
Scalable Routing for
Tag-Based Information-Centric Networking

Michele Papalini, Antonio Carzaniga, Koorosh Khazaei
University of Lugano
Lugano, Switzerland

Alexander L. Wolf
Imperial College London
London, United Kingdom

ABSTRACT
Routing in information-centric networking remains an open
problem. The main issue is scalability. Traditional IP
routing can be used with name prefixes, but it is believed
that the number of prefixes will grow too large. A related
problem is the use of per-packet in-network state (to cut
loops and return data to consumers). We develop a routing
scheme that solves these problems. The service model of
our information-centric network supports information pull
and push using tag sets as information descriptors. Within
this service model, we propose a routing scheme that sup-
ports forwarding along multiple loop-free paths, aggregates
addresses for scalability, does not require per-packet network
state, and leads to near-optimal paths on average. We eval-
uate the scalability of our routing scheme, both in terms of
memory and computational complexity, on the full Internet
AS-level topology and on the internal networks of represen-
tative ASes using realistic distributions of content and users
extrapolated from traces of popular applications. For ex-
ample, a population of 500 million users requires a routing
information base of 3.8GB with an almost flat growth and,
in this case, a routing update (one content descriptor) can
be processed in 2ms on commodity hardware. We conclude
that information-centric networking is feasible, even with (or
perhaps thanks to) addresses consisting of expressive content
descriptors.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols

Keywords
ICN, push/pull, tag-based routing, multi-tree routing

1. INTRODUCTION
A fundamental problem remains open in information-

centric networking: there is yet no demonstrably scalable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICN’14, September 24–26, 2014, Paris, France.
ACM 978-1-4503-3206-4/14/09.
http://dx.doi.org/10.1145/2660129.2660155.

scheme that supports true routing, that is, packet switch-
ing with multiple sources and destinations, as opposed to a
per-flow or per-object lookup followed by a traditional host-
based (i.e., location-based) data transfer. In fact, largely be-
cause of this gap, the validity and utility of a content-centric
network layer has been rightly called into question [6].

The primary approach to routing and forwarding in ICN
(as typified by CCN/NDN [10], but also in the earlier work
on TRIAD [7]) is to adapt IP routing to use name prefixes
instead of IP prefixes. While this approach has the great
advantage of reusing much of the current network infras-
tructure, it also has fundamental limitations. First, since
it is based on traditional unicast routing, it cannot reliably
support multiple sources or destinations for the same infor-
mation. A router may list multiple next hops for the same
prefix, but the routing scheme provides no indication of how
to forward consistently across routers so as to follow one
path to a destination (or multiple paths to multiple desti-
nations). Moreover, multiple next hops may lead to loops.
In fact, the main approach is not to avoid loops, but merely
to detect them, tracing each packet throughout the network
with per-packet state, thereby increasing the overall cost of
forwarding. For analogous reasons, unicast routing/forward-
ing cannot directly support “push” ICN communication [4].
Here again, the already vast and growing content space is
believed to pose a fundamental scalability limitation to tra-
ditional routing.

We develop a different approach to routing, one based on
trees in which edges are annotated with content descriptors.
This new routing scheme has the following novel and impor-
tant properties:

• It immediately supports both request/reply (“pull”) and
publish/subscribe (“push”) ICN communication.

• It is compatible with in-network caching, as well as the
full range of existing ICN addressing schemes, from con-
tent identifiers [12] to structured names [10] to tag sets [3].
We choose tag sets, since they are strictly the most expres-
sive form of descriptor and yet admit to an intuitive and
effective aggregation that is fundamentally superior to the
aggregation of, say, name prefixes.

• It provides loop-free paths to multiple destinations, mean-
ing that communication can be dynamically assigned an
arbitrary fan out, from anycast (forward to any one of
many destinations) to m-anycast (any m destinations) to
multicast (all destinations).

17

• It provides extremely compact and efficient locators that
can be used to achieve the throughput of current networks
within the content-centric service interface.

• It does not require the presence of per-packet soft state
within the network, unlike previous designs.

Clearly, a single tree may not use the most direct paths and
would be more vulnerable to congestion and network parti-
tioning. We therefore use multiple trees so as to reduce path
lenghts on average, reduce congestion, and improve reliabil-
ity. We develop a hierarchical multi-tree routing scheme that
allows for the creation of sets of trees with specific proper-
ties at different levels (e.g., shortest-paths trees within an
AS along with policy-specific inter-AS trees).

In principle, however, multiple trees also require larger
routing tables, which leads us back to the fundamental
question of scalability. We address the issue of scalability
through the aggressive aggregation of content descriptors.
Beyond the natural aggregation of tag sets, we develop a
routing table based on PATRICIA tries that aggregate con-
tent descriptors across all trees. We also develop the neces-
sary algorithms to maintain such routing tables incremen-
tally, which is essential in the presence of dynamic, user-
defined addresses.

We evaluate the memory complexity of the routing scheme
and its implementation at the global network scale. We emu-
late the scheme over the full AS-level topology of the current
Internet and within a number of representative ASes. In or-
der to test the scheme under realistic current and potential
future application demands, we extrapolate from traces of
some characteristic content-driven applications [3]. These
extrapolations give us various workloads of content descrip-
tors that correspond to several hundred million users. We
then use such workloads to assess the concrete memory re-
quirements of the scheme on routers at the local (intra-AS)
and global (inter-AS) levels.

Our analysis shows that content descriptors indeed aggre-
gate effectively and, therefore, the routing information base
remains contained in size even with a growing population of
users and, consequently, more and more content descriptors.
For example, for a number of representative applications, a
population of 500 million users using a total of nearly 10
billion content descriptors would require a routing informa-
tion base of 3.8GB, with an almost flat growth for additional
users enabled by effective aggregation. We also show that
this same aggregated routing information can be updated
dynamically at a reasonably high frequency (500 updates
per second) even on inexpensive, commodity PC hardware.

This work is based on a previously published ICN routing
scheme [3], which we extend as follows: we introduce loca-
tors and content identifiers, we detail the scheme over a hier-
archy of domains, and we develop concrete data structures
to represent and aggregate routing information for which
we also develop incremental update and maintenance algo-
rithms. We also conduct an extensive and in-depth analysis
of the scalability of the scheme.

2. NETWORK ARCHITECTURE
We begin by describing the service model, addressing

scheme, and architecture of our information-centric network.
The service model extends our prior ICN design [3, 4] and
is also a significant superset of other, related models [10,
12]. We review the basic model here for clarity and com-

pleteness. We also introduce two extensions to the network
architecture not previously described, namely locators and
identifiers.

We propose a network characterized by two types of com-
munication services: a request/reply (“pull”) service and a
publish/subscribe (“push”) service. Both services in essence
transmit information of interest from producers to con-
sumers, and both use content descriptors (detailed below)
to identify what information is offered by which producer
and what information is of interest to which consumer.

The request/reply service consists of three primitive net-
work functions:

Offer: A producer registers one or more descriptors that
identify the data that the producer are willing and
able to provide.

Request: A consumer requests data by issuing a request
packet carrying a content descriptor or a content lo-
cator (detailed below). The network then delivers the
request packet to one or more producers that are will-
ing and able to satisfy the consumer’s request.

Reply: A producer (or a caching router) responds to a re-
quest packet by returning a reply packet carrying the
requested data.

The publish/subscribe service consists of two primitives:

Subscription: A consumer registers one or more descrip-
tors that specify the data that the consumer wishes to
receive.

Notification: A producer publishes a data packet carrying
a descriptor that identifies the data.

Both request/reply and publish/subscribe services define
and use routing information consisting of content descrip-
tors. In request/reply, producers define routing informa-
tion that attracts request packets towards them, while in
publish/subscribe it is consumers that define routing infor-
mation to attract notifications. Thus, routing for the two
services differ only in the sources of routing information, but
is otherwise conceptually identical. We therefore propose a
network interface with a single register function to define
routing information.

The semantics of descriptors is also identical for requests
and notifications, which means that the matching algorithm
used for forwarding requests and notifications is the same.
However, the treatment of the two packets differ in other
ways. A request is ideally an anycast packet, while notifica-
tions are multicast. Also, a request is expected to generate
a corresponding reply, while a notification is a one-way mes-
sage. Furthermore, the caching semantics are different. A
request that can be satisfied by cached content will not be
forwarded downstream toward the original producer, while
a notification must be forwarded all the way to interested
consumers (although notifications might also be cached for
reliability purposes). Figure 1 summarizes the network ar-
chitecture we propose.

The network also defines opaque host locators. Locators
are attached to requests so that the corresponding replies
can be forwarded back to the requesting application. In
addition to replies, we propose to use locators to forward re-
quests. In particular, a data reply can also carry the locator

18

network

register(predicate)

〈notification:
descriptor ,
data〉

〈request:
descriptor 〉〈reply: descriptor , data〉

FIBs

a set of descriptors
offers + subscriptions

O1, O2, O3, . . .
S1, S2, S3, . . .

〈any packet . . .〉
〈any packet: locator , . . .〉

source locator

Figure 1: High-Level Network Architecture

of the producer so that the consumer can address follow-
up requests (e.g., for the next data blocks) directly to that
producer. Locators may be implemented with stable uni-
cast addresses (e.g., IP addresses) or they may be based on
transient state (e.g., a nonce that identifies a trail of pend-
ing interests in CCN). In Section 3.2 we detail an extremely
efficient form of locators usable within our routing scheme.

2.1 Content Descriptors
Descriptors play a central role analogous to IP prefixes.

The semantics of descriptors define the semantics of the net-
work service, and in particular they define how data replies
match requests, how offers match requests (and, therefore,
how offers describe the data available from a producer), and
how notifications match subscriptions. As discussed so far,
descriptors are abstract and generic. Indeed, much of what
we propose is conceptually independent of their specific form
and semantics. However, in order to develop a concrete ser-
vice and a corresponding concrete routing scheme, we must
define descriptors. For this purpose we adopt “tags”.

A descriptor consists of a set of string tags, with the
matching relations corresponding to the subset relations be-
tween sets of tags: a descriptor R in a request would match
a descriptor O in an offer when the request contains all the
tags of the offer (R ⊇ O). Consistently, a descriptor N in
a notification would match a descriptor S in a subscription
when the notification contains all the tags of the subscrip-
tion (N ⊇ S). For example, an offer for {icn14 , paper}
would match a request {paper , routing , icn14} or a request
{icn14 , paper , pdf ,n32}.

Notice, however, that tag sets are strictly more expressive
than name prefixes. A name prefix can be represented as a
single tag set. For example, /org/gnu/software/ can be writ-
ten as tag set {1:org, 2:gnu, 3:software}, and would match
descriptor {1:org, 2:gnu, 3:software, 4:emacs}. Conversely,
the semantics of a tag set would require exponentially many
prefixes (all permutations) to express the same descriptor.

Tag sets aggregate analogously to prefixes. In particular,
a descriptor X subsumes all other descriptors Y that con-
tain X. For example, any descriptor matching {music, jazz}
would also match its subset {music}, so a router might
combine the two by storing only the more general tag set
{music}. We discuss more about aggregation in Section 3.5.

Tag sets differ from IP prefixes in a crucial way. While
IP prefixes are assigned by network designers and admin-
istrators, descriptors are assigned by applications. This
is also true of other forms of addressing in ICN, includ-
ing names in a hierarchical name space or flat identifiers.
In fact, application-defined addressing is arguably the most
important defining property of ICN. Allowing applications
to define network addresses empowers applications but at
the same time leaves the network and applications them-
selves vulnerable to conflicts and also abuses in the use of
the address space. With tag sets, as for name prefixes, this
problem can be greatly reduced through conventions, for ex-
ample by defining reserved tags and mandatory scoping tags
equivalent to host names in URLs.

2.1.1 Content Identifiers
A content descriptor (a tag set) may contain a unique

identifier, such as a cryptographic hash of the content, or
an object identifier plus a version number and a block num-
ber. In this way, a descriptor can identify a data block
uniquely. More generally, tag sets can encode meta-data and
higher-level protocol information. However, we believe that
information that has a specific function at the network or
transport level should be represented with specific headers.
In particular, at the network level we propose to use cache-
control headers, as well as a content identifier to refer to a
specific data block. The form of such identifiers is defined
at higher levels, for example to allow a transport protocol
to refer to the next sequence of blocks within a stream.

This separation between descriptors, identifiers, and other
headers is consistent with the design of a protocol such as
HTTP, where the URI does not identify a piece of immutable
content, but other headers can be used for that purpose (e.g.,
ETags, Modified-Since) and yet other headers can specify
additional properties of requests and replies, such as cache
controls. This design also allows us to represent descriptors
using a compressed, fixed-width header that hides individual
tags. We describe this compressed representation next.

2.1.2 Representation of Tag Sets
Conceptually, a descriptor is a set of tags. Concretely,

we represent descriptors as Bloom filters, and we develop
our routing scheme around this representation. So, packets
and routing messages carry Bloom filters, and the aggre-
gation of routing information applies equivalently to them.
Matching two descriptors amounts to checking the inclusion
relation (bitwise) between two Bloom filters, while match-
ing a descriptor against a predicate (i.e., a set of descriptors)
amounts to finding one or more Bloom filters in the predi-
cate that are subsets (bitwise) of the input Bloom filter.

In order to choose good Bloom filter parameters, which
must be global properties of the routing scheme, we conser-
vatively estimate here that tag sets would most likely con-
tain no more than 15 tags. We therefore use Bloom filters
with k = 7 hash functions and m = 192 bits, which ensures
that a subset test S1 ⊆ S2 would be accurate up to a false-
positive probability of (1− e−k|S2|/m)k|S1\S2|. For example,
for a descriptor of |S2| = 10 tags, a test S1 ⊆ S2 with an-
other descriptor S1 that differs by |S1 \ S2| = 3 tags would
evaluate to true (a false positive, since |S1 \ S2| > 0) with
probability 10−11. Of course, these are network configura-
tion parameters that can be set as appropriate.

19

3. ROUTING SCHEME
We introduce a routing scheme based on multiple trees. At

the core of the scheme is content-based routing on a spanning
tree. We enhance this basic scheme with locators and with
multiple trees within routing domains and over a hierarchy
of domains (intra/inter-AS).

3.1 ICN Routing on One Tree
Consider a network spanned by a tree T . For now consider

a router-level network. T is identified within each notifica-
tion and request packet so that each router v can determine
the set adjTv of its neighbors that are also adjacent to v in
T . This can be done by adding an identifier for T in the
packet and storing the adjacency set adjTv at each router v.

The forwarding information base (FIB) of router v as-
sociates each neighbor w in adjTv with the union PT,w of
the predicates registered by all the hosts reachable through
neighbor w on T , including w. Figure 2 shows an example.

a b c

d e f g h

i j k

router b:
(FIB)

tree T ,next-hop w → predicate PT,w

T1, c 7→ pc ∨ pg ∨ ph
T1, f 7→ pf ∨ pj ∨ pk
T1, e 7→ pa ∨ pd ∨ pe ∨ pi
T2, c 7→ pc ∨ ph
T2, e 7→ pa ∨ pd ∨ pe ∨ pf ∨ pg ∨ pi ∨ pj ∨ pk

trees

T1

T2

Figure 2: Multi-Tree Routing Scheme

With a FIB representing PT,w for all neighbor routers w
in adjTv , forwarding proceeds as follows: Router v forwards
a packet (notification or request) with descriptor X received
from neighbor u on tree T to all neighbors w 6= u in adjTv
whose associated predicate PT,w matches X. We say that a
predicate P matches a descriptor X if one of the descriptors
in P matches X.

Since we use trees, we can control the global fan-out of a
packet with local decisions. A packet starts with its global
fan-out limit k set by the sender. A limit of k = 1, which is
the default for requests, corresponds to an anycast delivery
(the network delivers one copy of the packet), while a limit
k =∞, which is the default for notifications, corresponds to
a multicast forwarding (the network delivers as many copies
as there are interested receivers). A limit 1 < k < ∞ can
be also used and requires only minimal additional local pro-
cessing: the router selects at most k matching neighbors and
then partitions the fan-out limit over the selected neighbors.

3.2 Unicast Routing on Trees
We combine a locator-based unicast routing service with

descriptor-based routing. To realize tree routing, we adapt
a theoretical scheme for trees developed by Thorup and

Zwick [19]. Within a tree, each router is assigned a short
label, which we refer to as a TZ-label, such that given the
TZ-label of the destination plus its own TZ-label, a router
can compute the next-hop towards the destination.

This scheme is extremely efficient both in space and time.
In terms of space, a router needs to store its own TZ-label,
which is at most (1 + o(1)) log2 n-bit long for a network of
n nodes. In practice, we found that 46-bits are sufficient to
cover the Internet at the AS-level. Thus, a router spends
46 bits for each tree. In terms of time, a forwarding deci-
sion requires a few basic operations on two TZ-labels, corre-
sponding to an average of 10 CPU cycles and a throughput
of 250M packets per second on a general-purpose, commod-
ity CPU.1

The scheme can also be built efficiently. A tree can be
labeled with a two-step distributed algorithm. In the first
step, which could be combined with the construction of the
tree, a converge-cast algorithm calculates the size of descen-
dants of each node on the tree, while the second step consists
of a depth-first-search numbering of nodes on the tree.

3.3 Locators and the Request/Reply Service
As discussed in Section 2, the network forwards packets

using either an explicit destination locator or a content de-
scriptor if no locator is given. Locators are network-defined
quantities that may or may not have permanent validity (like
IP addresses).

In our routing scheme we use TZ-labels to implement node
locators. A node locator consists of a tree identifier plus the
TZ-label of the destination on that tree. We now sketch
a simple request/reply protocol that combines locators and
descriptors, and that can be the basis for a full transport
protocol for ICN.

The general idea is to use descriptors to find an object—
that is, to forward a request towards a producer capable of
satisfying the request—and then to use the more efficient
locators to return the data block back to the consumer and
also to request other data blocks from the same producer.
To implement this idea, a request packet must carry the
locator S of the source application (the consumer). When a
request reaches a producer capable of satisfying the request
or a router with a valid cached copy of the data, the producer
or caching router sends back a data reply with destination
locator S, which the network forwards back to the requesting
application.

The advantage of locators within our scheme is that re-
quests, unlike interest packets in CCN [10] which create a
trail of pending interests, do not require any per-packet in-
network state. Without per-router pending-interests tables,
our scheme does not support the aggregation of simultane-
ous identical requests. However, identical requests that are
not exactly simultaneous can still be effectively aggregated
by caching data along the forwarding path.

A data reply may also specify one or more locators of
the producer as its origin, as well as the identifiers of one
or more follow-up data blocks. Specifically for our scheme,
the multiple locators can be obtained using multiple trees,
an approach that we detail below. A consumer receiving a
data reply with an origin locator may then use that locator
to send follow-up requests directly towards the same origin.

1These results are highlights of an extensive experimental
evaluation, not reported here, of all-pairs traffic forwarded
using TZ-labels on multiple trees at the AS level.

20

This, in particular, can substantially reduce the overhead of
transferring large files.

Locators built on TZ-labels are relatively stable, since
they change only when trees are rebuilt, for example in re-
sponse to a topology change. Still, locators may also change
within a flow if producers or consumers move within the
network. A transport protocol that intends to support such
mobility must correctly switch locators as applications move.

Lastly, a limitation of TZ-labels is that they may re-
veal the identity of consumers. If anonymity is required,
then locators should be based on an appropriate anonymity-
preserving routing scheme, such as onion routing [8].

3.4 Using Multiple Trees
Routing on a tree has two disadvantages. First, paths

might be “stretched”, meaning the distance between two
nodes on the tree might be longer than on the full graph.
Second, traffic would flow only on the tree, reducing the
overall network throughput. It is well known that these
problems can be alleviated by using multiple trees, and
therefore we extend our routing scheme to use multiple trees.
A notification or request is committed to, and thereafter
routed using, one of those trees. Therefore, the forwarding
process is identical to that over a single tree for an individual
request or notification, but traffic is more evenly distributed
and path lengths shortened on average. However, two as-
pects of the multiple-tree scheme are non-trivial: how to
build and then select trees, and then how to combine mul-
tiple trees at different levels in hierarchical routing.

3.4.1 Building and Selecting Trees
The key to increasing throughput and reducing path

lengths is in the choice of trees: first, the routing process
must produce a good set of trees; second, when a request
or a notification enters a routing domain, the access router
must assign the request or notification to a tree in that do-
main. The choice of trees, the way they are built and then
assigned by routers, could also be used to implement various
routing strategies and policies.

The problem of covering a network with trees so as to
achieve specific design objectives has been studied exten-
sively from a theoretical perspective. For example, Räcke
formulated a method to cover a network with trees to achieve
the theoretically minimal congestion under unknown traf-
fic [16]. However, such results are not applicable in practice,
primarily because they can require an extremely high num-
ber of trees.

Our approach to building and selecting trees is therefore
based on heuristics. To date we have studied two such
heuristics for global trees, which are arguably the most cru-
cial, and one for local trees.

H1: Latency Only (L): We choose a small number of
root ASes and then build a shortest-paths (Dijkstra) tree
for each root AS. This heuristic is intended to favor latency
over any other routing objective. For the purpose of the
analysis presented in this paper, we use a uniform-random
choice over all ASes, which should give more conservative
results. In practice, root ASes can be chosen in a number of
ways using a distributed leader-election algorithm, perhaps
favoring higher-tier ASes. Another and perhaps better way
to select root ASes is to do it off line through a global ad-
ministrative body, similar to the way top-level DNS servers
and structures are configured today.

H2: Latency and Congestion (LC): We start with a
first shortest-paths tree rooted at the AS with the lowest
eccentricity representing the center of the network. We then
increase the cost of each link used by the tree, and proceed
iteratively to find another tree. The weight increase is by a
fixed amount and, therefore, linear in the number of trees.
At each iteration we select a new shortest-paths tree rooted
at the AS with the lowest eccentricity. The new tree is com-
puted with the current adjusted link weights and, therefore,
it is likely to differ from all previous trees. These trees can
be constructed using a slightly modified version of the fast
distributed algorithm of Almeida et al. [2], which computes
the eccentricity of node v in diameter(G)+ecc(v)+2 rounds.

At the global level, trees are heavy in terms of memory
because they store the aggregated predicates of the whole
network. Therefore, we compute a relatively small number
of global trees. Furthermore, we use shortest-paths trees
that can be computed efficiently in a completely decentral-
ized manner. Conversely, at the local level, trees are lighter
and can be efficiently computed in a centralized manner.
Since latency is crucial at the local level, the heuristic we
use for local trees is also based on shortest-paths trees.

H3: Minimal Latency: We build shortest-paths trees
rooted at every router within an AS.

To assign trees dynamically, routers select trees uniformly
at random at the global level, while at the local level they
always choose their own shortest-paths tree so as to obtain
latency-minimal routes. In Section 4 we evaluate our scheme
under the three heuristics.

3.4.2 Hierarchical Multi-Tree Routing
There can be multiple trees at different levels in the net-

work, leading to a hierarchical routing scheme. We describe
the case of two levels (intra- and inter-AS), although the
scheme generalizes to more levels.

Routes are defined by global trees that span the AS-level
network, and by local trees that span the internal network
of each AS. Conceptually, each tree has a separate FIB, but
concretely we aggregate predicates across trees so as to re-
duce space (Section 3.5). The FIB of a global tree contains
the aggregate predicates of all the ASes. The FIB of a local
tree contains the predicates of each internal host, possibly
aggregated at the subnet level. An interior router needs to
know only the local trees of its AS plus the TZ-labels of at
least one gateway router for each global tree. A gateway
router needs to know the local trees, the global trees, and
the exterior connectivity of all the gateway routers of its
AS, including their TZ-labels on the local trees. With this
information, the network forwards packets either based on
content descriptors or based on locators. We describe these
two algorithms in turn.

Descriptor-Based Forwarding: A packet (request or no-
tification) is first assigned to a local tree by its access router,
and on that tree it is forwarded based on its content descrip-
tor and fan-out limit as explained in Section 3.1. In addition
to that, the packet is assigned to a global tree and sent to
a gateway router that belongs to that tree using the TZ-
label of that gateway on the local tree, which is known by
the access router. On its global tree, a packet reaching a
gateway router (or starting from that gateway) may have to
cross the AS of that gateway to reach other gateways con-
nected to the next-hop neighbor ASes on the global tree.
This again is done on a local tree based on the TZ-labels of

21

those gateways. And if the packet is entering that AS for
the first time, then the local forwarding is performed via the
content descriptor.

Locator-Based Forwarding: In our hierarchical routing
scheme, a locator consists of a stack of node locators, each
one consisting of a pair (T, `) where T is a tree identifier
and ` is the TZ-label of the destination node on T . With
two levels, a destination locator contains the node locator
(TAS , `AS) of the destination AS on an AS-level tree TAS

plus the node locator (Tr, `r) of the destination router r on
an inter-AS tree. Given a destination (TAS , `AS)/(Tr, `r),
forwarding proceeds as follows: If already in the destination
AS, the access router pops the (TAS , `AS) locator from the
locator stack and forwards the packet on tree Tr using TZ-
label `r. Otherwise, the router pushes a locator (T, `g) of a
gateway router of its AS using any intra-AS tree T , and then
forwards the packet accordingly. When a packet reaches
the destination at the top of the stack, the router pops the
locator and proceeds with what is left on the stack. If the
top locator is at the AS level, then the gateway router might
have to cross its AS to reach another gateway, in which case
it would push a locator of that gateway onto the stack.

3.5 RIB Representation and Maintenance
We now describe a concrete implementation of the routing

information base (RIB) for the multi-tree routing scheme.
Conceptually, the RIB of a router v stores the following in-
formation for each tree T :

• adjTv is the adjacency list of T at v, meaning the subset
of v’s neighbors adjacent to v on T .

• `Tv is the TZ-label of router v on T .

• PT
v : w → PT,w is a map that associates each neighbor

w in adjTv with a predicate PT,w, where PT,w consists
of a set of content descriptors (see Section 3.1 and, in
particular, Figure 2).

Our primary goal is to obtain a compact representation of
the RIB that also allows for efficient incremental updates.
adjTv and `Tv require minimal space and standard data struc-
tures, and are also stable with trees. The PT

v map changes
with changing application preferences (content descriptors)
and is also by far the heaviest component of the RIB. We
therefore focus on the implementation of PT

v .
With a naive implementation (depicted in Figure 2), mul-

tiple trees would have completely independent predicate
maps PT

v with only the basic aggregation of descriptors (de-
scribed in Section 2.1). However, trees are likely to share
many descriptors, simply because the descriptors represent
offers or subscriptions that must be reachable from all trees.
This suggests a representation of the predicate maps that
further compresses the routing information across trees.

To exploit this form of aggregation, we develop a data
structure in which routing information is not grouped by in-
terface or tree, but rather by tag set. In practice, the RIB
consists of a dictionary of tag sets, each associated with a set
of tree/interface pairs. We use a PATRICIA trie to index
the Bloom filters representing the tag sets, and we asso-
ciate each tag set with a table of 16-bit entries representing
tree/interface pairs. An example is shown in Figure 3.

PATRICIA tries have the advantage of requiring a mini-
mal amount of memory, while also allowing for simple sub-
set/superset checks implemented as tree walks. These checks

PATRICIA tries indexed by Hamming weight

00010000
0 1

01010000

00100100

0

10

01000001

1

10

10011000

00100101

0

0 1

10000101

1

10

T1 → f
T1 → c
T1 → f

T1 → e
T2 → e

T1 → c
T2 → c

T1 → c
T2 → c

T1 → e

T1 → f

Figure 3: PATRICIA Trie Used for the RIB

are the essential building blocks for the maintenance of
the RIB. The trie allows us to shortcut the search, much
like a prefix search: if we are looking for subsets of an input
filter f , and f contains a zero in a certain position identified
by a node n, then we can skip the whole subtree of filters
under n that contain a one in that position. In addition,
we group filters by Hamming weight (in smaller tries). This
allows us to skip entire tries containing filters that have too
many elements to be subsets (or too few to be supersets) of
the input filter. Since tries are independent of each other,
subset/superset operations on different tries can also pro-
ceed in parallel.

Routing information propagates through update messages
containing multiple descriptors, divided into an addition
delta, a set of filters that we need to add in the RIB, and
a removal delta, a set filters that we need to remove from
the RIB. Figure 4 shows the main maintenance algorithm
for the routing information. The main update function, ap-
ply delta, processes an update message (of type delta) re-
ceived from interface ifx that refers to a given tree.

void apply delta (map<int,delta> & result,
delta update, int ifx, int tree) {

for (filter f : update.removals)
remove filter(result, f, ifx, tree);

for (filter f : update.additions)
add filter(result, f, ifx, tree); }

void add filter (map<int,delta> & result,
filter f, int ifx, int tree) {

if (!exists subset of(f, ifx, tree)) {
add(f, ifx, tree);
remove supersets of(f, ifx, tree);
for (int i : interfaces[tree])
if (i != ifx && no subsets on other ifx(f, i, tree))

result[i].additions.add(f); } }

void remove filter (map<int,delta> & result,
filter f, int ifx, int tree) {

if (exists filter(f, ifx, tree)) {
remove(f, ifx, tree);
for (i : interfaces[tree]) {
if (i != ifx && no subsets on other ifx(f, i, tree)) {

result[i].removals.add(f);
result[i].additions.add(supersets of(f, tree)); } } } }

Figure 4: Incremental Update Algorithm

22

1

+{A}

+{A}

+{A}

+{A}
2

{A}
+{A,B}+{A,B}

3

{A} {A,B}

+{A}

+{A}
4

{A}

{A}

{A,B}−{A}

−{A},+{A,B}

5

{A}

{A,B}

Figure 5: A Sequence of Incremental Updates

The update message may cause the router to update its
own routing information base (shown in Figure 5 with tag
sets attached to links) and may also trigger other update
messages for the same tree (dark arrows). Such follow-up
messages are returned in the result map. A tag set f is added
in association with the incoming interface ifx only if f is not
a superset of any existing tag set already associated with ifx.
Also, when f is added, all supersets of f associated with ifx
are removed. The router then propagates the addition of
f to each interface i on the tree (other than ifx) when no
subset of f is associated with any another interface. As an
example, see the first three updates depicted in Figure 5.

Removals are similar to additions, except that removing
a tag set f may also trigger the addition of supersets of
f , as exemplified by the last updates depicted in Figure 5,
where the removal of the tag set {A} triggers the addition
of tag set {A,B}. This maintenance algorithm ensures that
routing tables remain minimal, in the sense that tag sets are
aggregated as much as possible on a per-interface basis.

4. EVALUATION
We now present the results of an extensive experimental

evaluation of our ICN routing scheme. We first assess the
effectiveness of the scheme in routing information over the
Internet using a few trees. We then study the scalability
of the scheme both in terms of the memory requirements
posed on routers, and also in terms of the cost of maintaining
routing information for large numbers of content descriptors.

4.1 Effectiveness with k Trees
Here we consider the topological aspects of routing, and

more specifically we evaluate the ability of our scheme to use
the underlying network effectively. We conduct our analysis
on the Internet AS-level topology, consisting of a graph of
42113 nodes and 118040 edges.2 We use two measures of
cost: stretch and congestion.

Stretch is the factor by which the distance between two
nodes is extended by the routing scheme. Since our scheme
routes each packet on a tree, this is the ratio between the dis-
tance on the tree and the distance on the full graph. Given
a set of k trees, the stretch for the path between two nodes
is the expected stretch; since we choose trees uniformly at
random, it is simply the average stretch.

Congestion is the factor by which the usage of a link would
grow using the routing scheme as compared to an optimal
usage of the full network graph. The optimal usage here
refers to the link usage with a distribution of traffic that
achieves the best possible throughput. In practice, for each
tree T , given a link (u, v) in T , we compute the cut defined
by that link on T , meaning the partition of the nodes that

2http://irl.cs.ucla.edu/topology/ (retrieved 29/06/2012)

are on the two sides of the link on T . We then compute
the number of links that cross the cut on the original graph,
which is the total capacity of the network over that cut.
Thus, we assume that, for the portion of traffic routed on T
(1/k of the total traffic for k trees), the link (u, v) would need
to carry the traffic that could instead go over all the links
that cross the cut. So, for a cut of size sT,u,v on a tree T out
of k trees, link (u, v) is given a congestion of sT,u,v/k, and
the total congestion of that link is the sum of its congestion
for all the k trees. Notice that this congestion factor is a
very conservative measure, since it uses the globally optimal
allocation of flow for all network cuts as a baseline.

 1

 3

 5

 7

 9

 11

2 4 8 16 32

St
re

tc
h

Number of Trees

min,1%,50%,99%,max L
LC

Figure 6: Path Stretch

In Figure 6 we show the expected stretch for various sets
of global (AS-level) trees. We generate sets of 2, 4, 8, 16,
and 32 trees using the heuristics H1 and H2 discussed in Sec-
tion 3.4.1. The label L in the plots refers to the latency-only
heuristic, H1, while LC refers to the latency-and-congestion
heuristic, H2. Each box plot in the chart shows the min-
imum, the 1-percentile, the median, the 99-percentile, and
the maximum. The plot shows that the maximum expected
stretch decreases with more trees, while more trees lead to
a minor increase of the median (expected) stretch. Despite
the growth, we can see that the stretch is low: the median
always remains under 2 and the 99-percentile under 3. There
is also a clear difference between the two heuristics: heuristic
L achieves better results than LC.

Our experimental analysis is consistent with another
study on the approximability of the AS-level topology with
trees. Krioukov et al. [13] studied two compact routing
schemes that have a theoretical expected stretch of 3 [5,
19], and found that in practice, on the AS-level topology,
their average stretch is instead close to 1. However, the two
schemes require O(n1/2log1/2n) and O(n2/3log4/3n) trees,
respectively. Our scheme also achieves an average stretch
very close to 1, but under significantly smaller sets of trees.

Figure 7 shows the congestion for the same set of trees
of Figure 6. This plot shows the 1-percentile, 5-percentile,
median, 95-percentile, and 99-percentile of the distribution.

23

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 32

C
on

ge
st

io
n

Number of Trees

1%,5%,50%,95%,99% L
LC

Figure 7: Link Congestion

The salient result is that most links experience no congestion
penalty at all, experiencing a congestion factor of 1, and
further that extreme levels of congestion are reduced when
using more trees. As expected, the congestion factors for the
L heuristic are higher as compared with the LC heuristic.

The analysis of stretch and congestion shows that differ-
ent tree-building strategies may be used to achieve different
design goals. More importantly, the general conclusion we
can draw from this analysis is that even small sets of trees
can cover the Internet at the AS-level topology quite well,
with only minimal cost in terms of path-length stretch and
link congestion.

4.2 Scalability: Memory and Maintenance
We now evaluate the memory requirements of our ICN

routing scheme. For this assessment we develop a synthetic
workload corresponding to the plausible behavior of users of
different applications over a global-scale information-centric
network [3]. We first analyze real traces from four classes of
applications: active Web content and blog posts (“push”);
video (“pull”); short messages and micro-blogging (“push”);
and large BitTorrent downloads (“pull”). We then synthet-
ically expand the resulting workload to 25 other languages
that have a meaningful influence on Internet traffic, while
preserving the semantic correlation between tags. The full
description of these workloads, the methods used to normal-
ize and expand them, and the way we associate users with
different applications is detailed in a technical report [15].

4.2.1 Memory Requirements for Inter-AS RIBs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
(G

B
)

 L
 LC

Figure 8: Sizes of Inter-AS RIBs

In Figure 8 we show the memory used by the RIBs of the
gateway routers of different ASes. This analysis is based on
simulations of the routing scheme with 8 trees and under

a workload generated for 50 million users. However, since
the exact connectivity between the ASes at the level of their
gateway routers is not publicly available, we cannot deter-
mine how many trees would actually need to be known by
each gateway. We therefore simulate all the possible cases
and derive the distribution of the memory requirement for
every case. The plot shows the minimum, the average, and
the maximum amount of memory that would be needed to
store the routing information for between 1 and 8 trees. We
show the data for the two sets of heuristically derived trees
labeled L and LC, as above. The variation is due to the
different degree and location of the ASes on different trees.
Usually an AS with many neighbors experiences less com-
pression. Notice, however, that the absolute values are rel-
atively low: the most demanding case, which is Level3 with
the L heuristic, is less then 3.6GB of memory. Furthermore,
the memory required by 8 trees (maximum value), is always
less than twice the memory required by a single tree (mini-
mum value). This means that under our scheme, descriptors
aggregate well across trees.

4.2.2 Memory Requirements for Intra-AS RIBs
For each AS we also analyze the memory requirements

at the intra-AS level. We use the internal AS topologies
available from the Rocketfuel project [18]. The data are
presented in Figure 9. The N and E labels in the graph

 0

 1

 2

 3

 4

 5

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
(G

B
)

N:355
E:700

 N:547
E:1600

N:1018
E:2300

N:276
E:400

 N:624
E:5300

 N:733
E:2300

Figure 9: Sizes of Intra-AS RIBs

represent the number of nodes and edges in each AS, re-
spectively. We plot the minimum, average, and maximum
sizes of the RIBs used to store local trees. Recall that for the
local (intra-AS) trees we store all the shortest-paths rooted
at every node (heuristic H3). The number of users inside
each AS depends on the distribution of the 50 million users
over the AS-level topology. Considering the largest results,
namely Level3 and AT&T, we can see that even using a
large number of trees (since both have hundreds of routers)
we still obtain good levels of aggregation and good results
in absolute terms, with a maximum memory requirement of
less than 4GB.

4.2.3 Scalability Analysis
The results discussed so far are limited to a relatively low

number of users compared to the current population of Inter-
net users. In order to better demonstrate the scalability of
our routing scheme, we focus on a particular tier 1 AS (3257)
and on a shortest-paths tree derived using heuristic H1 to
study the memory requirement under a workload of almost
10 billion content descriptors corresponding to 500 million
users. Figure 10 shows the memory required for a gateway

24

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
M

em
or

y
(G

B
)

Users (Millions)

Figure 10: RIB Scalability

router for increasingly larger user populations. We can see
that the growth of the memory requirement is relatively high
initially, but steadily flattens, reaching 3.8GB for 500 million
users. This is due directly to the aggregation of tags under
our scheme: even with high numbers of users, the memory
required to store all the routing information is likely to re-
main practically constant, since most of the new descriptors
will be aggregated at no additional cost.

4.2.4 RIB Incremental Updates

 0

 50

 100

 150

 200

 250

 100 200 300 400 500

U
pd

at
e

T
im

e
(m

s)

Users (Millions)

20 filters
40 filters
60 filters

Figure 11: Scalability of the Maintenance Times

In Figure 11 we show the time needed to update the RIB
using the algorithm described in Section 3.5. In this analy-
sis we start from the RIBs computed for the experiment of
Figure 10 and then apply updates of 20, 40, and 60 Bloom
filters. The plot shows mean and standard deviation of the
update time computed over 1000 updates. (The data points
on the three lines are for the same values of the x-axis, but
for purposes of readability have been slightly shifted to avoid
obscuring each other.) The update time does not increase
significantly with the size of the RIBs and is almost constant
for each Bloom filter: 2.04ms on average. Our algorithm can
handle 500 updates per second on large RIBs, even when run
on a commodity PC (Intel Xeon with two quad core 2.53GHz
CPUs and 16GB of RAM).

5. RELATED WORK
Although routing is one of the crucial aspects for the de-

velopment of the notion of an information centric network,
there is surprisingly little work on this topic. The NDN
project proposes NLSR [9], a link-state routing protocol
for NDN. NLSR is a traditional link-state protocol that uses
NDN itself to transport routing information. NLSR realizes

only a traditional unicast routing scheme that can support
multiple paths with multiple runs of the Dijkstra algorithm.

Another interesting work is presented by Papadopou-
los et al. [14] who developed two greedy forwarding algo-
rithms in a hyperbolic space. This approach seems promis-
ing for routing in ICN and particularly with NDN naming.
However, in order to work well in practice, the name space
must be hyperbolic, and right now there is no evidence that
that is the case. Another problem with this scheme is the
relation between the name space and the network topology,
meaning how names are distributed over the network. In
fact, if names do not follow the same distribution (within the
hyperbolic space) then paths can be stretched significantly.
Finally, it is not clear how to compute the hyperbolic coor-
dinates of routers and content using only local information.

A number of ICN proposals do not implement a routing
scheme based on content names or identifiers, but instead
map names or identifiers to network-level addresses. The
PURSUIT project3 uses flat names to identify each object
together with a topology/resolution service to obtain a form
of network-level unicast or multicast address used for the ac-
tual packet switching [11]. DONA [12] also uses flat names
and uses a network of special “resolution handlers” to lo-
cate the content at the IP network level. NetInf4 provides a
name resolution scheme in combination with a name-based
routing scheme similar to CCN/NDN. However, this name-
based routing remains localized, so that global reachability
is only supported through the name resolution scheme [1].

6. CONCLUSION AND FUTURE WORK
We have examined the fundamental problem of routing in

an information-centric network, and the essential question
of the scalability of routing state. We presented and evalu-
ated a concrete scheme based on trees that supports a rich
service model, including “push” communication and expres-
sive content descriptors consisting of tag sets. Our evalua-
tion confirms two intuitions: first, that the Internet can be
approximated effectively with trees and, second, that tag-
based content descriptors, which are more expressive than
name prefixes, aggregate well under our scheme.

A crucial open question regarding routing is whether a
multi-tree scheme, and in particular one that uses a few trees
at the global level, can effectively support routing policies.
We plan to explore this question by developing heuristic al-
gorithms to build sets of trees that satisfy a given set of
routing policies.

Another crucial problem that we only touched upon is
tag-based forwarding. We reduce the overall complexity
of forwarding with efficient locators. However, we are also
working on highly parallel forwarding algorithms that com-
bine hardware and software solutions to support high-speed
forwarding with tables of hundreds of millions of tag sets.
Related to the problem of forwarding, we plan to extend
our evaluation, to cover forwarding but also to complement
the workloads we used to evaluate the routing scheme. The
workloads we used consist of content descriptors, extrapo-
lated from traces of existing applications, that feed into the
FIBs and RIBs. We will also consider other representative
workloads, also extrapolated from real application traces,
that are specifically intended to generate network traffic [17].

3http://www.fp7-pursuit.eu/
4http://www.sail-project.eu/

25

Acknowledgments
The work of M. Papalini was supported in part by the Swiss
National Science Foundation under grant 200021-132565.
The work of A.L. Wolf was partially sponsored by the
U.S. Army Research Laboratory and the U.K. Ministry of
Defence and was accomplished under Agreement Number
W911NF-06-3-0001, and by the European Commission un-
der grant number 318521 (Project HARNESS).

7. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher,

and B. Ohlman. A survey of information-centric
networking. IEEE Communications Magazine,
50(7):26–36, 2012.

[2] P. S. Almeida, C. Baquero, and A. Cunha. Fast
distributed computation of distances in networks. In
51st IEEE Annual Conference on Decision and
Control, Dec. 2012.

[3] A. Carzaniga, K. Khazaei, M. Papalini, and A. L.
Wolf. Is information-centric multi-tree routing
feasible? In Proceedings of the 3rd ACM SIGCOMM
Workshop on Information-Centric Networking, Aug.
2013.

[4] A. Carzaniga, M. Papalini, and A. L. Wolf.
Content-based publish/subscribe networking and
information-centric networking. In Proceedings of the
ACM SIGCOMM Workshop on Information-Centric
Networking, Aug. 2011.

[5] L. J. Cowen. Compact routing with minimum stretch.
In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Jan. 1999.

[6] A. Ghodsi, S. Shenker, T. Koponen, A. Singla,
B. Raghavan, and J. Wilcox. Information-centric
networking: Seeing the forest for the trees. In
Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, Nov. 2011.

[7] M. Gitter and D. R. Cheriton. An architecture for
content routing support in the Internet. In 3rd
USENIX Symposium on Internet Technologies and
Systems, Mar. 2001.

[8] D. Goldschlag, M. Reed, and P. Syverson. Onion
routing. Communications of the ACM, 42(2):39–41,
Feb. 1999.

[9] A. K. M. M. Hoque, S. O. Amin, A. Alyyan,
B. Zhang, L. Zhang, and L. Wang. NLSR:
Named-data link state routing protocol. In Proceedings
of the 3rd ACM SIGCOMM Workshop on
Information-centric Networking, Aug. 2013.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and
Technologies, Dec. 2009.

[11] P. Jokela, A. Zahemszky, C. Esteve Rothenberg,
S. Arianfar, and P. Nikander. LIPSIN: Line speed
publish/subscribe inter-networking. In Proceedings of
the ACM SIGCOMM Conference on Data
Communication, Aug. 2009.

[12] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. SIGCOMM

Computer Communications Review, 37(4):181–192,
Aug. 2007.

[13] D. Krioukov, K. C. Claffy, K. Fall, and A. Brady. On
compact routing for the Internet. SIGCOMM
Computing Communications Review, 37(3):41–52, July
2007.

[14] F. Papadopoulos, D. Krioukov, M. Boguñá, and
A. Vahdat. Greedy forwarding in dynamic scale-free
networks embedded in hyperbolic metric spaces. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), Mar. 2010.

[15] M. Papalini, K. Khazaei, A. Carzaniga, and A. L.
Wolf. Scalable routing for tag-based
information-centric networking. Technical Report
2014/01, University of Lugano, Feb. 2014.

[16] H. Räcke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proceedings of
the 40th Annual ACM Symposium on Theory of
Computing, May 2008.

[17] W. So, A. Narayanan, and D. Oran. Named data
networking on a router: Fast and dos-resistant
forwarding with hash tables. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, Oct. 2013.

[18] N. Spring, R. Mahajan, D. Wetherall, and
T. Anderson. Measuring ISP topologies with
Rocketfuel. IEEE/ACM Transactions on Networking,
12(1), Feb. 2004.

[19] M. Thorup and U. Zwick. Compact routing schemes.
In Proceedigns of the 13th Annual ACM Symposium
on Parallel Algorithms and Architectures, July 2001.

26

