
TagNet: A Scalable Tag-Based
Information-Centric Network

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Michele Papalini

under the supervision of

Antonio Carzaniga

October 2015





Dissertation Committee

Fernando Pedone Università della Svizzera Italiana, Switzerland
Robert Soulé Università della Svizzera Italiana, Switzerland
Christian Tschudin University of Basel, Switzerland
Peter Pietzuch Imperial College London, UK

Dissertation accepted on 23 October 2015

Research Advisor PhD Program Director

Antonio Carzaniga Walter Binder, Michael Bronstein

i



I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Michele Papalini
Lugano, 23 October 2015

ii



To my family

iii



iv



Abstract

The Internet has changed dramatically since the time it was created. What was
originally a system to connect relatively few remote users to mainframe com-
puters, has now become a global network of billions of diverse devices, serving
a large user population, more and more characterized by wireless communica-
tion, user mobility, and large-scale, content-rich, multi-user applications that are
stretching the basic end-to-end, point-to-point design of TCP/IP.

In recent years, researchers have introduced the concept of Information Cen-
tric Networking (ICN). The ambition of ICN is to redesign the Internet with a
new service model more suitable to today’s applications and users. The main
idea of ICN is to address information rather than hosts. This means that a user
could access information directly, at the network level, without having to first
find out which host to contact to obtain that information.

The ICN architectures proposed so far are based on a “pull” communication
service. This is because today’s Internet carries primarily video traffic that is
easy to serve through pull communication primitives. Another common design
choice in ICN is to name content, typically with hierarchical names similar to file
names or URLs. This choice is once again rooted in the use of URLs to access
Web content. However, names offer only a limited expressiveness and may or
may not aggregate well at a global scale.

In this thesis we present a new ICN architecture called TagNet. TagNet in-
tends to offer a richer communication model and a new addressing scheme that
is at the same time more expressive than hierarchical names from the viewpoint
of applications, and more effective from the viewpoint of the network for the
purpose of routing and forwarding.

For the service model, TagNet extends the mainstream “pull” ICN with an ef-
ficient “push” network-level primitive. Such push service is important for many
applications such as social media, news feeds, and Internet of Things. Push com-
munication could be implemented on top of a pull primitive, but all such imple-
mentations would suffer for high traffic overhead and/or poor performance.

As for the addressing scheme, TagNet defines and uses different types of ad-

v



vi

dresses for different purposes. Thus TagNet allows applications to describe in-
formation by means of sets of tags. Such tag-based descriptors are true content-
based addresses, in the sense that they characterize the multi-dimensional na-
ture of information without forcing a partitioning of the information space as
is done with hierarchical names. Furthermore, descriptors are completely user-
defined, and therefore give more flexibility and expressive power to users and
applications, and they also aggregate by subset.

By their nature, descriptors have no relation to the network topology and
are not intended to identify content univocally. Therefore, TagNet complements
descriptors with locators and identifiers. Locators are network-defined addresses
that can be used to forward packets between known nodes (as in the current
IP network); content identifiers are unique identifiers for particular blocks of
content, and therefore can be used for authentication and caching.

In this thesis we propose a complete protocol stack for TagNet covering the
routing scheme, forwarding algorithm, and congestion control at the transport
level. We then evaluate the whole protocol stack showing that (1) the use of
both push and pull services at the network level reduces network traffic signifi-
cantly; (2) the tree-based routing scheme we propose scales well, with routing
tables that can store billions of descriptors in a few gigabytes thanks to descrip-
tor aggregation; (3) the forwarding engine with specialized matching algorithms
for descriptors and locators achieves wire-speed forwarding rates; and (4) the
congestion control is able to effectively and fairly allocate all the bandwidth
available in the network while minimizing the download time of an object and
avoiding congestion.



Contents

Contents vi

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 From Host-Centric to Information-Centric Networking . . . . . . . 2
1.2 Background: ICN History and Architectures . . . . . . . . . . . . . . 5

1.2.1 Content-Centric Networking Architecture . . . . . . . . . . . 6
1.3 ICN Issues and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Contribution and Structure of the Thesis . . . . . . . . . . . . . . . . 12

2 TagNet: a New ICN Architecture 15
2.1 Communication Primitives: Push vs Pull . . . . . . . . . . . . . . . . 15

2.1.1 Publish/Subscribe Event Notification: Applications . . . . . 16
2.1.2 Do We Really Need a Push Primitive? . . . . . . . . . . . . . 19
2.1.3 Native Push and Pull Communication API . . . . . . . . . . 22

2.2 TagNet Naming Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 NDN Naming Scheme . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 CCN Naming Scheme . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Multi-Modal Addressing in TagNet . . . . . . . . . . . . . . . 28
2.2.4 Application-Level Addressing: Descriptors . . . . . . . . . . 29
2.2.5 Transport-Level Addressing: Content Identifiers . . . . . . . 34
2.2.6 Network-Level Addressing: Locators . . . . . . . . . . . . . . 34

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Routing Scheme 43
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



viii Contents

3.2 Naming Scheme Implementation . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Descriptors Implementation: Bloom Filters . . . . . . . . . . 46
3.2.2 Locators Implementation: TZ-labels . . . . . . . . . . . . . . 47

3.3 Routing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Why Should We Route On Trees? . . . . . . . . . . . . . . . . 48
3.3.2 Routing on a Single tree . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Request/Reply Service and Communication Flow . . . . . . 54
3.3.4 Using Multiple Trees . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Hierarchical Multi-Tree Routing . . . . . . . . . . . . . . . . . . . . . 58
3.5 Routing Information Based : Representation and Maintenance . . 63

3.5.1 RIB Minimization: Compression Techniques . . . . . . . . . 64
3.5.2 RIB Representation: Data Structure . . . . . . . . . . . . . . 65
3.5.3 RIB Maintenance: Update Algorithm . . . . . . . . . . . . . . 67

3.6 End-Nodes Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.1 Consumer Mobility . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.2 Producer and Subscriber Mobility . . . . . . . . . . . . . . . 71

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7.1 Tag-Based Descriptors Workload . . . . . . . . . . . . . . . . 74
3.7.2 Internet Topology and Trees . . . . . . . . . . . . . . . . . . . 78
3.7.3 Scalability: Memory Requirement and Maintenance . . . . 79

4 Matching and Forwarding Algorithm 83
4.1 Partial Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Content-Based Matching Algorithm . . . . . . . . . . . . . . . . . . . 86

4.3.1 Find All Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Find Largest Subset . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Matching Algorithms Improvements . . . . . . . . . . . . . . 91

4.4 Data Structure and Implementation . . . . . . . . . . . . . . . . . . . 92
4.4.1 Memory Footprint Reduction . . . . . . . . . . . . . . . . . . 92
4.4.2 Implementation Speedup . . . . . . . . . . . . . . . . . . . . . 97

4.5 Locators Based Matching Algorithm . . . . . . . . . . . . . . . . . . . 99
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Transport and Congestion Control 107
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Receiver-Driven Congestion Control . . . . . . . . . . . . . . . . . . . 110

5.2.1 Trigger Window Decrease . . . . . . . . . . . . . . . . . . . . 111
5.3 Multipath Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



ix Contents

5.4 Forwarding Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Single Path Simulation . . . . . . . . . . . . . . . . . . . . . . 119
5.5.2 Multipath Simulation . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusion and Future Work 125

Bibliography 129



x Contents



Figures

1.1 State on a CCN router . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Forwarding phases on a CCN router . . . . . . . . . . . . . . . . . . . 8

2.1 Publish/subscribe event notification implemented with polling . . 19
2.2 Publish/subscribe event notification implemented with interest as

notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 On-demand content delivery (pull) packets exchange . . . . . . . . 23
2.4 Publish/subscribe event notification (push) packets exchange . . . 23
2.5 Unified content-based network layer . . . . . . . . . . . . . . . . . . 25
2.6 CCN/NDN name components . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Multiple addresses naming scheme with the functionality of each

address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 Network used in the experiments . . . . . . . . . . . . . . . . . . . . 36
2.9 On-demand content delivery application: generated traffic . . . . 37
2.10 Publish/subscribe event notification: duplicated notifications . . . 38
2.11 Publish/subscribe event notification: missed notifications . . . . . 38
2.12 Publish/subscribe event notification: generated traffic . . . . . . . 39
2.13 Publish/subscribe event notification: in-network state . . . . . . . 39

3.1 Scenario 1: loop path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Scenario 2: duplicated interest . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Scenario 3: duplicated interest . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Routing on one tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Request/Reply Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Problem using a single tree: higher latency . . . . . . . . . . . . . . 56
3.7 Problems using a single tree: lower throughput . . . . . . . . . . . . 57
3.8 Gateway routers and global trees . . . . . . . . . . . . . . . . . . . . 60
3.9 Packets forwarding on hierarchical multi-trees . . . . . . . . . . . . 62
3.10 RIB index by descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.11 PATRICIA trie used to store the RIB . . . . . . . . . . . . . . . . . . . 66

xi



xii Figures

3.12 Incremental Update Algorithm . . . . . . . . . . . . . . . . . . . . . . 68
3.13 A Sequence of Incremental Updates . . . . . . . . . . . . . . . . . . . 69
3.14 Consumer node mobility: TZ-label update . . . . . . . . . . . . . . . 71
3.15 Publisher/Subscriber node mobility: RIBs update . . . . . . . . . . 73
3.16 Maximum and average additional cost in forward packet over trees 78
3.17 RIB sizes on gateway nodes on different ASes . . . . . . . . . . . . . 79
3.18 RIB sizes of nodes inside different ASes . . . . . . . . . . . . . . . . 80
3.19 RIB size scalability for different workload sizes . . . . . . . . . . . . 81
3.20 Scalability of the maintenance time . . . . . . . . . . . . . . . . . . . 82

4.1 FIB representation using a trie . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Matching algorithm: find all subsets (FAS) . . . . . . . . . . . . . . 88
4.3 Matching algorithm: find largest subset (FLS) . . . . . . . . . . . . 90
4.4 Trie compression with bit popularity . . . . . . . . . . . . . . . . . . 93
4.5 Trie represented as a vector . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6 A chain in the trie (on the right) and its representation (on the left) 96
4.7 Different node layouts and related memory access pattern . . . . 98
4.8 Prefixes compression scheme . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 FAS algorithm: scalability with multiple threads . . . . . . . . . . . 103
4.10 FLS algorithm: scalability with multiple threads . . . . . . . . . . . 104
4.11 Throughput varying the percentage of notification packets . . . . . 104
4.12 Throughput varying the number of follow-up requests forwarded

using the locators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Window evolution: additive increase . . . . . . . . . . . . . . . . . . 111
5.2 Window evolution: multiplicative decrease (β = 0.5) . . . . . . . . 112
5.3 Window decrease probability function . . . . . . . . . . . . . . . . . 113
5.4 Different routes and route labels . . . . . . . . . . . . . . . . . . . . . 115
5.5 Forwrarding strategy algorithm . . . . . . . . . . . . . . . . . . . . . 118
5.6 Single path scenario: fairness among flows . . . . . . . . . . . . . . 120
5.7 Single path scenario: queue and window evolution . . . . . . . . . 121
5.8 Multipath scenario topology . . . . . . . . . . . . . . . . . . . . . . . 122
5.9 Multipath scenario: split ratio evolution . . . . . . . . . . . . . . . . 122
5.10 Multipath Scenario: Rate at Bottlenecks Links . . . . . . . . . . . . 123
5.11 Multipath Scenario: Queues at Bottlenecks Links . . . . . . . . . . . 124



Tables

2.1 Three phases in the communication process: pull vs push . . . . . 24

4.1 Matching time for different nodes layouts (in microseconds) . . . 102

5.1 Single path scenario: sensitivity analysis . . . . . . . . . . . . . . . . 119

xiii



xiv Tables



Chapter 1

Introduction

In this thesis we introduce an new information-centric network (ICN) called
TagNet. TagNet has two main distinguishing features, as compared with the
other mainstream ICN architectures.

First of all, TagNet supports a truly information centric addressing. This is
not the case in the mainstream ICN architectures based on hierarchical names.
In fact, those architectures are built under the assumption that names contain
a globally routable prefix that effectively plays the role of an IP address or host
name in a URL. In other words, names would still associate the content with
a particular host or location. By contrast, TagNet provides a multi-modal ad-
dressing scheme with application-defined addresses that can be truly location-
independent (but can also represent locations if those are meaningful to the
application) and with network-defined addresses that allow for very efficient
matching and forwarding operations.

The second main feature of TagNet is that it combines the best of the main-
stream “pull” ICN architectures, with the flexibility of a “push” publish/subscribe
event notification service at the network level. This allows for very efficient pull
flows that can be used, for example, in video streaming, and low-latency push
notifications, which are essential in new technologies such as the so-called In-
ternet Of Things.

In essence, this PhD thesis describes “systems” work. We formulate a network
architecture that we believe would be useful and significantly more expressive
for applications, and we sudy its feasibility by implementing it and by evaluating
it experimentally. In particular, we develop an entire stack of protocols for Tag-
Net. We describe a routing protocol based on spanning trees, that allows easy
implementation of multicast and anycast forwarding, as well as an efficient rout-
ing state compression that is essential for scalability on large networks. We then

1



2 1.1 From Host-Centric to Information-Centric Networking

propose a forwarding engine for TagNet, that, thanks to the multiple addresses
provided by TagNet, can achieve line speed throughput using forwarding tables
with state generated by hundreds of millions of users. Finally, we propose a
transport protocol for pull flows that effectively uses multiple paths to maximize
the bandwidth for each flow, avoiding congestions.

This introduction chapter is structured as follows: In Section 1.1 we describe
why the research community started to look into the idea of ICN, and how ICN
should solve some of the problems that are common in today’s IP networks. In
Section 1.2 we briefly describe the history and the evolution of ICN architectures
and then we focus on the presentation of Content-Centering Networking (CCN),
which is one of the most relevant and influential ICN architecture, and also
the one we use as a reference for comparison with TagNet. In Section 1.3 we
highlight some of the issues and limitations of the mainstream ICN architectures,
and finally, in Section 1.4 we describe the contribution of this thesis.

1.1 From Host-Centric to Information-Centric Net-
working

Networks are designed to be host-centric. The main functionality of the network
is to connect two end-points, each identified by an address assigned by the net-
work. Each packet contains the address of the destination host in its header,
which the network uses to forward the packet towards the destination. This is
the basic principle of packet switching introduced by ARPANET and still at the
foundation of today’s TCP/IP protocol stack.

When this host-centric communication model was designed, networks were
small, and their main application was a remote terminal or perhaps file transfer
that would allow users to share computing resources such as large and expen-
sive mainframe computers. In such a context, the host-centric model works very
well. Furthermore, security was not an issue, since only a few trustworthy or-
ganizations and users were granted physical access to the infrastructure. This
context lead to a design that was conceptually simple and, in part due to this
simplicity, also extremely effective and successful.

Today the Internet is much bigger than the original ARPANET, and it is ac-
cessible by billions of users. This enormous growth introduced serious problems
of scalability and security. Also, the way we use the network is different to-
day: the Internet is mostly a content distribution network, not just a mechanism
to connect two hosts. In fact, the vast majority of traffic nowadays consists of



3 1.1 From Host-Centric to Information-Centric Networking

video distribution. According to Cisco,1 video traffic was 66% of the total In-
ternet traffic in 2013, and will reach 79% by 2018. A typical example of video
distribution application is YouTube, where multiple publishers provide content
that can then be retrieved by many users at the same time, and there are similar
live broadcasting services (e.g., Twitch.tv). This breaks the basic assumption that
the communication is point-to-point, simply because the communication process
involves multiple users acting as producers and consumers (or both).

Another new challenge comes from the introduction of new technologies
together with the cultural changes they induce. The advent of wireless data
transmission introduced a new way to connect to and use the Internet whereby
users are free to move while remaining connected. Mobile traffic is growing by
57% every year,2 and this level of user mobility is not well supported by the basic
host-centric communication model.

In reaction to these changes, the research community introduced new pro-
tocols and techniques to handle new technologies and applications within the
existing network infrastructure. To handle the growth of the Internet they de-
veloped IPv6, featuring a much expanded address space and a more modular
design. Classless inter-domain routing, or CIDR, is another example of a method
adopted to reduce the size of routing and forwarding tables. Thanks to this form
of aggregation, the size of the routing tables is reduced on average by almost
45% and 25% for IPv4 and IPv6, respectively.3

Security has also emerged as a primary concern for the design and use of
the Internet, which led to the development of a wide range of protocols and sys-
tems, some of which are quite mature and widespread. As an example, consider
today’s use of HTTPS, which according to Naylor et al. has now reached 50% of
all web traffic [57].

New protocols and systems were also developed to handle new technologies
and usage patterns such as wireless channels and mobility. Mobile IP is an ex-
ample: it allows users to keep a connection alive even when they move among
different access points.

Another important change that somehow challenges the original network
design is the introduction and widespread use of Content Delivery Networks

1The Zettabyte Era: Trends and Analysis. http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf

2Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 2014–2019. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white_paper_c11-520862.pdf

3CIDR Report. http://www.cidr-report.org/as2.0/; IPv6 CIDR Report. http://www.cidr-report.
org/v6/as2.0/.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cidr-report.org/as2.0/
http://www.cidr-report.org/v6/as2.0/
http://www.cidr-report.org/v6/as2.0/


4 1.1 From Host-Centric to Information-Centric Networking

(CDN). CDNs are heavily used today, as they are fundamental in reducing traf-
fic and improving the quality of service for end-users. As an example, consider
that Akamai, one of the primary CDNs, handles 20% of the total web traffic with
about 30 million hits per seconds.4 CDNs break the end-to-end principle by intro-
ducing essential in-network processing such as transparent proxies, transcoding,
and compression.

All the patches to the original network architecture make the architecture
and its stack of protocols more complex, and also introduce inefficiencies in traf-
fic management. A very current example is given by the HTTPS protocol. Since
HTTP hides all application-level headers and content, it also prevents ISPs from
caching, compressing, and optimizing content in-transit. Naylor et al. attempt
to measure the cost of encryption [57] and report that ISPs have seen a large
increment in upstream traffic due to the fact that they can not serve requests
locally using proxies for transparent caching. This generates additional traffic
that in turn requires additional network capacity. HTTPS also affect the quality
of service perceived by users due to the additional latency of the TLS handshake.
Similar problems are common also in other protocols such as Mobile IP, which
requires a longer path from the sender to the receiver compared to a direct con-
nection (triangular routing problem [64]), which in turn increases traffic and
latency.

It is in this scenario that many researchers have proposed new network archi-
tectures, often referred to as Future Internet Architectures, better suited to serve
diverse communication and usage patterns for today’s and hopefully tomorrow’s
Internet. One such architecture is that of a network capable of distributing con-
tent to interested users, and of reducing traffic by pushing and caching content
closer to users. In these networks the content itself, as opposed to the end-nodes,
becomes the central focus of the addressing scheme. Thus a user does not spec-
ify a host address in his or her requests, simply because most of the time the
user does not care about the source of the content. Instead, the user addresses
the content directly by specifying a name or a description of that content. The
network is then responsible for routing the packet in the right direction to get a
copy of the required data, using only the name or description provided by the
user as an address. This new vision of the network, where the primary network
function is centered on the content, is called Information Centric Networking
(ICN).

Again, the main idea behind ICN is to address information itself, instead of

4Visualizing Global Internet Performance. https://www.akamai.com/us/en/solutions/
intelligent-platform/visualizing-akamai/index.jsp

https://www.akamai.com/us/en/solutions/intelligent-platform/visualizing-akamai/index.jsp
https://www.akamai.com/us/en/solutions/intelligent-platform/visualizing-akamai/index.jsp


5 1.2 Background: ICN History and Architectures

addressing the hosts involved in the communication process. This simple change
of perspective gives us many possible advantages over a traditional host-centric
network. One such advantage is with respect to security, or more specifically
integrity and authentication. Since information is the central unit of address-
ing, we can simply secure (sign) the content once instead of securing all the
end-to-end connections through which the content is transferred between hosts.
With such secured content, routers could also store and later serve that same
content from in-network caches. Another advantage of ICN is that addresses are
location-independent, since they point to a piece of information rather than a de-
vice. Therefore, a user could download different pieces of the same content from
different sources, reducing download time and increasing the perceived quality
of service. The network is also more reliable: if a link breaks or a producer fails
to provide the data, the same content could be found somewhere else, without
the need to update the forwarding tables. The usage of location-independent
addresses is also useful in case of mobile connections, because mobile end-users
can be easily supported by the network without any additional protocols or in-
frastructure such as that of mobile IP.

1.2 Background: ICN History and Architectures

The idea of routing packets on names or according to their content is not new,
and in fact it goes back to almost 15 years ago. Carzaniga et al. proposed the
notion of a content-based network in 2001 [19], and later developed this no-
tion with specific routing and forwarding schemes [20, 18]. Within this no-
tion, Carzaniga et al. propose to route traffic using predicates, namely sets of
attributes and conditions on their values that describe the content of a packet.
Also in 2001, the TRIAD project proposed to address packets using names similar
to URLs [41].

In the following years, other projects and systems such as i3 [75], VRR [9]
and ROFL [10], proposed to use DHT overlay networks to address content.
Along the same line, Koponen et al., with the DONA system in 2007, propose
to identify content objects with flat names, similar to hash keys and then to
use a name resolution network to map a required content name to its location,
in a similar way as DNS associates URIs to IP address. The PSIRP/PURSUIT
project [77] also proposes a similar architecture, this time using a hierarchical
name resolution network to associate content names, identified with flat labels,
with content locations. Perhaps the most interesting contribution of this project
is a new forwarding scheme called LIPSIN that replaces the traditional IP for-



6 1.2 Background: ICN History and Architectures

warding in local networks [48].
The project that perhaps more than others brought renewed attention to

the idea of information centric networking is the Content Centric Networking
(CCN) project originated at PARC around 2006 [47]. This project also evolved
into another mainstream ICN project called Named Data Networking (NDN).
The CCN/NDN architecture addresses content using hierarchical names similar
to URLs (or file names in a Unix-like file system). Since this architecture is so
prominent, and also because it is very relevant for this thesis, we describe it
extensively in the next section. After the initial CCN proposals, several other
projects, including NetIfn/SAIL [2] and MobilityFirst [67], researched the the
notion of information centric networking. Ahlgren et al. and Xylomenos et al.
have surveyed many of these projects and ideas [1, 85].

1.2.1 Content-Centric Networking Architecture

In this thesis we refer many times to CCN/NDN, which we consider the most
mature ICN architecture. The first project originated at PARC, and nowadays
important networking companies like Cisco, Alcatel, and Orange, in addition to
different universities, are working on this architecture. Since this thesis is related
to CCN/NDN, we present a brief overview of the CCN/NDN architecture.

Jacobson et al. introduced the first proposal of Content-Centric Networking
(CCN) [47]. After the end of the first CCN research program, a new one was
founded under the name of Named-Data Networking (NDN), while CCN was
still active at PARC. Recently, the CCN and NDN projects have adopted different
approaches regarding some architectural components, as well as many imple-
mentation details. Still, the basic architectural principles remain common to
both projects and are an important basis for the work described in this thesis.
Since this common basis originated in the CCN project, we will refer to it as
CCN, and in cases where there are significant differences between the two ar-
chitectures, we will specify the right architecture in the text.

In CCN, the addressing scheme is based on names. That is, CCN transmits
named content. In particular, CCN uses hierarchical names similar to URLs.
Each piece of content is divided into chunks, which are the basic addressable
unit. Therefore, each chuck has its own name. For example the name ch/usi/-
papalini/thesis.pdf/v2/c4 might refer to a chunk of this thesis, in particular to
the fourth chunk (c4) of version 2 of the thesis (v2). Names can be aggregated
in forwarding tables according to their hierarchical structure. This means that a
set of names can be represented by their common prefix in a similar way as IP
prefixes.



7 1.2 Background: ICN History and Architectures

CCN is a pull-based architecture: a user who wants to get some content must
explicitly request that content. Thus there are two kinds of packets: interest
packets carry a request for a specific content chunk, and data packets carry the
requested content chunk back to the user.

Forwarding Information Base
(FIB)

Prefix Output Ifx

/ch/usi/* 6

/com/youtube/* 1,7

. . . . . .

. . . . . .

Pending Interest Table
(PIT)

Name Input Ifx

/ch/usi/thesis.pdf/v2/c3 2

/ch/usi/thesis.pdf/v2/c4 2

/com/youtube/video.mp4/v3/c2 4,10

. . . . . .

Content Store
(CS)

Name Data

/ch/usi/thesis.pdf/v2/c1 . . .

/ch/usi/thesis.pdf/v2/c2 . . .

/com/youtube/video.mp4/v3/c1 . . .

. . . . . .

Figure 1.1. State on a CCN router

Every router in the network has three tables: a Forwarding Information Base
(FIB), a Pending Interest Table (PIT) and a Content Store (CS), which is generally
called cache. Figure 1.1 shows the three tables.

The Forwarding Information Base (FIB) is the table used to forward inter-
est packets toward one of the sources of the content requested by that interest.
In particular, the FIB associates a prefix with a set of output interfaces through
which the router may forward an interest packet matching that prefix. Simi-
lar to the FIB in an IP router, forwarding works as a longest-prefix matching
(LPM) between the name in the interest packet and the prefixes in the FIB. Since
there may be multiple sources for the same content, a prefix may be associated
with multiple output interfaces, as is the case for the /com/youtube/* prefix in
Figure 1.1. In this case, the router may choose one or more of the matching
interfaces.

The Pending Interest Table (PIT) stores temporary state for interests that
were forwarded by the router but not yet satisfied by a corresponding data
packet. An interest leaves some state in the PIT of each router along its forward-
ing path. This state is then used to route the corresponding data packet back to
the requesting user. For each interest packet, the router must store in the PIT the



8 1.2 Background: ICN History and Architectures

entire name of the interest plus the interface through which the interest reached
the router (denoted input ifx in Figure 1.1). This way, a data packet always
follows the reverse path of the corresponding interest. For example, the PIT of
Figure 1.1 indicates that the router received an interest packet for /ch/usi/pa-
palini/thesis.pdf/v2/c3 from interface 2. Therefore, the router will forward the
corresponding data packet through interface 2. If the router receives an interest
with a name that is already in the PIT, the router can aggregate the two inter-
ests. In particular, the router does not forward the second interest packet, but
adds the incoming interface of the new interest to the existing entry in the PIT.
In the example of Figure 1.1, this is what happened in the case of the interest
/com/youtube/video51.mp4/v3/c12.

The Content Store (CS), or cache, may store a copy of the data packets re-
ceived by the router. The table is indexed by name. If the router has some
content that satisfies an interest in its cache, the router replies directly to that
interest on behalf of the content provider with a data packet containing the
cached copy. The router may apply different replacement policies to manage its
cache.

CS PIT FIB
Interest

Data aggregate drop

forward
match match no

match

no
match

no
match match

PIT CS
Data

forward

drop

no
match

match

Figure 1.2. Forwarding phases on a CCN router: interest packet forwarding
(top) and data packet forwarding (bottom)

A CCN router forwards interest and data packets in two different ways, as
illustrated in Figure 1.2. An interest is forwarded in at most three phases (top
part of Figure 1.2). In the first phase the routers checks if the required content
is in the content store. If so, the router replies immediately to the user, and no
further processing is needed. If the content store does not have the content,



9 1.3 ICN Issues and Limitations

the router proceeds with the second phase. In this phase, the router checks for
a PIT entry with the same name of the interest packet. If the entry exists, the
router aggregates the interest to the existing entry and does not forward the
interest. Otherwise, the router proceeds with the third and last phase. Here the
router updates the PIT, introducing a new entry for the interest, and forwards
the packet according to the longest-prefix matching in the FIB.

The forwarding procedure for data packet requires two steps, as illustrated
in the lower part of Figure 1.2. First, the router looks for a PIT entry related
to the received data packet. If no such entry exists, then the router drops the
packet, because it does not know where to forward the packet. Otherwise, if a
corresponding PIT entry exists, the router stores the content of the packet in the
content store (possibly), then removes the entry from the PIT, and proceeds to
forward the packet to all the interfaces listed in the PIT entry.

1.3 ICN Issues and Limitations

Although the ICN idea attracted a lot of attention and there is a lot of research on
this topic, many problems are still open and they remain without a clear answer.
Here we highlight some of the problems that are relevant for this thesis.

One of the most critical decisions in the design of an ICN architecture is the
choice of an appropriate naming scheme. Much of what happens in a router,
throughout the whole network, and also at the application level, depends cru-
cially on this choice. For example, naming affects in a fundamental way for-
warding and matching, as well as routing and route aggregation, and therefore
the scalability of the whole architecture. But naming also determines the ex-
pressive power of the service offered to applications and users, and there is a
clear tension between, on the one hand the expressiveness of the service at the
application level, and on the other hand its scalability at the network level.

In the literature, there are basically two main proposals for naming: flat
names and hierarchical names. Flat names are labels with really basic structure,
or rather no structure at all. Flat names are usually not intended to be readable
by humans, and can be seen as random identifiers. As an example, in DONA [51]
a name has two parts, called P and L. P is the cryptographic hash of the principal
public key, where the principal for a content is the node that first published such
content. L is a label that uniquely identifies the content within the principal.
A similar kind of names is used in PSIRP/PURSUIT [77]. The main benefit of
these “flat” names is that they are easy to match, simply because matching means
exact match, which admits to very efficient algorithms. Such flat labels are also



10 1.3 ICN Issues and Limitations

considered “self-certified” names [27], meaning that they can be built and serve
as cryptographic signatures for the content. In this way, when a user receives a
packet, the user can also check if the content is authentic. However, this notion
of self-certified names begs the question of how an application would be able to
issue a request for presumably unknown content.

Hierarchical names are more structured and, as seen in the examples of
Section 1.2.1, they are similar to URLs. They are intended to be understand-
able by humans, and they can be easily used to address some content by an
application. However, these names require a more complex algorithm to find
the longest matching prefix from a possibly large forwarding table. This has
been one of the major concerns with CCN, but as demonstrated by several au-
thors [82, 73, 63, 81], it is possible to perform longest-prefix matching on names
at wire speed.

The CCN architecture [47] also includes important authentication features.
Contrary to flat names in DONA, hierarchical names in CCN do not themselves
carry authentication information. Instead, this information is attached to the
data packet as a signature. This security feature is based on standard public-key
signatures that allow consumers as well as routers to verify the integrity and
provenance of content. Although this security feature is commonly accepted,
it still poses problems in distributing and authenticating public keys [54]. It
also raises the question of performing public-key signature validation in routers,
although once again this is not a serious conceptual obstacle.

One of the main criticisms of ICN is related to its scalability. In fact, at
this point there is little or no evidence that any of the proposed architectures
could scale to global-size networks. According to Ghodsi et al., a global ICN
must be able to handle at least 1012 objects [38], which is a prohibitive size for
forwarding tables for current and perspective technology. It is therefore essential
to compress forwarding information through some form of aggregation.

All architectures based on flat names deal with this scalability problem by
using look-up functions that are external to the forwarding process, for exam-
ple through specialized data structures such as DHTs. In other words, those
architectures externalize the mapping between names, which are user-defined
quantities, and an underlying network address (e.g., IP) that is then used for
forwarding. Some of those architectures also rely on name-scoping techniques
to further increase scalability [77].

Hierarchical names in CCN/NDN instead are directly used for forwarding,
and therefore pose a serious question of aggregation. The aggregation of CCN
names is analogous to prefix aggregation used for IP addresses. However, it
is still unclear whether that aggregation would be effective, since contrary to



11 1.3 ICN Issues and Limitations

IP addresses, names are user-defined and may not have any relation with the
network topology.

Another problem that involves the design of the naming scheme is the ex-
pressiveness of the names. In all proposed naming schemes, a name can refer to
only one piece of content. This unique match, one name one content, is useful in
some applications, like a file transfer, where a users wants to be specific and ad-
dress one specific file. However, there are other applications, that are commonly
used, that needs a more sophisticated way to address content. An example is a
news feed, where a user wants to get all the news related to a particular topic
that may come from multiple sources. Unfortunately, there is no easy way to ex-
press such an interest using the kind of addresses existing in the literature with
a single name.

In CCN, all the information related to the packet are embedded in the name.
This can be really inefficient in some cases, because each function that processes
the packets needs to parse the entire name in order to find the relevant set of
components. In addition, PITs need to store the entire name of each interest,
so, if the name is too long, the size of these tables would grow really quickly.
Moiseenko et al. show that a name design where all the information is embedded
in the name may be problematic [55]. In particular, Moiseenko et al. study
different ways to implement the HTTP protocol in NDN, showing that it is not a
trivial thing to do. To solve this problem, they propose to introduce additional
files that are specific to some application or protocol in order to avoid to put all
the data in the name. This problem is less severe in CCN after the introduction
of labeled content information,5 but is still present in NDN.

The last problem that we want to highlight is related to the communication
model. All the proposed ICN architectures support only pull communication,
meaning that a user needs to request each piece of information the user wants
to receive. This preference for pull communication is understandable, since most
of the traffic in the Internet can be retrieved on-demand by users. In particular,
this is true for video content, which makes up the majority of Internet traffic
today. However, many applications, such as social networks or news feeds, need
to spread many short messages to the interested users in a short time, because
many of the messages are valuable only for a short period. And the best way to
send this kind of messages is to provide a push primitive, where the producer
directly contact the interested user. Unfortunately, push communication is not
easy to implement using the ICN designs proposed so far.

5Labeled Content Information. http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.
txt

http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.txt
http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.txt


12 1.4 Contribution and Structure of the Thesis

1.4 Contribution and Structure of the Thesis

In this thesis we tackle the problems described in the previous section by in-
troducing a new ICN architecture called TagNet. We design our ICN with three
architectural goals in mind:

1. TagNet should provides rich communication primitives natively.

2. The naming scheme has to be flexible. It has to allow users to express their
interests, but, at the same time, it needs to be optimized for each packet
processing function at different levels in the network.

3. The architecture should be able to scale at a global level.

TagNet provides natively rich communication primitives, meaning it allows
both push and pull communication. We show that this can be done easily, with-
out introducing additional state in routers and without changing the forwarding
procedures. Specifically, we show how to forward packets using a single FIB in
both push and pull mode, avoiding loops, and allowing various forms of multi-
cast as required by the application.

Our naming scheme is more complex and structured as compared with all
other ICN proposals. We decided to have different kinds of addresses with dif-
ferent purposes that can all coexist in the same packet. We see this apparent
added complexity as a principled architectural decision and also a fundamental
architectural improvement. In particular, users and applications can use descrip-
tors to describe what they request from the network. We implement descriptors
as sets of tags, although the architecture could accommodate other forms of
descriptors. Tag sets allow users to target a single file, like in the case of hierar-
chical names, or to request a broader set of information available in the network.
Besides descriptors, in TagNet we also explicitly define another kind of address
that we call content identifier. As the name suggests, this kind of address is bound
one-to-one with a unique content chuck. Content identifiers play a fundamental
role for transport protocols and also for in-network caching. The third and last
form of address we use in TagNet is what we call network locators. These are
network-defined addresses intended exclusively for host-based forwarding.

The last and perhaps more ambitious goal of our architecture is to achieve
Internet-level scalability. This is possible thanks to the aggregation of tag-based
descriptors, as well as the specialization of addresses, in particular locators. In
particular, regarding aggregation, notice that tag sets aggregate by subset, which
is a more powerful aggregation function than prefix aggregation provided by



13 1.4 Contribution and Structure of the Thesis

CCN/NDN. Our evaluation shows that we can fit more than 10 billion names in
a few gigabytes of space and we can also handle updates efficiently.

The structure of the thesis is as follows: in Chapter 2 we present the ar-
chitecture: we introduce the communication primitives provided by TagNet, as
well as its naming scheme. In Chapter 3 we describe the routing protocol that
we developed for TagNet. Chapter 4 describes the matching function and the
forwarding engine developed for TagNet. Chapter 5 describes a transport and
congestion-control protocol that is mostly based on CCN but still relevant for
TagNet. Finally, in Chapter 6 we draw some conclusions and speculate on future
work.



14 1.4 Contribution and Structure of the Thesis



Chapter 2

TagNet: a New ICN Architecture

In this chapter we present TagNet, our ICN architecture. This chapter describes
the architectural design of our network. First of all, we describe our service
model that supports natively both push and pull communication flows. We also
argue why it is important to have such a rich set of communication primitives,
and in support of that argument we present a series of applications that can
benefit from those primitives. Furthermore we show that adding support for
push flows does not require additional state within routers.

In this chapter we also describe the naming scheme that we adopt for TagNet.
We argue in favor of a rich and expressive way to address content, but we also
argue that such expressive form of addresses should not be abused, and instead
that it is important to have other, specialized addresses for different purposes.

We support these arguments with a comparative evaluation of our architec-
ture with the original proposal of CCN. This evaluation shows that a network
that supports richer communication primitives generates less traffic and works
properly under various types of workloads.

This chapter is structured as follow: in Section 2.1 we argue why a rich
communication service is important and how we can support it in TagNet; in
Section 2.2 we present our “naming” scheme consisting in fact of multiple and
quite diverse forms of addresses; in Section 2.3 we evaluate TagNet against CCN.

2.1 Communication Primitives: Push vs Pull

All the proposed ICN architectures allow only pull communication: a user re-
ceives some content only when he or she requests such content. We call this
user-initiated communication on-demand content delivery. As we already dis-
cussed in the introduction, the main reason behind this architectural choice

15



16 2.1 Communication Primitives: Push vs Pull

is that most of the Internet traffic is generated by applications, such as video
streaming, that work very well with this model. On-demand content delivery is
the best way to access persistent information, meaning information that is valu-
able for a long period of time, because it does not change. Video, music, and
pictures are examples of persistent information.

However, there is an other set of applications where users want to receives
specific information, related to a particular topic or published by a particular
user, in more or less real time. A user expects to get new content without asking
for updates every time. Applications with these characteristics are micro-blogs
(e.g., Twitter), social networks, and news feeds. We discuss more about these
applications in the next section. However, we observe that, generally speaking,
these applications exchange ephemeral content, meaning content that is valuable
for a short period of time. The best way to access this ephemeral information is
to decouple the consumers from the producers, using a publish/subscribe com-
munication pattern [19, 28]. This pattern is based on push communication,
where the producers start the communication flow, sending the information to
all the interested users as soon as it is available. We call this communication
model publish/subscribe event notification.

In today’s internet, the amount of traffic generated with publish/subscribe
event notification is much lower than the traffic generated by on-demand ap-
plications. This is due in part to the fact that “events” themselves usually carry
a small amount of information (possibly with pointers to larger objects), and
also in part to the fact that publish/subscribe event notification is not natively
supported by most of the Web infrastructure. And this is why most of the ICN
architectures do not support a push communication primitive. However, appli-
cations such as social networks and microblogging are becoming more and more
popular, and, for this reason, the number of messages exchanged with publish/-
subscribe mechanisms could become quite high. High frequency event notifica-
tions can generate a lot of overhead, both in terms of traffic and data processing,
if they are not not handled correctly. We think that an event notification service
should be supported natively from an ICN architecture.

2.1.1 Publish/Subscribe Event Notification: Applications

We now analyze some possible use-case scenarios for publish/subscribe event
notification in toady’s Internet. Other applications that are suited for this com-
munication primitive are described by Carzaniga et al. [17].

The first application we want to discuss is the Web itself. There is in fact
a lot of work done by the Web programmers community in order to deploy a



17 2.1 Communication Primitives: Push vs Pull

“push” version of the Web. The idea is to allow the server side to push data to
the users as soon as the data are available, avoiding polling over HTTP. This has
the advantage of reducing the load on the server, as well as the data latency. A
collection of these techniques is known as Comet.1

BOSH (Bidirectional streams Over Synchronous HTTP) is a protocol that al-
lows push communication and is used as support to the XMPP protocol, which
is an important standard for presence and messaging. BOSH implements a long
polling whereby the client sends an HTTP request to the server, and the server
then replies only when it has data to send. Every time new data is delivered, the
server closes the connection, so that the client needs to issue a new request.

Another technology that allows a server to push content to the client is
Server-Sent Event (SSE). SSE uses HTTP to establish a persistent connection
between the client and the server. The server is then able to push updates,
avoiding continuous polling from the client, reusing every time the same con-
nection. This protocol is part of the HTML5 standard and is implemented by
most popular browsers.

WebSocket is a more recent technology that allows push from the server as
well as data transfer from the client. A WebSocket provides a full-duplex com-
munication channel between the server and the client, essentially by reverting
an HTTP connection back to its TCP base: the client connects using HTTP, issu-
ing a special HTTP request that instructs the server to treat that connection as a
basic TCP connection. This connection can then be used by the server to push
data to the client at any time. Like SSE, the WebSocket protocol is part of the
HTML5 standard, and it is supported by many browsers and servers.

All these technologies are used in the so called real-time web, that forwards
content to the users as soon as it is published. There are many frameworks that
can be used to develop applications with these features. Some examples are
Fanout,2 Hydna,3 PubNub,4 Pusher,5 and others.

Going back to a more concrete application, one of the most common use-case
scenario for a publish/subscribe event notification are social networks. Facebook
has more that 1 billion active users monthly,6 while Twitter is much smaller, but
generates 500 million tweets per day.7 In a social network users want to get in-

1Comet Daily. http://cometdaily.com/
2Fanout webpage. https://fanout.io/
3Hydna webpage. https://www.hydna.com/
4PubNub webpage. http://www.pubnub.com/
5Pusher webpage. https://pusher.com/
6Facebook Statistics. http://newsroom.fb.com/company-info/
7Twitter Statistics. https://about.twitter.com/company

http://cometdaily.com/
https://fanout.io/
https://www.hydna.com/
http://www.pubnub.com/
https://pusher.com/
http://newsroom.fb.com/company-info/
https://about.twitter.com/company


18 2.1 Communication Primitives: Push vs Pull

formation according to their interests, or from their friends. A publish/subscribe
system is perfectly suited for these applications because a user does not need to
know from where and when he will receive the next message.

Push communication can also be useful on devices where energy consump-
tion is an issue, such has mobile devices. A device that listens on a single port,
waiting for messages pushed by a server, consumes much less energy than a de-
vice that needs to constantly poll different servers to get updates. This is the idea
behind Google Cloud Messaging on Android devices,8 and Apple Push Notifica-
tion Service on iOS and OS X devices.9 Both these services are based on XMPP.
Using these services, users needs to maintain only one listening socket through
which they can receive notifications immediately and also efficiently, reducing
energy consumption as well as traffic.

Many applications for the so-called Internet of Thing (IoT) can also benefit
from a push-based communication model. In this scenario, the network consists
of devices many of which are very much constrained in processing and energy
budget. A communication protocol such as publish/subscribe that can reduces
traffic and therefore energy consumption is an important feature to support IoT.
In fact, nowadays IoT networks already use publish/subscribe protocols, such as
the Message Queue Telemetry Transport (MQTT).10 There are many proposals
to use ICN protocols, and in particular CCN, in this networks, but the lack of a
push primitive is generally a problem. As a result, some researchers propose to
relax the CCN architectural constraints in order to define a way to better handle
push traffic transmission [33, 4].

It is important to notice that some of the applications described here are still
implemented in a pull-based fashion, even though, as we saw, there are many
frameworks to enable pull-based applications. That is due to the fact that HTTP,
which is the most common protocol to transfer data in the Internet, implements
a pull communication flow. However, push communication is getting more e
more important for today’s Internet usage, and since ICN provides us a way to
rethink and redesign the entire Internet architecture, we should use this occasion
to rebuild the protocol stack in such a way as to better fit future users needs.

Other researchers in the ICN community share this view, which is expressed
in part in the ICNRG draft “Enabling Publish/Subscribe in ICN”.11

8Google Cloud Messaging. http://developer.android.com/google/gcm/gcm.html
9Apple Push Notification Service. https://developer.apple.com/library/ios/documentation/

NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
10MQTT webpage. http://mqtt.org/
11Enabling Publish/Subscribe in ICN. http://tools.ietf.org/pdf/draft-jiachen-icn-pubsub-01.pdf

http://developer.android.com/google/gcm/gcm.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://mqtt.org/
http://tools.ietf.org/pdf/draft-jiachen-icn-pubsub-01.pdf


19 2.1 Communication Primitives: Push vs Pull

2.1.2 Do We Really Need a Push Primitive?

In the previous section we argued that an ICN architecture should provide both
on-demand content delivery and publish/subscribe event notification natively
at the network level. This way, all kinds of communication flows can be easily
handled by the network, thereby reducing unnecessary overhead traffic.

More specifically, although we claim that it is important to implement push
communication, we have not yet demonstrated that such a communication pat-
tern has to be a network primitive. In fact, it is possible to emulate push prim-
itives using only pull communication. In this section we want to argue that
implementing push communication on top of pull communication primitives is
not a good design strategy, due to the semantic mismatch between the two forms
of communication. Generally speaking, implementing publish/subscribe event
notification using only on-demand content delivery primitives leads to high con-
trol traffic and, under certain workloads, unexpected and potentially erroneous
application behaviors.

Considering CCN, there are at least two ways to implement publish/sub-
scribe event notification without modifying the original architecture. The first
implementation uses polling. The second, that we call interest as notification,
uses interests packets to notify interested consumers that some new information
is available.

producer consumer

〈interest:
news/updates/ 〉

〈data:NULL〉
〈interest:
news/updates/ 〉

〈data:
news/updates/S0〉

Figure 2.1. Publish/subscribe event notification implemented with polling

In the polling implementation, illustrated in Figure 2.1, a consumer issues
interests at a more or less constant rate to check if new content is available at
the producer. If the producer does not have any update, the producer replies
with an empty message, like in the case of the first interest in the picture. In the
other case, when the producer has some events to notify, the producer replies
with the corresponding event data, like in the case of the second interest of the



20 2.1 Communication Primitives: Push vs Pull

picture.
Polling is efficient only in the case where the polling rate is similar to the

publication rate. In this case we can get events in time, and without much
traffic overhead. However this scenario is rare, mainly because events are asyn-
chronous and may be quite irregular. Therefore, if the polling rate is too low, it
is possible to miss some notifications. Or, on the other hand, if the polling rate
is to high, the application would generate a lot of useless traffic.

In CCN we also need to take into account the PIT expiration time associated
with each interest. A polling rate higher than the expiration time (or rather
its inverse) is useless, because repeated interests with the same name would be
aggregated in the PIT (see Section 1.2.1 for PIT aggregation). Selecting a polling
rate that is close to the PIT timeout (inverse) can be a good decision. However,
this can lead to scalability problems for the PITs. In fact, issuing an interest as
soon as the same previous interest expires is similar to creating a persistent entry
in the PITs, which are not conceived for, nor designed to handle such a situation.
Also, the PITs aggregate interests only by exact name match, so in other words,
persistent interests do not aggregate well, which once again means that the PITs
may suffer from scalability problems. And as shown by Virgilio et al., when the
PITs are overloaded the performance of the network degrade, and, depending
on the PIT implementation, the network may be unable to deliver packets [79].

Another problem with the polling implementation is when there are multiple
producers for the same kind of events and the same name prefix. In this case
a user has to contact all the producers independently, because the producers
may generate different events at different times. In this scenario, the polling
implementation induces yet more traffic, as well as more state in the PITs.

An even more serious issue comes from the forwarding strategy of the routers
in CCN. Usually an interest is forwarded only to one interface. A router may
implement a “forwarding strategy,” meaning an algorithm that ranks different
interfaces for the same prefix according to different parameters (e.g., response
time), and privilege some of the interfaces over others [87, 37, 14]. In this
scenario, the interests sent by a user may never reach some of the producers,
therefore failing to deliver events.

The last problem in the polling mechanism is related to in-network caching.
If a user requests the same content with the same name in the interest (to poll
for events), the user may get old events stored in some caches. One way to
counter this problem is to add some sequence number in the name. Unfortu-
nately, however, this require some kind of synchronization between consumers
and producers, because each consumer needs to know the sequence number of
the next event to issue a safe (non-caching) request. This kind of synchroniza-



21 2.1 Communication Primitives: Push vs Pull

tion can be difficult to achieve: if a consumer misses some notifications, the
consumer may get stuck in the past and never get newer events.

producer consumer

〈interest:
news/updates/S0〉

〈interest:
news/updates/S0〉

〈data:
news/updates/S0〉

Figure 2.2. Publish/subscribe event notification implemented with interest as
notification

The second implementation that we analyze is called interest as notification
and is illustrated in Figure 2.2. In this implementation the producers notifies all
the interested consumers when a new event is available. To do this, the producer
sends a special interest that has to be sent in multicast and does not require any
data reply. This is the first interest sent by the producer in the picture. At
this point, the consumer queries the producer in order to get the new content.
This strategy is the most used in CCN. In particular, according to the CCNx 1.0
specifications,12 an interest with lifetime set to 0 is used as a notification and the
requester node does not expect any data in response to this interest.

Using an interest as notification would solve some of the issues of the polling
implementation, such as the selection of the correct polling rate, but it would
also introduce new problems. One of the main problems is the forwarding of
the first interest used as a notification. In fact, there is a clear mismatch be-
tween the semantics of an interest and that of a notification. A notification is a
multicast packet, which may create loops. In CCN, the PITs are responsible for
avoiding loops in the forwarding process of interests. In reality, the PITs may
fail to prevent loops in a number of scenarios, as described in Section 3.3.1. In
fact, according to Garcia-Luna-Aceves et al., the only way to avoid loops in the
forwarding of an interest in multicast is to use a loop-free multi-path routing
scheme [37], like the one we propose in the next chapter. Also, sending an
interest as a multicast packet is at odds with most of the proposed forwarding
strategies where interests are usually given an anycast semantics.

Interests as notifications would also need to be handled differently by the

12CCNx Semantics. http://www.ietf.org/id/draft-mosko-icnrg-ccnxsemantics-01.txt

http://www.ietf.org/id/draft-mosko-icnrg-ccnxsemantics-01.txt


22 2.1 Communication Primitives: Push vs Pull

PITs, because they do not require any reply. In particular, the best option would
be to never store such interests in the PITs, which would complicate a bit the
forwarding process. The other option would be to delete an interest as notifi-
cation from the PIT at its expiration time, but that would increase the size of
the PITs, with the same scalability problem that we already highlighted for the
polling implementation.

Polling and interests-as-notifications are not the only ways one could im-
plement push communication in CCN. But they are the ones that require zero
or minimal modifications to the original architecture. In the literature there
are other examples of publish/subscribe event notification implemented in CCN,
but they always require significant changes in the architecture. For example, in
COPSS [23] the authors introduce the Subscription Table (ST) in the rendezvous
points, which are special nodes able to forward notifications. Another example
is KITE [89], where the authors introduce a new kind of interest packet, called
tracing interests. These special interests are similar to subscriptions in the pub-
lish/subscribe terminology, in the sense that they set state in the PITs of the
routers that can be used later by publisher nodes to forward data packets.

In conclusion, we can say that it is possible to implement a push commu-
nication primitive on top of the basic CCN architecture. However this leads to
additional traffic, packet management overhead, or some significant changes to
the original architecture. In the following section we demonstrate that an ICN
architecture can support push communication natively without introducing ad-
ditional data structures and with a minimal effort.

2.1.3 Native Push and Pull Communication API

In the previous section we argued that on-demand content delivery (pull) and
publish/subscribe event notification communication (push) primitives are differ-
ent. In fact, even if it would be possible to implement publish/subscribe event
notification over a pull architecture, that may be problematic in practice. How-
ever, here we argue that the two communication modes are not that different,
and more specifically that they have some fundamental common elements. In
this thesis we exploit this commonality to implement a forwarding table that is
able to support both on-demand content delivery traffic and publish/subscribe
event notifications.

First of all we need to analyze in detail all the steps of the communication
process in both push and pull flows. In Figure 2.3 we represent the packets
exchanged between the producer and the consumer in a pull communication
flow. As a first action, the producer sends a register packet to the network,



23 2.1 Communication Primitives: Push vs Pull

producer consumer

register(prefix)

forwarding
tables

〈interest:name〉

〈data:content〉

Figure 2.3. On-demand content delivery (pull) packets exchange

specifying the prefix or the name of what the producer wants to publish. With
this action, the producer communicates to the network that it can produce the
content related to the prefix specified in the register packet. This information is
disseminated and processed through some routing protocol, so that each router
would use that information to update is own forwarding table. At this point
a consumer can request some content with an interest packet with a specific
name. The network forwards the interest packet toward the producer using the
information stored in the forwarding table of each router in the network. When
the interest reaches the producer, or a router with the required content in its
cache, a data packet is sent back to the consumer.

producer consumer

subscription
(content-descriptor)

forwarding
tables

〈notification:
content-descriptor

+ data〉

Figure 2.4. Publish/subscribe event notification (push) packets exchange

Figure 2.4 describes the phases of push communication. This time, the con-
sumer performs the first action, communicating to the network that it wants
to receive some kind of information. Thus the consumer sends a subscription
packet, describing the content that the consumer intends to receive. Like the
register message in pull mode, a subscription is disseminated and processed in



24 2.1 Communication Primitives: Push vs Pull

the network through a routing protocol, possibly resulting in routers updating
their forwarding tables. When a producer has an event to notify, the producer
simply sends a notification packet. The notification is forwarded as a multicast
packet using the information on the forwarding tables of each router so as to
reach all interested consumers.

In both push and pull communication there are essentially three phases, sum-
marized in Table 2.1:

1. A node generates routing information that feeds into the forwarding ta-
bles.

2. Routers forward packets according to their forwarding tables.

3. The forwarding process delivers information to the right users.

In the pull communication model, it is the producer that generates the rout-
ing information, whereas in push communication it is the consumers. However,
in both cases the register/subscription packets are disseminated and processed
by each router, according to some routing protocol, to create or update state in
the router’s forwarding table. This suggests that register and subscription pack-
ets are semantically identical. And indeed their semantics can be shown to be
identical, which is why in our architecture we use a single packet that can serve
both as a subscription for a consumer (in push) or as a register packet for a
producer (in pull).

Pull Push

(1) Routing Information
Generated by producer Generated by consumer

Used to update FIB Used to update FIB

(2) Matching FIB FIB

(3) Information Delivery
Anycast Multicast

Requires Reply One-Way

Table 2.1. Three phases in the communication process: pull vs push

In the matching phase, in both cases, the routers match packets, notifications
or interests, against the same forwarding table, and they forward these packets
using the same rules. For this reason we use a single forwarding table. The only
difference in forwarding between push and pull is the fan out of notifications
and interests, respectively, which plays a crucial role in the third phase.



25 2.1 Communication Primitives: Push vs Pull

In the third and last phase, the two communication flows differ significantly.
As described in Table 2.1, in the case of pull communication, interests are any-
cast packets, meaning that it is important that an interest reaches at least one
producer (and preferably only one of them). Conversely, a notification is a mul-
ticast packet that must reach all interested consumers. This difference is es-
sential and it is the reason why our forwarding table supports different fan-out
levels. We will discuss this feature later, but briefly this means that a header in
the packet, which differs in interests and notifications, tells the router to limit
the forwarding to one or more, or possibly an unlimited number of final desti-
nations.

The other main difference in the third phase is that notification packets (push
mode) are one-way messages, while interests (pull communication) require a
reply packet that must return data back to the consumer.

In summary, we consider notifications and interests as semantically different
packets, and in our architecture we consistently use two different packets.

Node A Node B

register(descriptors)

forwarding
tables

〈notification:
content-descriptor
+data〉

〈request:
content-descriptor〉

〈reply:data〉

Figure 2.5. Unified content-based network layer

Figure 2.5 illustrates the architecture we propose. We use only one packet,
called register, to define and transmit routing state. This distributes the state in
the network and creates or updates forwarding tables. We then use the forward-
ing tables to route both request and notification packets. Requests are equivalent
to an interest in CCN terms. However, we prefer the term request to avoid
confusion between immediate interests (requests) and long-term interests (sub-
scriptions). The forwarding algorithm is the same for interests and notifications,
the only difference is in the fan-out of the two packets. Then, for each request,
the network answers to the user with a reply packet that carries the required



26 2.2 TagNet Naming Scheme

data, like a data packet in CCN.
Recently, the CCN developers also started to look at push communication.

What they concluded is available in the ICNRG draft “Support for Notifications
in CCN”.13 In this document they describe conceptually an architecture that is
very similar to TagNet. The developers realize that a push communication is
essential for many applications, and that implementing it over pull primitives
is inefficient. The developers also decided to use a new packet for event noti-
fications with a different semantic with respect to a normal CCN interest. This
packet, called notification, is forwarded using only the FIBs, without leaving any
state in the PITs, and without expecting a reply. We consider these recent devel-
opments as an excellent validation of our ideas on push and pull communication
in ICN [17, 60].

2.2 TagNet Naming Scheme

As we discussed briefly in the introduction chapter (Section 1.3), there are at
least two naming schemes in ICN: flat names and hierarchical names. Each one
of these naming schemes has its own advantages and disadvantages.

A flat name is easy to match, because it supports exact-match semantics and
it can be designed as a “self-certifying” name. However, networks based on flat
names do not scale easily, and they require a name resolution system, similar to
DNS, that is external to the network, meaning that the packet forwarding is not
based on content, and instead still based on network-defined addresses.

Hierarchical names seem to be more promising in terms of scalability for ICN,
because they can aggregate by prefix. However, hierarchical names have their
drawbacks, too, as they require a more complex encryption mechanism and a
more sophisticated matching procedure. In this section we focus on hierarchical
names and their implementation in NDN and CCN, because they do not require
any external lookup service, which is the same design we adopted for TagNet.

2.2.1 NDN Naming Scheme

In NDN, interest packets carry only a few header fields. Specifically, the only
mandatory ones are the name and the nonce, which is a unique identifier of
the packet.14 For this reason, all the information related to the application must
be embedded within the name. This information can be of various kinds: for

13Support for Notifications in CCN. http://www.ietf.org/id/draft-ravi-ccn-notification-00.txt
14NDN Packet Format Specification. http://named-data.net/doc/ndn-tlv/interest.html

http://www.ietf.org/id/draft-ravi-ccn-notification-00.txt
http://named-data.net/doc/ndn-tlv/interest.html


27 2.2 TagNet Naming Scheme

example, it could be related to the user sending the interest, like cookies in an
HTTP request, or it can amount to an application-specific command.

This design choice—to embed all sorts of information in the name—can be
problematic for different reasons. First of all, at each step, the name has to be an-
alyzed in order to understand which part is useful and which part is unnecessary
for the current function. This can be particularly problematic in the forwarding
process. Most of the implementation proposed so far in fact can achieve high
throughput when the number of components of the name is relatively low or is
not much larger than the length of the matching prefix in the FIB.

Another problem is related to usability of these names. As highlighted by
Moiseenko et al., putting all the information in the name complicates the im-
plementation of a simple protocol like HTTP, which should fit the basic NDN
principles of request/reply communication perfectly well [55]. In particular,
Moiseenko et al. note that transferring the necessary data from the client to the
server using only the interest name is not trivial, simply due to the amount of
information that needs to be exchanged. Moiseenko et al. then propose various
potential solutions to address this problem. One proposal is to create another
field in the packet header to carry information that are specific to the application
but do not need to affect the forwarding of the interest.

2.2.2 CCN Naming Scheme

The original CCN scheme was very similar to the one still used in NDN.15 As in
NDN, in the original CCN all the information are in the name.

Since CCNx 1.0, however, interest packets have the same structure of the
data packets, so they can carry a payload. This payload can be used to send
additional information that is specific to the application but is not needed for
forwarding.

Another new feature introduced in CCNx 1.0 is Labeled Content Information
(LCI).16 This amounts to a structured name where each segment or component
has a type. An example of LCI is the name: lci:/Name=com/Name=google/-
Name=gmail/App:0=user/App:1=password. In this name each segment has a
label: the label Name indicates a segment that is really part of the name, while
the label App:n indicates a segment that carries some information for the ap-
plication. Each App segment is also enumerated. A similar approach can be

15Some of the changes in the packet format applied in NDN since CCNx 0.7.2 are described
on the NDN website. http://named-data.net/doc/ndn-tlv/changelog.html

16Labeled Content Information. http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.
txt

http://named-data.net/doc/ndn-tlv/changelog.html
http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.txt
http://www.ietf.org/id/draft-mosko-icnrg-ccnxlabeledcontent-00.txt


28 2.2 TagNet Naming Scheme

used to retrieve a chunk of a file, like in the name lci:/Name=ch/Name=usi/-
Name=papalini/Name=thesis/version=3/chunk=12.

Using the LCI encoding, it is possible to decide which segment is useful for
which function. The segments labeled Name are used in the forwarding process,
App segments are useful for the applications, while version and chunk segments
can be used by a transport protocol. This implementation can be more efficient
with respect to the standard NDN naming scheme, because each protocol can
extract the relevant parts from the name and ignore the rest.

2.2.3 Multi-Modal Addressing in TagNet

What emerges from the above discussion on naming, and in particular from the
evolution of the naming scheme in CCN, is that using a unique name to carry
all the information is not a good design strategy. This is clear also from the first
proposal of CCN [47], where the authors present the name as a concatenation
of specific fields, similar to the one shown in Figure 2.6.

/ch/usi/phd/thesis/papalini/v=3/c=12

Routable Name Segment Application Name Segment Protocol Name Segment

Figure 2.6. CCN/NDN name components

In Figure 2.6 we see a part of the name, called routable name segment that
is used to route the name across the network. This part represents the location
of the object and is essentially a network-defined address. The application name
segment is instead the application-dependent part that may contain a directory
path on a server, like in case of Figure 2.6, or some parameters that are required
by the application. The last part of the name, called protocol name segment,
specifies which version (v=3) and which chunk of the object (c=12) the name
refers to. This part is not useful to the routers for the forwarding function, nor
to the user who would not want to deal with such low-level information. It is
instead really useful to the transport protocol (to address a specific sequenced
chunk) and to in-network caches (to uniquely identify a data chunk).

What we conclude from this analysis is that we need different components
in a name. Each component is specific for a particular function and it may be
completely irrelevant for others. For this reason, in TagNet we propose to use an
addressing scheme with three independent components: a descriptor, a content



29 2.2 TagNet Naming Scheme

identifier and a locator. Each component can coexist with others in the header
of a packet, and none of them is always mandatory. Figure 2.7 represents the
header of a packet with all the addresses, and for each one we highlight the
functionality for each layer in the protocol stack.

Packet Header

Descriptor

Content Identifier

Locator

. . .

Network Transport Application

Content-Based
Forwarding

— Describe Content

Caching
Stream ID,

Object ID, Blocks
—

Locator-Based
Forwarding

End-Points
Address

—

Figure 2.7. Multiple addresses naming scheme with the functionality of each
address

In the remainder of the section we describe each type of address, specifying
its characteristics and functionalities in the detail.

2.2.4 Application-Level Addressing: Descriptors

In TagNet we prefer to describe content rather than naming it as is done in CCN.
For that we use descriptors consisting of sets of tags. Application may use de-
scriptors that contain no reference to any network location. Descriptors can be
used by consumers to define the kind of information they want to receive, or by
producers to declare the content they want to serve.

The idea of describing the content, instead of naming it, is not in itself new.
For example, systems such as XTreeNet describe the content using descriptors
similar to the ones we propose [30]. The same addressing scheme is reused
in more recent works [23, 22]. Publish/subscribe systems also use descriptors,
often more expressive than tag sets. As an example that is indicative of a large
body of literature on publish/subscribe systems, Carzaniga et al. propose to use
predicates to describe the content [20]. Predicates are conditions on the values
of typed attributes that describe the content, and they are more expressive than
the descriptor we use. In fact predicates amount to tag sets, in the sense that



30 2.2 TagNet Naming Scheme

they require a certain minimal set of attributes, but they also allow to specify
constraints on the values of those attributes (e.g., numeric constraints such as
price < 100). For this thesis we adopt tag sets because they seem to balance
expressiveness with simplicity and effectiveness. In fact, tags are already widely
used in many applications and they are powerful enough to describe content
with a good degree of expressiveness.

Descriptors, represented in Figure 2.7 with a blue rectangle, are used at the
application level to refer to information or perhaps to application components or
users, while at the network level they are the basis for routing and forwarding
(as described later in Chapters 3 and 4). Since descriptors have this double
functionality, they have to achieve two main design goals. First, they need to
be powerful enough to express the interests of applications. Second, they need
to aggregate as much as possible to minimize the sizes of forwarding tables in
routers.

Descriptors play a central role in TagNet, analogous to IP addresses in the
current Internet. A descriptor can be seen as the address of a node in the in-
formation space. For example, a content provider that wants to serve the movie
Pulp Fiction by Tarantino in high definition, could register the descriptor {Pulp
Fiction, Tarantino, HD}. This descriptor, effectively, becomes part of the ad-
dress of the provider. Similarly, a user interested in weather forecasts for the
city of Lugano, Switzerland, might register the descriptor {weather, Switzerland,
Lugano}. As in the previous case, this descriptor becomes part of the address of
that node. A node may provide more than one object, or may be interested in
more than one topic. The set of all the descriptors announced by a node forms
the address of that node. A set of descriptors is also called a predicate.

The matching relation for descriptors is defined as the subset relation be-
tween sets of tags. A descriptor D1 matches another descriptor D2 if D1 is a
superset of D2, and so D1 ⊇ D2. This relation is used to match packets in the
network: it describes how request packets match the objects published by the
producer nodes, and how notifications match the subscriptions of the interested
users. More in detail, a descriptor R in a request matches a publication P an-
nounced by a producer if R ⊇ P. In the same way, the descriptor N in a noti-
fication matches the subscription S of a user if N ⊇ S. For example, a request
with descriptor {Tarantino, Pulp Fiction, HD, 1994, ENG} would match the pub-
lication with descriptor {Tarantino, Pulp Fiction, HD}. Similarly, the notification
with descriptor {update 4:30PM, weather, Switzerland, Lugano, sunny, temp: 20}
would match a subscription such as {weather, Switzerland, Lugano}.

Descriptors are more general, meaning more expressive, than hierarchical
names. Intuitively, a descriptor can be seen as a name prefix in which the order



31 2.2 TagNet Naming Scheme

of the of the name components does not matter. Consider a user who wants
to download the movie Pulp Fiction in English but with Italian subtitles. The
user might express this request with the hierarchical names /Pulp_Fiction/Eng/
Ita_Sub/ or /Pulp_Fiction/Ita_Sub/Eng/. Both are plausible names but they re-
fer to different objects. This ambiguity increases when we add more parameters
in the request (e.g., high-resolution, pricing). Generally speaking, in order to
define all the addresses expressed by a single descriptors we need an exponen-
tial number of hierarchical names, one for all the possible permutations of the
tags in the descriptor.

Although the set-based semantics of descriptors is useful and expressive, the
order of tags may be meaningful, as in hierarchical names. Fortunately, tag
sets are expressive enough to serve applications also in these situations, and
in fact a tag set can emulate a hierarchical name or prefix simply by explicitly
enumerating the components of the name. For example, the hierarchical name
/ch/usi/phds/papalini/thesis.pdf can be expressed with the descriptor {1#ch,
2#usi, 3#phds, 4#papalini, 5#thesis.pdf}. Notice that this representation of a
hierarchical name is consistent with the subset matching semantics of TagNet.
In other words, TagNet can support both hierarchical names and tag sets within
the same FIB.

So far we discussed about the expressiveness of tag sets. The other design
goal for descriptors is that they aggregate as much as possible in order to reduce
the size of the forwarding and routing tables. Content descriptors based on tag
sets aggregate according to the subset relation. Given a descriptor D1 and a de-
scriptor D2 , we say that D1 subsumes D2 if D2 contains D1 (D2 ⊇ D1) , and there-
fore a router can store only D1 to represent the two descriptors. This is possible
because a packet with a descriptor D that matches D2 will always match D1 too,
because D ⊇ D2 ⊇ D1. With a more practical example, the subscription {weather,
Switzerland} subsumes the subscription {weather, Switzerland, Lugano}, because
every message that matches the latter would also match the former. Subset
aggregation is more general than prefix aggregation, and therefore tag-based
descriptors would aggregate at least as much as name prefixes for the same
data.

Architectural Role of Descriptors

Descriptors are a central and crucial component of the TagNet architecture. It
is therefore important to clearly define their nature and purpose within TagNet.
In this section we also highlight some of their limitations and discuss ways that
descriptors could be modified in order to improve their expressiveness.



32 2.2 TagNet Naming Scheme

First of all, it should be clear that descriptors have no particular meaning
from the point of view of the network. A tag set is encoded within a packet
header (as explained in Section 3.2), and it is used, as a set, by the network
to make forwarding decisions. However, again from the network perspective,
individual tags have absolutely no meaning. For example, for a router, the
two descriptors {Tarantino, Pulp_Fiction, HD, 1994, ENG} and {update 4:30PM,
weather, Switzerland, Lugano, sunny, temp: 20} are just two different abstract
sets, and instead it is the application that formulates and interprets one as a
reference to a movie and the other one as a weather forecast.

An other important architectural principle of TagNet is that descriptors are
intended to serve as addresses, not as a generic containers for application data.
Descriptors should describe content (or components, users, etc.) accurately—as
accurately as possible—but they should also be as small as possible. In other
words, the purpose of a descriptor in a packet is to allow the network to forward
that packet, not to transmit data. Furthermore, the TagNet architecture does not
even guarantee that a descriptor in a packet is visible as a plaintext to receivers,
so the receivers do not know the tags in an descriptor.

For example, one can imagine that some applications may associate machine-
generated tags with some videos and use these tags in the descriptors. This set
of tags can be quite large and the subset matching semantic of descriptors fails
to work properly in this case. In fact, a packet descriptor with a long list of
tags may be forwarded everywhere in the network, because it is easy to find
a subset for such descriptor. In contrast, if we use a large set of tags to an-
nounce some content, this content may not be reachable, since is really difficult
to create a superset of a large set of tags. Some other considerations on this
aspect are presented in Section 3.2. For this reason, the machine-generated tags
should not be used as descriptor to advertise or forward videos in our applica-
tion. These machine-generated tags are meta-data associated with the content
that are meaningful for the application, but not for the network. The right way
to handle these machine-generated tags for videos is to create an application
similar to the YouTube website. To implement such application in TagNet we
can create descriptors to route packets toward servers that can provide some
videos, maybe within a specific section (politics, sports, . . . ), and then the user
can send keywords to the server in order to search for the right video. These
keywords are part of the payload of the packet, because they do not define any
routable information and they are application specific. In particular, they can
be used, within the application, to search in the database of machine-generated
tags.

Descriptors are location-independent by nature, but they can also by used to



33 2.2 TagNet Naming Scheme

target a specific application or user using some precautions. Before dive into this
discussion it is important to clarify that the simple addition of a tag in a packet
descriptor that refers to a particular source does not guarantee that the packet
will reach the specified source. For example, a descriptor such as {youtube,
Pulp_Fiction} can be forwarded to a YouTube server, but it may also match the
content advertised by a server that hosts a blog with a post about Pulp Fiction,
since the network may ignore the tag youtube in the forwarding process.

However, there are ways to use descriptors as an address. A simple way is to
encode the address of the application (e.g. the IP address of the machine where
the application is running) as a tag in a descriptor. Using this tag the network
can forward the packet to the right place. Unfortunately, the usage of addresses
as tags may reduces the chances for aggregation and this has an impact on the
routing and forwarding protocol scalability. For this reason, even if possible, this
usage of the descriptors should be avoided.

A descriptor used to address a specific user or application needs a particular
structure in order to guaranty the scalability of TagNet. First of all, the entire
descriptor need to be used only to address the user/application, without mixing
this location-dependent address with information about the content. Second,
these descriptors need some kind of structure to allow scalability. For example,
hierarchical names like the ones used in CCN are a good candidates for this
particular purpose. As described in the previous section, descriptors can easily
emulate hierarchical names, so we can mix the two types of addresses in the
same network.

There are also limitations in the usage of tag sets as descriptors. One of the
main limitations is that descriptors can not be used to express exclusions. For
example, a user may want to request the usual movie Pulp Fiction with italian
subtitles, but also not with 4K definition. Notice that a tag set might express
this request quite well, for example with tags {Pulp_Fiction, ita_sub, -4K}, where
the “-” sign in the -4K might indicate any screen resolution other than 4K. But
unfortunately this can not be done with descriptors because the subset matching
semantic does not express this concept at the network level. In fact, the network
would consider -4K as a tag like any other—that is, one element of the universe
of tags—and would apply the subset semantics to forward the request, which
might mean that the network would simply ignore the to -4K tag and forward
the request to an application advertising {Pulp_Fiction, ita_sub}, which might
not have the move in a resolution other than 4K.

One way to make descriptors more expressive to address the lack of exclu-
sions is to define some tags as mandatory, meaning that a packet would contain
a descriptor and also a mandatory subset of that descriptor. The network would



34 2.2 TagNet Naming Scheme

then be required to match the packet descriptor only with FIB entries (tag sets)
that contain the mandatory subset of the descriptor. In the movie example, the
request would indicate -4K as a mandatory tag, and therefore the network would
only forward the request to applications that explicitly advertise -4K in their de-
scriptors. We considered this more expressive semantics but ultimately decided
not to adopt it because of its implications on routing and forwarding.

2.2.5 Transport-Level Addressing: Content Identifiers

Tag sets can store all kinds of information. In particular, a tag set could contain a
unique identifier for a particular object, such as a hash of the content of the ob-
ject with a version number and a chunk identifier. Such a descriptor carrying an
identifier could be used to identify a chunk of a particular file uniquely. However,
as we already argued in our critique of CCN names and the way they are used
to embed information, we consider this form of identification in a descriptor as
a bad design for a naming scheme.

The information related to the chuck identifier or the version number are
still useful, but they are useful for the transport layer, and are mostly irrelevant
for other network functions such as forwarding. In TagNet we therefore decided
to add a specific address that uniquely identifies each piece of content. We call
this address content identifier.

The functionalities of the content identifier are illustrated in Figure 2.7,
where the content identifier is represented as a green box. At the network level,
the content identifier can be used to retrieve the requested content from a cache,
which is both more semantically consistent than names (because identifiers leave
no ambiguity as to the desired content) and also more efficient, because identi-
fiers can be used with an exact-match semantics that admits to very fast access.
Identifiers can also be very useful for a transport protocol, in particular to re-
quest the next chunk of a stream or file.

2.2.6 Network-Level Addressing: Locators

The last component of our naming scheme are locators, indicated in yellow in
Figure 2.7. A locator identifies a particular node in the network. The main differ-
ence between a descriptor and a locator is that, while descriptors are assigned by
applications, locators are assigned by the network. Application-defined address-
ing is arguably the most important property of ICN, because allowing applica-
tions to define network addresses empowers applications to define semantically
meaningful information flows, without having to worry about the structure of



35 2.3 Evaluation

the network itself. However, at the same time, application-defined addressing
leaves the network and also applications themselves vulnerable to conflicts and
abuses in the use of the address space. Perhaps more fundamentally, application-
defined addressing is inherently less scalable than network-defined addressing.

Locators instead are controlled by the network and can therefore be chosen
so as to obtain compact forwarding tables and fast forwarding algorithms. The
main purpose of a locator is to forward packets towards a known network desti-
nation. In particular, locators can be used in a request/reply exchange to route
data packet back to the requester. This way we can avoid to store in-network
state for every packet. We also propose to send requests using locators when-
ever possible so as to increase the throughput of the forwarding algorithm at
each node. We will discuss such a request/reply data exchange in Section 3.3.3.

2.3 Evaluation

In this section we evaluate the communication model proposed for TagNet. The
purpose of the evaluation is to substantiate the design choices and claims pre-
sented in Section 2.1, where we argue that an ICN architecture should provide
natively a publish/subscribe event notification primitive together with the on-
demand content delivery primitive. In particular we show that with a native
publish/subscribe event notification primitive we can have more efficient ap-
plications in terms of functionality (missed/duplicated notification), generated
traffic, and additional in-network state.

To set up and run our experiments, we create a prototype of TagNet as
an extension of CCNx version 0.4.0,17, which was current at the time we de-
veloped these experiments. Unfortunately, the current version of CCNx (ver-
sion 1.0) is not backward compatible due to some implementation and architec-
tural changes, so we did not run this evaluation on the most recent version of
CCNx. However, we still believe that the evaluation and its results are significant
and indicative of the CCN architecture in general. Later we discuss the possible
implications of the differences between version 0.4.0 and version 1.0 of CCNx
(see Section 2.3.1 below).

Also notice that, in order to set up a meaningful comparison with CCN and
its forwarding engine, we use workloads with hierarchical names, even though
hierarchical names are just a particular specialization of our descriptors.

To evaluate our proposed architecture, we use two types of applications: a
file transfer application and an event-notification application. In both experi-

17Binary of the current version of CCNx code. http://www.ccnx.org/ccnx-binary-downloads/

http://www.ccnx.org/ccnx-binary-downloads/


36 2.3 Evaluation

ments we compare the CCNx basic implementation with TagNet. The network
that we use in our experiments is represented in Figure 2.8. In all the experi-
ments we compute all routers’ forwarding information base (FIB) off line. For
the CCN experiments we populate the FIB so as to use the shortest path every
time. For TagNet we use the routing protocol that we introduce in the next
chapter. In particular, we create shortest-path trees from random nodes in the
network and we route all the traffic over these trees. When we need to forward
an interest, the first router commits the packet to a specific tree, which is chosen
in a round-robin fashion, and the packet is forwarded on that tree.

i j k

d e f g h

a b c

Figure 2.8. Network used in the experiments

For file transfer, we use the application provided with the CCNx 0.4.0 code
that can work on both versions of the content router. We run two series of exper-
iments with files of different sizes available from four locations corresponding
to routers c, e, i, k in Figure 2.8. In the first experiment we set up a single con-
sumer on router g. In the second experiment we have four consumers on routers
a, g, h, j. We repeat each individual experiment 10 times, each time randomly
choosing different nodes as roots for the routing trees. This selection may effect
the traffic generated by TagNet because some trees may stretch the path between
nodes (see Section 3.3.4 for more details).

Figure 2.9 shows the results of the experiments conducted with the file trans-
fer application. We label F1 the experiments with a single consumer, and F4 the
runs with four consumers. We measure the traffic incurred by the file transfer,
measured in the total number of packets crossing a network links. The result
shows that the two architectures are almost identical, for both F1 and F4, with
respect to the generated traffic. TagNet generates a bit more traffic because



37 2.3 Evaluation

some paths in the network may be stretched by the routing scheme.

 0

 10

 20

 30

 40

 50

 60

 70

 80

F1 F4

Pa
ck

et
s 

(x
10

00
)

TagNet
CCNx

Figure 2.9. On-demand content delivery application: generated traffic

To test the event-notification scenario, we implement the two notification
services described in section 2.1.2 on top of CCNx. One application, denoted as
CCNx+polling, implements the publish/subscribe event notification with polling
as described in Figure 2.1. The second one, indicated with CCNx+interest, im-
plements the event-notification using an interest packet to notify new events as
presented in Figure 2.2. For TagNet we do not need any specific application,
since the network itself can forward the notification packets in the right way. As
for the file transfer application, we compute the FIBs in CCN using the shortest
path from the producer nodes, while for TagNet we use our trees-cover rout-
ing scheme. We run two series of experiments, first with a single subscriber at
node g, and then with four subscribers at nodes a, g, h, j. The producer nodes
are again located at positions c, e, i, k. Also in this case we run a series of 10
experiments for each one of the three implementations.

All these experiments use a simple publish/subscribe workload in which all
producers publish notifications at the same rate and all notifications have the
same name to which all consumers subscribe. Therefore, all notifications are
supposed to go to all consumers. In order to test the three implementations in
different scenarios we use three workloads, each one with a different publication
rate. We use publication rates that are higher than, comparable to, and lower
than the polling rate used by the polling implementation which we set to 0.5
seconds. We run two high-rate series labeled H1 and H4, with one and four
consumers, respectively, in which producers publish every 0.1–1 seconds; two
medium-rate series, labeled M1 and M4, in which producers publish every 0.5–2
seconds, and two low-rate series, labeled L1 and L4, in which producers publish
every 2–5 seconds.



38 2.3 Evaluation

 0

 20

 40

 60

 80

 100

L1 L4 M1 M4 H1 H4

D
up

lic
at

ed
 N

ot
ifi

ca
tio

ns
 (%

)

TagNet
CCNx+polling

CCNx+interest

Figure 2.10. Publish/subscribe event notification: duplicated notifications

In the first set of results we look at the application-level effectiveness of each
implementation. The results of our experiments are summarized in Figure 2.10
and Figure 2.11. The graph in Figure 2.10 shows, for each series of experi-
ments and for each implementation, the percentage of duplicated notifications
received by the subscribers. Figure 2.11 instead shows the number of missed
notifications.

 0

 20

 40

 60

 80

 100

L1 L4 M1 M4 H1 H4

M
is

se
d 

N
ot

ifi
ca

tio
ns

 (%
)

TagNet
CCNx+polling

CCNx+interest

Figure 2.11. Publish/subscribe event notification: missed notifications

The polling application suffers from missed as well as duplicated notifica-
tions, with more missed notifications at higher publication rates, and with more
duplicates at lower rates. On the other hand, the implementation based on
interests has no duplicates and it works almost correctly with low publication
rates. However, the interest-as-notification implementation always loses a few
notifications, in particular when we increase the publication rate and the num-
ber of producers (around 10% of the notifications). The implementation built



39 2.3 Evaluation

on TagNet performs well across all workloads, as expected.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

L1 L4 M1 M4 H1 H4

Pa
ck

et
s 

(x
10

00
)

TagNet
CCNx+polling

CCNx+interest

Figure 2.12. Publish/subscribe event notification: generated traffic

In Figure 2.12 we show the traffic generated by each implementation. It is
clear from the picture that the interest-based implementations built on CCNx
generates more traffic as compared to all other implementations. In particular,
it generates almost three times more traffic than TagNet in the experiment with
four consumers, which is also the case where the CCNx+interest implementation
suffers more from missed events. The polling application generates an almost
constant traffic that depends on the polling rate. In all cases, TagNet generates
less traffic than the CCNx+interest implementation.

 0

 5

 10

 15

 20

 25

L1 L4 M1 M4 H1 H4

PI
Ts

 E
nt

rie
s 

(x
10

00
)

TagNet
CCNx+polling

CCNx+interest

Figure 2.13. Publish/subscribe event notification: in-network state

The plot in Figure 2.13 shows the cumulative in-network state created during
the experiments, meaning the number of PIT entries generated by each applica-
tion. As for traffic, the polling implementation creates an almost fixed number



40 2.3 Evaluation

of entries that reflect the polling rate used in the experiment. The CCNx+interest
implementation generates a large number of entries in the PITs, which is partic-
ularly problematic considering that most of the interests have the same name
and therefore should be aggregated. This suggests that in a more general case,
where the events have different names, the amount of entries in the PITs may
grow even more. In the case of TagNet, we do not use the PITs at all, because all
the packets are forwarded only using the FIB. For this reason, TagNet does not
require any in-network state, as shown in the picture.

2.3.1 Discussion

In this evaluation we used an old version of CCNx, but many new features were
introduced in newer versions, in particular starting with CCNx 1.0. Unfortu-
nately, it is not easy to adapt our code to the new implementation of CCNx, so
here we try to describe what could be the advantages and disadvantages of the
new version of CCN.

One of the new features of newer versions of CCNx is that an interest with
lifetime equal to 0 can be used as a notification packet. This can be really use-
ful to improve the performance of the CCNx+interest implementation. However,
this interest should be handled in a special way that is not specified in the docu-
mentation. For example, since there is no need to send a data packet as a reply
to these special interests, it is conceivable that routers would not create state in
the PITs for such interests. If this is the case, the in-network state in Figure 2.13
can be reduced significantly.

However, a CCNx without PIT entries for zero-lifetime interests may generate
even more traffic than the old version we used. This is because some form of
PIT entries are still used in CCN to control the forwarding process, not just to
return data back to the consumer. In particular, CCN 0.4.0 used a “nonce” for
each interest (a unique identifier) to detect loops in the forwarding process. For
each interest, each router that receives the interest stores its nonce together with
the name in a PIT entry. So, when a router receives the same interest twice (a
forwarding loop) the router can safely discard the interest. This process may
lead to some problems that we describe in detail in Section 3.3.1. To overcome
these problems, CCNx 1.0 uses hop counters to detect and cut loops. In this new
implementation, an interest is forwarded until the hop-counter goes to zero,
which would prevent catastrophic packet storms but may still produce excessive
traffic. Garcia-Luna-Aceves et al. propose a new set of algorithms that can avoid
this traffic overhead, at the cost of storing more information in the PITs [37].

Recently, the CCN developers discussed and highlighted some of the prob-



41 2.3 Evaluation

lems that CCN has in handling push traffic. The solution that they propose is
semantically identical to TagNet: an architecture that can handle both push and
pull traffic, using three packets, which in CCN are called interest, data and no-
tification..18 With the introduction of the notification packets, the performances
of CCN and TagNet will be comparable.

18Support for Notifications in CCN. http://www.ietf.org/id/draft-ravi-ccn-notification-00.txt

http://www.ietf.org/id/draft-ravi-ccn-notification-00.txt


42 2.3 Evaluation



Chapter 3

Routing Scheme

In this chapter we describe and analyze the routing scheme that we developed
for our ICN architecture. This routing scheme supports both push and pull com-
munication flows, while compressing the routing state on each node to achieve
Internet-level scalability.

The proposed routing scheme is based on trees. We use trees because they
are good structures for many routing problems. Trees allow for loop-free paths
with simple router-local decisions. Trees also support multicast packets. In fact,
we can more generally support different fan-out levels for different packets: we
can send a multicast packet, which is the default case for notification packets,
or an anycast packet, which is the standard option for request packets, or we
can limit the duplication of a packet to a set number of destinations, again using
only local decisions at each router. To compensate for the limitations imposed
by trees, our routing scheme uses multiple trees to cover the network, so as to
allow for multiple paths between nodes and better link utilization.

Notice that, although we use our naming based on tag sets to evaluate the
routing scheme, the basic principles of this scheme are applicable to other ICN
proposals that use different names.

This chapter is structured as follows: in Section 3.1, we present the routing
protocols proposed in the ICN literature. In Section 3.2 we describe how we
implement the naming scheme introduced in the previous chapter. Section 3.3
describes all the details of our routing scheme and in Section 3.4 we extend the
protocol to a hierarchical multi-tree scheme. This version can be used to forward
packets both at the intra- and inter-domain level. In Section 3.5 we present the
implementation of the routing tables and the algorithm used to process routing
updates. In Section 3.6 we combine all the features of our routing scheme to
sketch an algorithm that supports both consumer and producer mobility. Finally,

43



44 3.1 Related Work

in Section 3.7 we evaluate the routing scheme.

3.1 Related Work

The routing problem in ICN has received considerable attention in recent years,
as evidenced by the numerous routing schemes proposed in the literature.

NLSR is a routing protocol based on names that uses the CCN packets (in-
terests and data) to exchange routing information [45]. Routers exchange link
state advertisement (LSA) packets, like in OSPF, flooding the network. These
packets contain information about the network topology (link states) as well as
the content available at the nodes. In order to reduce traffic, routers can use
the SYNC protocol implemented in CCN to collect updates. Once all the topo-
logical information is collected, each router computes multiple shortest path
trees, running the Dijkstra’s algorithm multiple times. This way, NLSR provides
multiple paths to every destination, that is to every node advertising a specific
name prefix. NLSR provides also a way to select the best next-hop router for
a particular name, using some cost associated to each edge. NLSR may suffer
protocol instability due to frequent updates and large forwarding tables. One
way to overcame frequent updates is to delegate some of the routing tasks to
the forwarding plane [86]. Using different forwarding “strategies”, each node
can temporary patch a route while the routing protocol proceeds to update the
forwarding tables.

A similar approach to NLSR is proposed by Dai et al. [26]. Like in NLSR,
this protocol uses OSPF to collect the topology information. The prefixes are
announced according to their popularity and only popular names are stored in
routing tables. In this work the requests for popular content are forwarded
according to the FIBs, while those for unpopular content are broadcast. This
approach has the advance of reducing the size of the forwarding tables, since
each router stores only the state related to the most popular objects. However
the popularity of the content may change rapidly and, when an unpopular con-
tent becomes popular, the network can be flooded by a lot of broadcast interests.
This protocol also does not support multiple routes to the same destination.

Garcia-Luna-Aceves proposes a routing protocol for ICN based on the dis-
tance between a node and the publisher of the desired content, called anchor [35,
36]. Anchors periodically send update packets that trace the number of hops
traversed from the anchor. Intuitively, when a router receives an update, the
router forwards the update only if it improves the best known distance to the
anchor nodes. Therefore, each node knows only the closest anchor for each con-



45 3.2 Naming Scheme Implementation

tent name. This routing protocol, similarly to the one that we propose in this
chapter, guarantees loop-free routes to all, some, or any of the anchor nodes,
according to the needs of the application.

Some proposals try to address the content in the caches at the routing level.
Eum et al. propose to advertise the cached content locally, in order to attract
relevant interests [29]. The main problem with this work is that, although the
content available in the caches is advertised only locally, a frequent cache update
may generate high volumes of control traffic. Also, this routing scheme may
suffer from reachability problems, since the FIBs may point to content that was
already evicted from a cache. This happens when the routing protocol does not
react quickly to cache updates.

Saino et al. propose a hash-routing scheme to steer the interest packets to-
ward a cache that may contain the required content [71] . The authors show
that they can increase the cache hit ratio using this technique.

Papadopoulos et al. [59] propose two greedy forwarding algorithms in a
hyperbolic space, meaning two particular address spaces, to which names must
be mapped somehow, that allow for greedy routing. These algorithms can be
used as a routing scheme for CCN. Although this routing scheme is promising in
theory, it is not clear if it usable in practice. In order to use this routing scheme,
one must construct a proper hyperbolic space for addresses that abstracts the
network topology, and then map names onto this space. However, there is no
evidence that such a space can be constructed in all cases, and the mapping
between names and the address space is also problematic. In fact, this mapping
must be somehow recomputed for each routing update, and also the network
topology and the names have to follow the same distribution, otherwise paths
may be stretched significantly.

The last approach proposed for routing in ICN is to use Distributed Hash
Tables (DHT) organized as an overlay. DHTs are used as a lookup service that
maps the name of a content to its location, similarly to how DNS maps URLs
(partially) to IP addresses. Examples of DHT are the name resolution network
in PURSUIT [77] and the resolution nodes in SAIL [2]. α-route is another DHT
scheme that targets the CCN architecture [3].

3.2 Naming Scheme Implementation

To evaluate our routing protocol we need to implement all the addresses that we
introduced in the previous chapter, namely descriptors, locators, and identifiers.

Identifiers have a marginal role, if any, in routing, so in this section we



46 3.2 Naming Scheme Implementation

present only content descriptors and network locators. In fact, for the content
identifiers we do not have a real implementation so far, since in this thesis we
mainly focus on the routing and forwarding, and because the congestion con-
troller developed in in Chapter 5 is mostly based on CCN, and therefore uses
hierarchical names. However, we imagine that a hash value computed over the
content of the packet, plus a sequence number, could be used as a content iden-
tifier. We leave the detailed design and implementation of identifiers for future
work.

3.2.1 Descriptors Implementation: Bloom Filters

A content descriptor is simply a set of tags, which are themselves strings. We
represent these sets of strings with a bloom filter [8]. Bloom filters allow us to
represent every content descriptor with a fixed-length field that hides the tags
and reduces the size of their representation. The matching relation between
descriptors (sets of tags) remains the same between bloom filters: a bloom filter
B1 matches a bloom filter B2 if B1 ⊇ B2. In other words, B1 matches B2 if all the
bits set in B2 are also set in B1. We will talk more about matching in the next
chapter.

In order to use bloom filters, we need to choose some basic parameters.
The main parameter is the width of the filters, which determines the precision
of the matching relation, since B1 ⊇ B2 may be a false positive, and also the
complexity of routing and forwarding. To choose a good width, we imagine
that a tag set would most likely contain no more than 15 tags. There are two
main justifications for this limit. First, a descriptor is a way to describe an object
that a user wants to retrieve. This is more or less what happens when a user
searches something using a search engine on the Web, where the search terms
are analogous to tags. Looking at the relevant statistics for Web search,1 we find
that most users input only one or two words for their on-line searches, and there
are almost no searches with more than 10 words. Therefore, even considering
rich applications that add tags to pure user tags, we believe that 15 tags can be
a conservative engineering choice that gives enough freedom to users express
their interests.

The second justification is that a descriptor with more than 15 tags may
become too selective, or not selective at all, depending on the usage. If a user
puts too many tags in the descriptor P used to publish some content, there will

1Statistics on the number of words per search. http://www.keyworddiscovery.com/
keyword-stats.html

http://www.keyworddiscovery.com/keyword-stats.html
http://www.keyworddiscovery.com/keyword-stats.html


47 3.2 Naming Scheme Implementation

be a low chance for the descriptor R in a request to match P, because, in order
to match, R has to be a superset of P. The same happens when a user sets a
subscription with a descriptor S. If S contains too many tags, there may never
be a notification N matching S. On the other hand, if the descriptor in a request
or a notification contains too many tags, it has high chances to match a lot of
publications or subscriptions. In this case, a user may get unrelated content, or
the network may be flooded by useless notifications.

In summary, we engineer our Bloom filters by considering a maximum of 15
tags per descriptors. Therefore we use Bloom filters with k = 7 hash functions
and width m = 192. In this setting, a subset check S1 ⊆ S2 would be considered
true wrongly, meaning resulting in a false positive, with probability

(1− e−k|S2|/m)k|S1\S2|

For example, for a descriptor S2 that contains 10 tags (|S2| = 10), and a
descriptor S1 that differs by 3 tags from S2 (|S1\S2|= 3), a test S1 ⊆ S2 would be
evaluated true, and so results in a false positive because S1 contains 3 elements
that are not in S2, with probability 10−11.

Therefore, notice that the limit of 15 tags is not a hard limit for the user, who
could easily define descriptors of more than 15 tags, with the only problem that
those descriptors may be more susceptible to false-positive matches.

3.2.2 Locators Implementation: TZ-labels

As described in Section 2.2, a packet can also carry an explicit destination loca-
tor. This can be easily implemented using IP addresses. However in our case we
decide to replace IP addresses with TZ-labels. A TZ-label is an address defined in
a routing scheme for trees by Thorup and Zwick [76]. We use TZ-labels because
our routing scheme is based on trees, and, in this setting, TZ-labels are more effi-
cient than IP addresses. In the TZ routing scheme, each router is identified with
a short label, namely its TZ-label. Using the TZ-label of the destination, carried
by the packet, and its own TZ-label, a router can take a forwarding decision and
send the pack to the next-hop. In other words, a router’s TZ-label serves both as
the locator of that router and its forwarding table.

This scheme is extremely efficient both in space and time. Each router has
to store a single TZ-label, which requires at most (1 + o(1)) log2 n bits for a
network of n nodes. This efficiency is not just theoretical. In practice, using
large networks such has the AS-level Internet topology, we need only 46 bits in
the worst case. In terms of time, the forwarding decision on such TZ-labels can



48 3.3 Routing Scheme

be computed by a router in few CPU cycles, resulting in a very high throughput
also on simple, general purpose machines. A more detailed description of the TZ-
label assignment and the forwarding process based on these locators is available
in Section 4.5.

3.3 Routing Scheme

In this section we introduce our routing scheme based on multiple trees. At the
core, this is a simple content-based routing scheme on a spanning tree. We ex-
tend this basic scheme using multiple trees within the same domain and across
network domains. The usage of multiple trees reduces the paths stretch and traf-
fic load on the tree edges. In this section we also introduce the usage of network
locators and we describe how to use them to efficiently handle communication
flows.

3.3.1 Why Should We Route On Trees?

In this thesis we decided to create a routing scheme based on trees. Trees are
good structure to use for routing, as they do not have loops and they can be used
easily to forward messages in multicast. These are good properties since ICN is
intrinsically multicast. When we have multiple sources for the same content,
or when we have multiple subscribers for the same event notification service,
there are points in the network where packets need to be duplicated and sent to
multiple destinations. This process can easily generate loops.

CCN uses tables called Pending Interest Tables (PITs) at each node. PITs are
used to collect soft state related to the interests forwarded by the router but not
yet satisfied (and therefore removed) by a corresponding data packet. The PITs
have three main purposes:

1. The state in the PITs is used to route the data packets back to the the user
that sent the interest.

2. PITs are used to aggregate interests for the same content, and therefore
reduce traffic in the network.

3. PITs can stop loops in the interests forwarding process.

In this section we present some scenarios where the PITs fail to detect loops
and they lead to a misbehavior of the network. The most recent versions of



49 3.3 Routing Scheme

CCN (since version 1.0) use a different implementation of the PITs. NDN still
uses a PIT similar to the one proposed in the initial implementation of CCN.
We therefore compare the behaviors of NDN and the older version of CCN, both
indicated with CCN 0.x, with the new CCN, indicated with CCN 1.x

In CCN 0.x, each interest has a name associated with a nonce that uniquely
identifies that particular interest. The PIT stores the nonce with the name, in
order to avoid to re-send the same interest in case of loops. CCN 1.x does not
use nonces. Instead, an interest has a hops-to-live counter that limits the interest
transmission. At each hop, the hops-to-live counter is decreased and, when it
reaches 0, the interest is dropped. This approach does not prevent loops, it
simply mitigates the problems induced by loops.

a b

c

d e

f

interest

Figure 3.1. Scenario 1: loop path

In Figure 3.1 we show a simple scenario where an interest, represented with
a blue arrow, falls into a loop. The interest goes from node a to node b, then b
decides to forward the interest along to c, and node b also records the interest
in its PIT. In the case of CCN 0.x, this PIT entry contains the name of the interest
and its nonce. When b receives the interest for the second time, from node f ,
it detects a loop, because the interest has a nonce that is already in the PIT.
In this case node b discards the interest. However, if the time required for the
interest to go through the loop to reach node b for the second time is higher
than the timeout set in PIT entry at node b, then the interest may loop. The loop
is represented in the figure with dashed arrows. In CCN 1.x, node b is unable
to detect the loop, so the interest loops but is eventually discarded as soon as
the hops-to-live counter goes to zero. Although this version has the advantage
of eventually cutting loops, it may also generate useless traffic, especially if the
initial hops-to-live counter is high. On the other hand, if the hops-to-live counter
is too low, then the interest may never reach any of its destinations and the user
may not receive the requested content.

Other problems with the PITs may occur when an interest is forwarded on



50 3.3 Routing Scheme

multiple paths, as described in Figure 3.2 and Figure 3.3. This happens, for
example, when an interest is used as a notification packet. In Figure 3.2, node
b sends the same interest to nodes c and f , and the two copies of the interest
are propagated to node d. In CCN 0.x node d detects the duplicate interest,
since it receives two interests with the same nonce form two different interfaces.
What happens in this case is that the second interest, say the one from node
f , is discarded and node d keeps track only of the interest coming from node
c. The data packet related to the interest goes back to node a using the path
d, c, b. This creates a dangling PIT entry at node f that will eventually timeout
and therefore will eventually discard. In the case of CCN 1.x, since node d does
not detect any duplicate delivery of the same interest, node d will aggregate the
two interests from nodes c and f . Node d then forwards the data packet to both
c and f , so node b will receive duplicated data (represented with a dashed line).

a b

c

d e

f

interest
data

Figure 3.2. Scenario 2: duplicated interest

Ultimately, node b forwards only one copy of the data to a, since the first for-
ward to a also removes the corresponding PIT entry. In this scenario everything
works correctly from the application viewpoint, even if in the case of CCN 1.x
we have some extra traffic.

However, the same scenario may create some problems, as described in Fig-
ure 3.3. As in the previous case, node b sends the same interest to both c and
f , and d receives first the interest from c and later the one from f . In CCN 0.x
node d discards the interest from f , while in CCN 1.x the two interests get ag-
gregated. At this point, node g sends another interests with the same name,
indicated in the picture with a green arrow, to node f . Node f has an entry
for that interest in its PIT, so the interests is aggregated. This happen in both
CCN 0.x and CCN 1.x. However, in CCN 0.x d forwards the data packet only
to node c, because the interest from f was discarded. So, in this case, node g
never receives the requested data.



51 3.3 Routing Scheme

This does not happen in CCN 1.x, because node d aggregates the interests
that are coming from c and f , without discarding them, and node g receives the
required data packet. The data packets sent by CCN 1.x are represented with
dashed arrows in Figure 3.3. Also in this case CCN 1.x generates useless traffic,
since the data packet from node f to b is a duplicated packet.

a b

c

d e

f

g

interest

data

Figure 3.3. Scenario 3: duplicated interest

In a network that is multicast in nature, it is not easy to avoid loops. PITs are
generally good to detect loops, but they may fail in some cases. When an error in
a PIT occurs, some users may not receive the data that they ask for. Adding the
hop counter solves the problems of the PIT, but it introduces traffic overhead.

Our design avoids all these problems, by construction, using trees as a basis
for routing. This way packets will never fall into loops, whether they are unicast,
anycast, or multicast packets. And furthermore, this design does not require any
in-network state thanks to locators.

Other architectures such as PURSUIT propose to use trees to forward pack-
ets in what amounts to a multicast group. In particular, thanks to the LIPSIN
construction, the PURSUIT architecture can efficiently represent and forward
packets along a tree connecting a producer to all consumers [48]. A LIPSIN tree
is represented as a set of edges represented with a compact Bloom filter. The
notion of a LIPSIN tree is limited to a local domain, where it is reasonable to
assume knowledge of all links.

Although based on trees, the PURSUIT architecture and its routing scheme
differ quite substantially from TagNet. PURSUIT uses a DHT overlay to locate
the content, and then uses a “topology layer” to build and return a LIPSIN tree to



52 3.3 Routing Scheme

distribute content. Thus PURSUIT is more akin to a connection-oriented network
than a datagram network, in the sense that an all-knowledgeable and conceptu-
ally centralized topology layer must set up a LIPSIN tree before that the tree can
be used to transmit content. By contrast, in TagNet we use a set of base trees
that are not specific for any producer, and then we forward each packet along
one of those trees making hop-by-hop forwarding decisions based on the packet
content (descriptor).

It is worth noticing that, since we do not need to keep any in-network state
for request packets, we can completely remove the PITs from our architecture.
This reduces complexity but also eliminates the aggregation of concurrent re-
quests, and therefore may increase traffic. However, our architecture still allows
for in-network caching, which can play a similar role as the PITs for interest ag-
gregation. This is because, as soon as a request is satisfied along a path, all the
following requests that cross that path can be satisfied by the cached content.
Therefore we believe that our architecture would not introduce much additional
traffic, as compared with CCN, even without the PITs. Our intuition is also con-
firmed by a study conducted by Kazi et al. that shows the dynamics that relate
the behavior of the caches and the PITs [49]. In particular, the study shows that,
under normal traffic conditions, interest aggregation in the PITs reduces traffic
only marginally, and that the majority of traffic reduction is due to cached con-
tent. Interest aggregation in the PITs becomes more effective only in the case of
heavy loads, when cached content is too quickly overwritten by new content.

3.3.2 Routing on a Single tree

TagNet uses trees as a basis for routing. This means that the network commits
each new packet to a tree, identified with a packet header, and then forwards
the packet on that tree. We now describe how we route on a single tree. First
of all, we need to construct a tree T that spans the network, but for now we
assume that we have such a tree. Consider as an example the simple network
of Figure 3.4. Each router v knows the list of neighbors adjT

v that are neighbors

also on the tree T . For example, in Figure 3.4, node f knows adj
Tgreen

f = {b, j, k}.
Each router also stores a Forwarding Information Base (FIB) that associates

each neighbor w in adjT
v with a predicate. A predicate p is a conceptually a list of

descriptors. In the FIB the router stores a list of predicates Pt,w for each neighbor
w in adjT

v . Each list Pt,w includes all the predicates announced by all the nodes
reachable through neighbor w, including w itself. Figure 3.4 shows the FIB of
node b. For example, PTgreen,c is the union of the predicates announced by the
nodes reachable through c, namely pc, pg , and ph.



53 3.3 Routing Scheme

i j k

d e f g h

a b c

FIB router b

tree T , next-hop w predicate PT,w
Tgreen, c pc ∨ pg ∨ ph
Tgreen, f pf ∨ pj ∨ pk
Tgreen, e pe ∨ pa ∨ pd ∨ pi

D ⊇ pg

Figure 3.4. Routing on one tree

When a router receives a packet with a descriptor D, it forwards the packet
to all the neighbors w in adjT

w that are associated with a matching predicate.
In order to avoid loops, the router never forwards the packet on the incoming
interface. We say that a descriptor D matches a predicate p if D matches at least
one of the descriptors listed in the predicate p. In the example of Figure 3.4,
router b receivers a packet with a descriptor D that matches the predicate pg ,
announced by node g. Using the first entry of the FIB, router b forwards the
packet to node c. At the next hop, node c sends the packet to g.

Since we route packets on a tree, we can easily control the global fan-out of
each packet using router-local decisions. The fan-out k of a packet is a parameter
set in a packet header. If we set k = 1, the network never duplicates the packet,
and instead forwards it to a single destination. This corresponds to a an anycast
packet, which is the default setting for a request packet. When we set the fan-
out k =∞, the network sends the packet in multicast, so each router forwards it
along all matching interfaces, and the packet will reach all the destinations with
a matching predicate. This is the default fan-out for a notification packet. We
can also set a limit to the fan-out, with 1< k <∞. Using only local decisions at
each router we can guarantee that the forwarding process will deliver no more



54 3.3 Routing Scheme

than k copies of the packet. Each router selects at most k output interfaces,
corresponding to k neighbors, and then partitions the fan-out over the forwarded
copies of the massage.

As described earlier in this chapter (see Section 3.2), we also provide a uni-
cast service on top of our spanning trees. To implement such a service we use
locators, and more precisely we use TZ-labels [76]. Using such locators we are
able to forward every packet in a unicast fashion extremely efficiently. In the
next section we describe how we combine descriptor-based routing and locator-
based routing to implement a request/reply service, and how we can exploit
locators in the communication flow.

3.3.3 Request/Reply Service and Communication Flow

Every packet in our architecture can carry different kinds of addresses, each
with a specialized functionality. With these addresses we can implement a re-
quest/reply service that can use expressive and rich descriptors, and, at the same
time, use fast forwarding that do not require any in-network state to route reply
packets back to the user. The main idea is to forward a request using descriptor-
based forwarding, so that a request can be delivered to one or more producers
that are able to satisfy such request, but then to use the TZ-label of the consumer
to deliver the data back to the consumer.

Figure 3.5 shows a simple request/reply exchange between nodes i and c.
The request issued by node i contains a descriptor D that in this case matches
predicate pc, plus the locator of the source node TZi in the src header. A request
packet, as well as a notification packet, may also contain a payload body. The
network then forwards the request packet toward a producer of the requested
data (in this case node c) using content-based forwarding, indicated with the
blue arrows, matching descriptor D against each router’s FIB.

When the request arrives at producer c, the producer creates a reply packet
that contains a content identifier (shown with a green box labeled Obj-ID in
Figure 3.5), the destination locator TZi (in the dst header) that the producer
copies from the source locator in the request packet, the source locator TZc, and
the requested data. The network then forwards the reply packet to node i using
the given destination locator TZi, using locator-based forwarding, indicated with
yellow arrows in Figure 3.5. At this point, node i knows the locator of the
producer node, c, as well the content identifier of the next block of content that
it needs to retrieve, which should be derived from the identifier of the content
just received. Thus, i can send subsequent requests directly to the producer node
c using the fast locator-based forwarding, and also using a content identifier



55 3.3 Routing Scheme

that may be used to retrieve the data from the cache of some router along the
forwarding path.

i j k

d e f g h

a b c

request

D ⊇ pc
src:TZi i

e

b c
reply

Obj-ID

dst:TZi

src:TZc

data

c

e

b

i

descriptor-based forwarding
locator-based forwarding

Figure 3.5. Request/Reply Service

Notice how TagNet speeds up forwarding using locators. In particular, notice
that the very fast locator-based forwarding applies to most packets in bulk data
transfers such as the multi-media streams that make up most of today’s Internet
traffic. Locators are network-defined (opaque) quantities, and can considered
quite stable, much like IP addresses. Still, it may happen that a locator changes
during a communication flow, due to the mobility of the nodes involved in the
communication. In this case, the transport protocol must reestablish a valid
locator, which can usually be done efficiently in the most common case in which
only one end-point moves at any given time. We briefly discuss mobility in
TagNet in Section 3.6. Another potential problem with locators is related to
privacy, since a locator may reveal the identity of a consumer requesting data.
If anonymity is required, than a locator should be created so as to preserve
anonymity of users, like in onion routing schemes [40].

3.3.4 Using Multiple Trees

So far we discussed about how to route packets on a single tree, using descriptors
and locators. Although a tree is a good structure to route packets, it also has two
disadvantages illustrated in figures 3.6 and 3.7. Figure 3.6 shows that a tree
may stretch paths, meaning increase the number of hops that a packet needs



56 3.3 Routing Scheme

to traverse to reach a destination as compared to traveling on the full network
graph. In the example network of Figure 3.6 a packet could go from i to j in one
hop using the full graph (blue arrow), but it needs four hops on the tree (orange
arrows). This leads to additional latency and traffic.

i j k

d e f g h

a b c

Figure 3.6. Problem using a single tree: higher latency

Figure 3.7 illustrates the second problem, namely increased congestion. Rout-
ing on a tree forces all network traffic to go through a limited set of edges,
thereby reducing the throughput of the whole network. Consider for example
the traffic flowing between the right and left side of the network of Figure 3.7.
This is the traffic crossing the cut indicated with the dashed vertical line. Using
the tree, all this traffic mush go through the (e, b) link, denoted with the orange
arc. However, if we consider the entire network, there are three links that cross
the cut and therefore that could carry the crossing traffic. These are highlighted
in blue and they are (e, b), (e, f ), (i, j). Thus, informally, we can say that using
the tree multiplies the congestion on link (e, b) by a factor of three for the traffic
crossing the indicated cut. More generally, depending of the topology and on
the traffic patterns, using a tree may significantly reduce the overall network
throughput.

The stretch and congestion induced by trees are well-known problems that
have been thoroughly analyzed from a theoretical perspective. What is also well
known, is that it is easy to mitigate these problems significantly by introducing
multiple trees. Using multiple trees means setting up multiple trees and then
forwarding each packet to one of them. This way it is possible to reduce the
stretch and increase the throughput of the network on average.



57 3.3 Routing Scheme

Consider for example the network and tree of Figure 3.6. We could construct
another tree that includes the ( j, i) link. As we already observed before, the
distance between j and i is four on the tree in Figure 3.6, but is one in the
new additional tree. If we spread the traffic evenly over the two trees, then, in
expectation, the distance between j and i is now 2.5. In general, increasing the
number of trees and therefore using more network edges, we can reduce the
expected distance and latency between two nodes. The same reasoning holds
also for the throughout of the network: multiple trees can be used to increase
the throughput and reduce the load on single edges.

i j k

d e f g h

a b c

Figure 3.7. Problems using a single tree: lower throughput

The problem of covering a network with trees so as to achieve specific de-
sign objectives has been studied extensively from a theoretical perspective. For
example, Räcke formulates a method to cover a network with overlay trees to
achieve the theoretically minimal congestion under unknown traffic [65]. How-
ever, such result does not seem to have an immediate practical applicability. The
proposed algorithm produces a very high number of trees, in the order of the
number of edges in the network. Too many trees are then complicated to build
and maintain. Another problem is related to the algorithm itself, that is cen-
tralized and quite complex, and, therefore, would be usable for local trees but
definitely not for global trees, meaning trees that span multiple ASes.

Still, we believe that in practice, within a realistic network topology, it is
possible to achieve a good compromise between the number of trees and the
network coverage. As we will see later, our experimental evaluation confirms
this intuition.



58 3.4 Hierarchical Multi-Tree Routing

Since we use multiple trees, we need to extend our routing algorithm in
order to deal with them. For the content-based part we just need to commit a
packet to a single tree, somehow identifying the tree within the packet header.
Each router has a FIB that contains the information related to all the trees, so
it has an entry for each tree T that covers the network, and for each neighbor
w in adjT

w. The router then simply matches the packet against the entry that are
related to the tree indicated in the header of the packet.

Locators are similarly easy to adapt. Now a network locator must identify
the tree in which it applies in addition to the the TZ-label of the node. In other
words, each node now has multiple TZ-labels, one for each tree.

Thus using multiple trees does not pose any serious conceptual issue for
forwarding, as the forwarding reduces to the forwarding on a single tree once
the tree is properly identified. However, using multiple trees does raise some
immediate scalability issues, since each node now needs to store what amounts
to multiple FIBs, one for each tree. Later, in Section 3.5, we discuss how to
store all the required information, how to compress it, and how to update it. We
show in the evaluation section that our routing scheme scales both in terms of
memory requirement and update time.

Another fundamental problem is how to build and maintain a good set of
trees: one that would be as small as possible, and yet would approximate the
full network as closely as possible in terms of path lengths and overall through-
put. In this thesis we do not address these topological questions, which are
part of another dissertation [60, 61]. Still, for completeness, in our evaluation
we show a few preliminary results that demonstrate that even a few trees can
approximated quite well the Internet’s AS-level topology [16].

3.4 Hierarchical Multi-Tree Routing

In the previous sections we described the routing scheme in a local network,
inside an AS. In this section we discuss how we can extend our routing scheme
to route packets also among ASes, and therefore define a routing scheme that
can be used at the Internet scale.

In our routing scheme we can have multiple trees at different levels in the
network, and this creates a hierarchical routing scheme. In this section we de-
scribe a 2-level scheme, but it is possible to generalize the scheme to more levels.
In our 2-level routing scheme we have multiple trees that are used to cover the
AS-level topology, and also multiple trees inside each AS. The first set of trees
is used to route packets among ASes for inter-domain routing, while the other



59 3.4 Hierarchical Multi-Tree Routing

trees are local trees, known only by the routers inside an AS. These trees are
used for intra-domain routing.

As for the basic case of a multi-tree scheme, each tree generates its own FIB,
and, theoretically, each router needs to store all the FIBs related to all trees. In
practice, we have a way to compress the routing tables, therefore the FIBs, across
trees. In the end, each router has a single FIB that contains all the aggregated
information. We describe the aggregation process in the next section.

In the network there are two types of routers: internal routers and gateway
router. The internal routers are the routers that are connected only with routers
inside the same AS. Gateway routers are the routers responsible for the con-
nection among two or more ASes. Internal routers need to know only the local
trees, and they store the aggregated predicates of the hosts that are inside the
same AS. Internal routers also need to know at least one TZ-label of one gateway
router for each global tree. A gateway router needs to store more information.
The FIB of a gateway router contains the aggregated predicates announced by
all the ASes. They also store information for all the local and the global trees. A
gateway router knows the connectivity with the neighbor ASes, and, in particu-
lar, the gateways to use to forward a packet to a certain AS. For this reason, the
gateway routers store all the TZ-labels of all the local gateway routers.

Using all this information the network is able to forward packets inside and
across different ASes, using a combination of content-based and locator-based
forwarding. Here we describe the algorithms used to forward a packet, and later
we present an example.

We start describing how we forward a packet using content-based forward-
ing. A packet is assigned to a local tree by the access router. The packet is for-
warded locally on the selected tree, matching the packet against the FIB stored
on each router. If the packet needs to be forwarded also at the global level, it is
assigned to a global tree. To assign a global tree to a packet the access router
sends the packet to a local gateway router, using the locator (or TZ-label) of
the selected gateway. In fact, the local router does not have any knowledge of
the global trees. At this point the gateway has all the information to route the
packet at the global level. It may happen that the packet needs to be forwarded
to a neighbor AS that is reachable only from another gateway router, and so, the
packet needs to cross the local AS to reach the proper gateway. This can hap-
pen because at a high level the AS is a single node, but, in reality, each AS is a
network, and the responsibility to route a packet to the neighbor ASes is shared
among multiple gateways as described in Figure 3.8.

On the left side of Figure 3.8 there is an AS (gray circle), crossed by two
global trees. The picture on the right shows the zoom inside the AS, and it



60 3.4 Hierarchical Multi-Tree Routing

shows the global trees, as well as the local tree (indicated in black) that covers
the local AS network. In the figure, only one gateway router participates to both
the global trees, while the other two knows only one of the two trees.

Inter-Domain

Level

Intra-Domain

Level

gateway router

internal router

internal tree

global tree

Figure 3.8. Gateway routers and global trees

To forward the packet to the right gateway router we use again the TZ-labels.
The same situation may occur when a packet arrives to a new AS that is not
its final destination. In this case the packet needs to cross the AS, reach the
correct gateway, and be forwarded to the next AS. In this process, the packet is
forwarded using locators on a local tree.

The other way that we can use to forward a packet is to use locators. In the
hierarchical extension of our routing scheme each locator is composed by a stack
of node locators (that can also contain a single value), and, as in the multiple
trees case, each locator is compose by a pair (T,`), where T is the tree identifier
and ` is the TZ-label of a node on the tree T . In the case of a routing scheme on
two levels, like the one that we are analyzing, the locator of a destination node
may contain two values: the locator (TAS,`AS) related to the destination AS on
an AS-level tree TAS, plus the locator (Tr ,`r) of the destination router r on an
inter-AS tree Tr .

When a packet has a destination locator like (TAS,`AS)/(Tr ,`r), the network
first tries to forward the packet toward the locator on the top of the stack. Once
the packet reaches the destination (TAS,`AS), the first router pops the address
from the stack and start to use the second locator, which is (Tr ,`r).

It may happen that, at some point in the forwarding process, some router is



61 3.4 Hierarchical Multi-Tree Routing

not able to route a packet using the address at the top of the destination stack,
because it does not have enough knowledge. This is the case when a local router
needs to forward a packet on a global tree. In this case the local router pushes
a new locator (Tg ,`g) on top of the stack, where Tg is a local tree known by
the local router, and `g is the label of a gateway router, that is able to route
the packet on the global trees. When the packet reaches the gateway `g , the
gateway pops the first label and forward the packet on the global tree.

As in the case of content-based forwarding it may happen that a packet that
reaches a new AS needs to cross it to reach another one. Also in this case, the
gateway router forwards the packet on a local tree to the right gateway using
TZ-labels.

Figure 3.9 shows an example of packet forwarding in our hierarchical rout-
ing scheme, where we combine the usage of content-based and locator-based
forwarding to send a request packet and its related reply packet. In the picture
the two big gray ovals represent two ASes, called AS1, the one at the bottom,
and AS2, the one at the top. The two ASes are spanned at the global level by
two trees, one represented in red and one in green. Internally each AS is cov-
ered with a single tree, represented with black edges. Inside each AS we have
internal nodes and gateway routers, represented as described in the key at the
bottom of the picture.

In this example, node A, in AS1, sends a request packet with a descriptor D
that matches the predicate announced by node B, which is in AS2. The initial
request packet is represented in the the Figure 3.9a. The request packet contains
the descriptor D and the locator of node A, which is (TAS1, T ZA), in the source
stack. Node A is a local router and does not have the knowledge of the predicates
announced by other ASes, therefore A does not know how to forward the request
packet. For this reason node A needs to send the packet to a gateway router,
which is node G2 in the example. To forward the packet, A pushes the locator
(TAS1, G2) of G2 in the destination stack of the request packet. The network
forwards the packet to G2 using the locator-based forwarding, indicted with
yellow arrows.

Figure 3.9b shows what happen when the request packet reaches the gate-
way router G2. First of all, G2 pops its own label from the destination stack,
because the request reached the final destination. Then G2 performs a con-
tent lookup on its FIB and realizes that the request needs to be sent to the au-
tonomous system AS2. G2 selects a global tree, pushes the locator of AS1 for
the select tree in the source stack of the request packet, and forward the packet
to G1 in AS2. In Figure 3.9b G2 selects the green tree as a global tree, so the
source label of AS1 to push in the source stack of the packet is (Tgreen, AS1).



62 3.4 Hierarchical Multi-Tree Routing

AS1

AS2

G1

G2

G1

B

A

request

D ⊇ pB
dst stack

TAS1, TZG2

src stack

TAS1, TZA

AS1

AS2

G1

G2

G1

B

A

request

D ⊇ pB
dst stack

src stack

TAS1, TZA

Tgreen, TZAS1

AS1

AS2

G1

G2

G1

B

A

request

D ⊇ pB
dst stack

src stack

TAS1, TZA

Tgreen, TZAS1

AS1

AS2

G1

G2

G1

B

A

reply

Obj-ID

dst stack

TAS1, TZA

src stack

TAS2, TZB

data

Tgreen, TZAS1

TAS2, TZG1

AS1

AS2

G1

G2

G1

B

A

reply

Obj-ID

dst stack

TAS1, TZA

src stack

TAS2, TZB

data

Tgreen, TZAS1

Tgreen, TZAS2

AS1

AS2

G1

G2

G1

B

A

reply

Obj-ID

dst stack

TAS1, TZA

src stack

TAS2, TZB

data

Tgreen, TZAS2

(a) (b)

(c) (d)

(e) (f)

gateway router

internal router

source/destination router

internal tree

global tree

descriptor-based forwarding

locator-based forwarding

Figure 3.9. Packets forwarding on hierarchical multi-trees



63 3.5 Routing Information Based : Representation and Maintenance

When the request packet reaches node G1 at AS2 (Figure 3.9c), node G1
simply matches the descriptor D on its FIB and forwards the request toward
router B.

Router B is the publisher node, and it has the data requested by node A. In
Figure 3.9d we show the data packet created by the router B. The data packet
contains a content identifier, indicated with the green box labeled Obj-ID, and, in
the source stack, the data packet has the locator (TAS2, T ZB), which is the locator
of node B. In the destination stack of the data packet, node B copies the source
stack of the request packet, namely (Tgreen, T ZAS1)/(TAS1, T ZA). In addition node
B pushes the locator (TAS2, T ZG1) of the gateway G1 in the destination stack,
because node B is a local router, and it does not know how to route on a global
tree. The forwarding of the data packet from node B to the gateway G1 is done
using locator-based forwarding.

In Figure 3.9e the data packet arrives to node G1. G1 removes its own
locator from the destination stack, forwards the packet on the global tree Tgreen

according to the locator at the top of the destination stack, and adds the locator
(Tgreen, T ZAS2) of AS2 in the source stack.

In the last step (Figure 3.9f) node G2 removes the locator (Tgreen, T ZAS1)
from the top of the destination stack, because the request is now inside AS1,
and forwards the packet to node A using the locator (TAS1, T ZA). Node A, at this
point, has the required data. In addition node A knows the locator of node B
in AS2, therefore A can send follow up requests using the locator of B through
locator-based forwarding.

3.5 Routing Information Based : Representation and
Maintenance

In this section we describe a concrete implementation of the Routing Information
Base (RIB) for our routing scheme. On each router v we need to keep some state
for every tree T . In particular each router needs to store:

• the adjacency list adjT
v of v on T , meaning the subset of v’s neighbors

adjacent to v also on the tree T .

• the TZ-label `T
v of router v on T .

• the map PT
v : w → PT,w that associates each neighbor w in adjT

v with a
predicate PT,w, where PT,w is the set of content descriptors announced by
the nodes reachable through w.



64 3.5 Routing Information Based : Representation and Maintenance

The goal of our implementation is to create a data structure that is compact
and easy to maintain, to allow scalability both in terms of space and update time.
In the list of information to store on the routers the only complex part is the map
PT

v . In fact adjT
v and `T

v require minimal space and they do not need frequent
updates, because they are quite stable, like the trees used in our routing scheme,
therefore we can use a simple data structure to store this data (e.g a vector or
an hash table). On the other hand, the map PT

v changes with the changing
of application preferences (content descriptors) and is also by far the heaviest
component of the RIB. In this section we focus on the implementation of PT

v and
we show how we can compress and update this data structure.

3.5.1 RIB Minimization: Compression Techniques

The amount of the information that we need to store in the RIBs of our routers
can be quite large. In case of gateway routers we need to store all the predicates
announced by all the ASes. For this reason the compression of the RIBs is funda-
mental. In this section we present three compressions that we apply to our data
in order to minimize the size of the routing table on each node.

The first compression comes from the subset aggregation. As described in
Section 2.2.4, descriptors aggregate by subset relation. If a router has two de-
scriptors Di

1 and Di
2 associated to the same interface i, and Di

1 ⊆ Di
2, then the

router can discard the descriptor Di
2 and store only Di

1, which is the more general
one. In fact, every packet that matches Di

2 also matches Di
1.

The second compression is due to the bloom filter representation of the de-
scriptors, introduced in Section 3.2. This representation avoids the storage of
sets of strings and gives us a compact way to represents set of tags. Thanks
to bloom filters, we represent all the descriptors with a fix length in the packet
header, and this is useful when we need to process the packet for the matching
procedures.

The last compression that we apply to the RIBs is described in Figure 3.10.
On the left side of the figure there is a RIB generated by two trees (a red and a
green one) implemented as a concatenation of two RIBs, one for each tree. In
this representation there are many redundant data. Each descriptor, represented
as a sequence of 8 bits, appears multiple times in the table, associated with
different interfaces. In the picture each descriptor is also associated with a letter
that helps to spot duplicated descriptors: if the same letter appears more than
once the descriptor is replicated. Descriptors replication is mainly due to two
factors. Popular descriptors have more chances to appear multiple times in the
same table, just because many users or applications use them. The second reason



65 3.5 Routing Information Based : Representation and Maintenance

RIB

tree T , next-hop w predicate PT,w

Tgreen, c

00100101 (a)

01010000 (b)

01000001 (c)

Tgreen, f

00100100 (d)

01010000 (b)

10011000 (e)

Tgreen, e
00010000 (f)

10000101 (g)

Tred , c
00100101 (a)

01000001 (c)

Tred , e

00010000 (f)

10000101 (g)

00100100 (d)

Compressed RIB

descriptor D tree T , next-hop w

(a) 00100101 (Tgreen, c), (Tred , c)

(b) 01010000 (Tgreen, c), (Tgreen, f)

(c) 01000001 (Tgreen, c), (Tred , c)

(d) 00100100 (Tgreen, f), (Tred , e)

(e) 10011000 (Tgreen, f)

(f) 00010000 (Tgreen, e), (Tred , e)

(g) 10000101 (Tgreen, e), (Tred , e)

Figure 3.10. RIB index by descriptors

for duplicated descriptors is the usage of multiple trees. Since we replicate all
the routing state for each tree there is an high probability that a router sees the
same descriptor over different trees.

Descriptors are the most expensive component to store in the RIB: in our
implementation a descriptor requires 24 bytes, while a tree-interface pair can be
stored in only 2 bytes. For this reason, we avoid to store descriptors multiple
times, and we use the representation on the right side of Figure 3.10, where we
index the RIB by descriptors. In this representation the RIB contains only unique
descriptors, and, for each descriptor, there is a list of tree-interface pairs, used
to find the next hop in case of a matching packet.

3.5.2 RIB Representation: Data Structure

The representation on the right side of Figure 3.10 is the most tight way to
represent our RIB. Unfortunately it is not possible to use this data structure in
practice, because we need to update the RIB. A table like the one in the picture
requires a linear scan for each descriptor that we want to add or remove from
the table. A linear scan can be really costly in case of large RIBs. In our imple-
mentation we need a data structure that is compact as the table representation,
but also easy to modify.

When we process update packets for our routing protocol, we want always to
keep the RIB minimal. This means that, for each descriptor Di

1 associated with
interface i, there must be no other descriptor Di

2 on the same interface i such



66 3.5 Routing Information Based : Representation and Maintenance

that Di
2 ⊆ Di

1. To guarantee this property, whenever a descriptor D needs to be
added to the RIB, the router needs to search for subsets or supersets of D in the
table. Similar checks are required also in the case that a descriptor needs to be
removed from the RIB. We need a data structure that allows subset and superset
check operations, which are the building blocks of our update algorithm, in a
reasonable amount of time.

To summarize, we need a data structure that requires small amount of mem-
ory and allows fast implementation of the subset and superset check. In our
implementation we use a PATRICIA trie [56] to represent our RIB. An example
of PATRICIA trie that stores the descriptors of table in Figure 3.10 is presented
in Figure 3.11.

The PATRICIA trie requires minimal space because, as shown in the figure,
each descriptor appears only once. The data structure requires two pointers per
nodes, but thanks to these pointers we can simply rearrange the data structure
to store new descriptors. Each node also has an extra pointer to keep track of
the next-hop information, represented as a list of 2 byte tree-interface pairs.

10011000

01010000 10000101

00100101 01000001

00010000 00100100

0 1

0 1
0 1

0 1
0 1

0 1 0 1

T1 → f

T1 → c
T1 → f

T1 → e
T2 → eT1 → c

T2 → c

T1 → c
T2 → c

T1 → e T1 → f

Figure 3.11. PATRICIA trie used to store the RIB

The PATRICIA trie admits to a straightforward implementation of the subset
and superset check, which amount to simple walks on the trie. Thanks to the
PATRICIA trie structure we can skip some branches of the data structure during
the subset checks: if we look for subsets of a descriptor D, and D contains a zero
at a position identified by a node n, we can skip the entire subtree under n that
contains a one in that position. A similar strategy works also in case we look for
supersets of D.



67 3.5 Routing Information Based : Representation and Maintenance

In the implementation we also divided the trie in multiple tries, one for each
Hamming weight (number of the 1s in a bloom filter). This allows us to skip en-
tire tries with descriptors that contains too many (or too few) ones with respect
to the descriptor that we are trying to add (or remove). In addition, this allows
parallelizations, since each trie is independent from the other. In our implemen-
tation we use multiple threads to process multiple tries simultaneously.

3.5.3 RIB Maintenance: Update Algorithm

Routing information propagates in the network through update packets, each
representing an incremental change. Thus an update packet contains a set of
descriptors to be added and a set of descriptors to be removed. We refer to these
sets as a routing delta.

Each router processes an update packet using the algorithm presented in
Figure 3.12. The algorithm consists of a main function called apply_delta (line 1)
that processes a packet update received from interface ifx on the tree T . The
apply_delta function calls remove_descriptors (line 4) for all the descriptors in
the removal delta, and then add_descriptors (line 6) for all the descriptors in the
addition delta.

The processing of a routing update may produce changes in the local RIB,
and may also trigger new updates to be forwarded to neighbor routers. The
apply_delta function returns this set of updates through the result map, which is
an input/output parameter passed to the apply_delta function.

In function add_descriptor (line 8) we try to add a new descriptor to the RIB.
First, we check if the new descriptor d is not a superset of other descriptors
associated with the same interface and tree from where the router received the
update. If no subset descriptor exists, we add d, and we remove all the supersets
of d from the incoming interface ifx on tree T . This procedure guarantees that
the RIB will always be minimal (no redundant descriptors). The router must
then propagate descriptor d as an addition delta for all the interfaces on tree T
except the incoming interface ifx and any other interface i that, for descriptor
d, is already covered by another more general descriptor d ′. We say that an
interface i is covered for descriptor d by a descriptor d ′ when there exists another
interface i′ on T associated with a certain descriptor d ′ ⊆ d. In practice, this
means that the router has already advertised a more general descriptor d ′ due
to a previous update received from another interface i′. Yet in other words, the
router does not need to propagate the new descriptor d because a previously
added descriptor d ′ already covers and therefore masks d.

To clarify this point we show an example in Figure 3.13 where we show a



68 3.5 Routing Information Based : Representation and Maintenance

1 void apply_delta (map<int,delta> & result,
2 delta update, int ifx, int T) {
3 for (descriptor d : update.removals)
4 remove_descriptor(result, d, ifx, T);
5 for (descriptor d : update.additions)
6 add_descriptor(result, d, ifx, T); }

8 void add_descriptor (map<int,delta> & result,
9 descriptor d, int ifx, int T) {

10 if (!exists_subset_of(d, ifx, T)) {
11 add(d, ifx, T);
12 remove_supersets_of(d, ifx, T);
13 for (int i : interfaces[T])
14 if (i != ifx && no_subsets_on_other_ifx(d, i, T))
15 result[i].additions.add(d); } }

17 void remove_descriptor (map<int,delta> & result,
18 descriptor d, int ifx, int T) {
19 if (exists_descriptor(d, ifx, T)) {
20 remove(d, ifx, T);
21 for (i : interfaces[T]) {
22 if (i != ifx && no_subsets_on_other_ifx(d, i, T)) {
23 result[i].removals.add(d);
24 result[i].additions.add(supersets_of(d, T)); } } } }

Figure 3.12. Incremental Update Algorithm



69 3.5 Routing Information Based : Representation and Maintenance

sequence of 4 updates received by a router. The figures come in pairs labeled
(a.1) and (a.2), (b.1) and (b.2), etc., where the first and second picture in a pair
describe the state of the router before and after receiving the update, respec-
tively.

(a.1)

1 2

34

+{A}

(a.2)

{A}
+{A}

+{A}
+{A}

(b.1)

{A}

+{A,B}

(b.2)

{A} {A,B}

+{A,B}

(c.1)

{A} {A,B}

+{A}

(c.2)

{A} {A,B}

{A}

+{A}

(d.1)

{A} {A,B}

{A}

−{A}

(d.2)

{A}

{A,B}

−{A},+{A,B}

Figure 3.13. A Sequence of Incremental Updates

The router interfaces are numbered from 1 to 4 as shown in Figure 3.13a.1.
We omit this numbering from the other figures for clarity. In Figure 3.13a.1 the
router receives an update+{A} from interface 4, where we indicate addition and
removal deltas with ‘+’ and ‘−’ signs, respectively. The router adds descriptor A
on interface 4, as denoted by the A edge label in Figure 3.13a.2, and forwards
the update to all the other interfaces, again as shown in Figure 3.13a.2.

Then in Figure 3.13b.1 the router receives the update +{A, B} from inter-
face 3. Figure 3.13b.2 shows that the router adds +{A, B} to interface 3, and
then forwards the update only to interface 4. This is because both interfaces
1 and 2 are already covered by {A}, which is a subset of {A, B}, on interface
4. The same happens with the following update shown in figures 3.13c.1 and
3.13c.2, where the router sends the update only to interface 4, because the de-
scriptor {A} on interface 4 already covers interfaces 1 and 3.

This check is important to minimize the number of updates that a router for-
wards and that neighbor routers must process. For example, in the case of Fig-
ure 3.13b.2 it would be useless to send a +{A, B} update to interface 2 because
the neighbor router already has a descriptor {A} associated with that interface
due to the previous update shown in Figure 3.13a.2, so the superset descriptor
{A, B} would be discarded by the neighbor router. With this check we can decide



70 3.6 End-Nodes Mobility

locally which updates are indeed new for a neighbor router, thereby minimizing
traffic and maintenance costs.

The removal of a descriptor is done in a similar way to the insertion. The pro-
cedure is presented at line 10 of the algorithm in Figure 3.12. However, since
new additions of more specific descriptors might be masked by previous addi-
tions, removals of more generic descriptors might uncover previously masked
additions. Therefore, the removal of a descriptor d may cause the addition of
supersets of d, as depicted in Figure 3.13d.2. The update −{A} is not forwarded
to interfaces 1 and 3, because those are covered by descriptor {A} on interface 2.
However the update, which consists of a removal delta −{A}, is forwarded to
interface 2 along with an addition delta +{A, B}. This is because the removal of
{A} from interface 4 uncovers all its supersets on the other interfaces, in partic-
ular {A, B} on interface 3.

3.6 End-Nodes Mobility

The internet traffic generated by mobile phones increases every year, therefore
address end-nodes mobility in an efficient way is getting more and more im-
portant. One of the promises of ICN is to handle end-nodes mobility in a more
efficient way with respect to an IP based network. This is true in the case where
a consumer node moves in the network. In CCN, for example, when a consumer
moves to a new location, it simply starts to send the interests from the new po-
sition. Consumers do not generate routing state in the network, so there is no
need to update the RIBs of the routers. The problem comes when we need to
move a producer node. Move content means update the routing state of the
network, and this process is generally costly [34].

TagNet, thanks to its naming scheme formed by multiple addresses, may
solve the mobility problems in CCN. In the following we sketch an algorithm
that can be used to deal with user mobility in our network architecture.

3.6.1 Consumer Mobility

The easy case to handle, as in CCN, is the mobility of consumers nodes, because
they do not set any state in the network. The case of the consumer mobility is
presented in Figure 3.14.

In the figure we represent a local network (the gray ellipse), spanned by a
black tree. In this network there are two wireless routers that work as access
points, indicated with AP1 and AP2. Each one of these wireless routers has its



71 3.6 End-Nodes Mobility

AP1

AP2

C

U

U label

Tred , TZU

Tblack , TZAP1

(a)

AP1

AP2

C

(b)

U label

Tgreen, TZU

Tblack , TZAP2

U

Figure 3.14. Consumer node mobility: TZ-label update

own local tree. The tree of AP1 is indicated in red, while the one associate with
AP2 is green. This form a hierarchy of trees at local level, that works in the
same way we saw in Section 3.4. Since the routers AP1 and AP2 uses wireless
connections, the topology formed by these routers and the end-nodes connected
to them is a star topology. In this particular case we can consider the TZ-label
simply as an identifier of a node. The access router can easily assign a new label
to a node generating a random value, that is not already in use. Since the router
does not need to run any algorithm to label all the end-nodes, this process is
really fast.

The locator of node U , in Figure 3.14a, is (Tblack, T ZAP1)/(Tred , T ZU). At a
certain point node U moves from AP1 to AP2, as indicated by the dashed black
arrow in Figure 3.14a. As soon as U establishes a connection with AP2, AP2
assigns a new label to U . The new locator of U is indicated in Figure 3.14b. In
order to receive the content from its new position, node U has only to use its
new locator (Tblack, T ZAP2)/(Tgreen, T ZU) in the header of future request packets.

3.6.2 Producer and Subscriber Mobility

So far we described the simple case in which a consumer node moves. This case
is easy to handled, since a consumer node has no state in the FIBs. Instead,
in the case where a producer or a subscriber node moves, the protocol is more
complex. First of all, the routing protocol will at some point update the FIBs,



72 3.6 End-Nodes Mobility

but that process may require a long time. Therefore, we do not rely directly on
the routing algorithm in case of mobility. However, thanks to our addressing
scheme, we can temporarily adapt a route to the new network configuration so
that a mobile node can still provide its content or receive notifications of interest.
Here we describe only the scenario where a producer node moves, but the case
where a subscriber moves can be handled exactly in the same way.

We use once again Figure 3.14 as an example, although in this case we as-
sume that node U is a producer node responsible for serving some content to
other users. Thus in the example of Figure 3.14 node U moves from its initial
access router AP1 to another router AP2. The important property of our address-
ing scheme that allows us to handle mobility in this case is that U knows the
locator (Tblack, T ZAP1) of its initial access router AP1, because that corresponds
to the prefix of its own locator up to the very last label.

Using the locator of the initial access point AP1, node U transmits its new
locator (Tblack, T ZAP2)/(Tgreen, T ZU) to AP1, so that AP1 can record a forwarding
address for U in its FIB. In particular, AP1 keeps track of all the descriptors
advertised originally by U , but instead of mapping those to a local interface,
it uses the new, remote locator of node U . Therefore, when AP1 receives a
request packet with a descriptor that matches the content announced by U , AP1
encapsulates and resends the request in a new packet addressed to U ’s new
locator. The same happens when AP1 receives a packet that has as a destination
label the initial locator of U . Notice that this indirection applies only to the first
packet (or the first few packets) in the communication flow, since U will reply to
the first request with its new locator, thereby instructing the consumer to send
every subsequent requests to its new location.

The process that we just described is useful to temporarily re-route the pack-
ets in the network, without waiting for the routing protocol to update the FIBs
of all the routers. This can be useful, for example, in case of VoIP applications,
to keep the communication persistent. With this simple temporary indirection
is possible to bypass the routing update process. However update the routing
state is important and it must be done timely. The update process is described
in Figure 3.15.

In Figure 3.15a, node U sends an update packet, indicated with orange ar-
rows. The arrows are labeled with a “+”, since the update packet contains the
descriptors that need to be added in the RIBs of the routers, in order to steer
relevant request packets toward the new position of U . Although the update
should be broadcast through the entire network, the update is forwarded only
on the path that connects the actual access router of U , namely AP2, with the old
access router of U , namely AP1. In fact, as described in Figure 3.15a, the update



73 3.6 End-Nodes Mobility

AP1

AP2

C

U

+

+

+

(a)

AP1

AP2

C

U

-

-

(b)

Figure 3.15. Publisher/Subscriber node mobility: RIBs update

process does not involve the nodes on the right of node C . This happen because
the old state generated by node U at its previous position in AP1, prevent C from
forwarding the update farther, as described in the algorithm in Figure 3.12. This
is an important feature of the update algorithm that keeps the changes as local
as possible.

Now that the routing state is updated, node U can be reached directly. How-
ever we still need to remove the old state that points to AP1 from the RIBs.
When AP1 receives the update from U , AP1 sends the same update through the
network, this time indicating that each router needs to delete the descriptors
in the update packet, as indicated by the sign “−” in Figure 3.15b. Notice that
also in this case the update process involves only the nodes on the path between
node AP1 and AP2.

What we described in this section is a way to handle end-nodes mobility in
TagNet. Thanks to the hierarchical routing protocol and the naming scheme that
supports multiple addresses, we can easily forward packets to mobile nodes. In
TagNet we can immediately create a valuable route to the new position of a
publisher node, using locators. At the same time the routing protocol is able to
avoid updates flooding, because our update algorithm minimizes the amount of
update messages that we need to send.



74 3.7 Evaluation

3.7 Evaluation

In this section we present the evaluation of our routing scheme. There are three
main questions that we need to address in order to prove the feasibility of our
proposal:

1. Is it possible to cover the Internet with trees in an effective way?

2. How big is the routing table of a core router?

3. Is it possible to update big routing tables in a reasonable amount of time?

As state previously in Section 3.3.4, the main focus of this thesis is the scala-
bility aspect of the routing scheme. For this reason we present only preliminary
results for the first question, while a more deep and extensive study is part of a
another thesis. Regarding the research questions 2 and 3, here we present an
extensive analysis of the scalability of our routing scheme, both in term of space
required on each router and in terms of update time of the RIBs.

A crucial difficulty in conducting this analysis is that there is no known de-
ployment of an information-centric network at the scale we are targeting. There-
fore, we must use synthetic workloads. Below, we explain how we create such
workloads, in particular we explain how we generate descriptors for each user,
and how we spread them over the ASes.

3.7.1 Tag-Based Descriptors Workload

The objective of this analysis is to create a workload that can correspond to a
plausible behavior of the users of an information-centric network. In particular,
for our experiments, we are interested only in that set of information that con-
tribute to create the routing state. We create descriptors used by publisher nodes
to announce content that can be retrieved by consumers, and descriptors used
by subscribers to specify their interests. We analyze four sets of applications: a
push active web service, that sends related post and content to interested users,
a pull on-demand video content retrieval service, a push micro blogging service
and a pull torrent application used to download files.

In the following of this section we describe how we collect data for all the
applications, how we amplify them in order to get a bigger workload, and how
we spread users over the ASes.



75 3.7 Evaluation

Active Web

We envision a future information-centric network used to actively distribute Web
content. We analyze the interests of users, in order to identify their subscrip-
tions. This is the information that we need to store in the RIBs for the active
Web.

To derive a set of plausible subscriptions we analyze users bookmarks. In
particular we use the bookmarks collection of the Delicious website,2 which con-
tains the public bookmarks of about 950,000 users retrieved between December
2007 and April 2008 [83]. The data set contains about 132 million bookmarks
and 420 million tags. We assume that users are interested in the content they
bookmark, and we create subscriptions with the tags they assign to their book-
marks. Therefore, we derive plausible subscriptions from user tag sets. In total
we derive 23,248,896 subscriptions for 922,651users.

We also analyze data collected from blogs. In particular, we study the Blog06
collection from the Text Retrieval Conference (TREC),3 which contains 3,215,171
blog posts from 100,649 unique blogs. We apply the Latent Dirichlet Allocation
(LDA) algorithm [6] to extract and categorize the posts under a set of topics.
We then assume that an user has an interest in a specific topic if the user writes
at least two relevant posts on that topic. For each topic, we select the 10 most
relevant tags and we use them as a descriptor for the subscriptions of a user.
With this analysis we identify 59,185 blogs with 178,189 posts from which we
derive subscriptions.

On-Demand Video Content

In a future information-centric network users will be able to download or watch
videos on-demand, in a similar way to what we do nowadays with YouTube. We
analyze a collection of data related to YouTube in order to figure out how users
publish their content, which in our network determines the descriptors of the
content offered by the publishers. In particular we look at the tags that publish-
ers assign to their videos to allow viewers to find those videos with keywords
based search. These keywords were publicly visible until few years ago. Since
now the tags are not available anymore, we analyze a data set derived from
10,351 videos published by 782 users in the “Politics” category. Unfortunately
this data set is not available anymore.

2Delicious website. https://delicious.com/
3The Blog06 test collection. http://ir.dcs.gla.ac.uk/test_collections/blog06info.html

https://delicious.com/
http://ir.dcs.gla.ac.uk/test_collections/blog06info.html


76 3.7 Evaluation

Publish/Subscribe Micro Blogging

For this application we analyze Twitter. In particular we envision a Twitter based
on a publish/subscribe service. A set of subscriptions of a user contains the list
of followed accounts plus a set of interests, specified with hashtags. Messages
published by a certain user are forwarded to all the followers of such users,
plus all the users interested in the hashtags in the message. To derive our sub-
scriptions we use a graph of 41.7 million Twitter users and 1.47 billion follower
relations [53], while for the hashtags we use a collection of 16 million tweets
recorded during two weeks in 2011. This dataset of tweets was provided again
by the TREC conference (2011-2012).4 In order to derive subscriptions from the
messages, we considered only the messages with both hashtags and URLs. We
say that a user is interested in the content of a certain URL when the user pub-
lishes the URL in a tweet. We use the set of hashtags in the message to create
the subscription for such a user. In total we collect 446,370 subscriptions for
349,753 users

Torrent Application

We analyze also a set of data collected from a BitTorrent client. We use the set of
tags used to search specific content as the descriptors for the content published
by a user. We use a dataset of 9,669,035 queries collected over a period of 3
months from kickasstorrents.com by the Computer Networking Research Lab-
oratory of Colorado State University.5 This dataset contains 1,353,662 unique
tags.

Data Amplification

The extrapolated workloads suffer from two limitations: they are too small for
the kind of experiments that we want to conduct, and they are biased, due to
the fact that almost all the data that we have are in English.

In order to amplify the workload and remove the bias toward the English
language we expand the workload considering the most spoken 25 languages
in the world. When we create a new user in our workload we select a lan-
guage, according to the distribution of the number of native speakers of those
25 languages, and we generate a set of descriptors in that language. We do

4The Tweets2011 collection. https://github.com/lintool/twitter-tools/wiki/
Tweets2011-Collection

5BitTorrent search terms dataset. http://www.cnrl.colostate.edu/Projects/CP2P/BTData/

https://github.com/lintool/twitter-tools/wiki/Tweets2011-Collection
https://github.com/lintool/twitter-tools/wiki/Tweets2011-Collection
http://www.cnrl.colostate.edu/Projects/CP2P/BTData/


77 3.7 Evaluation

not want to lose the semantic correlations between tags in the datasets, there-
fore we create artificial translations of the tags, adding a prefix to each tag that
indicates the corresponding language. For example, if the English data set con-
tains the tag “movie”, the Japanese “translation” of such tag is indicated with
the tag “Japanese_movie”. The selection of a language is independent from the
geographical location of the user. This is not completely realistic, but it creates
a workload that gives us less chances to aggregate descriptors, so it represents a
kind of worst case scenario for our routing protocol.

To further expand the workload and also to avoid creating exact replicas of
the original dataset, we create additional tags using synonyms. Again synonyms
are created artificially. As in the previous example, the tag “Japanese_movie” can
have as a synonym the tag “Syn1_Japanese_movie” or ‘Syn2_Japanese_movie”.
We assume that each tag has 2 synonyms and we select one of the possible three
tags with uniform probability.

Users Distribution

Now that we have our workload we need a way to realistically disseminate users
on different ASes of the Internet. In order to assign to each AS a plausible
number of users we use the number of IP addresses announced by each AS and
the number of users that have access to the Internet in the countries covered by
the AS.

We collect the set of IP address announced by each AS in our topology. We
use the whois service to get all the data.6 Using the GeoLite database,7 we assign
a country to each IP address. With this data we discover the countries covered by
each AS and the percentage of IP addresses owned by each AS for each country.
For example, according to our statistics Orange (AS3215) owns almost 25% of
the IP addresses in France, so we assign to Orange 25% of the French Internet
users. We collected the statistics for the Internet users of each country of the
world on the Internet Word Statistics website.8 In the end the total number of
users associated with an AS is the sum of all the users that we assign to the AS
for each country covered by the AS.

6we use the service provided by https://www.shadowserver.org/wiki/. With the command
whois -h asn.shadowserver.org “prefix ASN” (where ASN is the number that identify the AS) it
is possible to retrieve all the IP prefixes announced by an AS.

7GeoLite2 free downloadable databases. http://dev.maxmind.com/geoip/geoip2/geolite2/
8Internet Word Stats website. http://www.internetworldstats.com/stats.htm

https://www.shadowserver.org/wiki/
http://dev.maxmind.com/geoip/geoip2/geolite2/
http://www.internetworldstats.com/stats.htm


78 3.7 Evaluation

3.7.2 Internet Topology and Trees

In this section we show the results of an experiment the we conduct to demon-
strate that is possible to effectively cover the Internet topology using few trees.
Here we show only data related to the additional cost of using few trees, but we
also conducted other experiments where we measure other parameters [60, 61].

In this experiment we want to measure the traffic overhead incurred by our
tree-based routing scheme. We conduct our analysis on the Internet AS-level
topology consisting of a graph of 42113 nodes and 118040 edges.9

We construct sets of k trees over the topology as follows: we choose k nodes
at random by selecting Tier-1, Large ISP, Small ISP, and Stub ASes with proba-
bility 40%, 30%, 20%, and 10%, respectively. In particular, Tier-1 are ASes with
no providers, Large ISPs are ASes that serve a customer tree of 50 or more ASes,
Small ISPs have between 5 and 50 customers and Stubs less than 5. We then use
k shortest-paths trees, each one rooted at one of the k nodes.

 0

 1

 2

 3

 4

 5

 6

8 16 32 64 128

Av
g/

M
ax

 A
dd

iti
on

al
 P

at
h 

Le
ng

th
 (H

op
s)

Average
Maximum

Figure 3.16. Maximum and average additional cost in forward packet over trees

For each value of k = 8, 16,32, 64,128 we analyze for all pairs of ASes (nodes
of our graph), the average and maximal additional path lengths over the k trees,
which gives an indication of the traffic overhead. The data in Figure 3.16 are
the aggregated values over 20 runs of our simulation. We changed the root ASes
at every run.

For each value of k trees, the top and bottom box plots show the distri-
butions of the maximum and average (i.e., expected) additional path lengths,
respectively. The box plot cover the distribution from the 1-st to the 99-th per-
centile, showing also the 25-th, 50-th and 75-th percentile. The results show

9Internet AS-level topology archive (data retrieved 29/06/2012). http://irl.cs.ucla.edu/
topology/

http://irl.cs.ucla.edu/topology/
http://irl.cs.ucla.edu/topology/


79 3.7 Evaluation

that k-trees can be used to approximate an optimal path on the Internet with a
minimal additional cost. In expectation, we have an additional cost of around
1.5 hops, no matters how many trees do we use. In addition, using only 8 trees
the maximum additional cost is less than 6 hops. Notice that, with more trees,
the value of the maximum additional cost does not change much, and this result
suggests to use only few trees to cover the Internet network.

3.7.3 Scalability: Memory Requirement and Maintenance

Now we evaluate the memory requirements of our ICN routing scheme. We
generate a workload for 50 million users using the workload generator described
in Section 3.7.1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d 
M

em
or

y 
(G

B)

 

Figure 3.17. RIB sizes on gateway nodes on different ASes

In Figure 3.17 we show the memory required by the RIBs of gateways routers
on different ASes. As described in Figure 3.8 in Section 3.4, each gateway router
may participate only in a subset of the trees used to cover the AS-level network.
To know exactly how many trees each router needs to store we should know
the exact connectivity among AS at their router level, but this information is
not publicly available. We decide then to consider all the possible cases and see
what would be the memory required on a router using all possible combination
of trees. The plot shows the minimum, the maximum and the average amount
of memory that would be needed to store the routing information from 1 up to
8 trees.

The variation that we see among different ASes is due to the different degree
and location of the ASes in the network. Usually an AS with many neighbors
experiences less compression, because the descriptors are spreaded over many



80 3.7 Evaluation

interfaces. Notice, however, that the absolute values are relatively low: the
most demanding case, which correspond to Level3, requires less than 3.6GB of
memory. In this evaluation section we always measure the total size of the data
structure presented in Section 3.5.2, not only the amount of memory required to
store the descriptors. Another interesting result is that the memory required by
8 trees, indicated by the maximum value, is always less than twice the memory
required by a single tree (the minimum value). This means that, in our scheme,
descriptors aggregate well across trees, thanks to the compression presented in
Figure 3.10.

For each AS we also measure the memory required to store the RIBs on
routers at the intra-AS level. In this experiment we use the internal AS topolo-
gies available from the Rocketfuel project [74]. The data of this evaluation are
presented in Figure 3.18. The N and E labels in the graph represent the number
of nodes and edges in the topology of each AS, respectively. For the intra-AS
analysis we create one shortest path tree for each node in the topology, there-
fore, for example, for Level3 we generate 624 trees. In this way the latency and
the edge load on the trees is equal to the one on the total graph.

 0

 1

 2

 3

 4

 5

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d 
M

em
or

y 
(G

B)

 

N:355
E:700

 N:547
E:1600

N:1018
E:2300

N:276
E:400

 N:624
E:5300

 N:733
E:2300

Figure 3.18. RIB sizes of nodes inside different ASes

The plot represents again the minimum, the maximum and the average sizes
of the RIBs used to store local trees. In particular, the distribution in the graph
refers to the sizes of 50 nodes sampled randomly from the networks. Consider-
ing the worst case results, namely Level3 and AT&T, we can see that, even using
hundreds of trees to cover the network, we obtain good levels of aggregation
and good results in absolute terms, with a maximum memory requirement of
less than 4GB.

So far we presented results for a workload of 50 million users. This is a
relatively low number with respect to the current Internet users population. In



81 3.7 Evaluation

order to better demonstrate the scalability of our routing scheme, we focus on
AS 3257 and on a single shortest-paths tree to study the memory requirement
under a workload of almost 10 billion content descriptors, corresponding to 500
million users. Figure 3.19 shows the memory required at a gateway router for
an increasingly larger user population.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50  100  150  200  250  300  350  400  450  500

R
eq

ui
re

d 
M

em
or

y 
(G

B)

Users (Millions)

Figure 3.19. RIB size scalability for different workload sizes

We can see that the growth of the memory requirement is relatively high ini-
tially, but steadily flattens, reaching 3.8GB for 500 million users. This shows that
the subset aggregation used in our routing scheme is indeed effective. Increas-
ing the number of the users, the memory required to store all the descriptors
remains almost constant, since most of the new descriptors will be aggregated
to old ones at no additional cost. If we consider the growth rate between 450
and 500 million users to be constant, which amounts to 0.09 GB for 50 million
users, we need around 8.3 GB to store the descriptors for 3 billion users, which
is approximately the actual Internet population.

In the last experiment we evaluate the time required by our update algo-
rithm, described in Section 3.5.3, to add or remove a descriptor from the RIB. In
this analysis we start from the RIBs computed for the experiment in Figure 3.19
and then apply updates with a total number of 20, 40, and 60 descriptors. In
each update the number of descriptors to add or remove from the RIB is ran-
domly chosen. We run our algorithm on a commodity PC, that has two Intel
Xeon E5630 processors, with four cores each, and 2.53HHz clock frequency.
The system is equipped with 16GB of RAM.

The plot in Figure 3.20 shows the results of this experiment, in particular the
median and standard deviation of the update time computed over 1000 updates.
The data points on the three lines are for the same values of the x-axis, but for
purposes of readability have been slightly shifted to avoid obscuring each other.



82 3.7 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100  200  300  400  500

U
pd

at
e 

Ti
m

e 
(m

s)

Users (Millions)

20 filters
40 filters
60 filters

Figure 3.20. Scalability of the maintenance time

The most important result is that the update time does not increase significantly
with the size of the RIBs and is almost constant for each descriptor. To process
one descriptor, we need on average 2.04ms, so our algorithm can handle about
500 updates per second on large RIBs. According to the BGP Instability Report,
the average number of BGP update messages per seconds is 4.62, which means
that our router can easily handle the normal traffic generated by BGP on the
Internet.10 However the same report also highlights a peak of 5708 BGP update
messages per second, which is 10 times more than what is sustainable by our
router.

10The BGP Instability Report. 7 Day BGP Profile: 9 November 2015 00:00 - 15 November
2015 23:59 (UTC+1000) http://bgpupdates.potaroo.net/instability/bgpupd.html

http://bgpupdates.potaroo.net/instability/bgpupd.html


Chapter 4

Matching and Forwarding Algorithm

TagNet provides three kinds of packets: notification, request and reply packets.
Each packet has its own semantics and is forwarded in a specific manner, al-
though using a single data structure. Notification packets are forwarded using
the descriptor in the packet header that describes the content of the notification
itself. A router forwards a notification packet in multicast in order to reach all
interested users. A request packet can be forwarded in two ways. The content-
based forwarding uses the descriptor in the packet and sends the packet to one
interface. The locator-based forwarding uses the locator of the publisher node,
and this forwarding algorithm uses the TZ-labels. Finally, the reply packets are
always forwarded using the TZ-label of the requester node.

In order to forward the packets using descriptors we need to address the
partial matching problem, described in Section 4.1. We say that a packet with
a descriptor P matches a descriptor D in the FIB if P ⊇ D. We present two
algorithms to match packets using descriptors. The two algorithms use a single
and common data structure. The first algorithm, used for the notifications, finds
all the matching descriptors in the FIB, in order to send the packet to all the
matching interfaces. The second algorithm, used for request packets, forwards
the packet to the interface with an associated descriptor that is the largest subset
of the packet descriptor available in the FIB. In this way the router forwards a
request packet toward the most relevant source. This algorithm can also be used
to mimic the longest prefix match semantics of hierarchical names.

For TZ-labels we implement the algorithm proposed by Thorup and Zwick
for their compact routing scheme on trees [76]. This algorithm is quite simple
and requires to store only few bytes of information on each node. It also achieve
high throughput in the forwarding process.

In this chapter we describe and evaluate the implementation of a matching

83



84 4.1 Partial Matching Problem

engine that is able to forward all the defined packets in the appropriate way.
In this sense, our forwarding is complete. In contrast, most of the forwarding
engine proposed for CCN focus their attention on the forwarding process of one
specific kind of packet, in particular interest or data packets. This is due to
the fact that CCN uses different data structures for each message, and so the
forwarding process is more complex.

The Chapter is structured as follows: in Section 4.1 we describe in details the
Partial Matching Problem. In Section 4.2 we describe some related work. Sec-
tion 4.3 describes the descriptor-based matching algorithms, while Section 4.5
provides an overview of the TZ-label scheme and the matching algorithm based
on locators. We then evaluate our implementation in Section 4.6, where we
show that our forwarding engine can achieve 20Gbps of throughput using com-
modity hardware with different workloads.

4.1 Partial Matching Problem

The descriptor-based matching in TagNet corresponds to a well-known combi-
natorial problem called subset query problem or partial matching problem. The
original problem is defined as follow: D is a dictionary of sets, all subsets of a
universe set U . Given a query set Q ⊂ U , find all the matching sets S ∈ D, such
that Q ⊇ S. In our setting, the dictionary D is the FIB of the router, and the query
Q is the descriptor in the packet header.

This problem is well studied in different fields, because it has many relevant
applications. In the networking area the partial matching is use to implement
packet classification [42]. Incoming packets are classified according to a set
of rules. Packets in different classes can be handled by the network in different
ways. In information retrieval, the partial matching is used to search documents,
or collection of data that contains a given set of words. This is, for example, what
happens in a search engine like Google. Also databases use this kind of search.
An example of database that implement partial matching is MongoDB.1

There are two trivial solutions to this problem. The first solution is to store
all the answers for all the possible queries. When a packet comes, the matcher
needs a single look-up in this index to get all the possible results. The second
solution requires a linear scan of the entire FIB, in order to find all the matching
descriptors. Unfortunately, none of these algorithms is usable in practice. The
first implementation requires 2m space, where m is the size of the query. In
our case m = 192, that corresponds to the number of bits in the bloom filter

1MongoDB website. https://www.mongodb.org/

https://www.mongodb.org/


85 4.2 Related Work

implementation of the descriptors. For this reason, this first trivial solution is
unfeasible, because the memory requirement is to high. In the second solution
we need to store only the descriptors of our FIB, but the algorithm requires
O(Nm) query time, where N is the number of entries in the FIB. This algorithm
is again not usable for our matching engine, because N could be really high, and
so the throughput of the matcher would be low.

Since is not trivial to find a good algorithm for the partial matching problem,
there is a conjecture that says that this problem suffers from the course of di-
mensionality [7]. This means that probably there are no algorithms that achieve
both low memory usage and fast query time at the same time. In this chapter
we show how we tackle the problem combining algorithmic and engineering
aspects, in order to reduce the size of the FIB and achieve a good query time.

4.2 Related Work

We start the related work section talking about the literature related to the par-
tial matching problem. Then we examine some matching algorithms proposed
for CCN.

The first non trivial algorithm for the partial matching problem was proposed
by Rivest [69]. Rivest shows that it is possible to reduce the space complexity
of the trivial solution that requires 2m space, in the case where m ≤ 2 log N .
However, this reduction is not useful for us, since it would only apply to FIBs of
over 296 entries. In the same paper the author proposes an algorithm based on
a trie, which is quite similar to the one that we propose. The approximate query
time for this algorithm is N log(2−s/m), where, in our sitting, s is the number of
0s in the query descriptor. In the same paper Rivest conjectures that the lower
bound for any possible algorithm for the partial matching problem is N (1−s/m).

Charikar et al. propose two improvements over the trivial solutions [21].
The first algorithm requires N2O(m log2 m

p
c/ log N) space and O(N/2c) query time

for any constant value c, while the second requires Nm2 space and O(mN/c)
time for any c ≤ N . Although these results are interesting from a theoretical
point of view they are not really useful in practice, because either they require
too much memory, or they are too slow for a real implementation of a line speed
matching engine.

Beyond the theoretical and more general results, there are some practical
solutions for particular instances of the problem. Among them, there are algo-
rithms that exploit specialized hardware, such as TCAMs. A TCAM is an associa-
tive (or “content-addressable”) memory. Given a particular word, the memory



86 4.3 Content-Based Matching Algorithm

returns one of the addresses where the word is stored. More specifically, a TCAM
is a ternary content-addressable memory, meaning that each bit can be either 0,
1, or ∗ (that indicates a “don’t care”). TCAMs are already used for fast IP match-
ing [90, 66] and they admit a direct implementation of the subset check [39].
TCAMs, however, have many limitations, in fact they are expensive, they con-
sume a lot of power, and they are too small for our application domain. In
addition a TCAM returns only one matching entry. In our setting, this can be
useful to forward request packets, but it can be quite complicated to implement
a matching engine for notification packets using TCAMs. In case of notification
packets in fact we need to return all the matching interfaces.

In the context of CCN, there are many proposed algorithms and implemen-
tations for a named-based matcher. Wang et al. propose a matcher that uses
a GPU to improve the performances [82]. This implementation covers only the
matching of the interest packets. In the same year So et al. propose a complete
solution for the forwarding engine of an NDN router [73]. Perino et al. describe
another solution for a name-based matcher using network processors [63]. Also
in this case the authors cover only the interest matching. All the implementa-
tions achieve quite high throughput, around 10 or 20 Gbps, depending on the
implementation. It is worth to notice that these matchers are designed for hier-
archical names. Hierarchical names require longest prefix match, that is much
simpler than the partial matching problem that we have to implement. Never-
theless, our implementation achieves similar throughput, with bigger FIBs, using
only commodity hardware machine. This is possible thanks to the combination
of matching algorithms based on descriptors and locators.

4.3 Content-Based Matching Algorithm

In this section we focus on the content-based matching, that is the matching
based on descriptors. In order to describe the matching algorithm and all the
implementation details we proceed as follow: in this section we give a high-level
description of the data structure and the content-based matching algorithms
(presented in Section 4.3.1 and Section 4.3.2); we describe some algorithmic
improvements in Section 4.3.3; in Section 4.4 we show all the implementation
details and the implementation-specific optimizations.

To implement our matching algorithm we use a prefix trie, where we store
all the descriptors of the FIB, with attached the forwarding information, namely
the output ports related to each descriptor. Figure 4.1 shows the basic data
structure.



87 4.3 Content-Based Matching Algorithm

In this trie each path from the root to a leaf represents a descriptor in the
FIB. A descriptor is identified as a sequence of positions (from 1 to 10 in the
picture, from 1 to 192 in the real implementation), where each position is a one
in the bloom filter representation. For example, the descriptor 0011100010 in
the table of Figure 4.1 creates a path from the root to a leaf that contains the
nodes (3,4,5,9). At the end of each path we add a final node, indicated with $
in the picture.

Filters
(Tree,Interface)

Bit String 1s Pos

1000100000 (1,5) (T1, i2)

1010000100 (1,3,8) (T2, i4), (T1, i2)

0110100000 (2,3,5) (T5, i3)

0011100010 (3,4,5,9) (T4, i6), (T3, i2)

0010101000 (3,5,7) (T6, i5), (T1, i2)

0000100100 (5,8) (T2, i2)

*

132 233 343 522

522 333 333 444 533 822

$22 833 533 544 733 $22

$33 $33 944 $33

$44

T1,i2 T2,i4

T1,i2

T5,i3 T4,i6

T3,i2

T6,i5

T1,i2

T2,i2

Figure 4.1. FIB representation using a trie

In each node we store also the maximum and the minimum depth reachable



88 4.3 Content-Based Matching Algorithm

from that node. In Figure 4.1, we write the maximum and minimum depths
with superscripts and subscripts, respectively.. For example, a node such as 24

3
has a maximum depth equal to 4 and a minimum depth equal to 3. This means
that the longest path from the root to a leaf that goes through the node 24

3
contains 4 nodes, while the shortest one contains 3 nodes. The final nodes are
not considered to compute the length of a path.

In addition each node contains a pointer to each children. In the final nodes,
the pointer is used to access the list of tree-interface pairs associated to the
descriptor. In TagNet, a message is committed to a tree, that does not change
in the forwarding process. For this reason, a packet p with a descriptor P that
matches a descriptor D in the FIB is forwarded to an interface j only in the case
that D has an associated tree-interface pair (Ti, j) and Ti is the tree specified in
the header of p.

4.3.1 Find All Subsets

Figure 4.2 presents the algorithm that finds all the descriptors D in the FIB that
are subsets of a given descriptor P in the header of an incoming packet. We
call this procedure the Find All Subsets algorithm, or FAS algorithm. This is the
algorithm used to forward notification packets in multicast. The FAS algorithm
takes a packet p as input and finds all the output interfaces where the router
can forward p. The function requires also a node n, that is the node to analyze
during the execution of the function.

1 void find_all_subsets (packet p, node n){
2 for(node c : n.children){
3 if(c.pos == $){
4 //match found
5 set_output_interfaces(p, c.interfaces);
6 }else if(p.descriptor[c.pos] == 1){
7 find_all_subsets (p, c);
8 }
9 }

10 }

Figure 4.2. Matching algorithm: find all subsets (FAS)

The algorithm that we propose is quite simple. At line 2 we iterate over the
children c of node n, in order to check all the positions stored in these nodes.



89 4.3 Content-Based Matching Algorithm

If c is a final node (line 3, the node has position $), we found a match. In this
case we need to go through the list of tree-interface pairs associated to c and
select the output interfaces for the packet p, if any. This is done in the function
set_output_interfaces.

In the case that c is not a final node, we need to check if the bit at position
c.pos in the packet descriptor is set (line 6). If this is the case, we call recursively
the function find_all_subsets on the node c.

As discussed in Section 3.3.2, a packet can be forwarded using a limited
fanout k. The basic algorithm that we just described implements the case where
k = ∞, and forwards the packet to all the matching interfaces. We have a
different version of this matching algorithm that limits the fanout of the packet.
This requires a simple adjustment to the code in Figure 4.2. Is it possible to
pass the k parameter to the algorithm, and stop the recursion as soon as the
algorithm finds k different output interfaces for packet p.

4.3.2 Find Largest Subset

The algorithm in Figure 4.3 finds the descriptor D in the FIB that is the largest
subset of the descriptor P in the header of an incoming packet. We call this
procedure Find Largest Subset algorithm, or FLS algorithm. This algorithm is
useful to forward a request toward a producer node that has the most relevant
content with respect to the descriptor in the request. This algorithm can also
be used to simulate the longest prefix match semantic required by CCN. If we
transform all the hierarchical names in tag set in the way that we described
in Section 2.2.4, the FLS algorithm returns the longest prefix that matches the
descriptor (or name in this case) in a request packet.

The matching algorithm in Figure 4.3 is conceptually similar to the FAS al-
gorithm. The main difference is that we keep track of the maximum Hamming
weight of the descriptor that we match during the execution using the variable
best. The Hamming weight of a descriptor D represents the number of ones that
appear in D, and, in our trie, corresponds to the depth of the final node of D. At
the beginning, best is equal to 0 (line 22).

As for the FAS algorithm, we iterate over all the children c of a node n. In this
case we check the position in c only if the maximum depth reachable thorough
c is greater than the best match that we have seen so far (line 4). In fact, if
c.max_depth is not higher than best, there is no possibility to find a better match
under c, and so we can skip the node.

In case we get a match (line 7) we need to update the value of best and also
remember the matching node, which is stored in the variable best_mach. This is



90 4.3 Content-Based Matching Algorithm

1 node find_largest_subset (packet p, node n, int best){
2 node best_match;
3 for(node c : n.children){
4 if(c.max_depth > best) {
5 if(c.pos == $){
6 //match found
7 best = c.max_depth;
8 best_match = c;
9 }else if(p.descriptor[c.pos] == 1){

10 node candidate = match(p, c, best);
11 if (candidate != NULL){
12 best_match = candidate;
13 best = best_match.max_depth;
14 }
15 }
16 }
17 }
18 return best_match;
19 }

21 void find_largest_match(packet p){
22 node best_match = find_largest_subset (p, root, 0);
23 if(best_match != NULL)
24 set_output_interfaces(p, best_match.interfaces);
25 }

Figure 4.3. Matching algorithm: find largest subset (FLS)

because it may happen that we find more than one match during the execution
of the function, and so we need to select the output interface for p at the end of
the execution.

At line 9 we check if position c.pos is set to one in the descriptor in p. In this
case, we visit all the children of c with a recursion. The recursive call returns a
node only in the case that the function finds a new matching descriptor that has
an higher Hamming weight. For this reason, if the node candidate is not null, we
need to update the variables best_mach and best.

At the end of the execution, at line 23, if find_largest_subset returns a valid
node, we can forward the packet to the interface associated to the matching



91 4.3 Content-Based Matching Algorithm

node.

4.3.3 Matching Algorithms Improvements

In this section we introduce some strategies that help us to reduce the memory
access and the number of recursions. In this way we can reduce the matching
time and increase the throughput of our matcher.

The first strategy that we introduce is related to the Hamming weight of the
descriptor D contained in an incoming packet p. The Hamming weight can be
efficiently computed using a popcount function. A popcount function returns the
digit sum of the binary representation of a given number, which corresponds to
the number of bits set to one. In our implementation we use the built-in function
of gcc.2 Before the recursion, in both algorithms, we can check if the Hamming
weight of D is higher or equal than the minimum depth stored at node c. If this
condition does not hold, there is no possibility to find any match under the node
c. This is because all the paths that we can take from c have more ones that D.
Since we look for subsets, the number of ones in D should be grater or equal
than the ones in the matching path.

The second strategy exploits the same idea. Before the recursion, we com-
pute the number of ones that we did not match yet at position c.pos (the position
stored in the child c of the node n that we are processing) in D. In other words,
we count how many bits are set in D from position c.pos to the end of the de-
scriptor. We add to this value the depth that we reached in the trie, meaning
the depth of node c. We call the obtained result the Maximum Potential Match
(MPM). MPM indicates how many ones we already matched (depth of c), plus
how many we can still potentially match (remaining ones in D) and indicates
the maximum Hamming weight of a descriptor that we can match at this point
of the execution. The value MPM must be higher or equal to the minimum depth
value stored at the node c in order to have a chance to find a matching path un-
der the node c. In the case that MPM is higher or equal to the minimum depth
in c we call recursively the matching function, passing the node c as an input
parameter.

The two implementation improvements that we described are useful for both
the FAS and the FLS algorithm. The implementation improvement that we intro-
duce here can be implemented only in the FLS algorithm. Before the recursion,
we can check if the value of MPM is greater than best. Only in this case we have

2Other Built-in Functions Provided by GCC. https://gcc.gnu.org/onlinedocs/gcc/
Other-Builtins.html

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html


92 4.4 Data Structure and Implementation

the chance to find a better match than the one the we already have. If the con-
dition does not hold we can find only matching descriptors with an Hamming
weight smaller than best, so we can avoid to visit the node.

4.4 Data Structure and Implementation

What we presented so far in this chapter are the basic ideas behind our content-
based matching engine. In fact both the data structure and the algorithms can
be improved in different ways. The data structure in Figure 4.1 performs really
poorly in a real implementation because this trie requires a lot of space in the
memory. This is mostly due to the fact that each node requires multiple pointers,
one for each child. Moreover, since we use pointers each node may be located
in different parts of memory and, for this reason, the algorithm has a random
access pattern to main memory. An unpredictable access to main memory in-
validates most of the algorithm for the CPU caching. Since the miss rate in the
L1 and L2 caches of the CPU can be high, we need to access main memory fre-
quently. The main memory is slow, and so the performance of the matching
algorithm is poor. In this section we present and describe a series of implemen-
tation details that help us to improve the forwarding rate of our algorithm.

4.4.1 Memory Footprint Reduction

The first way to improve our algorithms is to reduce the memory usage of our
data structure. In particular, a more conscious usage of main memory gives
us an higher chance to find the data in the CPU cache, and this can give an
important boost to the performance of the matcher. Here we describe three
implementation techniques that we use in our implementation to reduce the
memory requirements:

1. permute the bits of the descriptors in the FIB according to their popularity.

2. implement the trie using a vector.

3. remove the chains (list of nodes with a single child) in the most depth
levels of the trie.

In the following of this section we describe how we apply these implementa-
tion techniques on the original data structure, and we analyze the implications
and the advantages of each technique.



93 4.4 Data Structure and Implementation

Bit Permutation

The first transformation that we apply to our trie is to sort the bits in the descrip-
tors contained in the FIB by popularity. Pushing the most popular bits in the first
part of the descriptors we create many descriptors with a common prefix. Since
we use a prefix-trie, we need to create only one path for all the descriptors that
share the same prefix. Less paths to store means less nodes in the trie, and so
less memory usage.

Bit Pos Bit Freq New Pos

1 2 3

2 1 5

3 4 2

4 1 6

5 5 1

6 0 9

7 1 7

8 2 4

9 1 8

10 0 10

Original Filters Permuted Filters

(1,5) (1,3)

(1,3,8) (2,3,4)

(2,3,5) (1,2,5)

(3,4,5,9) (1,2,6,8)

(3,5,7) (1,2,7)

(5,8) (1,4)

*

142 233

243 322 422 333

533 644 733 $22 $22 433

$33 844 $33 $33

$44

Figure 4.4. Trie compression with bit popularity (the original trie is the one
presented in Figure 4.1)

Figure 4.4 shows this transformation applied to the trie in Figure 4.1. The ta-
ble in the top left part of the picture shows the frequency of appearance of each
bit. The new position is computed ranking the bits according to their frequency.



94 4.4 Data Structure and Implementation

What we obtain is a permutation that we apply to each descriptor in the ta-
ble. For example, the descriptor (2,3,5) becomes (1,2,5), because the permuted
position of 2 is 5, the new position of 3 is 2 and the one of 5 is 1.

The new trie that we obtain is represented in the lower part of Figure 4.4.
This trie has 18 nodes, while the original one in Figure 4.1 has 22 nodes. Al-
though the compression obtained in terms of nodes in this small example is not
high, in reality the bit permutation is quite effective. In particular, this tech-
nique is more efficient when the frequency of appearance of the bits is skewed,
so there are only few bits that are set to one with high probability. This is some-
thing that can happen easily in reality. For example, if each application adds
an application-tag to the descriptors, then the bits related to popular applica-
tions will have high probability to be set. The same happens also in hierarchical
names, especially with names derived from urls. In a url like name there are
just few domain names that can be used as a first name component (e.g com, it,
ch, . . . ). These components are much more popular than other words, and this
popularity is reflected to the bits set for these components in the descriptors.

Another advantage of this technique is that it helps us to skip significant
parts of the trie during the matching execution. If an incoming descriptor does
not have a popular bit set to 1, the algorithm can skip the entire subtree under
such a bit.

The main disadvantage of this technique is that we need to permute also the
bits in the descriptor of all the input packets of the matcher. However, this can
be done in a fast way, and the algorithm requires a time proportional to the ones
that appear in the descriptor of the packet.

Vector Representation

One of the main disadvantages in the trie representation is the usage of pointers.
Pointers add a lot of overhead on each node. Each node carries only 3 bytes of
useful informations, namely 1 byte for the position, 1 byte for the maximum
depth and 1 byte for the minimum depth. All the rest, the pointers in particular,
is overhead added by the data structure. One way to reduce this overhead is
to consider the trie as a first child-next sibling binary trie, and then transform
it in a vector, as described in Figure 4.5. The figure represents the same trie of
Figure 4.4. In this representation each node has a single pointer to its first child,
which is represented with a plain arrow in the picture, and all sibling nodes are
linked together in a list, indicated with dashed arrows.

This data structure can be represented with a vector, where the pointer to
the first child of a node is an index or an offset to a particular cell of the vector,



95 4.4 Data Structure and Implementation

*

142 233

243 322 422 333

533 644 733 $22 $22 433

$33 844 $33 $33

$44

1 2

3 4 5 15

6 7 8 13 14 16

9 10 12 17

11

142 2
3
3 2

4
3 3

2
2 4

2
2 5

3
3 6

4
4 7

3
3 $

3
3 8

4
4 $

4
4 $

3
3 $

2
2 $

2
2 3

3
3 4

3
3 $

3
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4.5. Trie represented as a vector

and adjacent nodes are sibling nodes on the trie. In order to recognize the last
child of a node (the right most sibling) we add a new field in the node called
last_child. The lower part of Figure 4.5 shows the vector representation of the
trie. Each node has a position, a maximum and a minim depth, as in the original
trie. The pointer, implemented with a 32-bit integer, is represented with an
arrow and the last_child field is indicated with a vertical bar that separates sets
of sibling nodes.

The numbers close to each node of the trie indicates the position of the node
in the vector. There are many ways to sort the nodes in the vector, the one in the
figure is just an example. Different node layouts define different memory access
patterns, which has an impact on the performance of the matching algorithm.
Later we analyze two possible node layouts to see which one better fits our
matching algorithm.



96 4.4 Data Structure and Implementation

Chains Removal

The last transformation that we apply to the prefix-trie to reduce the footprint
of the data structure is to remove the chains. With the term chain we indicate
a sequence of nodes with a single child. In this implementation we focus only
on the chains that terminate in a final node, namely a node with position $. A
chain is highlighted on the left side of Figure 4.6. When we reach a chain during
the matching algorithm, we have the chance to match only a single descriptor,
and this is because a chain defines a single path, that corresponds to a single
descriptor. For this reason a chain is not useful to navigate among descriptors
in the FIB, it simple says yes or no to a particular match. We decided to remove
these chains from the trie, and store them in another data structure. The best
candidate that we have is the list of tree-interface pairs. In fact, in case of match,
we need to access this data structure anyway, and, since we do not expect really
long chains, the probability to get a match when we enter a chain is high. The
chains with the next hop information are stored in a vector of bytes, as described
on the right part of Figure 4.6.

233

333

433

$33

T1,i3

T1,i6

$33

3

2

3

4

2

3

6

number of
positions
in the chain

positions
in the chain

number of
output
interfaces

output
interfaces

Figure 4.6. A chain in the trie (on the right) and its representation (on the left)

As described by the example, in order to remove a chain from the trie, we re-
move all the nodes in the chain and we add a final node instead of the first node



97 4.4 Data Structure and Implementation

of the chain, which is 23
3 in this case. The new final node has the same maximum

and minimum depth of the final node in the chain, which also correspond to the
values in the first node. The final node points to a cell in a vector that stores
the number of nodes in the chain, so the number of positions that we still have
to check in order to match the entire descriptor. In the figure, this value is 3,
because we have 3 nodes in the original chain. After the first value we store all
the positions that are in the chain. After the positions, we store the information
to forward a matching packet. The first value is the number of output interfaces
that we can use for the packet, and the following values are the list of the output
interfaces.

4.4.2 Implementation Speedup

So far we discussed ways to reduce the size of the trie. In this part of the section
we want to discuss some ways to improve the algorithm that we propose.

The first problem that we want to discuss is related to recursion. In fact, both
the algorithms that we presented in Figures 4.2 and Figure 4.3 use recursion.
Although this is a powerful and useful tool that we can use in programming,
when performance is important recursion becomes expensive. For this reason
we break the recursion using a stack where we store the pointers to the nodes
that we need to visit. Instead to call the recursive function, we push a pointer to
the node in a stack and we visit the node later. The execution ends when there
are no nodes left on the stack.

Vector Memory Layout

This new implementation highlights another problem described in Figure 4.7.
Using the node layout that we select for the vector in Figure 4.5, the algorithm
accesses the memory in an almost random way. As described by the example
in Figure 4.5, in this layout, we add the nodes of a certain level according to
the order of their parents. We call this node layout Sibling Order Layout (SOL),
because we visit sibling nodes in order, from the first one to the last one. For
example, in Figure 4.5, the children of node 1 are stored before the child of node
2. In particular, the children of node 1 are stored from position 3 to position 5,
while the only child of node 2 is at position 15.

In Figure 4.7 we show the evolution of the stack and the memory access
pattern when we match the descriptor (1,2,4,5,7) on our trie, using different
node layouts. In this picture, the pointers to the next node are represented with
a gray arrow, while the sequence of memory accesses are depicted in red. Under



98 4.4 Data Structure and Implementation

each trie we represent the evolution of the stack while we visit nodes on the trie.
The values in the stack are the indexes of the cells, indicated over each trie.

The first figure represents the SOL layout. As shown by the picture, this
layout creates an almost random access to main memory, due to the usage of
the stack for recursion. In the example, when we visit node 1 we have a match
(the bit 1 is set in the packet descriptor), so we push node 3 on the stack. Then
we need to visit also node 2, because node 1 is not a “last sibling” node, and,
since we have another match, we push the node 15 on the stack. At this point
the algorithm pops a node from the stack, and jumps to node 15. The position
in node 15 does not match the packet descriptor, so the matcher jumps back to
node 3. This access pattern continues for the entire execution, and it is costly
because it invalidates most of the data cached by the CPU. Notice that also a pure
recursive function, like the one in the two algorithms in Figure 4.2 and 4.3, has
a similar behavior. This is also another reason way the recursive implementation
performs poorly.

Packet Descriptor: (1,2,4,5,7)

142 2
3
3 2

4
3 3

2
2 4

2
2 5

3
3 6

4
4 7

3
3 $

3
3 8

4
4 $

4
4 $

3
3 $

2
2 $

2
2 3

3
3 4

3
3 $

3
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

3 3

15

3 6 6 6

14

6 9 9 9

12

9 ∅

SOL

142 2
3
3 3

3
3 4

3
3 $

3
3 2

4
3 3

2
2 4

2
2 $

2
2 $

2
2 5

3
3 6

4
4 7

3
3 $

3
3 8

4
4 $

4
4 $

3
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6 6

3

6 11 11 11

9

11 17 17 17

14

17 ∅

SROL

Figure 4.7. Different node layouts and related memory access pattern

In the second layout, we try to solve the problem of the random memory



99 4.5 Locators Based Matching Algorithm

access, or at least minimize it. The layout, presented in the second part of
Figure 4.7, is called Sibling Reverse Order Layout (SROL). As in the first layout,
also here sibling nodes in the trie are stored in consecutive nodes in the vector.
When we need to insert children of sibling nodes, we start visiting the children
of the last sibling node, and then we visit the sibling nodes in revers order. As
an example, in Figure 4.7 the only child of node 2 is at position 3, while the
children of node 1 are stored from position 6 to position 8. In this way, the node
where we need to jump is always close to the last node that we visited.

In the example of Figure 4.7 at node 1 we push node 6 on the stack, while
at node 2 we push node 3. When we pop the first value from the stack we get
node 3, which is the node after node 2 that we are visiting, and, most likely, is
already in the CPU cache.

4.5 Locators Based Matching Algorithm

In this section we provide an overview of the TZ routing scheme that we use to
route reply and request packets [76]. Here we describe only the most practical
version of the algorithm, which is the one that we use in our implementation.

In the TZ routing scheme we forward packets on a tree, so, first of all, we
need to cover our network with a routing tree. Each node v in the tree has a
weight sv, which is the number of its descendant nodes in the tree, including v
itself. A node v′ is considered to be a heavy child of a node v if sv′ ≥ sv/2. By
definition, each node has at most 1 heavy child. If a node is not heavy, then the
node is considered to be light. Using these weights we can start to enumerate
the nodes in the network. Each node is identified with a number assigned in a
depth first order, starting from the root of the tree. The children of a node are
visited starting from the lighter one to the heaviest.

The routing information to store on each node v is represented by the tuple
(v, fv, hv, `v, Pv), where:

• v, is the number assigned to the node, and identifies the node on the tree.

• fv indicates the identifier of the largest descanted of v.

• hv is the identifier of the heavy child of v, if it exists, otherwise is set to
fv + 1.

• `v is the light level of v. This value indicates the number of light nodes
that we traverse on the path from the root of the tree to v, including v in
the counting if v is a light node.



100 4.5 Locators Based Matching Algorithm

• Pv is an array with 2 components. Pv[0] is the interface to the parent node
of v, while Pv[1] stores the interface to the heavy child of v.

Now that we have all the information to route a packet on the tree, we
need to create the labels, the so called TZ-labels. A TZ-label is what we use
to forward the packets to the next hop. We define the path 〈v0, v1, . . . , vk〉 to
be the path from the root r of the tree to a node v, where r = v0 and v =
vk. i j, with 1 ≤ j ≤ `v, indicated the j-th light node on this path. We define
the array Lv = [ifx(vi1−1, vi1), ifx(vi2−1, vi2), . . . , ifx(vi`v−1, v`v

)] as the array of the
interface numbers that, from a node i j−1, lead to a light weight node i j on the
path from the root to v. The label associated to each node is then defined as
label(v) = (v, Lv). This is the label to put in the header of a packet to indicate
the destination of such packet.

The forwarding process works as follow. A packet with the label (v, Lv) ar-
rives at node w. In the case v = w the packet reached is destination. Otherwise
we need to check if v is in the set of the descendant node of w, in other words
we check if v ∈ (w, fw]. If v is not a descendant of w, we need to forward the
packet to the parent of w, using the interface Pw[0]. In the case that we do not
send the packet to the parent of w, we check if v is a descendant of the heavy
child of w, by checking if v ∈ [hw, fw]. If this is the case, we send the packet to
the interface Pw[1], that indicates the interface to the heavy child, otherwise we
need to decide which is the right light child of w to select as next hop. This can
be easily done using the array Lv in the label. In particular Lv[`w] indicates the
interface to the right light child, where `w is the light level of w.

Using this algorithm, the size of the label that we need to carry in a packet
is O(log2 N) words, where N indicates the number of nodes in the tree. This is
because the size of the array Lv is equal to `v for each node v, and it is easy to
see that `v is at most log2 N . Every time that we go from a certain node to one
of its light children, the number of nodes in the remaining subtree is reduced by
at least a factor 2. This is because the definition of light child: a light child has
always less than 1/2 of descanted of its parent. For this reason `v can not be
higher than log2 N . Thorup and Zwick propose also a more compact version for
the labels, and we use this more tight version in our implementation. With this
new encoding, the forwarding algorithm does not change significantly. Using
the compressed scheme, our labels, computed on the AS-level topology, are at
most 46-bits long, and so we use 64 bits to represent them in the header of our
packets.



101 4.6 Evaluation

4.6 Evaluation

In this section we evaluate our forwarding engine. In our evaluation we use
3 different workloads to create the router FIB, in order to show that our im-
plementation works in different settings. The first workload that we use is the
one generated during the experiment reported in Figure 3.19 of the previous
chapter. This workload contains more than 63 million unique descriptors and
we identify it with the label 63M. The second workload that we use is a sample
of 10 millions descriptors that we extract from 63M. We indicate this workload
with the label 10M. We use 10M because 10 million is the average size of the
workloads used to test other matcher in other ICN architectures. We also want
to show that, even if 63M is more than 6 times bigger than 10M, the difference
in the throughput between the two workloads is smaller, and so the matching
time does not grow linearly with the size of the FIB. The last workload that we
use is labeled 10M-NSDI and is composed by almost 10 million entries. This
workload was created by Wang et al. to test their GPU-based matcher published
in the NSDI conference [82], and was used also in other works [63, 81]. The
workload is composed by prefixes and not by descriptors. We use this workload
to show that our algorithm performs well also in the case where we have to
emulate the CCN hierarchical names.

We generate the descriptors in the request and notification packets by taking
a descriptor from the FIB and adding some random bits to it. In particular in the
construction we add up to 14 bits to each descriptor, that are the equivalent of
2 tags, since we use 7 hash functions to represent each tag in our bloom filters.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10M 10M-NSDI 63M

M
em

or
y 

U
sa

ge
 (M

B)

no-perm,chains
perm,chains

perm,no-chains

Figure 4.8. Prefixes compression scheme

We start the evaluation showing the memory usage of the trie for all the
workloads, using different compression strategies. Figure 4.8 shows the results



102 4.6 Evaluation

of our evaluation. All the results refer to the trie in the vector form. In the
plot, the red bar indicates the memory required by the trie with no compression
(no-perm, chains), the blu bar indicates the memory usage when we apply the
bit permutation (perm, chains), and the gray bar represents the memory needed
when we also remove the chains (perm, no-chains). The plot shows that the bit
permutation is quite effective on all the workloads, both in case of descriptors
and in case of prefixes. In particular we reduce the FIB size by 48% in case of
10M, by 42% in case of 10M-NSDI and by 46% with 63M. Also the removal of
the chains is effective in all the cases. In the end, the size of the FIB for 10M and
10M-NSDI is 171MB, while for 63M we need 1.06 GB.

Table 4.1 reports the average matching time, computed over 4 million pack-
ets, for the two different node layouts that we proposed in this chapter. The
times are in microseconds (µs). In particular, the table shows the matching time
required by the two content-based matching algorithms for all the workloads.
This times are obtained using a single thread.

Find All Subsets Find Largest Subset
SOL SROL SOL SROL

10M 43.3 39.4 28.9 25.1
10M NSDI 69.8 66.9 41.8 36.4

63M 97.8 93.7 69.4 61.9

Table 4.1. Matching time for different nodes layouts (in microseconds)

What is immediately clear from the table is that the SROL layout is always
faster than the SOL layout. In the worst cases, represented by the FAS algorithm
using 10M-NSDI and 63M, we gain only 4.1%. However, in the case of the FLS
algorithm we always gain more than 10%, with a peak of 13.1% in the case of
the 10M workload.

These results are particularly important, as they effectively measure the la-
tency of our matcher. In fact, the values reported in the table are the average
latency experienced by each packet. In particular, the latency of our implemen-
tation is the one of the SROL layout, so the values reported in the second and
fourth column. The latency should be lower than 100µs [82], and our imple-
mentation is able to meet this requirement for all the workloads.

At this point of the evaluation we want to test the scalability of our imple-
mentation with respect to the number of threads. We run our code on a machine
equipped with two Intel Xeon E5-2670 v3 processors, each one with 12 cores,
and 2.30GHz clock frequency. The machine has 64GB of RAM.



103 4.6 Evaluation

In Figure 4.9 we show the throughput of the FAS algorithm varying the num-
ber of threads. The throughput is measured in Kilo packets per second (Kpps).
The plot shows that all the three workloads scale almost perfectly increasing the
number of threads. Every time we double the number of threads we gain on
average 80.8% in throughput. The minimum gain that we achieve is 57.1%,
when we go from 16 threads to 32 threads with 63M. This is due to the fact
the our machine has only 24 cores, so, in order to run 32 threads, we need to
use hyper-threading. Using the FAS algorithm our router can forward 499,3Kpps
with 10M, 307,7Kpps with 10M-NSDI and 183,5Kpps using 63M.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (K

pp
s)

Threads

10M
10M-NSDI

63M

Figure 4.9. FAS algorithm: scalability with multiple threads

Although 10M and 10M-NSDI require the same amount of memory, there is
a difference between the performance achieved using the two workloads. This
is due to the fact that 10M-NSDI has more paths in the top part of the trie
with respect to 10M, due to the fact that we simulate CCN hierarchical names.
In this case, the algorithm needs to explore more nodes and it requires more
memory accesses. Another consideration that we can derive from Figure 4.9 is
that, although 63M contains 6 times more filters than 10M, the run with 10M
is only 2.45 times faster on average. This confirms the idea that our algorithm
works in less than linear time and scales with the size of the FIB.

In Figure 4.10 we show the same analysis for the FLS algorithm. Also in this
case we can see that implementation scales well with the number of threads.
On average we gain 83.1% in throughput every time we double the number of
threads. Like for the FAS algorithm, the minimum gain that we obtain is when
we pass from 16 to 32 threads using 63M. In particular, in this case, we gain
59.3%. The throughput in the case of FLS is almost twice the throughput of the
FAS algorithm. Our matcher processes 914,9Kpps with 10M, 602,8Kpps in case
of 10M-NSDI and 272,7Kpps using 63M.



104 4.6 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (k

pp
s)

Threads

10M
10M-NSDI

63M

Figure 4.10. FLS algorithm: scalability with multiple threads

So far we observed only the performance of a single algorithm. In particu-
lar we saw how many packets of a certain kind our matcher can process every
second. In reality our matcher is able to process different kind of packets at
the same time. As we already said, we use the FAS algorithm to forward the
notification packets, the FLS to forward the request packets and the TZ-labels
to forward the request and reply packets. In the two following experiments we
create a traffic-mix with all these types of packets. The matcher decides every
time which algorithm to use, according to the type of the incoming packet.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  20  40  60  80  100

Th
ro

ug
hp

ut
 (k

pp
s)

Notifications (%)

10M
10M-NSDI

63M

Figure 4.11. Throughput varying the percentage of notification packets

In Figure 4.11 we show the throughput varying the percentage of push and
pull traffic. The percentage of push traffic is indicated on the x-axis. The rest is
pull traffic. Push traffic is composed by notification packets, one for each flow.
Pull flows are composed by two packets: a request packet to forward using the
FLS algorithm, and the corresponding reply packet that is forwarded using the



105 4.6 Evaluation

TZ-label.
The plot shows that notifications (push traffic) have an impact on the per-

formance of the matcher, especially in the case of 10M and 10M-NSDI. For ex-
ample, in case of 10M the matcher forwards 1.58 Million packets per second
(Mpps) when there is no push traffic, and the throughput decreases to less than
500Kpps in case we have only notification packets. This result is consistent to
want we measure in the Figure 4.9.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  2  4  6  8  10  12  14  16

Th
ro

ug
hp

ut
 (K

pp
s)

Follow-up Requests

10M
10M-NSDI

63M

Figure 4.12. Throughput varying the number of follow-up requests forwarded
using the locators.

In the last experiment we set a more realistic traffic-mix, where we imple-
ment the communication flow described in Section 3.3.3. In this case we fix the
percentage of push traffic and we create a workload where 30% of the traffic is
push, while the rest is pull. As in the previous experiment, push traffic is com-
posed by notification packets, one per flow. Instead, each pull flow contains a
variable number of packets. In each flow we have a request packet to forward
with the FLS algorithm and a series of follow-up requests that we forward using
TZ-labels. The number of follow-up requests is randomly selected in the range
between 0 and a maximum value, which is indicated on the x-axis of the chart
in Figure 4.12. We vary this parameter during the experiment. As in the previ-
ous experiment, a pull flow contains a reply packet for each request, no matter
which algorithm we use to forward the request.

What is immediately clear from Figure 4.12 is that, even if we forward only
few requests using locators in each pull flow, the throughput of our matcher
receives an important boost, and we can easily forward few millions of packets
per second. In particular our matcher can achieve a throughput of 20Gbps with
an average packet size of 952.4 bytes in the case of 63M, 677.4 bytes for 10M-
NDSI and 589.8 bytes for 10M.



106 4.6 Evaluation



Chapter 5

Transport and Congestion Control

In this chapter we introduce a transport protocol with congestion control for
ICN. The congestion control is implemented at the receiver node and it is able to
control flows on multiple paths without using a priori knowledge of the network.
Combining our congestion control protocol with a distributed forwarding strat-
egy (also described in this chapter) implemented on each router, we are able to
maximize the usage of the available bandwidth in the network, minimizing the
transfer time of a content object.

The protocols that we describe in this chapter are designed for CCN, but they
can be easily used in our architecture. The congestion control does not require
any in-network state, meaning does not relay on the PITs, and all the required
state to control the transmission is handled by the receiver. This means that the
congestion control can work properly also in TagNet.

For the forwarding strategy, the porting is a bit more involved. The algo-
rithm, in fact, is based on the assumption that each data packet comes back to
a router from the interface where the router sent the related interest. This is
always true in CCN, where the flow balance between interest and data packets
is always guaranteed, since a data packet follows the revers path of the corre-
sponding interest. This is also true in TagNet, when we use only one level in the
routing protocol: the reply packet always follow the reverse path of the request,
which is the only one on a tree. Unfortunately, when we use more than one
layer in the routing (like in the case of inter- and intra-domain packets forward-
ing) a reply packet may go through a path that is different from the one used
by the related request. However it is possible to modify the forwarding process
in the hierarchical setting in order to achieve flow balance also in TagNet. This
requires to store more labels in the source and destination stack of the packet.
In particular we need to keep track of the trees used at the local level to send the

107



108 5.1 Related Work

packet to the appropriate gateway router. With this information, we can always
receive a reply packet on the reverse path of the corresponding request, and so
we can use the forwarding strategy proposed in this chapter.

The Chapter is structured as follows: Section 5.1 presents related work both
in traditional networks and in ICN. Section 5.2 describes the transport protocol
that we propose, and, in Section 5.3, we extend it in order to control multiple
paths for the same communication flow. Section 5.4 presents the distributed for-
warding strategy implemented on each router in the network. In Section 5.5 we
evaluate the proposed congestion protocol and the forwarding strategy through
simulations.

5.1 Related Work

Multipath congestion control is widely studed in literature, both from the theo-
retical and the engineering point of view. All the proposed algorithm are based
on TCP.

One transport protocol that exploits multiple paths is mTCP [88]. mTCP es-
tablishes an independent connection for each path used by a flow, called subflow.
Each subflow has its own congestion window which is regulated in a similar fash-
ion to the standard TCP. mTCP uses multiple controllers because, as the authors
show in the paper, a flow that uses multiple paths and is controlled with a single
instance of TCP may get lower bandwidth than one that uses a single path.

mTCP has problems in controlling bottlenecks that are shared among flows.
This is due to the fact that each path has its own controller. EWTCP [44] in-
troduces some correlation among the subflows, in order to overcome the prob-
lems of mTCP. Each subflow is associated to a weight that reflects the network
resources used by the subflow at any time. The congestion window size adjust-
ment is proportional to the weight assigned to each subflow.

MPTCP [84] is the standardize version of multipath TCP, that improves pre-
vious proposed algorithms using the network resources in a more efficient way.

There is also a lot of theoretical work that studies the stability of multipath
congestion control [43, 50].

All these approaches listed above are not directly usable in ICN, because in
ICN there is no a real connection between the receiver and all the sources used
to retrieve the content. The receiver node does not know a priori the nodes that
will reply to its requests. There may be multiple publishers for the same content,
on-path caches may send requested data to the receiver and the set of nodes that
reply to the user may change over the time. Basically, is not possible to set up any



109 5.1 Related Work

state for each path that will be used in the transfer of a content object, because
these paths are unknown. For these reasons in ICN the congestion control needs
to be located at the receiver, and not at the senders as in standard TCP. The
receiver, in fact, is the only node that, at any time, has all the information about
the ongoing transmission.

Clark et al. present one of the first proposals for a receiver-driven congestion
protocol [25]. This is a rate-based transport protocol, where the retransmission
timer is handled by the receiver node.

WTCP [72] has the goal to reduce the problem of TCP in wireless environ-
ments. In wireless transmission, many packet losses are due to the channel itself,
which is not as reliable as a wire connection, and not because of congestion. This
leads to poor performance of TCP that interprets each packet loss as a sign of
network congestion. WTCP delegates some of the monitoring function to the
receiver, that can adjust the sender window size. The receiver adjusts the trans-
mission rate of the sender, sending the correct rate in the ACK messages. Similar
ideas are used by other proposals, such as TFRC [31] and TCP-Real [78].

A receiver-driven congestion control that keeps all the state at the receiver is
RCP [46]. This transport protocol works in a similar way to TCP, but the receiver
node is responsible of all the protocol functionalities, like congestion control
and loss recovery. Kuzmanovic et al. analyze in detail RPC, highlighting the
improvements and the vulnerabilities of a receiver-driven control with respect
to the standard TCP [52].

Looking for specific transport protocols developed for ICN there are few
proposals available. One of the first proposed transport protocols for CCN is
ICP [11], which is the starting point of the algorithm that we introduce in this
chapter. We describe ICP during the presentation of our congestion control.

Saino et al. propose CCTCP that sends anticipated interests to estimate the
RTT of further requests [70]. Each interest packet carries a set of chunk identi-
fiers that the receiver will require in the immediate future. If a router (publisher
node or cache) has the data required by one of these interests, the router puts a
time stamp in the packet. In this way the receiver can have a good estimation of
the RTTs for the next set of interests, and the controller can set a correct timer
for the interest expiration.

A more recent work is ECP [68]. In this proposal the congestion is detected
at middle routers. When a router detects congestion, it notifies the receiver using
special NACK packets. The receiver reduces the size of the congestion window
when it receives the signal for a congestion event.

Another approach proposed for CCN, is to use hop-by-hop congestion con-
trol. The main idea in this case is to control the rate of interest packets, meaning



110 5.2 Receiver-Driven Congestion Control

reduce the transmission frequency on each hop, introducing some delay, in order
to prevent congestion. Examples are HR-ICP [12] and the protocol proposes by
Wang et al. [80]. These distributed algorithms can be used in conjunction with
another receiver-driven congestion controller, as in the case of HR-ICP.

5.2 Receiver-Driven Congestion Control

In this chapter we present a receiver-driven congestion control that allows ef-
ficient file transfer, controlling the requests rate at the receiver and avoiding
network congestion. We design our congestion control with three goals in mind:

• Reliability: The protocol needs to guaranties that the receiver gets the
required content. In case some packets get lost during the transfer, the
receiver needs to issue a new requests for the missing content.

• Efficiency: Our congestion control is designed to utilize all the resources
available in the network, in order to minimize the data transfer time. The
congestion control can use multiple paths, in order to download different
parts of the same content from multiple sources and use more bandwidth.

• Fairness: The congestion control fairly allocates the available bandwidth
among flows that share the same path.

The protocol that we propose is called Remote Adaptive Active Queue Manage-
ment (or RAAQM) [13, 14] and is an evolution of the Interest Control Protocol
(ICP) [11]. RAAQM uses an Additive Increase Multiplicative Decrease (AIMD)
congestion window to control the rate of the requests that a user is allowed to
express. The window is controlled by the receiver node that maintains all the
necessary state.

The receiver maintains a window of size W that specifies the maximum num-
ber of outstanding requests, meaning the number of requests that a node can is-
sue before receives the corresponding data packets. Every time the user receives
a data packet for an outstanding request, the controller increases the window
size W by η/W . The window grows by η, which is set to 1 in our implemen-
tation, every time that the user receives all the data for an entire window of
requests. Figure 5.1 describes the increment of the window.

When a packet gets lost or congestion in the network is detected, the con-
troller decreases the size of the window. The window size is multiplied by a
decreasing factor β < 1. The factor β can be adjusted in order to obtain a



111 5.2 Receiver-Driven Congestion Control

Receiver Sender
interests
sent

window
size

interest 1

data
1

interest 2

data
2

interest 3

data
3

interest 4
interest 5
interest 6

11

2 32

4 32.5

4 5 63

Figure 5.1. Window evolution: additive increase

congestion control that is more o less aggressive. Figure 5.2 shows how the
congestion control decrease congestion window size.

5.2.1 Trigger Window Decrease

Define a way to trigger the window decrease can be complicated. If the con-
troller decreases the window too often, the congestion control may be too ag-
gressive. The results is a waste of network bandwidth and the transfer time
increases. In the opposite case, the congestion control may not work properly
and create congestion.

In ICP the window decrease is deterministically. ICP relies on a timer τ
associated to each request. The timer τ is computed as a function of the Round
Trip Time (RTT) estimated at the receiver over a set of requests. In case the data
packet is not received within the time τ the controller decreases the window W
and issues again the expired request. In this way, if the request or its related data
packet got lost or dropped some where in the network, the receiver can always
get the data. This guarantees the reliability of the congestion control protocol:
the receiver will eventually receive the entire content.

Define a simple adaptive timer τ that reflects the network congestion con-



112 5.2 Receiver-Driven Congestion Control

Receiver Sender
interests
sent

window
size

interest 5
interest 6

. . .

data
7

data
8

timer on interest 5
timer on interest 6

interests 5, 6 and 9

87654

87652

8652.5

9653

Figure 5.2. Window evolution: multiplicative decrease (β = 0.5)

dition, such as the one used in ICP, is not easy. The timer, in fact, is subject
to estimation errors, due to the RTT variations. Furthermore, in case of mul-
tiple paths, the RTTs may vary significantly from one request to the other, and
a simple timer is not sufficient to control the window size. In this scenario in
fact, short RTTs, related to the requests satisfied by the path with more available
bandwidth, force the congestion control to set small τ. This cause a timer expi-
ration for all the requests forwarded on the other paths, that translate in a small
window size and poor transfer rate.

RAAQM uses a probabilistic window decrease, aiming to control the queue
size on the bottleneck links. The idea is to anticipate the window decrease to
prevent a possible congestion in the network, and, at the same time, to reduce
window size oscillations. The idea to control the queue delay at the bottleneck
comes from Active Queue Management (AQM) algorithms, such as RED [32]
or the more recent CoDel [58]. The goal of these algorithms is to reduce the
bufferbloat problem, by probabilistically drop packets from the buffer queue
of routers. Ardelean et al. propose a way to control queue delay remotely,
using RTT estimation at the receiver [5]. RAAQM uses the same ideas, but the
probability to reduce the congestion window size is adaptive, and it depends on
the RTT estimation.

For every request the receiver node computes the instantaneous RTT, indi-
cated with R(t), that measures the time between the transmission of the request
and the reception of the corresponding reply packet. Using this data the con-



113 5.2 Receiver-Driven Congestion Control

troller computes the minimum and the maximum RTT, denoted as Rmin and
Rmax respectively, over a history of samples. In our implementation the con-
troller keeps track of the last 30 measured RTTs. RTTs of retransmitted packets
are not used in the estimation of Rmin and Rmax . R(t) and the estimation of
Rmin and Rmax are used to compute the decrease probability p(t), which is the
probability to decrease the window size at any given time.

Rmin Rmax R(t)

pmin

pmax

Figure 5.3. Window decrease probability function

Figure 5.3 presents the function p(t): it is a monotonically increasing func-
tion of R(t) that goes from pmin to pmax , which is a value less or equal to 1. p(t)
is equal to pmin when R(t)≤ Rmin, and it is equal to pmax when R(t)≥ Rmax . Our
congestion control defines p(t) as follows:

p(t) = pmin+∆p
R(t)− Rmin(t)

Rmax(t)− Rmin(t)
(5.1)

where ∆p = pmax − pmin, Rmin(t) and Rmax(t) are Rmin and Rmax estimated
at time t. Using p(t) RAAQM can adjust the size of the window at the receiver,
increasing or decreasing the load on the bottleneck queue.

The size of the window over the time, indicated with W (t), is described by
the following equation:

Ẇ (t) =
η

R(t)
− βW (t)p(t − R(t))

W (t − R(t))
R(t − R(t))

(5.2)

The value η

R(t)
represents the incremental factor in the AIMD controller. This

value is inversely proportional to R(t): with higher RTTs the congestion window
is increased less. βW (t) is the multiplicative decrease factor, which is applied to
the window with rate p(t−R(t))W (t−R(t))

R(t−R(t))
. In other words, each reply packet that

comes back to the receiver node generates a window decrease with probability



114 5.3 Multipath Extension

p(t−R(t)), which is computed using the RTT estimation of the previous packet,
received at time (t − R(t)).

5.3 Multipath Extension

The algorithm described so far works correctly on a single path. In an ICN
network there are multiple caches that can be used to retrieve the content, or
multiple sources for the same content can be exploited. Therefore, the commu-
nication in ICN is inherently multipath. We want to extend RAAQM to control
multiple paths in the same flow, in order to fit the ICN communication model.
The main challenge is to control possible multiple bottleneck using a single con-
troller.

Before we start the description of the multipath scenario we need to define
the concept of route. A route is a sequence of routers that connect a data source,
a cache or a publisher node, to the user. A route is indicated with a label com-
posed by the identifiers of the nodes, ordered from the data source to the users,
as represented in Figure 5.4. In the figure node e is the producer node, while
node a is the receiver. The figure shows two routes, labeled {e, d, c, b, a} and
{e, d, f , b, a}, from the producer node, and a third one, with label { f , b, a}, from
the cache at node f . The identifier of each router can be the MAC address of the
node or some kind of special names.

There are at least 3 ways to extend our controller:

1. we can use the controller without any change, with a single congestion
window and a single RTT estimator,

2. we can use multiple controllers, with one congestion window and one RTT
estimator per each route,

3. we can use a single window, but use a different RTT estimation for each
route.

In the first case we use a single congestion window and a single RTT esti-
mation. In this way, the decrease probability p(t) is computed over all the RTT
samples received by the receiver node, even if they refer to multiple routes. This
amounts to compute p(t) over a global queue delay, which is the average queue
delay over multiple routes, with possibly very different delays. In this scenario
Rmin represents the RTT estimated for the fastest path, while Rmax represents the
RTT of the most congested path. This may easily lead to instability, because the
congestion control receives many RTTs that are close to Rmin and just few or even



115 5.3 Multipath Extension

a b

c

f

d e

{e,d,c,b,a}

{e,d,f,b,a}{f,b,a}

Figure 5.4. Different routes and route labels

none close to Rmax , because the slower path is congested. This is interpreted by
the controller as if the window size is to small, because most of the RTTs are
close to Rmin. As a reaction the congestion control increases the window size,
creating more congestion.

The second idea is to maintain one controller for each path. This could be the
best approach, but, as we discuses in the related work section, it is infeasible in
practice. In ICN the number of routes is unknown a priori and they may change
during the file transfer.

The last option, which is the one that we adopt, is to use a single window to
control all the routes, but to estimate the RTTs, and so the decrease probability
p(t), per route. In order to figure out which route is used by a packet the
congestion control uses the labels introduced in Figure 5.4. The receiver collects
RTTs separately for each route and, using these samples, estimates the Rmin and
Rmax of each route. Using all this information the controller can compute a
decrease probability pr(t) that is related to a particular route.

This version of the controller overcomes the problems of the other two so-
lutions. The controller is stable, in fact pr(t) is not computed over the average
RTT, but is related to a particular route and each route can decrease the size
of W independently. At the same time, the congestion control does not need to
know all the routes in advance, but RAAQM can discover the routes during the
file transfer. In our implementation we compute the decrease probability pr(t)
for a route r only if we see at least 30 packets coming from that route.

Using pr(t), which is computed like in Equation 5.1 for each route, the win-
dow evolution for the multipath scenario is described by the following equation:

Ẇ (t) =
η

R(t)
− β
∑

r∈R

pr(t − R(t))W (t)sr

W (t − R(t))
R(t − R(t))

(5.3)

The incremental factor do not change with respect to Equation 5.2. Instead,



116 5.4 Forwarding Strategy

the decremental factor is multiplied by the sum of all the decreasing probabilities
pr , computed for each monitored route. The set of monitored routes is indicated
with R . W (t)sr indicates the part of the requests in the congestion window
forwarded on route r at time t. The value sr indicates the split ratio, which
is the percentage of outstanding requests routed on a certain route, according
to the forwarding decisions taken by each node in the network. Notice that
the receiver does not need to know sr , because it simply computes pr when it
receives a packet from a certain route r.

5.4 Forwarding Strategy

The congestion control that we described in the previous sections is able to pre-
vent congestion in the network and handle multiple routes for the same flow.
However RAAQM alone does not guarantee good performance in terms of band-
width utilizations, especially in the case of multiple paths. RAAQM tends to
set the transmission rate in order to avoid congestion on the links with smaller
capacity. Instead we want to use all the routes at their maximum capacity, to
minimize the transfer time.

An aspect that we did not take into account so far is the split ratio. The
split ratios are a crucial component for the window size evolution, and, as a
consequence, for the transfer rate, as described in Equation 5.3. The split ratio
effects how request packets are forwarded in the network at each hop, and this
has an impact on the final utilized bandwidth. The split ratio, in essence, is
determined by the forwarding strategy used at each node to forward requests. A
forwarding strategy can select an output interface for a request packet randomly
or with a more sophisticated process. In any case, this is a distributed process
that is unknown to the receiver node, so is not part of the congestion control
itself.

A good forwarding strategy may push more traffic toward the links with more
capacity or the to ones with a lower RTT. In this way the network balances the
traffic over different paths, according to their real capacity, and it is possible to
use the available bandwidth in a better way. There are some proposals that tries
to solve this problem in CCN. CCN itself proposes a layer in its protocol stack,
called Strategy Layer, that has exactly the purpose to select the best interface
where to forward each interest. Yi et al. [87] propose a mechanism that uses
probe packets to infer the quality of a path behind an interface. Using this
technique each router ranks the interfaces and uses them according to this rank.
This forwarding strategy can be integrated in a routing scheme [86]. Another



117 5.4 Forwarding Strategy

example of forwarding strategy proposes to forward interests off-path, meaning
on a direction that may not lead to the source of the content, in order to explore
the nearby caches [24]. Also this mechanism is based on a kind of ranking for
the interfaces.

Here we propose our forwarding strategy, that we use in the network in
combination to the RAAQM protocol. Since this forwarding strategy was ini-
tially proposed for CCN, in this section we use terminology that is CCN specific.
We remind that an interest packet in CCN terms is semantically equivalent to a
request packet in TagNet, as well as a CCN data packet is semantically equivalent
to a reply packet in TagNet. We want also to remind that, as we described in the
introduction of this chapter, it is possible to implement this forwarding strategy
also in TagNet, with simple modifications.

The forwarding strategy that we propose is completely distributed, requires
only local knowledge, does not require any additional traffic and is optimal over
the time [14]. This forwarding strategy works under the assumption that, when
we send an interest to an interface, we get the data packet on the same interface,
since a data packet always follow the reverse path of the related interest. Under
this assumption we can count the number of Pending Interests (PI) on each inter-
face of the router for a particular prefix. PI is associated to an interface and to a
prefix. It is important to associate the PI to a prefix, and not just to an interface,
because a router can send interests that match different prefixes to the same
interface, but they will have different RTTs, in fact, most likely, they will follow
different paths. The values of PI are stored in the FIB of the router.

In CCN the information related to the pending interests is available in the
PITs. It is important to notice that the information that we store in the FIB to
implement our forwarding strategy is different from the information in the PIT.
PITs store information at the chunk level, meaning that, at every instant, each
PIT has the number of pending interests for a particular chunk of a particular
content. This data are not relevant for our algorithm, because the forwarding
decision are made only on prefixes.

The PI gives us a measure of the status of the route behind a certain in-
terface for a particular content. If the number of PI is high, the route may be
congested, while if the number of PI is close to 0 there is available bandwidth to
use. A router sends an interest to an interface with a probability that is inversely
proportional to the related PI.

Figure 5.5 describes the algorithm that we developed for our forwarding
strategy. At each reception of an interest (line 1) or data packet (line 9) we
update the value of PI associated to a particular interface and prefix. We simply
increase PI when we send an interest (line 15) and we decrease PI when we get



118 5.4 Forwarding Strategy

1 void process_data_packet(string name, int face_in){
2 if (!PIT_miss) then{
3 fwd_data_packet(face_out);
4 PI_dec(face_in, name);
5 ifx_weight_update(face_in, name);
6 }else{
7 drop packet;}}

9 void process_interest_packet(string name, int face_in){
10 if (Cache_miss && PIT_miss) then{
11 ifx_weights_list = FIB_lookup(name);
12 ifx = rand_wighted_selection(ifx_wights_list);
13 forward_interest(ifx);
14 PIT_update(name, face_in);
15 PI_inc(ifx, name);
16 ifx_weight_update(ifx, name);
17 }else{
18 follow CCN standard procedure;}}

20 void fx_weight_update(ifx, name){
21 avg_PI(ifx,name) = α*avg_PI (ifx,name)+ (1 − α) PI(ifx,name);
22 weight(ifx,name) = 1 / avg_PI(ifx,name);}

Figure 5.5. Forwrarding strategy algorithm

a data packet (line 4). Every time that we update the instantaneous value of
PI associated to a prefix on a certain interface, we also recompute the weight
associated to that prefix, calling the function at line 20. In this function we
compute a weighted moving average of PI, indicated with avg_PI, that we use in
order to have a more stable value of PI. The α parameter of the moving average
is set to 0.9. The weights associated to each prefix on an interface are computed
as the inverse of avg_PI. These weights are used at line 12 to select an output
interface for an interest, using a random weighted algorithm. At start time all
the interfaces have the same weight, so the forwarding process is uniform on
all the output interfaces. Since we use a random decision process to select the
output interface, all the interfaces are sampled, with different probability. In this
way we can react to changes in the network without using probe packets to test
the condition of different routes.



119 5.5 Evaluation

5.5 Evaluation

To evaluate the performance of the RAAQM congestion control we simulate dif-
ferent network scenarios. All the FIBs in each node are manually pre-computed,
simulating a routing protocol that computes routes to all the available sources.
We start to analyze the protocol on a single-path scenario, to evaluate the stabil-
ity region of the controller and the fairness in case of multiple flows. Then we
simulate a multipath scenario to see how RAAQM, in addition to the forwarding
strategy described by the algorithm in Figure 5.5, uses the available bandwidth
in the network.

5.5.1 Single Path Simulation

In this simulation we consider the case where a single user is connected directly
to the source of the content. The link capacity is set to 100Mbps. In this setting
we start to evaluate the stability region of the controller, that depends on the
two parameters ∆p and β [13]. The results of the analysis are presented in
Table 5.1.

Parameters Infinite Buffer Buffer = 100 pkts

∆p β eQ fW
Packet
fW

Loss (%)
0.5 0.5 21.67 2.36 0 2.36
0.2 0.5 36.93 4.07 0 4.07
0.2 0.2 60.73 6.45 0 6.45
0.1 0.5 54.74 6.11 0 6.11
0.1 0.2 86.97 9.34 0.09 9.32
0.1 0.05 117.84 18.37 2.28 13.34
0.1 0.02 267.90 27.55 4.97 16.96

0.05 0.02 ∞ ∞ 8.05 21.76

Table 5.1. Single path scenario: sensitivity analysis

In this simulation the user requires 10 different contents at the same time.
We run two sets of simulations. In the first set we use a buffer, situated between
the provider and the bottleneck link, with a really large size, indicated in the
table as Infinite Buffer, to see the behavior of the controller in absence of packet
loss. In the second set of simulations the size of the buffer is limited to 100
packets. In each simulation we change the values of∆p and β . In case of infinite



120 5.5 Evaluation

buffer, we report the average queue size and the average cogestion window size,
indicated respectively with eQ and fW . In case of finite buffer a larger queue
translates in packet losses, so, instead of eQ we measure the percentage of packet
loss.

As a general result we can say that for β∆p > 2× 10−3, which is the region
above the last line (indicated with an horizontal line), the controller is stable.
In fact in the case ∆p = 0.05 β = 0.02 the queue and the window sizes keep
growing during the simulation and they never stabilize. Generally speaking the
size of the queue at the bottleneck increases as the product β∆p decreases. In
the case of finite buffer, the instability of the controller translates in an higher
loss percentage, that reduces the performances of the controller, increasing the
transfer time of the content. In the rest of our simulations we set ∆p = 0.2 and
β = 0.2.

Figure 5.6 shows the instantaneous throughput of three different flows that
share the same link capacity. As in the previous simulation we use a single link
with 100Mbps capacity. The user issues three different requests, at 1 second, 5
seconds and 10 second after the beginning of the simulation, respectively. The
plot shows that the link capacity is always fully used, in fact the sum of all the
rates at each time is equal to 100Mbps. It also shows that, as soon as a new flow
comes, the bandwidth is fairly shared among the active flows.

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25

R
at

e 
(M

bp
s)

Time (sec)

Flow 1
Flow 2
Flow 3

Figure 5.6. Single path scenario: fairness among flows

In this simulation we also measure the evolution of the size of the queue at
the bottleneck and the size of the congestion window for each flow. The data are
presented in Figure 5.7. The top part of the chart shows the size of the queue at
the bottleneck in packets, while the lower part shows the window size for each
flow, again in packets. The queue size reflects the number of flows in progress.
This is due to the fact that RAAQM controls the difference between Rmin and



121 5.5 Evaluation

Rmax , and Rmin increases every time that a new flow starts. As long as Rmin is
smaller than the RTT associate with a full buffer, the queue at the bottleneck
grows with the number of flows. However, when we get close to the buffer
saturation, the difference between Rmin and Rmax decreases, and this increases
the probability to reduce the size of the window, as describe in Equation 5.1. In
this way we can avoid congestion. The efficiency of the RAAQM controller is
also guaranted by the fact that the queue at the bottleneck is never empty and
so the link alway works at full rate.

 0

 5

 10

 15

 20

 25

Q
ue

ue
 (P

kt
s)

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25

W
in

do
w

 (P
kt

s)

Time (sec)

Flow 1
Flow 2
Flow 3

Figure 5.7. Single path scenario: queue and window evolution

5.5.2 Multipath Simulation

In this part of the evaluation we want to analyze the proposed RAAQM controller
in addition to the forwarding strategy, using the multipath scenario presented in
Figure 5.8. On the right side of the network there are 4 producer nodes, namely
node i, j, k and l, and each producer stores the entire content catalog. The
user is on the left side of the network, at node a. The capacity of each link
is reported in the picture. The user, as well as all the producers, is connected
to the network with an high capacity link (1Gbps) to avoid bottlenecks at the
edge of the network that would prevent the usage of multiple paths. The figure
also highlights the bottleneck with thicker lines: link (b, d) (30Mbps), link (c, e)
(5Mbps) and link (c, f ) (55Mbps).

We start with the evaluation of the forwarding strategy presented in the al-
gorithm in Figure 5.5. Figure 5.9 shows the evolution of the split ratios, so the
percentage of the traffic that goes on a certain route, calculated at node b, c
and d during 5 second of simulation. The plain lines in the plot represent the



122 5.5 Evaluation

b

c

d

e

f

g

h

a

i

j

k

l

1G
60M

30M

5M

55M

40M

50M

1G

1G

1G

1G

Figure 5.8. Multipath scenario topology

optimal percentage of traffic, computed manually, while the dashed lines repre-
sent the measured values. We show only 3 values, the others are obviously the
complement of these values.

 0

 20

 40

 60

 80

 100

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Sp
lit

 R
at

io
 (%

)

Time (sec)

From node b to node c

From node d to node g

From node c to node e

Figure 5.9. Multipath scenario: split ratio evolution

The optimal split ratio are easy to compute using the link capacities, and here
we give some examples. The maximum rate achievable at node b is 90Mbps,
which is the sum of the capacity of the links (b, c) and (b, d). Out of this 90Mbps
we can send 60Mbps to node c and 30Mbps to node d. It is worth noticing
that node d represents a particular case where the bottleneck is downstream
with respect to the node. In this case the node can not saturate the bandwidth
available upstream, so the load is divided equally over the two links (d, g) and
(d, h). The final optimal split ratios are: at node b 66.6% of the traffic goes to



123 5.5 Evaluation

node c and the rest to node d; on node c 8.3% of the traffic goes to node e and
the rest to f ; on node d the traffic splits evenly among g and h.

It is clear from Figure 5.5 that the simulation converges quickly to the opti-
mal values. This simulation shows that our algorithm can dynamically compute
the optimal weights [14].

In the last simulation we test our RAAQM algorithm in combination with the
forwarding strategy on the topology in Figure 5.8. The results are presented in
Figure 5.10 and 5.11.

In Figure 5.10 we show that a good forwarding strategy is necessary in or-
der to exploit the entire bandwidth available in the network. We compare the
throughput achieved with our forwarding strategy, in red, and the throughput
in case of a random forwarding strategy, the blue line. In case of the random
strategy, each node uniformly select an output interface, so the traffic is evenly
distributed among the neighbors of the router. The blue line, labeled with tot
Random, reports the total bandwidth used by the flows measured on the link be-
tween the user (node a) and node b. The average value is 20Mbps, that means
that, for each route, we use only 5Mbps, which corresponds to the link with the
smallest capacity, namely link c − e. Using the proposed forwarding strategy
instead, we can fully utilize each bottleneck in the network (see labels in the
picture), and the throughput measured between the user at node a and node b,
labeled with tot Fwd Strategy, is really close to 90Mbps, that is the total capacity
of our network.

 10

 30

 50

 70

 90

 110

 0  2  4  6  8  10  12  14  16  18  20

R
at

e 
(M

bp
s)

Time (sec)

link (c,f)

link (b,d)

link (c,e)

tot Fwd Strategy

tot Random

Fwd Strategy
Random

Figure 5.10. Multipath Scenario: Rate at Bottlenecks Links

Figure 5.11 shows the evolution of the queues, measured in packet, at the
bottlenecks. In particular, the evolution of the queue on node e is presented in
the top part of the picture, and the queue at node d is in bottom part of the
picture. We do not show the queue at node f because it never grows over 15



124 5.5 Evaluation

packets. The maximum size of each queue is 100 packets. Both the charts show
that the queues are quite stable and they never saturate. We drop only 0.007%
of the packets, all of them in at node d, which is the most loaded one.

 0

 20

 40

 60

 80

 100

Q
ue

ue
 (P

kt
s)

Node e

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

Q
ue

ue
 (P

kt
s)

Time (sec)

Node d

Figure 5.11. Multipath Scenario: Queues at Bottlenecks Links

In this section we evaluated RAAQM through simulations. However, this
transport protocol is implemented as an extension of CCNx (the code is com-
patible with versions from 0.6.1 to 0.7.1). We used this implementation to run
the experiments on the testbed Grid’5000.1 In this evaluation we used different
topologies: a topology similar to the one in Figure 5.8, a CDN like topology, the
Abilene topology,2 and a mobile back-haul topology [14]. RAAQM is used also
as a transport protocol in other works based on CCN [62, 15].

1Grid’5000 webpage. https://www.grid5000.fr/
2Abilene topology. https://itservices.stanford.edu/service/network/internet2/abilene

https://www.grid5000.fr/
https://itservices.stanford.edu/service/network/internet2/abilene


Chapter 6

Conclusion and Future Work

The Internet changed dramatically since when it was created. The number of
users that have access to the Internet surpassed 3 billions, and there will be
about 50 billion objects connected by 2020.1 The way we use the Internet also
changed: from a network designed to share devices, to a content delivery net-
work. User mobility also introduced many challenges that are not easily manage-
able in the current Internet. Information Centric Networking has the ambition
to design a new Internet better suited for today’s user needs and to solve all the
problems arising from the tremendous growth of the network.

In this thesis we present a new ICN architecture called TagNet. We design
and develop TagNet, and we conduct an extensive evaluation of our design. Tag-
Net tries to give an answer to some of the fundamental problems that an ICN
architecture should address. One of the goals is to better support the current
and future uses of the Internet. TagNet does it by providing rich communica-
tions primitives, by allowing both push and pull communication at the network
level. In fact, even if the majority of the Internet traffic can be handled with
request/reply communication, many applications can benefit form a notification
service at the network level, and many more may do the same in the future.

TagNet also empowers users and applications to address content with ex-
pressive addresses. These user-defined addresses are encoded in descriptors
consisting of sets of tags. Descriptors can be used to describe some content, but
they are also powerful enough to mimic the semantic of hierarchical names.

At a more engineering level, the implementation of TagNet allows scalabil-
ity of the network as a whole, as a diverse decentralized internetwork, and fast
packet forwarding and therefore high-throughput transmission. The combina-

1Connections Counter: The Internet of Everything in Motion. http://newsroom.cisco.com/
feature-content?type=webcontent&articleId=1208342

125

http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342


126

tion of push and pull traffic is simple to implement, thanks to our routing scheme
based on trees that also allows for good aggregation of routing information and
therefore reduced sizes for the RIBs. This is a fundamental property to guarantee
the scalability of the network. At the same time, the use of different, specialized
addresses reduces the amount of in-network soft state, and allows for efficient
packet forwarding and overall improved performance of the data plane.

The work done in this thesis explores many important aspects of the design
and the development of a new network architecture. However, this can be con-
sidered just a stating point, since many aspects still need to be clarified, and
many problems remain without an answer.

At the application level we still need to conduct an extensive comparative
analysis of TagNet with other ICN proposals such as NDN and CCN, which are
arguably the most developed and studied ICN architecture, and also the ones
that are most similar to TagNet. Now we have all the building blocks for a com-
plete prototype, such as the update algorithm and the forwarding engine, but
we are still missing a complete implementation that can run on a real testbed.
This is an important part for the future development of TagNet.

At the routing level we show that the architecture scales both in terms of
memory requirements and in terms of updating time, also in case of significantly
large RIBs. At this level there are still two main open questions: (i) how to build
the trees and (ii) how to support user mobility.

To answer the first question we already achieved interesting results that are
not part of this thesis. These results tell us that a few trees are actually enough
to cover the Internet in a way that minimizes both latency and congestion [60].
However, in these studies, we do not take into account the routing polices that
are so essential for a routing scheme at the AS level. BGP, in fact, allows each AS
to choose different routes, mostly based on the business strategy of the operators
rather than to minimize path lengths or other global topological metrics. In
order to use our tree-based routing at the AS-level, we must provide a way for
the ASes to create trees that, at least to some extent, satisfy their routing polices.
In our current understanding of the routing problem in ICN, this goal poses non-
trivial technical problems.

The other aspect that we simply touched upon in this dissertation is user mo-
bility. One of the missions of ICN is to support mobility better than IP networks.
TagNet seems to have a good way to address user mobility, thanks to the clear
separation between content descriptors and locators, and therefore thanks to the
combination of specialized forwarding algorithms. However, what we have de-
signed so far is only a sketch of the mobility algorithm that we need to develop
and study more extensively and in more detail.



127

The forwarding engine that we propose for TagNet also needs more investi-
gation and refinement. Our evaluation shows that, thanks to the combination
of content-based and locator-based forwarding, we can achieve a good through-
put. However, despite the impressive improvement we obtained with respect to
previous versions of our implementation, the pure content-based part is still not
competitive if compared with IP forwarding in current core routers.

In an attempt to overcome these performance barriers, we also developed
a GPU-based matcher that performs only the FAS algorithm, and that is capa-
ble of forwarding about 1 million packets per second with the 63M workload.
The main problem with this algorithm, which is common to most GPU-based
matching systems, is that it suffers from high latency, in particular in the order
of hundreds of milliseconds. This level of latency makes this solution ineffec-
tive in real, reasonable-sized networks. In the future we plan to look also at
other specific hardware, like TCAMs and FPGA. Still, the problem we pose (sub-
set or “partial” matching) seems to be fundamentally more complex than the
traditional forwarding problem in IP networks (prefix matching).

One aspect that we did not touch at all in the dissertation and requires more
deep investigation is security. We did not conduct any security study on our ar-
chitecture, but we are well aware that there are many issues related to security.
Some of these issues are not particularly new or challenging for TagNet. For ex-
ample, the problem of authenticating content is the same as in CCN, for which a
number of architectural and technical solutions are available. Without exploring
all the details, we can assume that the content can be digitally signed by the
publisher, and then verified by the end-user application or even by the network
on the user’s behalf. This is certainly true for pull communication, since request
and reply packets have the same semantic of interests and data packet in CCN.
However, we think that the same technique can also be applied to notification
packets, where the final user can verify the authenticity of the packet.

Another important security problem is the risk of DDoS attacks that may ex-
ploit some aspect of the architecture. In fact, it is easy to flood the network with
useless messages. For example, a malicious user may send a series of request
or notification packets with many tags in the descriptor. In this way , as we al-
ready discuss in the second Chapter, there is an high probability that the packets
match many entries in the FIBs of the routers, and so, the packets get forwarded
everywhere. We envision different ways to prevent this type of attack. One way
is to charge the users according to the expected traffic that they will generated
in the network. A packet with more tags may cost more, simply because more
tags mean a higher probability to match predicates, and therefore a higher net-
work cost for delivering the packet. Another technical solution to the problem



128

is to implement some kind of firewall in the routers. A router may not accept
messages with a descriptor that has a Hamming weight that is too high, or, when
some packets have a fan out that is higher than a certain threshold, the router
may decide to discard the packet, or forward it to a subset of the matching inter-
faces. Both these strategies are easy to implement also in our forwarding engine
and they are useful to prevent attacks.



Bibliography

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A sur-
vey of information-centric networking. Communications Magazine, IEEE,
50(7):26–36, 2012.

[2] B. Ahlgren et al. Second netinf architecture description. 4WARD EU FP7
Project, Deliverable D-6.2 v2.0, 2010.

[3] R. Ahmed, M.F. Bari, S.R. Chowdhury, M.G. Rabbani, R. Boutaba, and
B. Mathieu. aroute: A name based routing scheme for information cen-
tric networks. In INFOCOM, 2013 Proceedings IEEE, pages 90–94, April
2013.

[4] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Named data networking
for iot: An architectural perspective. In Networks and Communications
(EuCNC), 2014 European Conference on, pages 1–5, June 2014.

[5] D. Ardelean, E. Blanton, and M. Martynov. Remote active queue man-
agement. In Proceedings of the 18th International Workshop on Network
and Operating Systems Support for Digital Audio and Video, NOSSDAV ’08,
pages 21–26, New York, NY, USA, 2008. ACM.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[7] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimen-
sional nearest neighbor search and related problems. In Proceedings of the
Thirty-first Annual ACM Symposium on Theory of Computing, STOC ’99,
pages 312–321, New York, NY, USA, 1999. ACM.

[8] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Internet Mathematics, 1(4):485–509, 2004.

129



130 BIBLIOGRAPHY

[9] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Vir-
tual ring routing: Network routing inspired by dhts. SIGCOMM Comput.
Commun. Rev., 36(4):351–362, August 2006.

[10] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker. Rofl: Routing on flat labels. In Proceedings of the 2006 Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’06, pages 363–374, New York, NY, USA,
2006. ACM.

[11] G. Carofiglio, M. Gallo, and L. Muscariello. Icp: Design and evaluation of
an interest control protocol for content-centric networking. In Computer
Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference
on, pages 304–309, 2012.

[12] G Carofiglio, M. Gallo, and L. Muscariello. Joint hop-by-hop and receiver-
driven interest control protocol for content-centric networks. In Proceed-
ings of the second edition of the ICN workshop on Information-centric net-
working, pages 37–42. ACM, 2012.

[13] G. Carofiglio, M. Gallo, L. Muscariello, and M Papalini. Multipath con-
gestion control in content-centric networks. In Computer Communications
Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, 2013.

[14] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and S. Wang. Opti-
mal multipath congestion control and request forwarding in information-
centric networks. In International Conference on Network Protocol (ICNP),
2013.

[15] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Scalable mobile
backhauling via information-centric networking. In Local and Metropolitan
Area Networks (LANMAN), 2015 IEEE International Workshop on, pages 1–
6, April 2015.

[16] A. Carzaniga, K. Khazaei, M. Papalini, and A.L. Wolf. Is information-centric
multi-tree routing feasible? In Proceedings of the ACM SIGCOMM Workshop
on Information-Centric Networking, ICN ’13, 2013.

[17] A. Carzaniga, M. Papalini, and A. L. Wolf. Content-based publish/subscribe
networking and information-centric networking. In Proceedings of the ACM
SIGCOMM Workshop on Information-Centric Networking, ICN ’11, pages
56–61, 2011.



131 BIBLIOGRAPHY

[18] A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing scheme for
content-based networking. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, volume 2,
pages 918–928 vol.2, 2004.

[19] A. Carzaniga and A. L. Wolf. Content-based networking: A new commu-
nication infrastructure. In NSF Workshop on an Infrastructure for Mobile
and Wireless Systems, number 2538 in Lecture Notes in Computer Science,
pages 59–68. Springer-Verlag, October 2001.

[20] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In
Proceedings of the 2003 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’03, pages
163–174, 2003.

[21] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching, and related problems. In Au-
tomata, Languages and Programming, pages 451–462. Springer, 2002.

[22] J. Chen, M. Arumaithurai, X. Fu, and K.K. Ramakrishnan. Coexist: A hy-
brid approach for content oriented publish/subscribe systems. In Proceed-
ings of the Second Edition of the ICN Workshop on Information-centric Net-
working, ICN ’12, pages 31–36, New York, NY, USA, 2012. ACM.

[23] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and KK Ramakrishnan. Copss:
An efficient content oriented publish/subscribe system. In Architectures for
Networking and Communications Systems (ANCS), 2011 Seventh ACM/IEEE
Symposium on, pages 99–110. IEEE, 2011.

[24] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini. Inform: a
dynamic interest forwarding mechanism for information centric network-
ing. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-
centric networking, ICN ’13, pages 9–14, New York, NY, USA, 2013. ACM.

[25] D. D. Clark, M. L. Lambert, and L. Zhang. Netblt: A high throughput trans-
port protocol. SIGCOMM Comput. Commun. Rev., 17(5):353–359, August
1987.

[26] H. Dai, J. Lu, Y. Wang, and B. Liu. A two-layer intra-domain routing scheme
for named data networking. In Global Communications Conference (GLOBE-
COM), 2012 IEEE, pages 2815–2820, Dec 2012.



132 BIBLIOGRAPHY

[27] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren. Secure naming for a
network of information. In INFOCOM IEEE Conference on Computer Com-
munications Workshops , 2010, pages 1–6, March 2010.

[28] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The many faces
of publish/subscribe. ACM Comput. Surv., pages 114–131, 2003.

[29] S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga. Catt: potential
based routing with content caching for icn. In Proceedings of the second
edition of the ICN workshop on Information-centric networking, ICN ’12,
pages 49–54, New York, NY, USA, 2012. ACM.

[30] W. Fenner, M. Rabinovich, K.K. Ramakrishnan, D. Srivastava, and Yin
Zhang. Xtreenet: scalable overlay networks for xml content dissemina-
tion and querying (synopsis). In Web Content Caching and Distribution,
2005. WCW 2005. 10th International Workshop on, pages 41–46, 2005.

[31] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-
tion control for unicast applications. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’00, pages 43–56, New York, NY, USA, 2000. ACM.

[32] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, August 1993.

[33] J. Francois, T. Cholez, and T. Engel. Ccn traffic optimization for iot. In
Network of the Future (NOF), 2013 Fourth International Conference on the,
pages 1–5, Oct 2013.

[34] Z. Gao, A. Venkataramani, J. F. Kurose, and S. Heimlicher. Towards a quan-
titative comparison of location-independent network architectures. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages
259–270, New York, NY, USA, 2014. ACM.

[35] J.J. Garcia-Luna-Aceves. Name-based content routing in information cen-
tric networks using distance information. In Proceedings of the 1st Interna-
tional Conference on Information-centric Networking, INC ’14, pages 7–16,
New York, NY, USA, 2014. ACM.

[36] J.J. Garcia-Luna-Aceves. Routing to multi-instantiated destinations: Prin-
ciples and applications. In Network Protocols (ICNP), 2014 IEEE 22nd In-
ternational Conference on, pages 155–166, Oct 2014.



133 BIBLIOGRAPHY

[37] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough. Enabling correct in-
terest forwarding and retransmissions in a content centric network. In
Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems, ANCS ’15, pages 135–146, Wash-
ington, DC, USA, 2015. IEEE Computer Society.

[38] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Information-centric networking: Seeing the forest for the trees. In Pro-
ceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X,
pages 1:1–1:6, 2011.

[39] A. Goel and P. Gupta. Small subset queries and bloom filters using ternary
associative memories, with applications. In ACM SIGMETRICS Performance
Evaluation Review, volume 38, pages 143–154. ACM, 2010.

[40] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun. ACM,
42(2):39–41, February 1999.

[41] M. Gritter and D. R. Cheriton. An architecture for content routing support
in the internet. In Proceedings of the 3rd conference on USENIX Sympo-
sium on Internet Technologies and Systems - Volume 3, USITS’01, pages 4–4,
Berkeley, CA, USA, 2001. USENIX Association.

[42] P. Gupta and N. McKeown. Algorithms for packet classification. Network,
IEEE, 15(2):24–32, 2001.

[43] H. Han, S. Shakkottai, and et al. Hollot. Multi-path tcp: a joint conges-
tion control and routing scheme to exploit path diversity in the internet.
IEEE/ACM Trans. Netw., 14(6):1260–1271, December 2006.

[44] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda. Multipath
congestion control for shared bottleneck. In Proc. PFLDNeT workshop,
pages 19–24, 2009.

[45] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang.
Nlsr: named-data link state routing protocol. In Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking, ICN ’13, pages 15–
20, New York, NY, USA, 2013. ACM.

[46] H. Hsieh, K.n Kim, Y. Zhu, and R. Sivakumar. A receiver-centric trans-
port protocol for mobile hosts with heterogeneous wireless interfaces. In



134 BIBLIOGRAPHY

Proceedings of the 9th Annual International Conference on Mobile Comput-
ing and Networking, MobiCom ’03, pages 1–15, New York, NY, USA, 2003.
ACM.

[47] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking named content. In Proceedings of the 5th inter-
national conference on Emerging networking experiments and technologies,
CoNEXT ’09, pages 1–12, 2009.

[48] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander.
LIPSIN: Line speed publish/subscribe inter-networking. In Proceedings of
the ACM SIGCOMM Conference on Data Communication, 2009.

[49] A.W. Kazi and H. Badr. Pit and cache dynamics in ccn. In Global Com-
munications Conference (GLOBECOM), 2013 IEEE, pages 2120–2125, Dec
2013.

[50] F. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing
and rate control. SIGCOMM CCR, 35(2):5–12, 2005.

[51] M. Koponen, T.and Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. SIG-
COMM Comput. Commun. Rev., 37(4):181–192, 2007.

[52] A. Kuzmanovic and E. W. Knightly. Receiver-centric congestion control with
a misbehaving receiver: Vulnerabilities and end-point solutions. Elsevier
Computer Networks, 2007.

[53] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network
or a news media? In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 591–600, New York, NY, USA, 2010.
ACM.

[54] P. Mahadevan, E. Uzun, S. Sevilla, and J.J. Garcia-Luna-Aceves. Ccn-krs:
A key resolution service for ccn. In Proceedings of the 1st International
Conference on Information-centric Networking, ICN ’14, pages 97–106, New
York, NY, USA, 2014. ACM.

[55] I. Moiseenko, M. Stapp, and D. Oran. Communication patterns for web in-
teraction in named data networking. In Proceedings of the 1st International
Conference on Information-centric Networking, ICN ’14, pages 87–96, New
York, NY, USA, 2014. ACM.



135 BIBLIOGRAPHY

[56] D.R. Morrison. Patricia - practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4):514–534, October 1968.

[57] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M.o Mu-
nafò, K. Papagiannaki, and P. Steenkiste. The cost of the "s" in https. In
Proceedings of the 10th ACM International on Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’14, pages 133–140, New
York, NY, USA, 2014. ACM.

[58] K. Nichols and V. Jacobson. Controlling queue delay. Queue, 10(5):20:20–
20:34, May 2012.

[59] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat. Greedy forward-
ing in dynamic scale-free networks embedded in hyperbolic metric spaces.
In Proceedings of the 29th conference on Information communications, IN-
FOCOM’10, pages 2973–2981, Piscataway, NJ, USA, 2010. IEEE Press.

[60] M. Papalini, A. Carzaniga, K. Khazaei, and A. L. Wolf. Scalable routing
for tag-based information-centric networking. In Proceedings of the 1st
International Conference on Information-centric Networking, ICN ’14, pages
17–26, New York, NY, USA, 2014. ACM.

[61] M. Papalini, K. Khazaei, A. Carzaniga, and A. L. Wolf. Scalable routing
for tag-based information-centric networking. Technical Report 2014/01,
University of Lugano, February 2014.

[62] D. Perino, M. Gallo, R. Boislaigue, L. Linguaglossa, M. Varvello,
G. Carofiglio, L. Muscariello, and Z. Ben Houidi. A high speed information-
centric network in a mobile backhaul setting. In Proceedings of the 1st In-
ternational Conference on Information-centric Networking, ICN ’14, pages
199–200, New York, NY, USA, 2014. ACM.

[63] D. Perino, M. Varvello, L. Linguaglossa, R.l Laufer, and R. Boislaigue. Cae-
sar: A content router for high-speed forwarding on content names. In Pro-
ceedings of the Tenth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’14, pages 137–148, New York, NY,
USA, 2014. ACM.

[64] C. E. Perkins and D. B. Johnson. Route optimization for mobile ip. Cluster
Computing, 1(2):161–176, 1998.



136 BIBLIOGRAPHY

[65] H. Räcke. Optimal hierarchical decompositions for congestion minimiza-
tion in networks. In Proceedings of the 40th annual ACM symposium on
Theory of computing (STOC’08), 2008.

[66] V. C. Ravikumar and R. N. Mahapatra. Tcam architecture for ip lookup
using prefix properties. Micro, IEEE, 24(2):60–69, 2004.

[67] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani. Mobilityfirst: A ro-
bust and trustworthy mobility-centric architecture for the future internet.
SIGMOBILE Mob. Comput. Commun. Rev., 16(3):2–13, December 2012.

[68] Y. Ren, J. Li, S. Shi, L. Li, and X. Chang. An interest control protocol for
named data networking based on explicit feedback. In Architectures for
Networking and Communications Systems (ANCS), 2015 ACM/IEEE Sympo-
sium on, pages 199–200, May 2015.

[69] R. L Rivest. Partial-match retrieval algorithms. SIAM Journal on Comput-
ing, 5(1):19–50, 1976.

[70] L. Saino, C. Cocora, and G. Pavlou. Cctcp: A scalable receiver-driven con-
gestion control protocol for content centric networking. In IEEE ICC, 2013.

[71] L. Saino, I. Psaras, and G. Pavlou. Hash-routing schemes for information
centric networking. In Proceedings of the 3rd ACM SIGCOMM Workshop on
Information-centric Networking, ICN ’13, pages 27–32, New York, NY, USA,
2013. ACM.

[72] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bhargha-
van. Wtcp: A reliable transport protocol for wireless wide-area networks.
Wirel. Netw., 8(2/3):301–316, March 2002.

[73] W. So, A. Narayanan, and D. Oran. Named data networking on a router:
Fast and dos-resistant forwarding with hash tables. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, ANCS ’13, pages 215–226, Piscataway, NJ, USA, 2013.
IEEE Press.

[74] N. Spring, R. Mahajan, and T. Wetherall, D.and Anderson. Measuring isp
topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, February
2004.



137 BIBLIOGRAPHY

[75] I. Stoica, D. Adkins, S. Zhuang, and S. Shenker, S.and Surana. Internet
indirection infrastructure. IEEE/ACM Trans. Netw., 12(2):205–218, April
2004.

[76] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the
thirteenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’01, pages 1–10, New York, NY, USA, 2001. ACM.

[77] D. Trossen et al. Pursuit, publish subscribe internet technology: Architec-
ture definition, components descriptions and requirements. PURSUIT EU
FP7 Project, Deliverable D2.3, 2011.

[78] V. Tsaoussidis and C. Zhang. Tcp-real: Receiver-oriented congestion con-
trol. Comput. Netw., 40(4):477–497, November 2002.

[79] M. Virgilio, G. Marchetto, and R. Sisto. Pit overload analysis in content
centric networks. In Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking, ICN ’13, pages 67–72, New York, NY, USA,
2013. ACM.

[80] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee. An improved
hop-by-hop interest shaper for congestion control in named data network-
ing. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-
centric networking, pages 55–60. ACM, 2013.

[81] Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang, and B. Liu. Fast
name lookup for named data networking. In Quality of Service (IWQoS),
2014 IEEE 22nd International Symposium of, pages 198–207, May 2014.

[82] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai,
X. Tian, Z. Xu, H. Wu, and D. Yang. Wire speed name lookup: a gpu-
based approach. In Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, nsdi’13, pages 199–212, Berkeley, CA,
USA, 2013. USENIX Association.

[83] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social book-
marking systems: A del. icio. us cookbook. In Proceedings of the ECAI 2008
Mining Social Data Workshop, pages 26–30, 2008.

[84] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implemen-
tation and evaluation of congestion control for multipath tcp. In Proc. of
NSDI’11, 2011.



138 BIBLIOGRAPHY

[85] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasi-
lakos, K.V. Katsaros, and G.C. Polyzos. A survey of information-centric net-
working research. Communications Surveys Tutorials, IEEE, 16(2):1024–
1049, Second 2014.

[86] C. Yi, J. Abraham, A.r Afanasyev, L. Wang, Beichuan Zhang, and L. Zhang.
On the role of routing in named data networking. In Proceedings of the 1st
International Conference on Information-centric Networking, ICN ’14, pages
27–36, New York, NY, USA, 2014. ACM.

[87] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang. Adaptive forwarding
in named data networking. SIGCOMM Comput. Commun. Rev., pages 62–
67, 2012.

[88] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A trans-
port layer approach for improving end-to-end performance and robustness
using redundant paths. In Proc. of Usenix ATEC, 2004.

[89] Y. Zhang, H. Zhang, and L. Zhang. Kite: A mobility support scheme for
ndn. In Proceedings of the 1st International Conference on Information-
centric Networking, ICN ’14, pages 179–180, New York, NY, USA, 2014.
ACM.

[90] K. Zheng, C. Hu, H. Liu, and B. Liu. An ultra high throughput and power
efficient tcam-based ip lookup engine. In INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications Societies,
volume 3, pages 1984–1994. IEEE, 2004.


	Contents
	List of Figures
	List of Tables
	Introduction
	From Host-Centric to Information-Centric Networking
	Background: ICN History and Architectures
	Content-Centric Networking Architecture

	ICN Issues and Limitations
	Contribution and Structure of the Thesis

	TagNet: a New ICN Architecture
	Communication Primitives: Push vs Pull
	Publish/Subscribe Event Notification: Applications
	Do We Really Need a Push Primitive?
	Native Push and Pull Communication API

	TagNet Naming Scheme
	NDN Naming Scheme
	CCN Naming Scheme
	Multi-Modal Addressing in TagNet
	Application-Level Addressing: Descriptors
	Transport-Level Addressing: Content Identifiers
	Network-Level Addressing: Locators

	Evaluation
	Discussion


	Routing Scheme
	Related Work
	Naming Scheme Implementation
	Descriptors Implementation: Bloom Filters
	Locators Implementation: TZ-labels

	Routing Scheme
	Why Should We Route On Trees?
	Routing on a Single tree
	Request/Reply Service and Communication Flow
	Using Multiple Trees

	Hierarchical Multi-Tree Routing
	Routing Information Based : Representation and Maintenance
	RIB Minimization: Compression Techniques
	RIB Representation: Data Structure
	RIB Maintenance: Update Algorithm

	End-Nodes Mobility
	Consumer Mobility
	Producer and Subscriber Mobility

	Evaluation
	Tag-Based Descriptors Workload
	Internet Topology and Trees
	Scalability: Memory Requirement and Maintenance


	Matching and Forwarding Algorithm
	Partial Matching Problem
	Related Work
	Content-Based Matching Algorithm
	Find All Subsets
	Find Largest Subset
	Matching Algorithms Improvements

	Data Structure and Implementation
	Memory Footprint Reduction
	Implementation Speedup

	Locators Based Matching Algorithm
	Evaluation

	Transport and Congestion Control
	Related Work
	Receiver-Driven Congestion Control
	Trigger Window Decrease

	Multipath Extension
	Forwarding Strategy
	Evaluation
	Single Path Simulation
	Multipath Simulation


	Conclusion and Future Work
	Bibliography

