.1 GBN

As described by Kurose and Ross, GBN involves two
processes: a sender that outputs data packets and waits for
acknowledgments and a receiver that waits for data packets
and replies with acknowledgments. The sender and
receiver maintain a sequence number that they use to mark
and check data packets and acknowledgments so as to
ensure that all packets are received in the proper order. In
addition to that, the sender maintains a sliding window of
sent packets from which data can be retransmitted if
acknowledgments are not received within a certain time
period. As an additional wrinkle, the student assignment
required the sending window size to grow and shrink as
dictated by the history of acknowledgment packets
received.

GBN is implemented within a simple client-server file
transfer application. The client program is invoked with the
path to an existing file to be read and transferred and the
server program is provided the path to a file to be created
and populated with the received data.

Specification. The GBN simulation code consists of two
event classes, ACK and DAT, which represent acknowl-
edgments and data packets, respectively. The Sender
process represents the client program and implements the
functionality of a GBN sender. Similarly, Receiver
implements the server side of the algorithm. All together,
the specification consists of approximately 125 noncom-
ment, nonblank lines of Java.

We defined a single GBN simulation consisting of one
server and one receiver. This simulation is parameterized
by the following three values:

1.  NumBytes is the number of bytes to be transferred,
sampled uniformly in [1, 335,760].

2. DropProb is the probability of a packet being
dropped by the network, distributed uniformly in
[0.0, 0.2).

3. DupProb is the probability of a nondropped packet
being duplicated, distributed uniformly in [0.0, 0.2).

NumBytes is passed directly to Sender and also used in an
assertion within Receiver to check that the proper
number of bytes is actually received. DropProb and DupProb
are used by the unreliable network process to randomly
drop and duplicate events. The network process delays all
events by the same amount.

Experimental universe. For GBN, the universe of test cases
consists of 2,500 randomly created parameter tuples.

Implementations. Student implementations of GBN were
coded in an average of 129 lines of C using a framework,
itself approximately 300 lines of C code, provided by the
course instructor. This framework handles application-level
file I/O and the low-level socket API calls. The students
were responsible for implementing the core go-back-n
algorithm within the constraints imposed by these layers.

We also used our own Java-based implementation of this
system and created faulty versions using the MuJava
automatic mutation tool [41]. This implementation uses the
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Fig. 3. LSR topologies.

basic sockets facilities provided by the java.net package
and consists of 24 classes containing 565 lines of code.

The test harness randomly populates a temporary file
with NumBytes bytes and starts an instance of a simple UDP
proxy that mediates packet exchange, dropping and
duplicating packets in the same way that the network
process does in the simulation. The test fails if either
program exits with an error or if the file was not transferred
correctly.

3.2 LSR

A link-state routing scheme is one in which each router
uses complete global knowledge about the network to
compute its forwarding tables. The LSR system described
in the student programming assignment utilizes Dijkstra’s
algorithm to compute the least-cost paths between all nodes
in the network. This information is then distilled to
construct the forwarding tables at each node. To reduce
complexity, the assignment statement stipulates that the
underlying network does not delay or drop messages.

Specification. The LSR simulation code consists of three
events, several supporting data structures, a class imple-
menting Dijkstra’s algorithm, a Router process type, and a
Client process type to inject messages, for a total of
approximately 180 lines of Java code. A router takes as
input a list of its direct neighbors and the costs of the links
to each of them.

We defined a simulation of LSR, parameterized by the
following values:

1. Topology is an integer in the range [1, 7] representing
a particular arrangement of routers and costs (Fig. 3
shows each possibility graphically).

2. MessageCount is an integer in the range [0,2n]
representing the number of messages to be sent,
where n is the number of routers in the topology.

Hard coded into the simulation are the details of each

topology, including statically computed shortest path costs
for all router pairs. In the simulation, n routers are
instantiated and arranged according to the specified
topology. Then, MessageCount instances of the Client
process are created and scheduled for execution at regular
intervals. Clients send a message, consisting of a short text
string, from a source router to a destination router, each
chosen randomly from the range [1,n] (local messages are
also allowed). As each message is propagated by a router, a
per-message path-cost variable is updated with the costs of
the links traversed by the message. When a router receives
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a message to be delivered locally, it saves the string and its
total path cost. When the simulation terminates, assertions
ensure that each router received the expected number of
messages, and that the path cost for each is correct.

Experimental universe. The universe of test cases for LSR
consists of 7,000 parameter tuples, 1,000 for each topology,
with the message count, sources, and destinations selected
randomly.

Implementations. Students were again provided with an
application framework within which they implemented the
algorithm. On average, students implemented the LSR logic
within 120 lines of Java and the framework itself is about
500 lines of code.

In the course assignment, this framework merely
simulated a reliable network interaction. For our experi-
ments, we reimplemented the framework to run over an
unreliable network. This change required some of the
supporting classes written by students to be altered to
implement the java.io.Serializable interface. But,
the interface defines no methods, so no algorithmic changes
were made to any of the student implementations.

The test harness duplicates the functionality of the
simulation setup code faithfully. A test fails if any of the
router or client programs terminates with an error code or if
a router does not receive the expected messages.

3.3 DNS

The Domain Name System is one of the fundamental
components of the Internet. It provides a distributed
database that maps names to resources of different types;
the most common mapping is used to translate names into
network addresses, but there are many others. The core
algorithms and resource types are defined in RFCs 1034
and 1035. These documents differentiate among several
conceptual components of DNS, including servers, stub
resolvers, and recursive resolvers. Briefly, a server has
primary responsibility for a particular subset of the name
space. It is capable of responding directly to queries about
names in this space and providing delegation information
for other names. A stub resolver is a program that delegates
the resolution of user queries to other resolvers. A recursive
resolver is a more sophisticated program that is able to
perform the multiple queries needed to successfully resolve
names to resources. Typically, this involves following a trail
of delegations from the top-level “root” domain servers
(servers responsible for .com and .net, for example) to the
“authoritative” servers actually responsible for the name in
question.

Of these three components, the recursive resolver is the
most complex, involving message exchanges with multiple
different servers, caching responses, processing name
aliases, and the like. For this reason, we focus on testing
the behavior of a recursive resolver.

Specification. The simulation code for DNS consists of
10 structures representing the basic DNS resource record
types, a single message type that represents both requests
and responses (as in DNS), 11 low-level procedures for
manipulating and comparing names and resource records,
and three classes representing stub resolvers, recursive

resolvers, and servers, for a total of approximately 900 lines
of Java code.
Inputs to the simulation consist of the following:

1. Name space: A generated name space populated
randomly with resources, divided into between two
and five administrative domains randomly assigned
to authoritative servers.

2. Queries: Name and type queries to be issued by stub
resolvers randomly selected to include unknown
names and invalid resource types.

3. DropProb: The probability of a packet being dropped
by the network, distributed uniformly in [0.0, 0.20).

4. DupProb: The probability of a nondropped packet
being duplicated, distributed uniformly in [0.0, 0.20).

During simulation, authoritative servers are provided with
relevant portions of the name space; some of these servers
are root servers that can act as a starting point for the
recursive resolvers. The network error probabilities only
affect packets traveling between recursive resolvers and
servers.

Assertions within the simulation ensure that the re-
sponse to each query is correct given the generated name
space and records.

Experimental universe. The universe for DNS consists of
2,000 test cases.

Implementations. For implementations of the recursive
resolver experimental subjects, we used 34 public releases
of MaraDNS, starting with version 1.0.0.0 and ending with
1.2.07.1. MaraDNS is implemented in C. The source code
for the entire MaraDNS package ranges from roughly
15KLOC to 24KLOC, depending on the release.

During test executions, we used version 2.0.1 of dnsjava’
as a stub resolver implementation and the tinydns server
included with version 1.0.5 of djbdns® as a server imple-
mentation; in this paper, we assume they are correct.

For each simulation run, a control file is generated that
contains the definition of the name space, server config-
urations, recursive resolver configuration, and the number
and behavior of stub resolvers. This file is also read by the
test harness that sets up the system using a localhost
network and executes the tests.

4 EXPERIMENTS

To validate our ideas, we follow the experimental method
introduced by Frankl and Weiss [18]. At a high level, this
involves sampling a large universe of test cases to
randomly construct test suites that are adequate with
respect to different criteria. Statistical inference is then used
to test hypotheses about the relative fault-detecting ability
of competing criteria and their relative cost. We evaluate
the different criteria by employing a technique described by
Briand et al. [5] in which different testing strategies are
emulated once the failure data for the universe of test cases
has been collected.

We conducted three separate experiments, aimed at
evaluating the usage scenarios described in Section 2.3. In

7. http:/ /www.dnsjava.org/.
8. http://cr.yp.to/djbdns.html.



the first usage scenario, code-based or environmental
adequacy criteria are instantiated against a simulation to
select an adequate test suite. There is an almost infinite
variety of specialized adequacy criteria that could be
defined against a simulation, but we believe the typical
engineer interested in this conventional scenario would be
most interested in applying a simple, general-purpose
simulation-code-coverage criterion. Thus, in Experiment 1,
we compare the cost and effectiveness of three white-box
adequacy criteria to randomly selected test suites of
varying size.

Experiment 2 is aimed at determining our ability to
improve the effectiveness of individual adequacy criteria,
both white and black box, through fault-based analysis.
This corresponds to the boosting usage scenario in which an
engineer is willing to incur the cost of creating multiple
adequate suites and applying fault-based analysis, with the
expected benefit of improving the effectiveness.

In the third usage scenario, the engineer uses fault-based
analysis to rank candidate criteria. Thus, Experiment 3 is
aimed at determining the accuracy with which we can
predict the actual effectiveness relationships between
criteria used in the first two experiments.

4.1 Experimental Method

We primarily compare adequacy criteria by measuring the
effectiveness of adequate test suites. The effectiveness E of
a test suite, measured with respect to a set of implementa-
tions, is the proportion of implementations found to be
faulty by the test suite; a test suite that fails on 6 out of 10
subject implementations has E = 0.6. Others define and
measure effectiveness on a per-implementation basis as the
proportion of adequate test suites that fail [18]. Our metric
is more appropriate for specification-based testing since it
accounts for the breadth of a suite’s effectiveness. In other
words, since adequacy is measured with respect to cover-
age of the specification, an adequate test suite should
perform well against any implementation of the specifica-
tion. Therefore, we consider a suite that finds three faulty
implementations to be three times as effective as a suite that
finds just one.

For cost C, we use total execution time, including both
analysis time (c,) and test execution time (c.). As we
assume the existence of a suitable simulation, we do not
consider the cost of developing this. In the context of
different testing processes, a specification-based test suite
may be executed multiple times (e.g., by different engineers
during QA, as regression tests, or as part of a regularly
scheduled automated test strategy). To account for this, we
introduce a process factor F, which represents the number
of times a selected test suite is executed. Clearly, since the
analysis cost is amortized over F' test executions, even a
very expensive analysis technique may become cost-
effective with high-enough values of F. In the cost-
effectiveness analysis presented below, we use a value of
F =10, which we believe is quite conservative for a
system-level, specification-based testing technique. The
overall cost for a particular test suite is given by

C=c,+F xec,. (1)
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In the literature, cost is measured in a number of
different ways, with suite size being the most common. In
our experiments, resource usage (i.e., time, memory, cycles,
and bandwidth) varied significantly among test cases, so
we did not feel that suite size would capture a suite’s cost
meaningfully. Also, by using execution time, we are able to
include the analysis cost naturally.

Of course, random and input-partitioning criteria have
¢, = 0 since they do not require any analysis. For white-box
criteria, ¢, consists of the total execution time of the
simulations of all test cases considered plus the time
needed to compute aggregated coverage for each of the
intermediate suites examined. This is the time spent to
assemble an adequate suite in the process of Fig. 2. For
example, suppose we consider five test cases, but discard
the second and third because they do not improve cover-
age. The analysis cost is the time needed to run five
simulations plus the time taken to determine coverage of
the suites assembled at each iteration, which correspond to
the combinations of tests {1, 2}, {1, 3}, {1, 4}, and {1, 4, 5}.
Note that this puts white-box criteria at a disadvantage
since it assumes that the engineer has no intuition about the
relation between input values and coverage, which is not
usually the case in practice.

To determine statistically significant effectiveness rela-
tionships, we apply hypothesis testing to each pair of
criteria and compute the p-value. The p-value can be
interpreted as the smallest « at which the null hypothesis
would be rejected, where « is the probability of rejecting
the null hypothesis when it in fact holds. For example, to
determine if criterion A is more effective than criterion B,
we propose a null hypothesis

Hy:E, < Ep
and an alternative hypothesis
H, : EA > EB,

where E, and Ejp are the average effectiveness values for
criteria A and B, respectively.

Although we do not know the actual distribution of
effectiveness values, we take advantage of the central limit
theorem and assume that the distribution of the normalized
form of our test statistic F approximates a normal
distribution. We can use this theorem comfortably with
sample sizes larger than 30 [12]. Therefore, we compute the
z value for this hypothesis,

Es—FEp
2=,
G-EA/\/E

and use the p-value formula for high-tailed hypothesis tests
(i.e.,, when the rejection region consists of high z values),

where o, is the sample standard deviation of effectiveness
values of A, n is the sample size, and ® is the standard
normal cumulative distribution function. Typically, with
p-values less than 0.05 or 0.01, one rejects Hy and concludes
that criterion A is more effective than criterion B.
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TABLE 1

Implementation Failure Rates: (a) GBN, (b) LSR, (c) DNS
[ TOT [ %] [T | % | [IUT [ % |

stud07 0.28 stud07 5.04 1.0.29 9.15
stud06 0.32 stud16 5.15 1.1.59 15.25
stud08 0.40 stud03 | 5.21 I.1.91 17.30
stud15 3.16 stud08 7.70 1.2.03.3 17.45
stud09 3.40 stud01 7.94 1.1.60 17.55
stud18 4.72 stud06 8.02 1.2.01 18.00
mutROR15 16.96 stud14 8.48 1.2.03.5 18.20
mutLOI35 | 17.00 studls | 12.17 1.2.07.1 | 18.40
stud09 12.42 1.2.00 18.45
1.1.61 18.70
1.2.03.4 18.90

(a) (b) (©

4.1.1 Preparation

Following the terminology of Briand et al. [5], we first prepare
our data by executing and analyzing all test cases individu-
ally. This entails the management of three different execu-
tions: 1) simulations, 2) implementations, and 3) mutants.

Test cases are generated randomly from the input
domain of each system and are passed to the parameterized
simulation code. For the implementations, we developed
test harnesses that mimic the simulation configuration
faithfully. These test harnesses contain high-level test
oracles. For example, the service provided by the GBN
system is file transfer. The high-level oracle for this system
is simply a direct comparison between the original file and
the copy. The sophistication of the oracle plays a significant
role in determining the absolute effectiveness of a testing
technique. The experimental method we adopt requires
oracles to be automated, which is why we could not employ
more detailed oracles.

To manage the preparation step, we developed a
sophisticated execution script that enabled us to stop and
start the process as necessary and that helped organize and
optimize the large amount of data generated during this step.
Careful management of the implementation and mutant
executions is especially important since both executions can
enter infinite loops or otherwise hang. We used timeouts to
handle these situations. For the mutant executions, the
timeout we used is triple the longest nonmutant simulation
run. For the implementations, we determined timeout values
conservatively, starting with high timeouts (e.g., 5 minutes)
and gradually lowering the values.

Simulations. Executing the simulation tests is simply a
matter of instantiating each scenario within the simulation
environment and running it. During execution, coverage
information for blocks, branches, and definition-use pairs is
recorded, along with the wall-clock time used by each
simulation run.

Implementations. Next, we execute each test case against all
implementations. We record the result of each test case in
terms of success or failure, along with the test execution time.

As the goal of these experiments is to differentiate between
testing techniques, we eliminate implementations with high
failure rates since a test suite of any reasonable size will
always detect failures, regardless of the technique used to
selectits cases. We do this by initially executing 100 randomly

TABLE 2
Generated Mutants

[ System | Nyy [ Ne [ N | Nu |
GBN 488 74 | 342 72
LSR 58 2 41 15
DNS 234 0 99 135

selected test cases against each implementation and elim-
inating from further consideration those with failure rates
higher than 20 percent. The same approach is used by others
in empirical studies [16] to focus attention on faults that are
hard to detect by eliminating implementations that would be
found by virtually any test suite. After executing all test cases,
we also excluded correctimplementations (i.e., those without
failures) from further analysis.

Table 1 lists the 28 remaining faulty, nonpathological
implementations along with the percentage of test cases
that fail on each. The GBN and LSR implementations with
names beginning with “stud” are student implementations.
For GBN, the two beginning with “mut” are mutants of our
own Java implementation.’ For DNS, the names correspond
to the version numbers of the releases. The absolute failure
rates are determined by the nature of the generated test
cases, the automated oracles, and the quality of the
software being tested. For DNS, the test cases explore
aspects of the DNS RFCs that were not addressed fully in
the MaraDNS implementations and, therefore, cause a high
degree of failures.

Mutants. Mutants are generated from the simulation
code by applying all conventional mutation operators
provided by the MuJava tool [41]. We target classes
encoding the core algorithms and logic, but exclude classes
used as messages in the system. When executing the
simulation runs, we use Java’s class loader path to ensure
that the compiled mutants are loaded instead of the
original, correct version.

This step is quite computationally expensive and, as we
did with implementations, we mitigate this by aggressively
excluding mutants with high failure rates. These patholo-
gical mutants are identified by initially simulating a small
sample of test cases against all mutants. Any mutants with
failure rates higher than 50 percent are excluded from
further consideration. Eliminating these mutants is justified
because we measure the effectiveness of test suites, not test
cases, and mutants with high failure rates are killed by
virtually all test suites with more than a few members.
After this initial sampling, we examined the code of
mutants with zero kills and eliminated any ones semanti-
cally equivalent to the original code.

Table 2 contains the details of mutants generated for
each system. The second column, labeled Ny, is the total
number of mutants generated by MuJava. The third and
fourth columns, labeled N, and N, are the number of
equivalent and pathological mutants. The fifth column, N,,
contains the number of mutants for each system used

9. We wanted to avoid using implementation mutants as subjects since
we use the same operators to mutate simulation code (although the code is
entirely different). However, as a last resort, we generated mutants of our
GBN implementation after determining that there were not enough student
implementations with appropriate failure rates.
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TABLE 3
Adequacy Targets
[ System [ all-blocks | all-branches | all-uses |
GBN 100.0% 96.9% 91.5%
LSR 98.4% 94.6% 96.3%
DNS 96.0% 92.0% 95.0%

during analysis. We attribute the comparatively large Ny,
for GBN to the amount of integer arithmetic used in this
algorithm. The most striking aspect of these data is the
number of pathological mutants we were able to eliminate.
For GBN and LSR, these mutants account for 70 percent of
the total; for DNS, 42 percent of the mutants were
pathological. By eliminating these early in the execution
process, we were able to realize significant savings in terms
of execution time. Interestingly, there were no equivalent
mutants for DNS. We confirmed this by examining the
differences between each mutant and the original and
determined that all mutants were in fact semantically
different.

4.1.2 Testing Techniques

The white-box criteria used in our experiments are the well-
known all-blocks, all-branches, and all-uses coverages [20]
applied to simulation code. Specifically, we apply these
criteria in aggregate to the entire simulation code base,
excluding classes that are part of the discrete-event
simulation core and our API layer.

During simulation execution, coverage data are collected
and stored for each test case. In order to determine target
values for each criterion (100 percent was typically not
possible due to infeasible paths), we created a test suite out
of 50 test cases and verified that any uncovered elements
are truly infeasible. We did this iteratively during the
generation of test cases to ensure that our random
generator was not missing subtle cases. Table 3 contains
the target adequacy values used in the experiments.

We create adequate suites for these criteria by randomly
selecting test cases from the universe and including them if
they improve the coverage value. Specifically, for white-
box techniques, we employed the following algorithm for
each suite:

1. Initialize coverage value to zero,

2. randomly select a candidate test case from the
universe.

3. Determine the aggregate coverage value for the
suite, including the previously selected members
plus the candidate.

4. If the computed coverage value improves with the
addition of the candidate, add it to the suite,
otherwise discard the candidate and try again.

5. Stop when the coverage value meets the target
value.

As mentioned above, the analysis cost for white-box
techniques includes the simulation time for each candidate
test case selected in step 2 plus the time needed to compute
the aggregate coverage for each candidate suite in step 3.

For fault-based experiments, we use system-specific

black-box criteria that are defined with respect to the input

TABLE 4
White-Box Effectiveness and Size
| System | Criterion | Size | E ]
GBN all-blocks 3.1 0.19
all-branches 4.1 0.22
all-uses 4.7 0.35
LSR all-blocks 1.60 0.46
all-branches 3.05 0.64
all-uses 2.92 0.61
DNS all-blocks 9.92 | 0.936
all-branches | 12.76 0.98
all-uses 12.21 | 0.933

domain of the simulations. We construct test suites for
these criteria similarly by randomly adding test cases that
will cover a previously uncovered partition. This does not
result in minimal test suites, but we feel that it is a
reasonable approximation of the way in which an engineer
would try to accomplish this task without the aid of a
specialized tool.

For the null criterion (i.e., random testing), all suites of a
particular size are adequate. Construction of a random
suite of size n is simply a matter of selecting n unique test
cases randomly from the universe.

Once a test suite has been selected, its effectiveness score
is computed by determining the proportion of implementa-
tions that fail on at least one test case in the suite.
Analogously, the mutant score is the proportion of mutants
for which at least one test case fails. In our experiments, we
generated 200 adequate suites for each criterion and
computed the sample average and standard deviation for
effectiveness and cost.

4.2 Experiment 1: Effectiveness

The first experiment we describe is aimed at verifying that
test suites that are adequate with respect to simple white-
box simulation-code-coverage criteria are also effective at
testing implementations. To do this, we compare white-box
techniques to randomly selected test suites of fixed size in
several different ways.

Table 4 contains the initial data obtained from analyzing
adequate suites for each criterion. In Table 4, the second
column contains the average size of the adequate suites,
measured in test cases, and the third column contains the
average effectiveness of the same suites. The differences in
effectiveness shown in these tables are all statistically
significant, except for the difference between all-branches
and all-uses for DNS. Therefore, for GBN, the criteria
ranking is the canonical ranking one would expect from the
literature:

all-blocks < all-branches < all-uses.
For LSR, the ranking is
all-blocks < all-uses < all-branches.

Finally, for DNS, the ranking is

all-blocks < all-branches,

all-uses < all-branches.
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Fig. 4. Absolute white-box effectiveness.

We believe that all-uses is not significantly more effective
than all-branches for LSR and DNS because the simulations
of these two systems make extensive use of collections such
as lists and maps to store data, resulting in an imprecise
data-flow analysis. These inconsistent relationships are not
due to a failing in specification-based testing, but rather are
fundamental to the use of adequacy criteria. Experimental
results reported by others support this observation: all-uses
is shown to be better than all-branches on average, but not
universally [18].

To evaluate the absolute effectiveness of the white-box
techniques, we generate random suites with sizes corre-
sponding to the average sizes of white-box simulation-
adequate suites. Fig. 4 shows plots of suite size versus
effectiveness for the random and white-box criteria. In this
figure, the DNS plots are on the upper right-hand side,
GBN is on the lower left, and LSR is in the middle left.
Notice that, in each case, the white-box line is above the
random line, graphically demonstrating our claim. Hypoth-
esis testing rigorously corroborates this result by showing
that the improvement in effectiveness of white-box simula-
tion-adequate suites compared to random suites of the
same size is statistically significant.

To evaluate cost effectiveness, we first randomly select
200 random suites for a range of different suite sizes and
determine their effectiveness and cost. Then, for each
white-box criterion, we use statistical inference to deter-
mine the relationship, if any, that exists between the white-
box technique and the random suites.

Table 5 contains the results of this analysis for GBN. In
this table, the columns represent random suites of the
labeled size. The rows represent either the cost, labeled C,
or effectiveness, labeled E for each criterion. The cells
contain either “—,” “=,” or “+4,” which are interpreted
generally as “worse than,” “equivalent to,” and “better
than,” respectively. So, for cost rows, cells having a “—"
symbol indicate that the white-box technique is worse (i.e.,
more expensive) than the random suite of that size.
Similarly, in effectiveness rows, cells marked with a “+”
symbol indicate that the white-box technique is signifi-
cantly better than random suites. Finally, cells marked with
“=" symbols indicate that there is no statistically sig-
nificant relationship between the two criteria, in either
direction.

TABLE 5
GBN White-Box Cost Effectiveness

Random Size
Criterion | 3 [4[5[6[7[8]9J10]I1]12
all-blocks C | - |+ |+ |+ |+ |+ |+ |+ ]+ |+
El+|=-1-|-1-/-1-1-1-
all-branches C | - [ - [+ [+ [+[+[+]+]+]+
E |+ +]-|-]1-1-1-1-1-1-+
allusesC | - [ - [ -] -T+[+[+[+[+]+
E |+ |+|+|+|+|+|+]=]|=]|-

In Table 5, there are some general trends that help
understand what is being displayed. First, each of the
white-box criteria is worse in terms of cost than small
random suites. Recall from Section 4.1 that white-box
techniques have an additional cost component due to
analysis C,,. This means that, all else being equal, white-box
techniques do worse in terms of cost than random suites of
the same size. Moving to the right in the cost rows, there is
eventually a point at which the white-box technique breaks
even or is better than random suites. Intuitively, this
happens when the random suites become sufficiently large
that their execution cost overcomes the analysis cost
incurred by the white-box technique.

Conversely, in terms of effectiveness, the white-box
techniques start off better than the random suites. This is a
combination of the white-box suite being bigger and also
being inherently more effective. Moving to the right, there
comes a point at which the two techniques are equivalent
and then a point where white-box techniques are worse
than random ones. Intuitively, this occurs when the
random suites become large enough to overcome the
inherent advantage of the white-box analysis.

The data shown in Fig. 4 already establish that white-box
techniques are inherently more effective than random
suites of the same size. Here, we are interested in
determining if the cost of analysis needed to obtain the
white-box suite is so large that it would be more cost-
effective to simply use randomly selected suites. In other
words, we are trying to determine if the engineer would
have a more effective test suite had they simply used the
analysis time expended in selecting white-box suites to
instead execute more tests.

Reading this from the tables is simply a matter of
determining if the point at which the white-box technique
breaks even in terms of cost is at a suite size less than or
equal to the break even point of effectiveness. If so, then the
technique is not only effective but also cost-effective. For
example, all-blocks with GBN becomes cheaper at suites of
size four and, at size four, all-blocks has equivalent
effectiveness; therefore, it is more cost-effective than
random testing. Following this procedure, all-branches for
GBN has equivalent cost effectiveness since both measures
break even at the same point. Last, all-uses for GBN is much
more cost-effective than random testing since its cost breaks
even at size seven, but not until random suites contain
12 test cases do they become more effective.

The same data are shown for LSR in Table 6. These data
show that all-blocks has equivalent cost effectiveness, all-
branches is more cost-effective than random, and all-uses is
less cost-effective. Again, we believe that all-uses is not
effective for LSR because of the extensive use of collections.
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TABLE 6
LSR White-Box Cost Effectiveness

Random Size
Criterion [ 1[2[3]4][5]6
all-blocks C | - | + |+ | + |+ | +
El+1-1-1T-1-71-
all-branches C | - | - | - | - [+ ] +
E |+ |+ |+ |+]|=]-
all-uses C | - | - | - + | +
El+|+|+]|=]-]-

Similarly, the cost-effectiveness data for DNS are listed
in Table 7. Here, all-blocks and all-branches are significantly
more cost-effective and all-uses is more cost-effective. This
is interesting because, in terms of absolute effectiveness, all-
blocks and all-uses are statistically indistinguishable, but,
when the analysis cost is considered, all-blocks is shown to
be better.

4.3 Experiment 2: Boosting Criteria

Experiment 2 is aimed at determining if the fault-based
analysis technique can be used to improve the effectiveness
of white-box and black-box criteria. This experiment
corresponds to the boosting usage scenario in which an
engineer selects more than one adequate suite during
analysis and then uses the mutant score to decide which
one to use on the implementation. There are two costs
associated with this usage; the first comes from having to
select multiple adequate test suites and the second is the
cost of performing the fault-based analysis by executing
each test case on all specification mutants. Thus, the main
goal of this experiment is to determine the smallest number
of additional suites at which the engineer sees a statistically
significant improvement in effectiveness.

For this experiment, we devised two black-box test
criteria for each system. The intent with these criteria is that
they serve as plausible alternatives to white-box techniques
that an engineer might consider using. They are similar to
each other in that they define their test requirements with
respect to the function and distribution inputs spaces rather
than the code of the simulation. Nevertheless, the presence
of the simulation code is critical to the technique, as we
explain below.

The black-box criteria are as follows:

e  GBN IP-1: This criterion simply divides value ranges
of each parameter into four equally sized partitions. A
suite is adequate for this criterion when each partition
is represented by at least one test case value.

e GBN IP-2: This criterion divides the NumBytes
value range into seven equally sized partitions. For
DropProb and DupProb, the value range [0, 0.1) is
split in half, while the range [0.1, 0.2) is split into
four bins, thereby placing an emphasis on higher
drop and duplication rates. Again, a test suite is
adequate for this criterion when each partition is
accounted for. The underlying intuition here is that
higher drop and duplication rates make a test
exercise more of the retransmission and window
manipulation code.

e LSR pair-50: This criterion ensures that paths
between pairs of routers are well represented by a

TABLE 7
DNS White-Box Cost Effectiveness

Random Size
Criterion [12]13[14[15][16][17[18[19]20[21]...[26
all-blocks C | - | + |+ |+ |+ |+ |+ |+ |+ ]|+ |+]+
El+|+|+|=|=]-|-]1-1-1-1-1-+-
all-branches C | - | - [ - - -T+[+]+]+]+]+]+
E |+ |+ [+|+|+]+|+]+]|+]=]|=]-
allusesC | - | - [ -] -]+ +[+[+[+[+]+]+
E |+ |+|+|=|=|-|-]1-|-1-1-1]-+-

test suite. A test suite is adequate for this criterion if
all topologies are represented and 50 percent of the
possible router pairs are accounted for.

e LSR quartet: This criterion simply requires that all
4-router topologies in Fig. 3 be represented. The
intuition behind this is that 4-router topologies are
more complicated and, therefore, will make better
test scenarios.

e DNS all-resource-types: This criterion requires that
a query be made for each of the core DNS resource
types. Intuitively, this exercises the breadth of the
user inputs.

e Typical usage: This criterion attempts to exercise
the DNS features that are used most often. Thus, it
requires a valid query, a name-error query, and a
no-data query to be issued for A records (which
map names to addresses) and MX records (which
map domain names to mail exchanges). These two
record types are those most often used and, so, this
criterion targets this narrow usage pattern.

For this experiment, we use the 200 adequate white-box
suites that were created for Experiment 1 and create 200 new
suites for each of the black-box techniques. To underscore
the inherent variability in the effectiveness of adequate
test suites, we show the probability distributions for each
of the criteria in Figs. 5, 6, and 7. Each of these plots has
effectiveness on the x-axis and probability on the y-axis. So,
the height of each bar in the plots represents the probability
that an adequate test suite has the corresponding effective-
ness. A vertical dashed line shows the average effective-
ness. For instance, consider the plot shown in Fig. 5a, the
distribution for all-blocks for GBN. The bar at 0.25 on the
x-axis has a height of 0.25, indicating that, for this criterion,
there is a 25 percent chance that an adequate suite will have
an effectiveness score of 0.25. Since the average effective-
ness of all-blocks for GBN is only 0.19, selecting a suite by
chance that actually had 0.25 effectiveness would result in a
significant benefit for the engineer. This is exactly the kind
of improvement that we are trying to achieve by using
fault-based analysis to predict where candidate test suites
fall in the effectiveness distribution.

To reiterate, the procedure we follow for this experiment
is as follows:

1. Choose M suites at random from the set of suites
adequate for the criterion in question.

2. Select the suite with highest mutant score and
determine its effectiveness.

We perform this procedure 100 times each with values of M
starting at 2 and stopping at a value at which the fault-based
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technique is statistically better than the baseline effective-
ness of the criterion (with a = 0.05).

Tables 8, 9, and 10 show the results of these experiments.
In these tables, the second column contains the number of
adequate suites needed to achieve a significant boost in the
effectiveness, the third column contains the baseline
effectiveness, and the fourth column the boosted effective-
ness. The min M values reported in the second column of
these tables are the total number of adequate suites needed,
including the suite needed for the conventional usage
scenario.

For GBN, shown in Table 8, three of the five criteria
needed only one additional adequate suite to improve the
effectiveness and one, IP-2, needed two additional suites.
For all-uses, we examined up to seven additional adequate
suites without achieving a significant boost in effectiveness.

The data shown in Tables 9 and 10 for LSR and DNS are
very similar to this. For many of the criteria, the minimum
multiplier M is 3 or less, meaning that the engineer first
sees significant improvement in effectiveness with only two
additional adequate suites. For DNS, all-blocks is harder to
boost than the others, requiring seven additional test suites
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Fig. 7. DNS criteria effectiveness distributions. (a) All-blocks. (b) All-branches. (c) All-uses. (d) Resources. (e) TypicalUsage.

before a significant improvement is achieved. Also, for
DNS, we were unable to boost all-branches, even trying up
to seven additional suites. For DNS, all-branches is the most
effective criterion we evaluated, with an effectiveness of
0.98. Referring to the distribution of adequate suites shown
in Fig. 7b, it is understandable that this criterion would be
difficult to boost since virtually all adequate test suites are
in the rightmost bin.

TABLE 8
Boosting GBN Criteria
[ Criterion [min M | EJ E+ ]
all-blocks 2 1 019 | 0.27
all-branches 2| 022 | 029
all-uses - | 034 | 0.34
1P-1 2 1029 | 032
1P-2 31037 | 041
TABLE 9
Boosting LSR Criteria
| Criterion [min M | E [ E+ ]
all-blocks 2 | 046 | 0.51
all-branches 3] 0.64 | 0.69
all-uses 2 | 0.61 0.68
Quartet 3] 0.84 | 0.87
Pair-50 31089 | 092
TABLE 10
Boosting DNS Criteria
[ Criterion [ min M | E] E+]
all-blocks 8 | 0.936 | 0.9545
all-branches - | 0973 0.973
all-uses 2 | 0933 | 0.9678
Resources 4 | 0.642 0.69
TypicalUsage 4 | 0.722 0.823

While conducting this experiment, we also tested the
opposite hypothesis, which is that the effectiveness drops
when increasing the number of suites considered. This
never occurred.

An important aspect of this result is that the technique
works for both black-box and white-box adequacy criteria.
If an engineer prefers to not use the simulation code as a
basis for defining adequacy, then they can still use it to
improve the effectiveness of any other test suites with
which they are working.

4.4 Experiment 3: Ranking Criteria

Our final experiment, Experiment 3, is aimed at determin-
ing how effective the fault-based analysis technique is at
predicting relationships between criteria. This experiment
corresponds to the ranking usage scenario in which an
engineer is interested in evaluating several plausible
adequacy criteria to determine which to use.

From the previous two experiments, we have, for each
system, 200 adequate suites for each of five different
criteria. Fig. 8 depicts all statistically significant relation-
ships with a = 0.05. For example, Fig. 8a indicates that all-
uses has a significantly higher effectiveness than IP-1, which
is itself higher than all-branches and all-blocks, etc. This
figure underscores the difficulty practitioners face when
choosing between criteria: There is no rational way, aside
from our ranking technique, for an engineer to know where
IP-1 and IP-2 fall with respect to the white-box criteria.

To determine our ability to predict these same relation-
ships, we simply compute the mutant scores for each of
adequate suites and apply hypothesis testing using the
average and standard deviation of these values instead of
effectiveness.

Our experiments show that the fault-based analysis
predicts the actual relationships almost perfectly. Since the
predicted relationship graphs are virtually identical to
those shown in Fig. 8, we do not report them here. Instead,
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Fig. 8. Criteria relationships. (a) GBN. (b) LSR. (c) DNS.

Tables 11, 12, and 13 show the computed p-values for the
relationships. For instance, each row in Table 11 corre-
sponds to an edge in Fig. 8a.

The hypothesized relationships between the criteria are
listed in the first column. For each relationship, the second
column reports the p-value for the mutant score (simulation)
while the third column reports the p-value for the effective-
ness (implementation). Notice that the correspondence is
virtually exact, with p-values all lower than 0.02. In
particular, for LSR, the fault-based analysis accurately
predicts the reversal of the relation between all-uses and
all-branches.

For DNS, the relationship between these two criteria
represents the only situation in which the predicted
relationship does not match the actual relationship; this is
highlighted in the bottom row of Table 13. In this situation,
the fault-based analysis predicts, with a strong level of
confidence, that all-uses will be more effective than all-
blocks. However, this relationship is not borne out by the
effectiveness data from the implementations. So, in statis-
tical terms, the fault-based technique would have caused
the engineer to favor a criterion that was not actually more
effective than another one considered. However, we should
point out that, in real terms, the average effectiveness of the
two criteria are practically identical, as shown in Table 4.

4.5 Summary of Results

The results of the three experiments presented above are
compelling and provide strong validation for the ideas we
present in this paper.

The results of Experiment 1 show that discrete-event
simulations can be used effectively as the basis for
definition and evaluation of adequacy criteria for imple-
mentation testing. The three white-box techniques we
evaluated are some of the simplest available and the data
show that they are clearly more effective than the baseline
provided by randomly selected suites. Additionally, our
analysis of cost effectiveness shows that the time spent to
simulate and select white-box test suites is small enough
that, for most of the criteria, it does not put the technique at
a disadvantage when compared to a baseline, minimal-cost
random testing technique.

The results from Experiment 2 show that, for virtually all
of the white-box and black-box adequacy criteria we
evaluated, a fault-based analysis of the simulation code
can be used to boost effectiveness significantly.

Finally, we show through Experiment 3 that, for the
collection of adequacy criteria used here, we can predict the

TABLE 11
GBN Criteria p-Values

[ Hypothesis [ m. p-value | e. p-value |
IP-1>all-blocks < 0.001 < 0.001
IP-1>all-branches < 0.001 < 0.001
IP-2>all-uses < 0.001 0.004
all-branches>all-blocks < 0.001 0.002
all-uses>all-blocks < 0.001 < 0.001
IP-2>all-blocks < 0.001 < 0.001
all-uses>all-branches < 0.001 < 0.001
IP-2>all-branches < 0.001 < 0.001
IP-2>1P-1 < 0.001 < 0.001
all-uses>IP-1 < 0.001 < 0.001

TABLE 12
LSR Criteria p-Values
Hypothesis m. p-value | e. p-value
Quartet>all-blocks < 0.001 < 0.001
Pair-50>all-blocks < 0.001 < 0.001
all-branches>all-uses < 0.001 0.01
all-branches>all-blocks < 0.001 < 0.001
Quartet>all-uses < 0.001 < 0.001
all-uses>all-blocks < 0.001 < 0.001
Pair-50>Quartet 0.02 < 0.001
Pair-50>all-uses < 0.001 < 0.001
Quartet>all-branches < 0.001 < 0.001
Pair-50>all-branches < 0.001 < 0.001
TABLE 13
DNS Criteria p-Values

Hypothesis m. p-value | e. p-value

all-branches>Resources < 0.001 < 0.001

all-uses>Resources < 0.001 < 0.001

all-branches>TypicalUsage < 0.001 < 0.001

all-uses>TypicalUsage < 0.001 < 0.001

TypicalUsage >Resources < 0.001 < 0.001

all-branches>all-uses < 0.001 < 0.001

all-blocks >Resources < 0.001 < 0.001

all-blocks>TypicalUsage < 0.001 < 0.001

all-branches>all-blocks < 0.001 < 0.001

all-uses >all-blocks [ < 0.001 [ 0.5980946

actual effectiveness relationships very accurately through
analysis and execution of the simulations.

Collectively, these results validate our research hypoth-
eses that 1) discrete-event simulations can be used effec-
tively to test implementations, 2) fault-based analysis can
be used to predict the relative effectiveness of adequate test
suites, and 3) the fault-based technique can be used to
predict the relative effectiveness of adequacy criteria.

4.6 Threats to Validity

While we feel confident that the experimental method we
used in conducting this research is sound and that the
results are valid, we highlight potential threats to our
conclusions.

The chief threat to the construct validity of our approach
is in the definition of effectiveness that we adopt. We
assume that a specification-based testing technique is most
effective when it is able to identify a broad range of faulty
implementations, but others might see this differently. For
example, implementation failure rates could be used to
include the relative difficulty of finding bugs in the
effectiveness score. Also, our cost analysis does not take
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into consideration the effort required to create test cases
and map them from the simulation domain to the
implementation domain. We were unable to measure this
directly since our test cases were automatically generated.
The test-case development costs are highly dependent on
both the system being developed and the development
processes and environment in place. Suffice to say that, as
with all testing techniques, the decision to use our
technique must be made in the context of a comparison of
the entire breadth of costs that apply to its usage and to the
potential cost of software failure.

The main internal threat is that our experiments validate
our claims because the simulation code mimics the
structure of implementation code more closely than it
would in practice. This is not likely considering that the
simulations were created by the author, who had no contact
with the students or the materials they were presented with
before receiving the implementations of GBN and LSR. The
implementation of DNS was treated similarly.

Finally, as the scope of our empirical study is limited to
three systems, it is difficult to argue that our results are
externally valid. However, we view this work as a
necessary first step in establishing the utility of simula-
tion-based testing for distributed systems and make no
claims about its broad applicability. More work is required
to understand the conditions under which our techniques
are applicable and effective, but it seems clear that it is both
applicable and effective on the systems described here.

5 RELATED WORK

We now discuss related research efforts. We summarize
existing specification-based testing techniques, with an
emphasis on those that are applicable to distributed
systems. We then discuss existing fault-based techniques.
Following this, we summarize the prior empirical studies of
test adequacy criteria. Finally, we describe other testing
techniques targeted specifically at distributed systems.

5.1 Specification-Based Testing

The work of Richardson et al. [51] is generally accepted as
the beginning of research into formal specification-based
testing techniques. Earlier interface-based techniques, such
as random testing and the category-partition method [48],
are also based on specifications, though not necessarily
formal ones. In general, the appeal of specification-based
testing is that tests can be constructed to check that an
implementation does what it is required to do, rather than
what engineers want it to do. However, these techniques
are viewed as complementing implementation-based tech-
niques, not replacing them.

There have been a number of studies of general-purpose
specification-based testing techniques. Chang et al. [7], [8]
propose a function-level, assertion-based language to guide
testing. Offutt and Liu [45] describe the generation of test
data from a higher level, object-oriented specification
notation. Offutt et al. [46] describe the use of generic
state-based specifications (e.g.,, UML and statecharts) for
system-level testing. Harder et al. [29] describe the
operational difference technique, which uses dynamically
generated abstractions of program properties to aid in test
selection. While these general-purpose techniques certainly
can be applied to low-level testing of distributed systems,

our focus is on system-level testing. Thus, we concentrate
on higher level specifications used in the areas of
communication protocols and software architecture.

In protocol testing, each side of a two-party interaction is
represented by a FSM specification. Bochmann and Petrenko
[4] and Lai [38] describe algorithms that have been developed
to generate test sequences for FSM specifications. These
algorithms can be classified by the guarantees they provide
with respect to different fault models (effectiveness) and by
the length of sequences they create (cost). Fault models differ
in the set of mutation operators they allow (e.g., output faults
only) and in assumptions they make about implementation
errors (e.g., by bounding the number of states that are
possible in an implementation). Once abstract test sequences
have been chosen using these algorithms, the test suite is
adapted for a particular implementation and executed to
demonstrate conformance.

The chief problem with these techniques is the limited
expressivity of the FSM formalism. Extended FSMs, which
are FSMs with minor state variables used in guard conditions
and updated during state transitions, are used to represent
protocol behavior more accurately, but, as pointed out by
Bochmann and Petrenko, these extensions are nothandled by
basic FSM techniques. The greater expressiveness of discrete-
event simulations compared to FSM models could be what
attracts practitioners to simulations.

Software architectures have been studied as a means to
describe and understand large, complex systems [49]. A
number of researchers have studied the use of software
architectures for testing. Richardson and Wolf [53] propose
several architecture-based adequacy criteria based on the
Chemical Abstract Machine model. Rice and Seidman [50]
describe the ASDL architecture language and its toolset and
discuss its use in guiding integration testing. Jin and Offutt
[34] define five general architecture-based testing criteria
and apply them to the Wright ADL. Muccini et al. [42]
describe a comprehensive study of software architectures
for implementation testing. They propose a technique that
relies on Labeled Transition System (LTS) specifications of
dynamic behavior. Their method derives simpler, abstract
LTSs (ALTSs) from a monolithic global LTS in order to
focus attention on interactions that are particularly relevant
to testing. Coverage criteria are then defined with respect to
these ALTSs and architectural tests are created to satisfy
them. Finally, architectural tests are refined into imple-
mentation tests and executed against the implementation.

The main difference between our work and the
approaches above is the nature of the specifications.
Simulations are encoded in languages more expressive
than FSMs, allowing more details of the system to be
included in the analysis. Conversely, simulations operate at
a lower level of abstraction than software architecture
descriptions and use an imperative style to express
functional behavior. Finally, and most importantly for
distributed systems, simulations deal with such things as
time and network behavior explicitly.

5.2 Fault-Based Testing

In fault-based testing, models of likely or potential faults
are used to guide the testing process. The best-known fault-
based testing technique is probably mutation testing [10]. In
mutation testing, the engineer applies mutation operators
[44] to the source code to systematically create a set of
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programs that are different from the original version by a
few statements. A mutation-adequate test suite is one that
is able to “kill” all of the nonequivalent mutants.

Mutation testing is based on two complementary
theories [10]. The competent programmer hypothesis states
that an incorrect program will differ by only a few
statements from a correct one; intuitively, this means that,
in realistic situations, a program is close to being correct.
The coupling effect states that tests that are effective at killing
synthetic mutants will also be effective at finding naturally
occurring faults in an implementation. In our work, we use
a standard set of mutation operators for Java as imple-
mented by the MuJava tool [41]. However, we do not use
the generated mutants for mutation testing, but, rather, we
use them to measure other adequacy criteria.

Mutation testing is usually described in the context of
implementation testing, but, more recently, researchers
have proposed the application of mutation testing to
specifications by defining mutation operators for specifica-
tion formalisms (e.g., Estelle [54] and statecharts [15]). This
work differs from ours in that their goal is specification
testing, while ours is specification-based implementation
testing. The mutation operators could certainly be used to
measure the effectiveness of test suites or testing techni-
ques, but we know of no results in this area.

In closely related work, Ammann and Black [2] use a
specification-based mutant score to measure the effective-
ness of test suites. Their method employs a model checker
and mutations of temporal logic specifications to generate
test cases. They use this metric to compare the effectiveness
of test suites developed using different techniques. This
work differs from ours in two important ways: 1) Their
specification must be appropriate for model checking,
namely it must be a finite-state description and the
properties to be checked must be expressed in temporal
logic, while our specification is a discrete-event simulation
and 2) their focus is solely on the comparison of candidate
test suites, while ours also includes the comparison of
adequacy criteria.

Finally, fault-based testing has been studied extensively
with respect to specifications in the form of Boolean
expressions. In this context, a number of specification-
based testing techniques have been experimentally eval-
uated [52], [58]. Recently, a fault-class hierarchy has been
determined analytically and used to explain some of the
earlier experimental results [36], [56]. We are targeting a
more expressive specification method whose fault classes
(mutation operators) are not amenable to a general
analytical comparison.

5.3 Empirical Studies

The comparison of competing testing strategies has been
the focus of research for decades. Theoretical studies using
simulation-based [14], [28], [43] and analytical [21], [22],
[30], [59] methods have been conducted. Definitive results
for general relationships among testing strategies are not
generally available and the focus of more recent work has
been empirical evaluations.

An experimentation and analysis method was pre-
sented by Frankl and Weiss [17], [18]. This method relies
on the generation of a large universe of test cases from
which many adequate suites can be selected by the criteria
being evaluated. For each criterion, the proportion of

fault-detecting suites is computed and statistical infer-
ences are used to test hypotheses about the relative
effectiveness of criteria. Frankl, Weiss, and others have
used this method to compare all-uses and all-edges [16],
[17], [18] and all-uses and mutation testing [19]. Hutchins et
al. [33] used a similar empirical framework to compare all-
edges and all-DUs. Recently, Briand et al. [5] extended the
basic experimental approach by introducing a step in which
different testing strategies are emulated after the initial data
are collected. In this study, we employ the Frankl and
Weiss experimental method with the test strategy emula-
tion introduced by Briand et al.

Andrews et al. [3] have also studied the use of
automatically generated mutants as subjects in empirical
studies. They used as a basis some of the canonical
examples from the testing literature for which there were
known naturally occurring faults. They hand-seeded faults
and automatically generated mutants. The goal of their
study was to determine which method of introducing faults
is more representative of naturally occurring faults: hand
seeding or mutation. They concluded that using mutation
operators results in subject systems that are more repre-
sentative since hand-seeded faults are often more subtle
and harder to uncover than natural faults. This is certainly
a useful tool for researchers since it provides the ability to
automatically generate a large number of potentially faulty
implementations.

5.4 Testing Distributed Systems

A major motivating factor of our work is the lack of any
general-purpose, disciplined, and effective testing method
for distributed systems. This being said, a number of studies
and research efforts are aimed at understanding the issues
surrounding testing distributed systems and at developing
methods and tools to improve the state of the art.

Several authors describe their experience and highlight
the issues related to testing distributed systems [13], [25],
[40]. In particular, Ghosh and Mathur [25] list a number of
differentiating characteristics of distributed software sys-
tems that are representative of those mentioned by other
authors: large scale, heterogeneity, difficult monitoring and
control, nondeterminism, concurrency, scalability, perfor-
mance, and partial failure.

Tool support for monitoring and controlling distributed
tests has received considerable attention. Some tools
primarily support functional testing [23], [24], [31], [32];
others target performance testing [11], [27]. While this is
important work, it addresses only the accidental issues
associated with distributed system testing and does not
address the more fundamental questions having to do with
what and how best to test a system.

Several studies concentrate on distributed component-
based systems. Gosh and Mathur [26] present an adequacy
criterion targeted at covering CORBA component inter-
faces. Krishnamurthy and Sivilotti [35] also specifically
target CORBA components and present a method for
specifying and testing progress properties of components.
Williams and Probert [60], [61] apply techniques of
pairwise interaction testing to component-based systems.
By its nature, work targeting distributed component-based
systems is restricted to a limited level of distribution since
much of the complexity of developing these systems is
handled by the container infrastructure.
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6 CONCLUSION

The work described here makes two main contributions to
the field of testing. First, we identify the potential for using
discrete-event simulations in the specification-based testing
of distributed systems and propose a concrete process for
doing so. Second, we leverage the executable nature of these
specifications in a novel fault-based analysis method and
identify several ways in which the method can be useful to
engineers of distributed systems. Our approach is validated
by an initial empirical study of three distributed systems.

One disappointing aspect of existing software testing
research is the lack of penetration of the advanced
techniques proposed by researchers into industry [47]. We
believe that the development of techniques like our fault-
based analysis method that allow engineers to predict the
relative efficacy of testing procedures for their specific
system will help improve the adoption of advanced testing
techniques by reducing the risk of using them.

In the future, we plan to continue our work with
simulation-based testing by estimating test execution time
using the virtual time derived from the simulations. This
should provide a useful measure of cost, which can be
factored into the prediction of effectiveness. We also plan to
investigate ways in which the simulations can be used as
advanced oracles. Finally, we will be looking into ways in
which the fault-based analysis method can be used to
determine relationships between regions of the input space
and effectiveness, leading to new kinds of adequacy criteria
for testing distributed systems.
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