
POLITECNICO DI MILANO

Facolt�a di Ingegneria

Dipartimento di Elettronica e Informazione

The Design and Implementation

of SPADE-1 2.0

Relatore:

Prof. Alfonso Fuggetta
Correlatori:

Prof. Carlo Ghezzi
Dott. Sergio Bandinelli

Tesi di Laurea di:

Antonio Carzaniga
matr. n

�

592572

Giovanni Vigna
matr. n� 595296

Anno Accademico 1993-1994

Acknowledgements

First, we want to thank Prof. Carlo Ghezzi for his experience and his con�dence. He
has made our work possible.

Moreover, we want to thank Prof. Alfonso Fuggetta for his constant support and guid-
ance during the development of our work. His ideas and his contributions to Software
Process research are the basis of our work.

Furthermore, we want to thank Ing. Gigi Lavazza for his useful advices and for pro-
viding an original point of view in every circumstance.

A very special tribute goes to Dott. \Sir" Sergio Bandinelli for the invaluable help and
the contributions to our work. He is an authority in the Software Process �eld, but, what
is most important, he is a great friend to us.

This thesis work has been developed during the 6th Master in Information Technology
at CEFRIEL. We thank everyone at CEFRIEL for resources, technical support and a
friendly environment.

We could never forget the companions of the SE group. Piero \Zank", Elia \brauser",
Gian Pietro \GP", Edoardo \il nonno", Giorgio \Gio", Beppe \Peppe", Gianluca \op
shutdown", Alessandro \Parimba", Rosamaria \rm" e Giulio \gallo", not to mention Toti,
AD, Ago, Walter, Genius, Piarullo, Rocco, Mimma, Ger, Zang and all the other guys at
CEFRIEL. We shared heavy work and light fun.

A special thank from Giovanni to Luisa for the loving support, and, from both of us,
to Sebastiano for proof-reading of this thesis.

Contents

1 Introduction 1

1.1 SPADE : 2
1.2 Related work : 3
1.3 Contribution of this thesis : 4
1.4 Structure of this thesis : 6

2 The SPADE environment 8
2.1 Functional requirements for SPADE-1 : 9

2.1.1 The SLANG modeling language : 9
2.1.2 Tool integration : 10
2.1.3 Process Enactment : 10

2.2 Non-functional requirements : 11
2.2.1 Using state of the art technology : 11
2.2.2 System distribution : 11
2.2.3 Con�guration and system management : : : : : : : : : : : : : : : : 12
2.2.4 Performances : 12

3 SLANG language 13
3.1 SLANG types : 14
3.2 De�ning abstract data types by means of O2 classes : : : : : : : : : : : : : 15

3.2.1 Tokens and Objects : 15
3.3 SLANG activities : 16
3.4 Activity de�nition : 16
3.5 Activity interface and implementation : 17

3.5.1 Activity invocation : 19
3.5.2 Root activity. : 19
3.5.3 Places : 20
3.5.4 Arcs : 20
3.5.5 Transitions : 21

3.6 SLANG in the SPADE-1 2.0 environment : : : : : : : : : : : : : : : : : : : 28
3.7 Interaction with black-box tools : 28
3.8 Interaction with service-based tools : 29

3.8.1 Tool ServiceRequest : 30

i

CONTENTS ii

4 SPADE-1 2.0 architecture 34

4.1 SPADE-1 architecture overview : 34
4.2 Basic architectural elements : 35

4.2.1 Components : 36
4.2.2 Connectors : 37

4.3 Composite architectural elements : 38
4.3.1 Composite components : 39
4.3.2 Composite connectors : 39

4.4 Process Enactment Environment : 41
4.4.1 O2 OODBMS : 42
4.4.2 SLANG Interpreters : 43
4.4.3 Process Engines : 43
4.4.4 Process Engine Manager : 43
4.4.5 SPADE Manager : 43
4.4.6 SPADE Monitor : 45

4.5 SPADE Communication Interface : 45
4.6 User Interaction Environment : 46

5 Process Enactment Environment 47

5.1 O2 OODBMS : 48
5.2 SPADE Manager : 49
5.3 Process Engine Manager : 50
5.4 Process Engines : 51
5.5 SLANG Interpreters : 51
5.6 Process Enactment Environment at work : : : : : : : : : : : : : : : : : : : 51

5.6.1 Process enactment startup : 51
5.6.2 Active copies management : 54

5.7 System monitoring : 59
5.8 PEE con�guration : 61

5.8.1 General con�guration : 62
5.8.2 Process Engine Manager con�guration : : : : : : : : : : : : : : : : : 64

6 SLANG Interpreter 68
6.1 Requirements for the SLANG interpreter : : : : : : : : : : : : : : : : : : : 68
6.2 Interpreter schema : 69
6.3 Logical level: the interpreter algorithm : 69
6.4 Execute level : 71
6.5 Implementation level : 72

6.5.1 Active copy de�nition and types : 72
6.5.2 Active copy state : 73
6.5.3 Locks : 74

6.6 Active copy connections : 76
6.7 Additional data structures : 77

6.7.1 Priority : 77

CONTENTS iii

6.7.2 Transition queues and evaluation policy : : : : : : : : : : : : : : : : 78
6.7.3 Black transition �ring instances : 79

6.8 Guard and action functions : 80
6.9 Guards : 82

6.9.1 Guards compilation : 82
6.10 Actions : 85

6.10.1 White actions : 85
6.10.2 Black actions : 86

6.11 Asynchronous events : 89
6.11.1 User place messages : 90
6.11.2 Black transition messages : 90

7 SPADE Communication Interface 92
7.1 SCI communication protocol : 93
7.2 Service requests : 95

7.2.1 Tool services : 95
7.2.2 SCI services : 97

7.3 Noti�cations : 99
7.4 SCI modules : 101

8 User Interaction Environment 104

8.1 Control integration : 104
8.2 Data Integration : 105
8.3 Black-box tools : 106
8.4 Service-Based Tools : 107
8.5 Integration of SDEs based on message passing : : : : : : : : : : : : : : : : : 107
8.6 Tool developer interfaces : 109

8.6.1 O2 black-box tools : 109
8.6.2 Service-based tools : 111
8.6.3 O2 service-based tools : 114
8.6.4 DEC FUSE service-based tools : 117

9 Conclusions 119

A SLANG language 126
A.1 Guards formal semantics : 126
A.2 Example of guard and action expansion : 127

B Example of tool integration 132

C Dynamicity of types and activities 155

C.1 Requirements : 155
C.2 Principles : 155
C.3 Symbolic schema and O2 schema : 156
C.4 The SpadeClass SPADE class (!) : 156

CONTENTS iv

C.5 The TypeSet SPADE class : 157
C.6 Schema modi�cations : 159
C.7 Activity invocation : 161
C.8 Schema garbage collection : 161

Chapter 1

Introduction

A software product is a complete set of computer programs, procedures and associated

documentation and data designated for delivery to a user [ISO91]. Software products

are the result of cooperative processes, involving several persons, in which a series of

software engineering activities are carried out with the help of various software tools. The

set of such activities, persons and tools, together with rules, policies, and used resources

(including software artifacts, documents, etc.) constitutes a software process.

Despite its fundamental role, little attention is paid to the assessment and improve-

ment of the software process. The process is often left implicit, ambiguous or incomplete

[ABGM92].

Many e�orts in the software process research �eld aim at providing formalisms to

model the process. An explicit process representation provides a general framework in

which persons can cooperate and communicate e�ectively, improving the process and

therefore the software product quality. The process representation includes technical and

management activities. Both are needed to produce quality products in a predictable time

with limited resources [GJM91].

In order to model a software process, an adequate notation is required. If this notation

is based on formal grounds, it is possible to analyze and verify the process, using rigorous

reasoning. Moreover, if the notation is executable, it is possible to use the process repre-

sentation as the \heart" of a Process-centered Software Engineering Environment (PSEE),

providing automatic guidance and support to the software engineering activities involved

in software development. The process model is \enacted" by the PSEE interpreter, sup-

porting the cooperation among individuals, monitoring process state, and automating

some activities. The PSEE also keeps all data of the process in a persistent repository.

The concurrent access to these data must be regulated by the process model.

1

Chapter 1: Introduction 2

1.1 SPADE

The SPADE project aims at developing an environment for Software Process Analysis,

Design, and Enactment [BFGG92, BBFL94]. SPADE de�nes and implements a formal

process modeling language and an integrated process-centered environment.

The process language of the SPADE environment is called SLANG (SPADE LANGua-

ge) [tea93]. SLANG is based on a high-level Petri net formalism, called ER nets [GMMP91].

SLANG o�ers features for process modeling, enactment, and evolution [BFG93b]. One of

the main concerns in designing SLANG is to o�er expressive and powerful constructs that

can be used for process modeling in-the-large [BFG93a]. A SLANG process model can be

hierarchically structured as a set of activities. An activity encapsulates a set of logically

related process operations and it is described by a net that may include invocations to

other (sub)activities.

Process data (documents, code, plans, test cases, etc.), are represented by tokens which

are structured in an object-oriented fashion [BBFL93]. Places are viewed as distributed

persistent object containers. Places are typed, and every place may contain only tokens

of its associated type. Transitions represent events. A transition �res when its guard

(a boolean expression) is satis�ed by tokens in its input places. The �ring causes the

execution of an action. The topology of the net describes precedence relationships among

events, parallelism, and con
ict scenarios.

SLANG process models are dynamic entities. They can undergo changes. Moreover,

SLANG has re
ective features (activities are themselves data of the model), that make it

possible to describe SLANG process evolution by means of SLANG models [BF93].

The interaction with process agents is achieved using special transitions and places

in the net. Process artifacts, including process models, are kept and maintained in an

object-oriented database.

SPADE-1 is an implementation of the SPADE concept. The design of SPADE-1 has

been centered on the principle of separation of concerns between process model interpreta-

tion and the user interaction environment. Actually, SPADE-1 architecture is structured

in three di�erent layers: the Process Enactment Environment (PEE), the User Interaction

Environment (UIE), and the SPADE Communication Interface (SCI).

The PEE includes facilities to execute a SLANG speci�cation. SLANG activities are

concurrently interpreted by SLANG Interpreters. Process artifacts (including the process

model itself) are stored and managed using the O2 OODBMS [Deu91].

The UIE is responsible for performing the interaction with users through tools in

the environment. The UIE is viewed as a set of service-based tools which provide a

programmatic interface. Entities in the PEE can request services to tools in the UIE.

Chapter 1: Introduction 3

Tools can notify the PEE of relevant events in the user environment.

The SCI is a �lter between the PEE and the UIE. It provides communication mech-

anisms based on the message passing paradigm, together with services like integrated

service-based tools invocation and dynamic con�guration of �ltering operations.

1.2 Related work

Much research e�ort is being carried out in the software process �eld. A number of di�erent

works concerning both process modeling and model execution have been presented. We

can classify these projects according to the formalisms underlying the process description.

One approach uses programming languages such as APPL/A [HSO90]. This formalism

allows a precise description of the \control
ow". The process can be modeled as a

procedural program. The use of functional languages can also emphasize the hierarchical

relationships among activities. However, in these process de�nitions, it is di�cult to

express concurrency and non-determinism.

Others adopt the opposite approach. In particular, rule based systems [PS92, BK91]

do not de�ne the sequence of actions. The process consists of a set of goals and some rules

and constraints. Rules represent actions that require some pre-conditions, the execution of

a rule asserts new facts (post-conditions). The enactment system tries to satisfy the goals

by applying some rules, that ful�ll part of the goals with their post-conditions. The pre-

conditions of these rules become new goals, so the system tries to satisfy them recursively

(backward chaining). If the pre-conditions of a rule are satis�ed by the state of the process,

then the action associated to the rule is executed, the post-conditions are asserted and,

recursively, the rules that have been enabled by the post-conditions are �red (forward

chaining). This approach aims at describing a process in terms of its tasks. The process

modeler de�nes \what" the process should do, instead of specifying \how". In this view,

it is di�cult to track down the execution threads. Thus, it is di�cult to understand the

whole process model. Moreover, concurrency is not an explicit part of the model.

Several process modeling e�orts have yielded languages derived from Petri nets. FUN-

SOFT nets [Gru91] are based on PrT nets, a class of high-level Petri nets. PROCESS

WEAVER [Fer93], developed by Cap Gemini Innovation in the context of the Eureka

Software Factory project, provides a set of tools to add process support to UNIX-based

environments. In PROCESS WEAVER a process is described as a hierarchy of activ-

ity types. Each activity is associated with a procedure that speci�es how the activity is

carried out. Procedures are described by transition nets, a data-
ow notation similar to

Petri nets. Although Petri nets extensions are di�erent from each other, they all deliver

readable descriptions. The concurrency and synchronization issues are straightforward in

Chapter 1: Introduction 4

such models.

Other studies concerned active database extensions [BEM91], abstract speci�cation

formalisms, including state charts [Kel91] and attribute grammars [SIK93]. An introduc-

tion and comparison of existing approaches can be found in [ABGM92].

1.3 Contribution of this thesis

Figure 1.1 presents SPADE-1 history. The SPADE project started in 1991 at CEFRIEL.

First experiences and feasibility studies based on database technologies were carried out

in 1991-1992 [Fer92]. In 1992-1993 a �rst prototype of the SPADE environment, called

SPADE-1 1.0, was developed at CEFRIEL [BdPS93]. The prototype had several restric-

tions, regarding architectural and SLANG interpretation issues. In the same period, the

SLANG language was re�ned [Lip93] and used in modeling examples of industrial pro-

cesses [Pic93]. Tool integration problems were analyzed in [Par94]. In 1993-1994 the work

on SPADE has evolved along three main threads. One thread focused on the development

of tools to be integrated in the SPADE-1 environment [GZ94]. Another thread continued

the experience with industrial processes [Mas93].

Our work concentrated on the analysis of the original SPADE-1 concepts and general

requirements, in order to improve and extend the environment. In particular, we focused

on re-designing the SPADE-1 architecture, we added integration facilities and reformulated

and enriched the SLANG language de�nition. The result of our work is a new pre-industrial

prototype, called SPADE-1 2.0, with full, extended integration facilities and improved

SLANG interpretation mechanisms.

Taking into account the background of the previous works, we designed and developed

the whole system from scratch, with openness and modularity in mind.

This thesis presents the design and implementation of SPADE-1 version 2.0, a com-

plete, usable Process-centered Software Engineering Environment which satis�es the SPADE

project principles, providing e�cient mechanisms for concurrent interpretation of fully

featured SLANG process models, a distributed and con�gurable architecture, and powerful

mechanisms for both data integration and control integration of tools.

In particular, our work addresses the following issues.

Distributed architecture We assume process agents work in a local area network.

Thus, SPADE-1 2.0 has a distributed architecture that controls SLANG process mod-

els execution and the interaction with tools running on di�erent machines. In order to

Chapter 1: Introduction 5

SPADE-1 1.0 prototype

SLANG definition

Tool integration

SPADE-1 concepts

Feasibility sudy Survey of database technology

1993-1994

1992-1993

1991-1992

1990-1991

SLANG application

SLANG application

SPADE-1 2.0 PSEE

SLANG definition Tool integration
SPADE-1 2.0 integrated tools

Implementation

Architecture Design

Figure 1.1: SPADE-1 history.

Chapter 1: Introduction 6

support SPADE-1 2.0 distributed architecture, some general, high-level communication

mechanisms have been developed. The whole environment can be con�gured in order to

optimize computational resources. Any process of the system can be allocated on a dif-

ferent host all over a network of workstations. SPADE-1 2.0 provides a graphic interface

towards the system administrator, which allows to monitor process model execution.

SLANG Interpretation In SPADE-1 1.0 SLANG interpretation algorithm is carried

out in a single transaction in the O2 OODBMS, greatly reducing parallelism. In addition,

each SLANG interpreter instance is an O2 client. Thus, the maximum number of concur-

rently executed interpreters is limited by the number of O2 clients (licenses) available.

In SPADE-1 2.0 multiple SLANG interpreter instances concurrently access the process

data. Critical sections have been reduced. SPADE-1 2.0 poses no limitations to the

number of concurrent SLANG interpreter instances. The system can be con�gured to run

even with a single O2 client.

In SPADE-1 1.0 SLANG interpretation is achieved using run-time queries to the O2

data base. This leads to lack of performance and dynamicity.

In SPADE-1 2.0 the interpretation algorithm uses compiled code, improving perfor-

mance and expressiveness.

Tool integration SPADE-1 1.0 permits the integration of service-based tools in a cus-

tomized version of the DEC FUSE environment. Integrated tools can exchange only atomic

data.

SPADE-1 2.0 permits integration of tools out of any particular integration environment,

providing high-level, easy-to-use libraries for integrated tools development. Mechanisms

have been developed to allow tools to exchange complex (O2) objects, providing e�ective

data integration. SPADE-1 2.0 is no more bound to FUSE. It can integrate di�erent

Software Development Environments like Sun Tooltalk or HP SoftBench, providing the

appropriate �lter.

In SPADE-1 1.0, message �ltering between the process enactment environment and

the user environment is limited and quite static.

SPADE-1 2.0 implements a multi-cast mechanism for noti�cation messages, allowing

dynamic con�guration of the �ltering mechanism by means of patterns on source and type

of the message.

Chapter 1: Introduction 7

1.4 Structure of this thesis

This thesis is structured as follows. Chapter 2 presents the SPADE principles, and the

requirements that stem from such principles. Chapter 3 describes the main features of

the SLANG language. Chapter 4 presents the complete SPADE-1 2.0 architecture, follow-

ing an architectural description framework. Chapter 5 presents the Process Enactment

Environment, in which the process model is executed. Chapter 6 describes in detail the

interpreter of the SLANG language. Chapter 7 describes how communication between

the users and the process is achieved, presenting the SPADE Communication Interface.

Chapter 8 describes the User Interaction Environment, and the tool integration mecha-

nisms which allow control and data integration in SPADE-1 2.0. Chapter 9 summarizes

the work done and outlines future research issues.

Chapter 2

The SPADE environment

The SPADE project aims at de�ning and developing a Process-centered Software Engineer-

ing Environment (PSEE). Process models in SPADE are speci�ed via a process modeling

language, called SLANG. The SPADE environment supports software engineering activi-

ties by enacting the software process model, which de�nes human tasks and the interaction

between humans and software development tools.

The SPADE project is based on some basic principles. First of all, the process speci�ca-

tion is formal, in order to allow process analysis based on rigorous grounds and enactment

of the process model. Second, process evolution can be described as part of the process

itself. Process data and the process model are described and stored in an homogeneous

way. Third, SLANG, the SPADE language, provides large spectrum modeling capabil-

ities. SLANG o�ers high-level constructs (such as the activity construct) to model the

process in the large and also allows the process model to describe �ne-grained process, at

the level of tool integration. Fourth, there is a clear distinction between mechanisms and

policies. SPADE o�ers mechanisms for the description and the enactment of the process

model without embedding any particular policy in the environment. Policies, instead,

have to be de�ned as part of the process model. Thus, SPADE is an open environment:

software development as well as resource management can be de�ned using the SLANG

basic constructs. Fifth, SPADE uses and assesses new technologies, including OODBMS,

environments for tool integration, and software development environments.

These principles inspired the �rst implementation of the SPADE environment, called

SPADE-1. In addition to the general principles, SPADE-1 is based on a set of functional

and non-functional requirements, which are presented in this chapter.

8

Chapter 2: The SPADE environment 9

2.1 Functional requirements for SPADE-1

2.1.1 The SLANG modeling language

Petri nets A formalism based on ER-nets (a special kind of high level Petri nets) has

been chosen as the basis of a SLANG activity de�nition. Places are data container,

transitions correspond to actions. In addition to the plain ER-net entities, some process-

oriented constructs are supported by SLANG.

SLANG activities and abstract data types The SPADE language must provide

facilities for de�ning both activities and data types manipulated in the process. SLANG

abstract data types (ADT) are organized in a class hierarchy with a \is-a" relationship.

Each class de�nes the data structure and a set of methods. Any object manipulated by

the process is an instance of a SLANG ADT, being Token, a pre-de�ned class, the root of

the class hierarchy.

Re
ective features In order to cope with process model evolution, SLANG provides

powerful re
ective features. SLANG de�nes activities and data types (the model de�ni-

tion) like any other model data. In this way model de�nitions can be manipulated during

the enactment. Thus the process describing the changing of the model (the meta-process)

can be speci�ed just like any other process.

Interaction with process agents As far as the interaction with process agents is

concerned, SLANG must deliver some I/O primitives. These results in some very few

orthogonal mechanisms. Their combination must tackle the problems of control and data

integration, manage asynchronous events and provide access to low granularity services.

No particular tool-dependent protocol must be \hard-wired" in the language, the fore-

mentioned mechanisms must accept tool descriptions or service-dependent information as

data.

Process modeling \in the large" SLANG must support primitives for the de�nition

and composition of activities which allow process abstraction and process modeling in

the large. In addition it must be powerful and expressive in order to specify complex

relationships with a rich and clear semantics.

Process modeling \in the small" The process modeling activity must support the

description of detailed actions, namely transition actions, in a straightforward manner.

There is a trade-o� between the good features obtained by modeling with SLANG nets,

Chapter 2: The SPADE environment 10

and simplicity of a usual programming language. The process modeler should be able

to choose how much of the \model" is programmed by the net and how much the single

actions do.

Time constraints A software process model is a real time system. Even though they

are not necessarily critical, a software process language must deliver some mechanisms for

describing time constraints.

2.1.2 Tool integration

Tool set SPADE-1 must be an open system. It must be able to integrate new tools

speci�cally developed for the environment as well as existing tools available from the

market.

The level of integration depends on the tool characteristics and on the speci�c process

model. By level of integration we mean the granularity of the services provided by the tool.

From this perspective we distinguish two main classes of tools. Black-box tools implement

one service, the service correspond to the entire tool execution. vi and cc are black-

box tools. Service-based tools export a set of services directly accessible by the process

model through a programmatic interface. DEC FUSE (DEC Friendly Uni�ed Software

Environment) is an integrated tool environment for software development [Dig91b]. DEC

FUSE o�ers a set of integrated service-based tools.

SPADE-1 provides a set of simple elementary mechanisms that can be combined to

obtain the desired level of integration. Both the control dimension and the data dimension

of integration are tackled.

Tool integration Control integration is granted by a message passing mechanism. Mes-

sages originated by the process model are service requests addressed to a particular tool.

Events of any interest generated by tools or users are noti�ed by means of messages.

Data integration is achieved by sharing complex objects in the data repository. The

mechanism supporting data integration does not depend on the control integration gran-

ularity.

2.1.3 Process Enactment

Process interpreter and SLANG The SLANG interpreter is responsible for the ex-

ecution of SLANG activities. Each interpreter instance executes one activity. At a given

time several threads may concurrently execute di�erent interpreter instances. SPADE-1

Chapter 2: The SPADE environment 11

must provide a run-time support to manage activity instances and common persistent

data.

Dynamicity of types and activity de�nitions The key issue for a system supporting

process evolution is the ability of binding the very latest versions of types and activity

de�nitions during execution. It is then important to make the process engine independent

from any particular activity or type. Both activity and type de�nitions must be parameters

for the SLANG interpreter.

Persistency of model data It is the SPADE-1 environment which is made responsible

for keeping data in a stable storage. Every object manipulated by the process is implicitly

persistent. The persistency mechanism is transparent for the process modeler.

2.2 Non-functional requirements

2.2.1 Using state of the art technology

The SPADE project aims at using state of the art technologies in the software engineering

�eld. Examples are the O2 OODB and the development environment DEC FUSE.

O2 data base The SPADE-1 system relies on the O2 object oriented data base for all

the data management and persistency support. The SPADE-1 process engine is built on

the top of O2.

DEC-FUSE DEC-FUSE is a tool integration environment based on message passing.

Tools already integrated in DEC FUSE may be used in SPADE-1 by exporting towards

SPADE-1 the control messages.

2.2.2 System distribution

There are several good reasons for a distributed system. A natural approach in building

a process environment is to replicate the physical structure of a software development

environment, which is inherently distributed. Secondly a central process engine would be

a performance bottleneck, while in a distributed scenario, computational resources can be

much better exploited.

Chapter 2: The SPADE environment 12

2.2.3 Con�guration and system management

Installation and con�guration SPADE-1 must be con�gured to run on a local network

of workstations. Additional con�guration parameters may be tuned to match the hardware

and software con�guration of each user. In particular it is necessary to con�gure the

number of available O2 licenses.

Monitoring In order to have an overall view of what's going on in the process for man-

agement purpose. The state of the running activities and the system resources allocation

should be presented to the process supervisor. A global monitor should display the run-

ning active copies, the computational resources and the invocation dynamic tree, a local

monitor should display the evolution of one single activity, showing the �ring sequence.

2.2.4 Performances

The environment should react reasonably fast to user actions. An obstacle on the way

to fast execution is the need for high dynamicity of models. The more the system is

dynamic with respect to data and activity de�nitions, the more run-time type checking

and interpretation must be performed. And these are time consuming tasks.

Chapter 3

SLANG language

SLANG (Spade LANGuage) is the Process Modeling Language (PML) of the SPADE-1

environment. It has been designed to formally describe software processes.

SLANG is based on a high-level Petri net formalism called ER nets [GMMP91]. The

process modeler is provided with a set of process-oriented constructs, built on top of this

formalism.

SLANG features can be summarized as follows:

� Process models can be structured in a modular way using the activity construct. An

activity may include invocations to other activities.

� Process data are described in an object-oriented style, using classes organized in a

generalization hierarchy.

� Basic mechanisms to deal with time issues in the process are provided1.

� Interaction with tools can be uniformly described as part of the process.

� In order to support process evolution, SLANG provides re
ective features, e.g., ac-

tivities can be manipulated as data by other activities. This allows the meta-process

to be speci�ed as part of the process.

A process model in SLANG has two parts: one describing types and the other describ-

ing activities:

SLANGModel = (ProcessTypes, ProcessActivities)

1A complete discussion of time issues, including time constraints on process execution will be provided

in future versions of the language.

13

Chapter 3: SLANG language 14

ProcessTypes is a set of abstract data type (ADT) de�nitions organized in a gener-

alization hierarchy, following an object-oriented style. The ADT de�nitions are written

using the SLANG object-oriented type system, presented in Chapter 3.1, and provide the

description of all data used in the modeled process.

ProcessActivities is a set of activity de�nitions. An activity de�nition is basically

a high-level Petri net where each place, arc, and transition has been augmented with

additional information. Activity de�nitions are introduced in section 3.3. An activity

de�nition may contain invocations of other activities. The invocation relationship among

activities de�nes a hierarchy of activity de�nitions, which may be seen as an activity

breakdown structure. At the top of the hierarchy there is one activity, called root, which

is not invoked by other activities.

In order to enact a process model, in addition to ProcessTypes and ProcessActivities,

it is necessary to provide an initial state for the the active copy of the root activity. This

state represents the initial state from where enactment starts.

In short, the type de�nitions in the ProcessTypes set provide the data structure and

operations for all process data, the activity de�nitions in the ProcessActivities set specify

how these data are manipulated by the process, and the root active copy provides the

initial state for process model enactment.

3.1 SLANG types

SLANG adopts the O2 data model for the description of abstract data types. Each abstract

data type is thus speci�ed as an O2 class. Class instances are called objects. A class has

a unique name, a type, and a list of operations, also called methods, that may be applied

to objects of the class. The type describes the data structure template for all the class

instances.

Types may be atomic or structured. Atomic types are: integer, char, boolean,

string, and bits. Structured type constructors are: tuple, set, unique set, and list.

Tuple values are constructed using attribute names and values. For example tuple

(filename: "test.c", lines: 328, ok: false) is a tuple value. Tuple attribute

values are accessed using the dot operator (.).

Sets are constructed from values of the same type. The keyword set represents the

concept of \bag", where repeating elements makes a di�erence, while unique set repre-

sents the set as usually de�ned in mathematics.

Lists are similar to sets, except for the fact that the order of elements is signi�cant

and an element may occur several times.

Chapter 3: SLANG language 15

3.2 De�ning abstract data types by means of O2 classes

SLANG abstract data types (SLANG ADTs) are de�ned using the O2 class constructor.

A class speci�cation has four parts:

� a class name, that uniquely identi�es the class;

� the class position in the generalization hierarchy, that is the class or classes from

which the class inherits;

� the type description;

� the list of methods.

Classes may be de�ned by specializing existing classes in the generalization hierarchy.

A subclass inherits attributes and methods from the superclass and can augment them

with new ones. The type of the subclass must be a subtype of the type of the superclass.

A subtype of a tuple is de�ned as a tuple containing the same or more attributes than the

base class tuple; a subtype of a set or a list type is such that the type of the elements of

the set or list are of a subtype of the base type. Note that, with this de�nition, a type is

subtype of itself. A subclass may override the de�nition of a method or attribute inherited

from the superclass, by rede�ning it. Method rede�nition follows the covariance rule, i.e.,

parameters and result of the method in the subclass must be subtypes of the corresponding

items in the base class. Multiple inheritance is supported, but it may generate name clashes

when methods with the same name are inherited through di�erent inheritance paths. In

general, these problems are solved by renaming the con
icting methods. For a detailed

discussion of these issues, the reader may refer to [O292].

3.2.1 Tokens and Objects

In SLANG, process model activities are described using high-level Petri nets. Basically,

Petri nets have places, representing data containers, transitions, representing events, and

arcs, connecting transitions to places and places to transitions. Process data are rep-

resented in Petri nets by tokens. Tokens are objects, whose structure and applicable

operations are described by SLANG ADTs. Therefore, each token is typed and carries

structured information that can be accessed through the methods de�ned for the corre-

sponding object.

The most general and simple token type corresponds to the prede�ned SLANG ADT

Token. All other more specialized tokens are instances of subclasses of Token.

Chapter 3: SLANG language 16

Activity MetaType ActiveCopy ModelType

Token

... ...

Figure 3.1: Prede�ned SLANG generalization hierarchy.

SLANG provides other prede�ned abstract data types that are useful for process mod-

eling purposes. Some of these SLANG ADTs are part of the language de�nition; they are

process-independent and thus are present in all process models. Other SLANG ADTs are

process-speci�c and thus may vary from one process

Process-independent SLANG ADTs include type Activity whose instances are activ-

ity de�nitions; type Metatype whose instances are type de�nitions; and type ActiveCopy

whose instances represent the state of an activity. In order to support process evolution

in SLANG, activity de�nitions, type de�nitions, and activity states are accessible as any

other data, i.e., as tokens of the net. Therefore Activity, Metatype, and ActiveCopy are

de�ned as subclasses of Token.

Process-speci�c SLANG ADTs, which characterize the particular process being mod-

eled, are represented by a subtree of Token in the generalization hierarchy rooted Model-

Type. Thus, all new user-de�ned ADTs will inherit from ModelType. Figure 3.1 shows the

generalization hierarchy containing some of the prede�ned SLANG abstract data types.

3.3 SLANG activities

The ProcessActivities part of a SLANG process model is a set of activity de�nitions.

SLANG activities are based on Petri nets, thus the syntax includes a graphical part as well

as a textual part. The SLANG activity semantics follows the standard Petri net semantics,

with some extensions that will be explained in the following. Actually, SLANG semantics

is given in terms of a lower level Petri net based language, called Kernel SLANG. SLANG

process model are translated into Kernel SLANG and then executed. Kernel SLANG, for

example, does not support activity invocations. The semantics of Kernel SLANG is given

formally in terms of a formal Petri net model, called ER nets [GMMP91].

3.4 Activity de�nition

Each activity corresponds to a logical work unit. The activity de�nition speci�es the

starting events, the ending events, and other relevant events of the activity. Petri net

Chapter 3: SLANG language 17

transitions represent events, while places behave as data (token) containers. The Petri

net topology describes precedence relations, con
icts, and parallelism among events. An

activity de�nition may also include invocations of other activities and interaction with the

user environment.

The activity is a static entity, it has no state. During enactment an activity may

be invoked, generating an active copy of the activity. Active copies are the dynamic

counterpart of activities. At a given time during enactment, one activity may have zero,

one, or more active copies associated with it. Each active copy has its own state.

A SLANG activity de�nition is a graph, with three kinds of nodes (places, transitions,

and invocations) and two kinds of arrows (arcs and links). Formally, a SLANG activity

Act is given by a 5-uple

Act = (P; T; A; I;L)

where P is the set of places, T is the set of transitions, A is the set of arcs, I is the set of

activity invocations, and L is the set of links.

An arc connects a place to transition or a transition to a place:

A � (P � T) [(T � P)

A link connects a place to an invocation and vice-versa:

A � (P � I)[(I � P)

Places are depicted with circles, transitions with sharp-angle rectangles, arcs with thin

arrows, and links with thick arrows. Invocations are structured nodes, represented by

rounded-angle boxes with rectangles (transitions) on the upper and lower border. In-

tuitively, the transitions on the upper and lower border of the invocation correspond

respectively to the starting and ending events of the invoked activity.

Example: Activity de�nition. Figure 3.2 shows the graphical part of the de�nition

of an activity. The dotted frame separate the interface of the activity from its implemen-

tation, the following section explains these concepts. The �gure shows also other graphical

elements for particular kind of places, transitions and arcs. They will be better speci�ed

later. 2

3.5 Activity interface and implementation

According to the principles of information hiding, an activity de�nition has an interface

and an implementation part. The activity interacts with other activities through its in-

Chapter 3: SLANG language 18

read-only

over-write

link

user place

black transition

Activity invocation

Figure 3.2: SLANG activity de�nition.

terface, while the implementation part remains hidden. An activity interface is composed

of:

� a set of interface places Pint � P ,

� a set of interface transitions Tint � T ,

� a set of interface arcs Aint � A, connecting interface places and interface transitions.

Events that initiate and terminate the execution of an activity are represented by

interface transitions. Interface transitions are partitioned in two disjoint and non empty

sets: SE (called starting events) and EE (called ending events). In addition, starting and

ending events of an activity cannot be part of an invocation in the activity implementation.

In other words, the same transition may not represent a starting event (or more than

one ending event) of more than one activity. Activity execution starts when one of the

Chapter 3: SLANG language 19

transitions in SE �re and terminates with the �ring of one of the transitions in EE. Interface

places in Pint are classi�ed into three sets:

� Input places: they belong to the preset of any of the starting events,

� Output places: they belong to the postset of any of the ending events,

� Shared places: they are connected to the invocation through a link, and are shared

by the calling and the called activities.

Input places play the role of formal parameters of an activity, output places can be con-

sidered the value returned by the activity, and shared places are a sort of input/output

variables that may provide further input, during activity execution or may act as pre-

liminary result containers, before activity terminates. Any other place internal to the

implementation part (not belonging to the interface) is said to be a local place. The

implementation part details how the activity is performed, by showing the relationships

among the events that may occur during its execution.

3.5.1 Activity invocation

The implementation part of an activity de�nition may contain invocations of other activ-

ities. An activity invocation must match the corresponding activity de�nition interface in

terms of interface places, transitions, and arcs.

Shared and global places. Shared places are connected to the invocation box by links.

A link from a shared place to the invocation box means that the place can only be used

in the preset of transitions in the activity implementation. Conversely, a link from the

invocation box to a shared place indicates that the place can only be used in the postset

of transitions of the activity implementation. A double link permits the use of the share

place in both the pre and postset of transitions. Sometimes it is useful to share a place

among all activities in a subtree of the ASD. A place with this characteristics is called a

global place. A global place is local for the activity in which it is de�ned and is shared

among all the activities in the subtree whose root is the activity de�ning the place. In

order to distinguish global places from normal places, global places are depicted with a

thicker line. Note that the global place notation is only a shorthand to avoid the repetition

of a double link for a shared place in each activity invocation.

3.5.2 Root activity.

In a SLANG process model, there is one \main" activity, not invoked by other activities.

This activity is called root. In the root activity there is no distinction between interface and

Chapter 3: SLANG language 20

implementation. This activity has only to specify a non empty set of ending events. The

occurrence of one of these ending events indicates the end of the process model execution.

The root activity must include the de�nition of some places that are needed for activity

invocation and evolution. The process modeler must guarantee the presence of these

places and their appropriate contents in the root active copy2. These places are global

and have the following names and types: place Activities of type Activity, place

Types of type Metatype, place DynTree of type DynamicTree, place DynTreeLock of type

Token, SuspendAC and ACToBeRestarted of type ActiveCopy, SuspendingRequest of

type ACIdentifier.

Initially place Activities must contain the set of all activities de�ned in the process

model, Types, the set of all SLANG ADTs de�ned as subtypes of ModelType, DynTree a

token representing a tree with only one node with the root active copy, and DynTreeLock,

an anonymous token, SuspendAC, SuspendingRequest and ACToBeRestarted concern the

suspension mechanism. Note that, since these places are de�ned as global in the root

activity, they are automatically shared by all the activities.

3.5.3 Places

A place de�nes a template for a persistent repository of tokens. Each place has a name,

which is a unique identi�er within the activity, and a type. A place can only contain

tokens of its type (or of any of its subtypes). The type of a place must be one of the

subtypes of the prede�ned SLANG ADT Token (recall that a type is a subtype of itself an

thus the place type may also be Token). There are two kinds of places: normal places and

user places. The contents of a repository associated with a normal place may only change

because of a transition �ring. Repositories associated with user places, instead, change

their contents as a consequence of an event occurring in the user environment. Actually,

an event in the user environment may produce a new token with the information about

the occurred event in the repository associated with a user place. User places may only

belong to the preset of transitions. While normal places are graphically represented by

a single circle, user places are represented by double circles. The way to establish the

correspondence between events in the user environment and user places is explained in

Chapter 3.6.

3.5.4 Arcs

An arc from a place to a transition indicates that the occurrence of the event associated

with the transition depends on the contents of that place. Vice-versa, an arc from a

2These places are not required if the root activity does not contain invocation of other activities.

Chapter 3: SLANG language 21

transition to a place means that the occurrence of the associated event changes the place

contents. SLANG o�ers di�erent kinds of arcs, with di�erent semantics: normal arcs,

represented by solid lines; read-only arcs, represented by dashed lines and over-write arcs,

represented by lines with double headed arrows. A normal SLANG arc corresponds to the

usual de�nition of arc in a Petri net, so when a normal arc goes from a place to a transition,

tokens that enable the �ring are consumed, i.e., they are removed from that place, while a

normal arc from a transition to a place causes tokens produced by the �ring to be added

to that place. A bidirectional (normal) arc between a place and a transition can be used

as a shorthand for a pair of normal arcs: one from the place to the transition and one

from the transition to the place. Read-only arcs may only connect places to transitions.

In this case, the transition may use the place contents in read-only mode. That is, it can

read token values from the input place in order to evaluate the guard and the action, but

no token is actually removed. An overwrite arc may only connect transitions to places. If

a transition is connected with a place by an overwrite arc, when the transition �res, the

produced tokens overwrite the previous contents of the place. The overall e�ect is that

the output place is �rst emptied and then, the tokens produced by the �ring are inserted.

Arcs are weighted. The weight indicates the number of tokens
owing along the arc at

each transition �ring. It can be a statically de�ned number (the default weight being 1)

or it may be dynamically computed (in this case the weight is indicated by a *"). Weight

and kind are orthogonal features and all combinations are possible.

3.5.5 Transitions

Transitions represent events. Events taking place in the process-enactment environment

are represented by white transitions. When the event involves a tool execution (which

has an e�ect in the user environment), the event is represented by a black transition.

Transition execution is atomic, in the sense that no intermediate state of the transition

execution is visible outside the transition. White transitions are executed synchronously

(one after the other) by the SLANG Interpreter. The execution of a black transition,

instead, may overlap with the execution of other transitions (see Chapter 6 for further

details on this issue).

Each transition is associated with a guard and an action. The guard is a boolean

expression on tokens belonging to the transition's input places. An input token tuple that

satis�es the guard is said to be an enabling tuple for the transition. A transition having

an enabled token tuple is said to be enabled. An enabled transition may �re. The �ring

consists in the execution of the transition's action. The action speci�es how the output

token tuple is calculated as a function of the enabling token tuple. Black transitions specify

Chapter 3: SLANG language 22

special actions which include the execution of a tool.

Variables

Variables may be used in the speci�cation of a transition guard and action. Given a

transition, we distinguish di�erent groups of variables:

� place variables, which can be further classi�ed in input place variables and output

place variables, and

� local variables.

Place variables correspond to input and output places of the transition, they are implic-

itly declared according to the input and output places of the transition, the arcs connecting

the places and the transition, and the type of the corresponding places. A place variable

name (its identi�er) coincides with the corresponding place name. When a place is both

input and output for a transition, the corresponding variables are named in place-name

and out place-name respectively3. A place variable type type depends on the type of the

corresponding place and the weight of the arc connecting the place and the transition.

If the place type is T, and the arc of weight one, the variable type is also T. If the arch

weight is greater than one or is a dynamic weight arc, the variable type is set(T).

Local variables have to be explicitly declared in the transition. The syntax for a

declaration is:

o2 typeId varId ;

A complete example with all the variable of a transition is given in appendix A.2

Guards

A guard is a boolean expression involving place input variables. Local variables may be

used if bound by quanti�ers. All quanti�ers must be placed as a pre�x of the expression

and followed by predicate that does not contain quanti�ers. Thus, a guard syntax is:

((forall j exists) varId in varId:)* expression

The expression is any (O2C) boolean expression.

Example of guard expression If we have a transition with an input place called P

containing persons, we may write:

P->name = "James"

3This ambiguous case apply only to actions because output variables are not de�ned for guards. So the

name of the variables for a place called X will be in X and out X for the action and simply X for the guard.

Chapter 3: SLANG language 23

which is enabled if there is one person called James. Here the weight of the arc is 1. If it

were 3 we could write:

forall x in P: x->age >= 18

In this case the guard selects 3 persons older than 18. 2

Transition guards are conditional expressions that have the input place names as free

variables. An input tuple of a transition is a tuple where each component is a token

or an nonempty subset of the input place contents. Actually, the cardinality of each

tuple component depends on the weight of the arch that connects the input place and

the transition. If the weight is 1, the corresponding tuple component may be any token

belonging to the input place contents. If the weight is a �xed number n with n > 1,

then the tuple component may be any token subset of the input place contents, with

cardinality n. If the arch weight is dynamic (indicated with *), the tuple component may

be any nonempty susbset of the input place contents.

Guard semantics Guard evaluation causes free input variables to be bound to tokens

satisfying the guard expression. For each place the number of tokens is determined by the

weight of the arc connecting the place; such a set of tokens is called an enabling tuple.

There may be no enabling tuples, in this case the transition is not enabled and can not

�re, or there may be even more than one, in this case one is chosen nondeterministically.

The evaluation implicitly maximizes the number of tokens when this is not statically

de�ned, that is when dynamic arcs are present in the preset. In other words, in such

circumstances an enabling tuple is the set with maximum cardinality that satis�es the

guard.

A formal description of the guard semantics is in appendix A.1.

Example of guards with dynamic arcs Refer to �gure 3.3).

2 *

b)a)

*

Docs Hosts Directories

*

c)

Persons

Figure 3.3: Examples for guard semantics

a) This �rst example is very simple. We have one input place containing documents

connected with a \star" arc to the transition. Each document has a boolean attribute

Chapter 3: SLANG language 24

called reviewed. We want to extract the reviewed documents. Provided the declaration

of one local variable d of type document, the guard is:

forall d in Docs: d->reviewed

in this case all the reviewed document are bound to the enabling tuple.

b) In this example we have a place of type host containing machines id of a LAN.

Suppose that each host mounts some directories of a distributed �le system. The class

host has an attributes called fstab which is the set of all the directories visible to that

host. Each directory is identi�ed by a string. The other place is a container for dir tokens,

the class dir has a string attribute called name. Suppose this is the marking of the net:

place Hosts contains these three tokens:

{ hostId: "rossini" , fstab: set("/usr/bach","/special/fx") }

{ hostId: "bellini" , fstab: set("/mnt/X","/home/sweet/home") }

{ hostId: "bach" , fstab: set("/usr/bach","/home/sweet/home") }

while place Directories contains these tokens:

{ name: "/usr/bach"} { name: "/special/fx"}

{ name: "/mnt/X"} { name: "/home/sweet/home"}

{ name: "/se1/gioia"}

We want to take two machines and all the �les accessible by them. Then the SLANG

guard that makes the selection is:

exists m in hosts: forall d in directories: (d->name in m->fstab)

Again, d and m must be declared in local variables. This guard takes two hosts because the

arc weights 2. Among all the combinations, the interpreter chooses bellini and rossini

with "/usr/bach", "/special/fx", "/mnt/X" and "/home/sweet/home". The reason for

this choice is that taking bach would in any case allow just three directories. Instead

bellini and rossini bind four directories.

c) Suppose we are modeling an activity that requires a group of persons working

together very well (the holidays problem). The starting transition for such activity must

extract a self contained group of persons from a global place called Persons. Each person

has a name and a set of friends. The guard should make sure that everyone in the group

gets on well with each other. The SLANG expression for this condition is:

forall p1 in Person: forall p2 in Person: \

(p1->name in p2->friends) && (p2->name in p1->friends)

Chapter 3: SLANG language 25

Evaluating this guard the interpreter chooses the biggest group of persons that satis�es

the constraint4.

2

Actions

An action is an O2C code which processes tokens from the enabling tuple and produces

new tokens for output places. O2C is an extension of the C language. It provides all the

standard control
ow instructions and all the operators and expressions of C. In addition to

this, it comes with some operators to access complex objects. (for a detailed speci�cation

of the O2C language, refer to [O292]).

In the action, input variables are initially bound to the enabling tuple, each variable

refers to the token or the set of token extracted from the corresponding place. This initial

value may be changed during action execution. In any case, these variables assignments

are lost when the action terminates. Output variables are bound to initial default values.

If their type is set(...) the initial value is the empty set, else they refer to new objects

of the proper class5. Thus SLANG programmer can refer immediately to output tokens

without having to create them. Local variables, declared explicitly, are initialized in the

following way: Atomic default values are: 0 for integers, 0.0 for reals, false for booleans,

'\0' for characters and "" for strings. Structured default values are list() for lists,

set() for sets and unique set() for unique sets. No initialization is provided for objects,

thus their initial value is nil.

There are some di�erences between white and black transitions in the action speci�-

cation, as explained in the following.

White transition actions

The action associated with a white transition is made of one single action body. The input

for this code is the enabling tuple, the output is the output token tuple. The scope of

every variables include all the action code. The execution takes one single step.

Example: white transition. Consider the transition of �gure 3.4, place Orders is of

type Order, place Items is of type Item, place TotItems is of type TotItem. These are the

4This is a particular version of the problem of the complete sub-graph (CS), a well known NP-complete

problem. The SLANG interpreter gives the solution in one transition �ring! This is not to say that we

found the e�cient solution to NP-complete problems; it should point out the intrinsic complexity of guard

evaluation with this semantics.
5The object class may have an init method. In this case, this method is executed when the new object

is created. In SLANG, the init method may not have parameters.

Chapter 3: SLANG language 26

*

Orders Items

TotItems

Figure 3.4: Example of white transition.

classes:

class Item inherit ModelType

public type tuple

{

descr: string

}

end;

class Order inherit ModelType

public type tuple

{

ItemDescr: string,

quantity: integer

}

end;

class TotItem inherit ModelType

public type tuple

{

ItemDescr: string,

TotQuantity: integer

}

end;

Let us specify the following local variables:

o2 Order cursor;

and the guard for the transition:

Chapter 3: SLANG language 27

forall cursor in Orders: cursor->ItemDescr == Items->descr

This guard binds one Item and all the orders related to that item. The following action

computes the total amount of ordered items and stores one token with the result. Here is

te action code

TotItems->ItemDescr = Items->descr;

TotItems->TotQuantity = 0;

for(cursor in Orders)

TotItems->TotQuantity += cursor->quantity;

2

Black transition actions

The black transition action contains an external action (a tool execution). The action body

is actually split in two distinct parts called prologue and epilogue, which are executed in

two di�erent steps.

Prologue : is the code that sets up all the conditions for the external action. Usual

input and local variables are declared and assigned like in white transition actions.

Moreover two other variables are pre-de�ned:

� extAction: is of type string, which represents the external action to be exe-

cuted. This external action corresponds to the execution of a tool. The format

of the strings that may be assigned to extAction is discussed in section 3.6.

� parList: is a list of objects used to pass O2 parameters along with a tool

invocation. In the tool does not require parameters in the form of O2 objects,

the value of parList is simply ignored.

Both variables values are assigned during prologue execution, and may vary from

�ring to �ring.

Epilogue : is the code executed just after the external action termination. It de�nes

output, input and local variables. While output tokens are initialized as usual,

input tokens are restored with the last assignments of the prologue. Since the scope

of local variables is restricted to a single step, their contents resulting from the

prologue are lost. Thus local variables take usual default values. A special variable

called extResult collects the results of the external action and makes them visible

to the epilogue code. User may de�ne the type of extResult which in any case must

be an object. The default type is Object. extResult is nil in any case of UNIX

external action.

Chapter 3: SLANG language 28

3.6 SLANG in the SPADE-1 2.0 environment

SLANG provides special constructs to support communication between the Process En-

actment Environment and the User Interaction Environment. These constructs are black

transitions and user places. Black transitions are a special kind of transitions whose �ring

produces an e�ect in the user environment, namely through the execution of a tool. User

places, on the other hand, are special places where tokens are inserted each time a relevant

event for the process environment occurs in the user environment.

A black transition can invoke a tool (black-box tool) or it can request a particular

service from a service-based tool that is already running. In SPADE-1, interaction with

black-box tools is achieved by invoking the tool in a black transition action. The tool

name and the necessary parameters for the execution must be assigned to the prede�ned

variable extAction. Additional parameters, in the form of O2 objects may be speci�ed

in the prede�ned variable parList. In order to interact with service-based tools, SPADE-

1 provides a special tool called ServiceRequest. This tool requires a service to a tool

and �nishes execution when the service has been provided. Thus, a black transition

may be used to require a service to a tool by specifying in variable extAction the tool

ServiceRequest followed by the necessary parameters (the tool identi�er, the service

name, etc.).

In order to capture the relevant events that occur in the user environment, the �lter,

managing interaction between enactment and user environment (SPADE Communication

Interface, see chapter 7), must be appropriately con�gured. SCI con�guration is done

dynamically during enactment and consists in the registration (or de-registration) of an

active copy to receive a noti�cation of the occurrence of a particular kind of event in a

user place.

The rest of this chapter discusses in detail the interaction with black-box tools and

service-based tools in SLANG. For this discussion it is useful to further distinguish among

tools that access the O2 database (and thus may interchange data with the process in the

form of O2 objects) and tools that are integrated in message-based software development

environments, such as DEC FUSE.

3.7 Interaction with black-box tools

Interaction with black-box tools is achieved through black transitions, assigning to the

prede�ned variable extAction a string with the command line (as if it were written at a

shell prompt) to launch the tool. The string includes the tool name (with the full path if

the tool is not in the current path of execution) and its parameters. Thus, the syntax of

Chapter 3: SLANG language 29

the string assigned to variable extAction is:

<toolname> [<parameters>] [-O2]

The arguments between \[" and \]" are not compulsory. The -O2
ag indicates that the

invoked tool is an O2 application and that it may have O2 objects as further parameters

speci�ed in the variable parList. It is thus necessary to include -O2 as it were a �nal

parameter for O2 applications. SLANGInterpreter is the only O2 tool that does not

require the -O2 parameter.

Depending on the tool characteristics a result may (or may not) be returned. The type

of the result (if it exists) also depends on the invoked tool. In the case of a returned result,

it is made available to the black transition epilogue in the prede�ned variable extResult,

whose type must be declared in the black transition according to the expected type for

the result.

Example: Interaction with black-box tools. Suppose that in a SLANG process

model the editor emacs has to be launched in a black transition action using display

contained in variable user on the �le myfile.txt. Thus, the black transition should

include a statement like this one:

extAction = "/usr/local/bin/emacs -display " + user + " myfile.txt";

In this case, no result is expected in variable extResult.

Another example could be the tool SLANGInterpreter, which receives an object of

type ActiveCopy as parameter and returns and object of type ActiveCopy as result. In

this case, variable extResultmust be declared of type ActiveCopy. Suppose that variable

ac contains the active copy to be executed. The preamble of the black transition action

invoking tool SLANGInterpreter should be:

extAction = "SLANGInterpreter";

parList = ac;

When the SLANGInterpreter execution �nishes, the resulting active copy is contained in

variable extResult.

2

3.8 Interaction with service-based tools

Interaction with service-based tools is carried out in two ways:

1. service request,

Chapter 3: SLANG language 30

2. event noti�cation.

Service requests are generated by the process enactment environment, by calling tool

ServiceRequest from within a black transition. The request must specify the tool instance

to which the service is requested, the requested service, and, optionally a list of parameters

(which may also include O2 objects). All service requests produce some result. The

ServiceRequest tool execution �nishes when results are returned to the black transition

that invoked it. Thus, service requests are a two way communication: parameters are

passed from the process environment to the tool and then the service result is passed back

from the tool to the process environment.

Event noti�cations are generated spontaneously by tools in the user environment, while

they are running. For example, an editor may notify the event that it saved a �le success-

fully, or a compiler may notify the event that it has found a syntax error. Not all events

that occur in the user environment are of interest to the process environment. Actually,

the process environment dynamically declares which are the events of interest by con�g-

uring the SCI. The SCI behaves as a �lter that communicates to the process environment

only the events of interests. Note that, since SCI con�guration is done dynamically, the

set of events of interest may change during enactment. The tool ServiceRequest is also

used for SCI con�guration, specifying service ConfigSCI and including as parameters the

name of the event of interest and the user place where the event information has to be

inserted. The e�ect of a con�guration is that the SCI registers the active copy to receive a

noti�cation each time the event of interest occurs. The noti�cation will appear in the form

of a token in the user place speci�ed in the con�guration. A con�guration is valid until

the process model enactment de-registers the active copy (with a procedure analogous to

the registration, i.e., using tool ServiceRequest) or until the active copy to which the

user place belongs �nishes execution.

3.8.1 Tool ServiceRequest

This section provides a detailed description of tool ServiceRequest and of its di�erent

uses. The tool syntax is the following:

ServiceRequest address service [parameters] [-O2]

address is a string identifying the tool instance to which the request has to be sent. The

address consists of either one number or a couple of numbers separated by a dot. service is

the name of the requested service. parameters is a string containing a list of command line

parameters for the service requested. The O2 option is used to indicate that the requested

Chapter 3: SLANG language 31

service is provided by an O2 tool and thus it may have some parameters in the form of O2

objects. These objects must be assigned to the variable parList.

Depending on the value of address the service request is managed by di�erent tools. If

the value of address is 0 the request is managed directly by the SCI. The SCI o�ers two

services: StartTool and ConfigSCI. If the value of address is a single number (di�erent

from 0), the service request is managed by the tool instance identi�ed by that number.

Finally, if value of address is a couple of numbers, the service is to be managed by tools

integrated in a separate environment (e.g., DEC FUSE). The �rst number of the address

must identify a bridge tool that connects the SCI with the integrated environment an and

the second number identi�es a tool instance, within this environment, that provides the

requested service.

Service requests managed by the SCI

Service StartTool. The service StartTool requires as parameter the host machine,

the name of the tool followed by the command line parameters. The StartTool service

terminates when the tool is up and running. An object of the SPADE class Message is

returned by the external action in the variable extResult. This message contains the

address of the invocated tool in the �eld addr. In this case, the syntax of the service

request is:

ServiceRequest 0 StartTool <toolname> [<parameters>]

<toolnane> is the name of a tool. <parameters> is an optional string of parameters for

the service execution.

Service ConfigSCI. The service ConfigSCI takes as parameter a con�guration pattern

for the SCI. A con�guration pattern adds or removes a particular �lter to the SCI. The

syntax for this service request is:

ServiceRequest 0 ConfigSCI <pattern>

where a pattern has the following syntax:

pattern ! (+j-) identi�er msgName placeName

identi�er ! integer(.integer)*(* j�)j*

msgName ! * j string*

place ! string
The meaning of a pattern is straightforward: the plus and minus sign specify weather

the �lter must be added or removed from the SCI. A �lter states that every message

Chapter 3: SLANG language 32

matching both tool id and message name (the *" matches any value) is forwarded to the

place of the active copy that introduced that �lter. The service terminates when the SCI

has been con�gured. As a result, an object of the class Message is returned in the variable

extResult.

Service requests managed by tools directly connected to the SCI

When a service request is issued, it is assumed that the addressed tool instance is already

running. The tool services the request and always produces a result. For tools linked to

O2, the type of the result depends on the service requested. If the result is an O2 object,

the type of the result is the type of the returned object. Otherwise, the type of the result

is Message. In all the cases, the result is stored in the variable extResult, whose type

has to be declared according to the expected result type.

The syntax of the service request is:

ServiceRequest <address> <servicename> [<parameters>] [-O2]

In order to identify the tool, <address> has to be known to the process model. The

process model may get to know a tool address in two ways. If the tool has been launched

by the process using the StartTool service, the tool address has been returned as a result

of the service. Otherwise, the tool has been launched directly by a user. In this case,

it is the tool responsibility to communicate its identity to the process and the process

responsibility to be able to capture this event (by previously having con�gured the SCI).

The other arguments are similar to those of service StartTool. <parameters> is an

optional string of parameters for the service execution. The O2 option must be included if

the tool is an O2 application and, in this case, additional O2 parameters may be speci�ed

in the variable parList.

The execution of a service may imply the termination of tool execution. In this case,

the tool instance is no more able to receive new service requests. The process model should

guaranteed that no requests are issued to terminated tools.

Service requests managed by tools from an integrated environment

Service requests may also be addressed to tools belonging to tool environments based on

message passing (like DEC FUSE), which are integrated in SPADE-1. In this case, the

integration is achieved through a tool, called bridge, which is in charge of forwarding the

service requests to the tool environment and passing back the service results to the SCI.

The bridge guarantees that each request receives an appropriate reply. Each instance of a

tool environment requires a di�erent bridge instance to connect with the SCI. Thus, the

Chapter 3: SLANG language 33

bridge address identi�es one tool environment instance (e.g., one DEC FUSE instance).

If the service request is directed to a particular tool instance within the tool environment,

a second number is necessary to identify a tool instance within the tool environment. If

this second number is not present, the service request is not directed to any particular

tool and should be managed by the message server of the tool environment.

Thus, service requests sent to tools in a tool environment may have one of the following

forms:

ServiceRequest <bridgeaddr>.<tooladdr> <servicename> [<parameters>][-O2]

or

ServiceRequest <bridgeaddr> <servicename> [<parameters>][-O2]

The argument <bridgeaddr> is like any other <address> managed by the SCI. In any

case, when the service is completed, there is always a replay to the service request. If the

tool shares the O2 schema, then the result is always Message. For tools that access O2

data base, the type of the result depends on the service requested. If the result is an O2

object, the type of the result is the type of the returned object. Otherwise, the type of the

result is Message. In all the cases, the result is stored in the variable extResult, whose

type has to be declared according to the expected result type.

Chapter 4

SPADE-1 2.0 architecture

This chapter presents the architectural design of the SPADE-1 2.0 environment [BBFL94].

In this presentation a top-down approach is adopted. First, a very high-level description

is presented, then, each component is expanded in a detailed structure. The description

of the SPADE-1 architecture is given by means of two classes of entities: components and

connectors [GS93, AG94b, AG94a].

Components are computational modules or repositories of data. A component has a

state and an interface, which is a set of connection points. The interface speci�es the

actions the component is able to perform and the way other entities access its status.

Connectors are link protocols that de�ne two endpoint interfaces. Two components

may be bound by a connector, if they are able to play the roles speci�ed by the connector

interfaces.

The description of SPADE-1 architecture in terms of its components and connectors

is not meant to be a formal speci�cation of protocols and matching interfaces. A more

accurate formalization is far beyond the scope of this thesis. Instead, this organization

framework has been chosen to provide an ordered presentation of the architectural issues.

We use di�erent shapes for boxes and lines to display di�erent implementations and roles

in the SPADE-1 2.0 architecture.

Section 4.1 sketches SPADE-1 logical parts. Sections 4.2 and 4.3 give the vocabulary

and a straightforward graphic notation for components and connectors. This notation will

be used in sections 4.4, 4.5, and 4.6, which present in details the architecture of SPADE-1

2.0.

4.1 SPADE-1 architecture overview

34

Chapter 4: SPADE-1 2.0 architecture 35

Filter

Process Enactment Environment

User Interaction Environment

Figure 4.1: High-level view of SPADE-1 architecture.

SPADE-1 design is based on the idea that the paradigm used to model the process and

support its enactment, and the paradigm used to guide the interaction with users can be

reasonably kept distinct. This is useful to support distribution, evolution and improvement

of the environments, and the integration of di�erent types of paradigm in the same PSEE.

Thus, the SPADE-1 environment is logically divided into three main parts:

� the Process Enactment Environment;

� the User Interaction Environment;

� a �lter connecting these two parts.

The Process Enactment Environment includes facilities to execute a SLANG speci�ca-

tion, creating and modifying process artifacts. The User Interaction Environment manages

the interaction between users and the process. The �lter, called SCI (SPADE Communi-

cation Interface), provides communication between the Process Enactment Environment

and the User Interaction Environment.

4.2 Basic architectural elements

Basic components and connectors are the building blocks of the SPADE-1 2.0 architecture.

These components and connectors are well-known and commonly used elements. They are

abstraction provided by modern programming languages [GJ82], as well as facilities and

mechanisms supplied by existing operating systems, in particular Unix.

Chapter 4: SPADE-1 2.0 architecture 36

These elements are described from a dynamic viewpoint. I.e., we represent instances

of components and connectors. We are not interested in describing static relationships

(e.g., \uses" or \is-a" relationships) between modules.

4.2.1 Components

Basic components in the SPADE-1 2.0 architecture are general and well-known entities.

We distinguish four basic components:

File : �les in the SPADE-1 2.0 architecture are Unix �les. The role played by a �le is:

� Repository. A �le plays the role of a Repository when other components access

the data it contains.

Process : this component refers to the environment and the computational resources

related to a Unix process. A process can play the following roles:

� Executor. A process executes some code.

� Parent-Process or Child-Process. These roles are intuitively related to the fork

Unix system call. A process that somehow causes the creation of another pro-

cess, plays the Parent-Process role. The created process plays the Child-Process

role.

Function : functions in SPADE-1 2.0 are coded in O2C, C or C++. A function can play

the following roles:

� Obj-Owner. A function may have private variables which are objects or refer-

ences to objects.

� Code. Functions are code executed by processes. Moreover, functions may call

other functions or methods on objects.

� Reader-Writer. Functions play the Reader-Writer role when accessing �les (i.e.,

they own the reference to a �le, and one of their task is to access that �le).

� Client or Server. These roles refer to a Unix socket connection. Functions

are connected by a socket if they own, in their (private) variables, the socket

endpoint descriptors. A Server function accepts connections, while a Client

function requests a connection1.

1Usually socket connections are represented as links between processes. We use a di�erent approach, in

order to locate precisely which function is responsible for the management of a socket connection endpoint.

Chapter 4: SPADE-1 2.0 architecture 37

UNIX process FunctionFile Object Named object

Figure 4.2: Basic components.

Object : an object is a data structure with associated methods. Objects belonging to

the SPADE-1 2.0 architecture can be objects in the O2 object-oriented data base or

C++ objects. An object can play the following roles:

� Obj-Owner or Obj-Instance. These roles refer to objects referenced by other

objects. Objects holding the reference in their data structure play the role of

Obj-Owner. Referenced objects play the role of Obj-Instance.

� Code. An object de�nes methods. From this point of view, it can play the role

of Code.

� Server, Client, Reader-Writer. These roles are played by an object as it was

described for functions.

Named object : it is an object which act as a persistency root in the O2 data base (see

section 5.1). It can play the roles of an object.

Figure 4.2 shows the graphic appearance of basic components.

4.2.2 Connectors

Connectors link up components, provided they are able to play the roles de�ned by connec-

tors endpoint interfaces. These are the connectors used in the SPADE-1 2.0 architecture,

together with the roles accepted by each connector:

Execute : it connects an Executor to a Code. Code can be a function or a method of an

object.

Call : it connects a Code to a Code. For example, a function can call another function,

or a method on an object.

Link : it connects a Client to a Server. Links, in the SPADE-1 2.0 architecture, are

represented by Unix sockets. The asymmetric appearance of the connector highlights

the di�erent roles of the connected components.

Hold : it connects an Obj-Owner to an Obj-Instance. For example, a function may have

an object as a private variable or share the object with another object.

Chapter 4: SPADE-1 2.0 architecture 38

Call

ForkHold

forks

Link

Execute

Access

Figure 4.3: Basic connectors.

forks

Hold

Call

Fork and Link Execute, Call and Access

Figure 4.4: Example of components and connectors composition.

Fork : it connects a Parent-Process to a Child-Process. This connector represents, intu-

itively, the Unix spawning mechanism. In the SPADE-1 2.0 architecture, the fork

connector may link up processes running on di�erent hosts.

Access : it connects a Reader-Writer to a Repository. This connector represents a \uses"

relation. Components access �les, use their contents or use them as repository of

data. At this level of description, there is no di�erence between reading from a �le

or writing in it.

Figure 4.3 shows the graphic appearance of basic connectors, while �gure 4.4 shows

some examples of basic components linked by basic connectors.

4.3 Composite architectural elements

The basic elements presented in the previous section can be combined to obtain composite

elements. Composite elements provide more powerful functionalities than the basic ones.

Moreover, they provide abstraction and expressiveness.

Chapter 4: SPADE-1 2.0 architecture 39

O

code

O

server2O

2

2

2

O

repository

code
client

Figure 4.5: Composite components.

4.3.1 Composite components

Composite components are macros for the composition of basic components. Often, they

inherit some of the roles of their constituents, in addition to the newly de�ned ones.

O2 client : it is a Unix process connected to the O2 server. The O2 client can play all

the roles played by a Unix process. In addition, the O2 client is able to successfully

execute code which accesses O2 objects, stored in the O2 object-oriented repository.

This component is actually a macro de�nition for a Unix process executing a par-

ticular function (the O2 client code), connected via socket to another Unix process

executing the O2 server code. The O2 server manages the interaction with the O2

data repository (see �g. 4.5). Nonetheless, it is not described as a SPADE-1 ar-

chitectural component. This is why the O2 server, as a stand alone code, does not

make much sense. Even if it is a necessary component for the whole system, it does

not connect to SPADE-1 components other than O2 clients. Thus, the connection

with the server is implicitly included in the clients.

4.3.2 Composite connectors

Composite connectors are obtained adding a communication protocol to a basic connector

or composing connectors and components.

SPADE communication protocol : simple, unstructured communication between com-

ponents in the SPADE-1 2.0 environment is ruled by the SPADE communication

protocol. The SPADE communication protocol is based on the Unix socket facil-

ity. SPADE protocol communication primitives provide abstraction. This connector

links a Client to a Server. The graphic appearance of the connector allows to identify

the roles of the connected components (see �g. 4.6). The protocol consist in:

Chapter 4: SPADE-1 2.0 architecture 40

1. Communication initialization: the server initializes the communication access

port, using the openPort primitive. It passes a port number as a parame-

ter, receiving a port descriptor as a result. The server is then able to receive

connection requests on its host at the speci�ed port.

2. Connection setup: clients request the creation of a communication link to the

server using the openConnection primitive. Clients provide, as parameters,

the host name of the server and its communication access port number. They

receive, as a result, the connection descriptor. The server accepts a connection

using the acceptConnection primitive. It passes, as a parameter, the port

descriptor, and it receives, as a result, the new connection descriptor.

3. Data exchange: clients and server exchange atomic data using the readMsg and

writeMsg primitives. They take a string as argument. The string is transmitted

on the communication link using a particular message format and managing

possible errors.

4. Connection closing: the server and the clients close the connection using the

closeConnection primitive, passing, as a parameter, the connection descriptor.

5. Communication shutdown: the server shuts down the communication access

port using the closePort primitive, passing, as a parameter, the port descrip-

tor.

The acceptConnection and readMsg primitives are blocking.

SCI communication protocol : the SCI communication protocol, presented in details

in section 7.1, rules the communication between the SPADE Communication Inter-

face and its clients. The SCI communication protocol uses the lower-level primitives

de�ned by the SPADE communication protocol, providing information hiding and

abstraction. This connector links a Client to a Server. The graphic appearance of a

connectors ruled by the SCI protocol is shown in �gure 4.6.

O2 Socket : O2 sockets are intended to be a simple and
exible mechanism to exchange

complex data within the O2 data base [PV93, CPV94]. The idea is to communicate

via two objects pipeline, with a non-blocking rendez vous communication setup. This

connector links a Client to a Server. The asymmetric appearance of the connector

highlights the di�erent roles of the connected modules. The communication protocol

consists in:

1. Communication initialization: the communication is initialized creating a per-

sistent object of class Port.

Chapter 4: SPADE-1 2.0 architecture 41

O2SPADE communication protocol SCI communication protocol

Client Server

Socket

Client Server Client Server

Figure 4.6: Composite connectors.

2. Connection setup: the connection is established through a non-blocking rendez-

vous. The client calls the connect method on the Port object. The method

returns the reference to a Connection object. The server accepts the connection

request calling on the Port object the accept method. It receives, as a result,

a reference to a Connection object.

3. Data exchange: during data exchange, there is no di�erence between the two

connected components. Only O2 objects pass through O2 sockets. If an atomic

or structured value need to be communicated, then it must be enveloped in an

object. Connected components exchange objects calling the read and write

methods on their Connection object. The writemethod takes, as input param-

eter, the reference to an object to be delivered to the counterpart connection.

The read method returns an object2. The object returned by a read operation

is of the class Object. The recipient must know its actual class to use (cast) it

properly.

4. Connection closing: O2 sockets do not support any explicit shutdown procedure.

Communication channels are not bound to any particular persistency root. The

O2 socket is lost as soon as both clients dereference their connections.

5. Communication shutdown: the communication access port can be shut down,

dereferencing the corresponding Port object.

4.4 Process Enactment Environment

Process Enactment Environment task is the execution of a kernel SLANG process model

speci�cation.

The components of the enactment environment are:

� The O2 OODBMS.

2Due to a problem concerning O2 persistency management, objects coming out of a connection are still

persistent. Actually, they would not survive an abort or a quit operation, but they are accessible only in

transaction mode.

Chapter 4: SPADE-1 2.0 architecture 42

forks

SPADE MonitorSPADE Manager

Process Engine

forks

fo
rk

s

fo
rk

s

Process Engine Manager

Process Engine

2O

PE

2

PE

O

PEManager

O 2

ProcessEngineProcessEngine

Internal PE

ProcessEngineManagerSPADE

configuration file

Process Engine Manager

configuration file

Figure 4.7: Process Enactment Environment Unix processes.

� The SLANG Interpreters.

� The Process Engines and the Process Engine Manager.

� The SPADE Manager.

� The SPADE Monitor.

4.4.1 O2 OODBMS

The O2 data base, described in section 5.1, is the backbone of the SPADE-1 2.0 Process

Enactment Environment. It supports execution, data management and persistency. O2

has a client-server architecture, in which clients are charged for computations (methods

execution), while the server coordinates the access to persistent data. For the purpose of

describing SPADE-1 architecture, only the O2 client element is outlined. The O2 database

is considered an \implicit playground" containing the objects and functions forming the

SPADE-1 2.0 architecture.

Chapter 4: SPADE-1 2.0 architecture 43

4.4.2 SLANG Interpreters

SLANG Interpreters are O2 objects of class SI. They call the methods that implement

the SLANG language interpretation algorithm on active copies. Active copies are O2

objects of class ActiveCopy. Every active copy is referenced by the named object ACPool,

which acts as a root of persistency. Active copies communicate with the Process Engine

Manager by means of an O2 socket connection. They are also connected to the SCI by a

SCI protocol connection (see �g. 4.8).

4.4.3 Process Engines

Process Engines are responsible for the execution of multiple SLANG Interpreter instances.

They are O2 clients. They execute the O2 function ProcessEngine, which holds and

manages an O2 object of class PE (see �g. 4.7). The PE object contains an O2 socket

connection to the Process Engine Manager, from which the Process Engine receives active

copies to execute. In addition, the PE object contains references to the managed SLANG

Interpreters. Every PE object is referenced by the named O2 object PEPool, which acts as

a root of persistency (see �g. 4.8).

4.4.4 Process Engine Manager

The Process Engine Manager coordinates the Process Engines, and manages the com-

munication in the Process Enactment Environment. It is an O2 client. It executes the

ProcessEngineManager O2 function which manages the PEManager named object. If re-

quested, the ProcessEngineManager function is able to execute also the duties of a Process

Engine, managing a PE object (see �g. 4.7).

Process Engine Manager behavior, regarding active copy allocation policy and Process

Engine invocation, can be customized using the Process Engine Manager con�guration

�le.

4.4.5 SPADE Manager

The SPADE Manager is the interface towards the SPADE-1 system administrator. It is

a Unix process. Its task is the initialization of the SPADE-1 environment. At startup

time, the SPADE Manager reads from the SPADE con�guration �le information about

the system architecture customization. Then, it forks the Process Engine Manager, the

SPADE Monitor and the SCI. The SPADE Manager is connected to the Process Engine

Manager with a SPADE protocol connection, through which the system administrator can

send messages, in
uencing SPADE-1 behavior.

Chapter 4: SPADE-1 2.0 architecture 44

SI

ACPool

PE PEPoolPE

SI SI SISISI

PE

PEManager

ActiveCopy ActiveCopy ActiveCopy ActiveCopy ActiveCopy ActiveCopy

SPADE Communication Interface

Figure 4.8: Process Enactment Environment O2 objects.

Chapter 4: SPADE-1 2.0 architecture 45

ToolTool

Black-Box

Tool

Black-Box

Tool

Tool

Black-Box

DEC FUSE

Tool

Message Server

DEC FUSE

Message Server

SPADE Communication Interface

Tool

Tool

Tool

Tool

FUSE

Bridge FUSE

Bridge

Tool

Tool

Service-Based

Service-Based

Tool

SPADE Manager

fo
rk

s

fo
rk

s

fo
rk

s

fo
rk

s

fo
rk

s

Figure 4.9: The SCI and the User Interaction Environment.

4.4.6 SPADE Monitor

The SPADE Monitor displays graphically information about process enactment. It is a

Unix process, connected to the Process Engine Manager by a SPADE protocol connection,

through which it receives audit information.

4.5 SPADE Communication Interface

The SPADE Communication Interface is a �lter which allows communication between

the PEE and the UIE. The communication is based on the message passing paradigm,

and follows a precise protocol. The SCI is a Unix process. It is connected with each

SLANG Interpreter and each service-based tool or tool integration environment. The

SCI allows the SLANG Interpreters to reach the services exported from the tools in the

UIE, and dispatches noti�cations of relevant events, coming from the UIE, to the SLANG

Interpreters.

Chapter 4: SPADE-1 2.0 architecture 46

4.6 User Interaction Environment

The User Interaction Environment task is the interaction with the software process agents.

Users coordination and interaction is achieved through integrated tools. Tools in the UIE

can be black-box tools or service-based tools depending on the level of control integration.

Black-box tools are forked by SLANG Interpreters as a consequence of black transition

�rings. Service-based tools provide services as follow-ups to SLANG Interpreters requests,

and notify the PEE of relevant events. Tools can be Unix processes orO2 clients, depending

on the level of data integration. Service-based tools can be directly connected to the SCI

or can belong to integrated software development environments (see �g. 4.9).

Chapter 5

Process Enactment Environment

The Process Enactment Environment is responsible for the execution of the process model.

During execution, process activities, designed by the process modeler using the SLANG

language, are invoked and concurrently interpreted. Interpretation of active copies pro-

duces e�ects in the User Interaction Environment and reacts to actions performed by

human actors, providing support to software development.

The SPADE-1 2.0 Process Enactment Environment is composed of:

� SPADE Manager;

� Process Engines;

� Process Engine Manager;

� SLANG Interpreters;

� SPADE Monitor;

� O2 OODBMS.

Process model enactment is accomplished through the application of the SLANG In-

terpreter algorithm to active copies, which are instances of activity de�nitions [Car94].

Multiple SLANG Interpreter instances are concurrently executed within each Process En-

gine. The Process Engine Manager coordinates the Process Engines and audits the en-

vironment [VZ93]. The SPADE Manager is the front-end towards the SPADE-1 system

administrator. The SPADE Monitor displays graphically the audit information it receives

from the Process Engine Manager.

In the following sections details on these components will be provided. Section 5.1

presents the O2 OODBMS, which represents the backbone of the entire Process Enactment

47

Chapter 5: Process Enactment Environment 48

Environment. Section 5.2 presents the SPADE Manager. Sections 5.3 and 5.4 describe

the Process Engine Manager and the Process Engines, respectively. Section 5.5 outlines

the SLANG Interpreter. Section 5.6 shows the PEE architecture at work. Section 5.7

describes auditing messages. Section 5.8 is about PEE con�guration issues.

5.1 O2 OODBMS

O2 [O292], [Deu91] is a distributed Object-Oriented Data Base Management System, based

on a client-server architecture.

The logical structure of an O2 data base is bound to a schema, i.e., a collection of

names and de�nitions of classes, types, applications, objects and values. There may exist

any number of logically separate schemas at a time.

A base is a collection of data whose structure conforms to the structural de�nition in

a schema. Several di�erent bases might be associated with each schema.

Data manipulation is achieved using the O2C language, an extension of ANSI-standard

C, as well as the O2SQL, an ad hoc database object-oriented query language, whose syn-

tax is styled on IBM SQL standard, and which is likely to become the SQL standard

for OODBMSs. O2 also provides an interface towards standard programming languages,

namely C and C++.

Data are represented by values and objects. A value is an instance of a given type.

A type is a generic description of a data structure in terms of atomic types (integers,

characters, and so on) and structured types (tuples, sets, and lists). An object is an

instance of a given class and encapsulates a value and the behavior of that value. The

behavior of an object is fully described by the set of methods attached to it.

An object or a value may be given an identi�er, i.e., a name, by which O2 commands,

methods, and application programs may refer to it quickly and speci�cally. Such name is

global within the schema.

Objects and values in the system can be either persistent or not. An object is per-

sistent if it remains in the database after the successful termination of the transaction

which created it. Persistence is granted as follows: Every named object in the database is

persistent, and every component of a persistent object is persistent. No other objects are

persistent. The same rule applies to values.

Thus, named objects and named values are the roots of persistence. That is, they are

used as handles from which every persistent object or value can be reached.

Every update to persistent data must be performed within a transaction. If two clients

access the same object or value in transaction mode, the locks obtained by the �rst client

force the second to wait. Thus, critical sections corresponding to updates should be limited

Chapter 5: Process Enactment Environment 49

Figure 5.1: SPADE Manager graphic interface.

in time, and should not involve several objects, in order to improve performance and avoid

deadlocks1.

Objects and values not bound to a persistency root are automatically garbage-collected

at the end of a transaction.

5.2 SPADE Manager

The SPADE Manager is the Unix process which actually enters the SPADE-1 environment.

The SPADE Manager presents to the SPADE-1 system administrator a Motif [Hel91]

graphic interface, from which it is possible to start and stop process enactment (see �g.

5.1). A window presents diagnostic messages about system startup.

SPADEManager behavior can be customized using a con�guration �le (see 5.8). When

enactment starts, the SPADE Manager reads its con�guration �le and then forks the

Process Engine Manager, the SCI and the SPADE Monitor processes. After this, the

SPADE Manager waits for the request, from the Process Engine Manager, of the creation

of a communication link, through which further messages can in
uence system behavior.

Whenever needed, it is possible to abort process enactment from the SPADE Manager.

In that case, the SPADE Manager sends a quit message to the Process Engine Manager.

The Process Engine Manager broadcasts it to every Process Engine, causing their termi-

nation. Before terminating, the Process Engines \freeze" the execution of the process,

allowing post-mortem analysis of the status of the process.

1In the current implementation of O2, locks are associated with pages rather than with objects. This

may lead to the odd situation in which clients working on completely di�erent objects within the same base

can experience deadlocks. O2Technology is steering towards replacing page locking with object locking.

Chapter 5: Process Enactment Environment 50

5.3 Process Engine Manager

The Process Engine Manager is the \pivot" of the Process Enactment Environment archi-

tecture. It collects and manages data about the PEE status and coordinates the execution

of the Process Engines.

Process Engine Manager tasks are:

� Process Engines management: the Process Engine Manager invokes Process Engines

processes when needed, allocates invoked active copies to Process Engines, trying to

balance the Process Engines load, and manages the communication among di�erent

Process Engines.

� SLANG Interpreters management: the Process Engine Manager is connected to each

SLANG Interpreter and manages information coming from active copies execution,

including active copy invocations, transition �rings and terminations.

� Monitoring management: the Process Engine Manager receives event noti�cations

from the Process Engines and the SLANG Interpreters, and translates them into

messages, forwarded to the SPADE Monitor.

� Systemmanagement: the Process Engine Manager receives messages from the SPADE

Manager and acts accordingly.

� Con�guration management: the Process Engine Manager, thanks to its central role,

is able to store updated information about PEE status and con�guration.

Communication among the Process Engine Manager, the Process Engines and the

SLANG Interpreters is based on message exchange. The Process Engine Manager uses

the O2 socket primitives to open and close communication channels, and to exchange data.

Each message is an O2 object, containing:

reference number : an integer, representing the message identi�er.

name : a string, representing the type of the message.

parameter : a string, containing message parameters.

data : a list of O2 objects.

Chapter 5: Process Enactment Environment 51

5.4 Process Engines

Process Engines are responsible for the management and execution of multiple SLANG

Interpreter instances. They are connected to the Process Engine Manager by an O2 socket,

through which they receive active copies to be executed. Upon receiving active copies, they

create SLANG Interpreter instances and allocate active copies to them. They implement

logical concurrent execution of SLANG Interpreters, calling the execute method on each

SLANG Interpreter they are managing, in a round robin loop.

5.5 SLANG Interpreters

The SLANG Interpreter task is the execution of an active copy. In the description of the

PEE, the SLANG Interpreter has been outlined as the executor of the SLANG Interpreter

algorithm. As it will be explained in chapter 6, the real SLANG language interpreta-

tion algorithm is implemented in the methods attached to the active copy O2 object. In

addition, SLANG Interpreter data structures and references to the connections with the

Process Engine Manager and the SCI are in the active copy object. Actually, the SLANG

Interpreter O2 object (of class SI), managed by the corresponding Process Engine, is just

an envelope for the active copy. It provides an abstract interface towards the Process En-

gine, recording the status of the active copy execution, and hiding the di�erent operations

to be performed on the active copy, depending on its status. The SLANG Interpreter O2

object exports to the Process Engine the single method execute, which executes a step

of the SLANG Interpreter algorithm, calling the appropriate methods on the active copy

object it owns.

For the sake of clearness, in the following description we use the term \SLANG In-

terpreter" to denote the SI object together with its active copy. We stress that the the

SLANG Interpreter object is an architectural abstraction, more than a computational

module.

5.6 Process Enactment Environment at work

5.6.1 Process enactment startup

The Process Engine Manager is forked by the SPADE Manager when enactment starts.

At startup time, the Process Engine Manager performs the following steps:

� Initializes the O2 database, resetting the persistency roots.

Chapter 5: Process Enactment Environment 52

Process Engine

forks

Process Engine Manager

forks

forks

SPADE MonitorSPADE Manager

SPADE

configuration file

O 2

configuration file

2

Process Engine Manager

O

ProcessEngine

PE(1)

ProcessEngineManager

PEManager

Figure 5.2: Process Enactment Environment startup.

� Connects to the SPADEManager and the SPADEMonitor (if monitoring is enabled),

using the SPADE protocol primitives.

� Retrieves from a con�guration �le information about SLANG Interpreters and Pro-

cess Engines static and dynamic creation and allocation policies, as well as Process

Engines distribution in the LAN (see section 5.8.2).

� Forks the Process Engine startup instances and creates a communication link with

each invoked Process Engine using the O2 socket primitives. Figure 5.2 shows a

snapshot of the PEE at this point, assuming that a single Process Engine has been

forked at startup time.

� Retrieves the root active copy from the O2 database and sends a message to an

active Process Engine, containing:

{ a null reference number;

{ the ExecuteAC name;

{ a null parameter;

{ the root active copy, as data.

Chapter 5: Process Enactment Environment 53

Process Engine

Process Engine Manager

Restart

Root activity definition

Edit

Start

O2 O2

Root

Reference

Name

Parameter

Data

ExecuteAC

Message

ProcessEngine

ProcessEngineManager

EditTechReport

SI(2)

PE(1) PEManager

Figure 5.3: Root active copy invocation.

Chapter 5: Process Enactment Environment 54

The recipient Process Engine retrieves the active copy from the message, creates a

SLANG Interpreter instance and allocates the root active copy to it. Figure 5.3 shows a

snapshot of the situation at this point. The �gure shows also an example of root activity

de�nition.

After completing setup, the Process Engine Manager enters a loop, in which it polls the

connections with the Process Engines, the SLANG Interpreters, and the SPADE Manager,

looking for incoming messages. The Process Engine Manager parses received messages and

acts accordingly.

The Process Engine, which received the root active copy, begins the execution of the

corresponding SLANG Interpreter, this way actually starting enactment.

5.6.2 Active copies management

Let us assume the root active copy invokes another active copy, e.g., named EditTech-

Report, which is a token in the root active copy net (see �g. 5.3). The black transition

actually invoking the active copy2 executes the action SLANGInterpreter. Consequently,

the SLANG Interpreter, which is interpreting the root active copy, removes the token from

the net and sends a message to the Process Engine Manager, containing:

� a message reference number;

� the name SLANGInterpreter;

� the invoker SLANG Interpreter identi�er as parameter;

� the invoked active copy as data.

When the Process Engine Manager, during its connection polling loop, �nds the mes-

sage, it performs the following steps:

1. It generates a unique message reference number and adds an entry to a message

table. The entry contains the newly generated reference number, together with the

original reference number and the sender SLANG Interpreter identi�er.

2. The Process Engine Manager uses the information about the PEE status to decide to

which Process Engine deliver the active copy. Suppose that a single Process Engine

has been invoked at startup time and that the con�guration parameters have been

set so that a new Process Engine must be invoked, in order to receive the newly

2The activity invocation construct is a full-SLANG feature. The construct is expanded into kernel-

SLANG, before being interpreted. The actual operation of removing the token, representing the invoked

active copy, from the invoker active copy net, is performed by a black transition.

Chapter 5: Process Enactment Environment 55

Process Engine Process Engine

Process Engine Manager

forks

8696 O2O2 O2

Restart

Edit

Start

Root activity definition

Root EditTechReport

Forwarded message

Reference

Name

Parameter

Data

ExecuteAC

Original message

Reference

Name

Parameter

Data

871

SLANGInterpreter

ProcessEngine ProcessEngine

ProcessEngineManager

PE(1)

SI(2)

PE(3)

SI(4)

PEMRef SenderRef SenderId

871

Message Table entry

8696 2

PEManager

Figure 5.4: Active copy invocation example.

invoked active copy. The Process Engine Manager forks the Process Engine process

and retrieves the Process Engine connection, using the O2 socket primitives.

3. The Process Engine Manager sends a message to the Process Engine containing:

� the new message reference number;

� the ExecuteAC message name;

� a null parameter;

� the active copy to be executed as data.

When the Process Engine �nds the message, it creates a SLANG Interpreter instance

associated with the received active copy, and begins its execution. The situation, at this

point is depicted in �gure 5.4.

Suppose the active copy EditTechReport has �red a transition marked as suspend-

ing. The Process Engine, which is executing the SLANG Interpreter associated to the

Chapter 5: Process Enactment Environment 56

EditTechReport active copy, retrieves the active copy from the SLANG Interpreter.

Them, it creates, in the active copy, a reference to the SLANG Interpreter object and

it sends a message to the Process Engine Manager, containing:

� the reference number of the message which started the active copy;

� the name SuspendedAC;

� a null parameter;

� the suspended active copy, EditTechReport, as data.

Upon receiving the message, the Process Engine Manager, using the message reference

number as a key, retrieves from the message table the invoker SLANG Interpreter identi�er,

as well as the original message reference number. Then, it forwards a message to the

invoker SLANG Interpreter containing:

� the original invocation message reference number;

� the name TerminatedAC;

� a null parameter;

� the suspended active copy as data.

The recipient SLANG Interpreter uses the information contained in the message to

terminate the �ring of the black transition which previously invoked the active copy.

Now, the root active copy owns the EditTechReport active copy as a token. It can

modify its contents or even its de�nition (hopefully, improving it). The situation, at this

point, is shown in �gure 5.5.

Suppose that, after having modi�ed the EditTechReport active copy, the root active

copy decides to resume its execution. At this moment, the EditTechReport active copy

token is in the place which represents the postset of transition Edit. Again, a black

transition in the net executes the SLANGInterpreter action. Consequently, the root active

copy SLANG Interpreter removes the token from the net and sends a message to the

Process Engine Manager containing:

� a message reference number;

� the SLANGInterpreter message name;

� a null parameter;

� the restarted active copy as data.

Chapter 5: Process Enactment Environment 57

Process Engine

Process Engine Manager

871

Process Engine

2O 2O

Original message

Reference

Name

Parameter

Data

86962

Forwarded message

O

Parameter

Data

Root activity definition

TerminatedAC

PEMRef SenderRef SenderId

871

Message Table entry

8696 2

Restart

Edit

Start

SuspendedAC

Reference

Root EditTechReport

Name

ProcessEngine ProcessEngine

PEManager

ProcessEngineManager

PE(1)

SI(2)

PE(3)

SI(4)

Figure 5.5: Active copy suspension example.

Chapter 5: Process Enactment Environment 58

Process Engine Manager

Process EngineProcess Engine

2O 2

Reference

Name SLANGInterpreter

911

O

SenderRef SenderId

2O

911

Root activity definition

Restart

Edit

Start

Data

Original message

Parameter

PEMRef

Message Table entry

Root EditTechReport

28910

ProcessEngine ProcessEngine

PEManager

ProcessEngineManager

PE(1)

SI(2)

PE(3)

SI(4)

Figure 5.6: Active copy restart example.

The Process Engine Manager receives the message, and performs the following actions:

1. It generates a unique reference number and adds an entry to the message table. The

entry contains the newly generated reference number, together with the original

reference number and the root SLANG Interpreter identi�er.

2. The Process Engine Manager recognizes the active copy as a previously suspended

one. Then, using the reference to the SI object contained in the active copy, directly

allocates the active copy to the SLANG Interpreter that was interpreting it before

suspension.

The SLANG Interpreter, realizes that the suspended active copy has come back and re-

sumes its execution. This active copy restart example is presented in �gure 5.6.

Let us suppose the active copy EditTechReport �res a transition marked as ending,

i.e., it terminates. The Process Engine, which is executing the SLANG Interpreter in-

stance corresponding to the EditTechReport active copy, retrieves the terminated active

Chapter 5: Process Enactment Environment 59

copy from the SLANG Interpreter and sends a message to the Process Engine Manager

containing:

� the reference number of the message which (re)started the active copy;

� the name TerminatedAC;

� a null parameter;

� the terminated active copy EditTechReport as data.

After this, the Process Engine destroys the SLANG Interpreter instance.

When the Process Engine Manager �nds the message, it performs the following steps:

1. Using the message reference number as a key, it retrieves the invoker SLANG Inter-

preter identi�er and the original message reference number from the message table.

2. Sends to the invoker SLANG Interpreter a message containing:

� the original invocation message reference number;

� the name TerminatedAC;

� a null parameter;

� the terminated active copy, EditTechReport, as data.

Upon receiving the message, the recipient SLANG Interpreter uses the attached infor-

mation to complete the �ring of the black transition which restarted the active copy.

The PEE status at this point is shown in �gure 5.7.

When the root active copy terminates, the whole enactment has to stop. The Process

Engine Manager kills the active Process Engines, closes connection with both the SPADE

Manager and the SPADE Monitor, and saves the root active copy in a persistent variable

of the O2 database. This way, useful information about the terminated process can be

retrieved using the query features of the O2 database.

5.7 System monitoring

The Process Engine Manager is responsible for the noti�cation of relevant events to the

SPADE Monitor. As the previous example points out, every active copy invocation, ter-

mination, suspension and restart, involves the Process Engine Manager. This is the reason

why only the Process Engine Manager is connected to the SPADE Monitor: all relevant

information about the process enactment development passes through the Process Engine

Manager which noti�es events to the SPADE Monitor.

The Process Engine Manager noti�es to the SPADE Monitor the following events:

Chapter 5: Process Enactment Environment 60

Process Engine

Process Engine Manager

911

8696

Process Engine

O2 2O O2

PEMRef

Restart

8696 2

Edit

Root activity definition

Start

Message Table entry

SenderRef SenderId

Root EditTechReport

911

Forwarded message

Reference

Name

Parameter

Data

ProcessEngine ProcessEngine

PEManager

ProcessEngineManager

PE(1)

SI(2)

PE(3)

Forwarded message

Reference

Name

Parameter

Data

TerminatedAC

TerminatedAC

Figure 5.7: Active copy termination example.

Chapter 5: Process Enactment Environment 61

Process Engine invocation : the Process Engine Manager sends a message to the

SPADE Monitor containing the Process Engine identi�er and the host name on

which the Process Engine runs.

Process Engine termination : the Process Engine Manager noti�es the SPADE Mon-

itor of the termination of a Process Engine, passing its identi�er in the message.

Active copy invocation : the Process Engine Manager noti�es the SPADE Monitor of

active copy invocations, passing the following information:

� the invoked active copy name;

� the invoked active copy identi�er;

� the invoker active copy identi�er;

� the Process Engine to which the invoked active copy has been allocated.

Active copy �ring : the Process Engine Manager receives from the SLANG Interpreters

the noti�cations of transition �ring. The �ring noti�cation messages contain:

� a null reference number;

� the TransitionNotify name;

� the active copy identi�er and the �red transition name as parameters;

� null data.

A similar message is forwarded to the SPADE Monitor by the Process Engine Man-

ager.

Active copy suspension : the Process Engine Manager noti�es the SPADE Monitor of

the identi�er of the suspended active copy.

Active copy restart : the Process Engine Manager noti�es the SPADE Monitor of the

identi�er of the restarted active copy.

Active copy termination : the Process Engine Manager noti�es the SPADE Monitor

of the terminated active copy identi�er.

5.8 PEE con�guration

The SPADE-1 environment can be con�gured using two con�guration �les. General con�g-

uration variables are speci�ed in the SPADE con�guration �le, while variables concerning

Process Engine Manager speci�c policies are speci�ed in the Process Engine Manager

con�guration �le.

Chapter 5: Process Enactment Environment 62

5.8.1 General con�guration

The SPADE con�guration �le contains entries in the form:

variable value

Lines beginning with a # are considered to be comments. The SPADE system ad-

ministrator can select the name of the con�guration �le setting the environment variable

SPADE_CONF_FILE before invoking the SPADE Manager. If no con�guration �le has been

chosen, the SPADE Manager looks for the default con�guration �le .SPADE in the current

working directory.

A description of the meaning of each con�guration variable follows:

O2 SERVER NAME : speci�es the O2 server host
3. It is mandatory.

O2 SYSTEM DIR : speci�es the O2 system directory. It is mandatory.

SPADE SYSTEM NAME : speci�es the SPADE-1 O2 system. It is mandatory.

SPADE BASE NAME : speci�es the SPADE-1 O2 base. It is mandatory.

SPADE ROOT : speci�es the SPADE-1 �le system root directory. It is mandatory.

PE MGR HOSTNAME : speci�es the host on which the Process Engine Manager runs. It is

mandatory.

PE MGR ARCH : speci�es the Process Engine Manager program executable format. Cur-

rently, it can take only the value SPARC4. It is mandatory.

PE MGR CONFIG FILE : speci�es the Process Engine Manager con�guration �le name. The

default value is the �le .PEM.defaults, in the CONF directory of the SPADE-1 �le

system.

PE MGR LOG FILE : the Process Engine Manager log �le. It is optional. If this variable is

not set, noti�cation and error messages are simply discarded.

PE ARCH : the Process Engine program executable format. Currently, it can take only the

value SPARC. It is mandatory.

3All hosts in the con�guration �les must be speci�ed using their host name. IP addresses are not

allowed.
4Since the O2 OODBMS version used by the SPADE-1 environment is compiled for the Sun SPARC

architecture, all O2 clients can be compiled for the SPARC architecture only.

Chapter 5: Process Enactment Environment 63

PE LOGGING : enables Process Engines logging. It can take the values yes or no. The

default value is no. If set to yes, log �les with a unique name (composed by the

.ProcessEngine pre�x, followed by the Process Engine process id) are created under

the /tmp directory.

SCI ARCH : the SPADE Communication Interface program executable format. It can take

the values SPARC or MIPS. It is mandatory.

SCI HOSTNAME : speci�es the SPADE Communication Interface host. It is mandatory.

SCI DISPLAY : speci�es the SPADE Communication Interface display. It is mandatory.

SCI LOG FILE : the SPADE Communication Interface log �le. It is optional. By default,

no log �le is created.

MONITOR : enables/disables monitoring. It can take the values yes or no. This variable

must be set to no if the SPADEMonitor executable is not present, or if no monitoring

is required. It is mandatory.

MONITOR ARCH : the SPADE Monitor program executable format. Currently, it can take

the values SPARC or MIPS. It is mandatory, if MONITOR is set to yes.

MONITOR HOSTNAME : the host on which the SPADE Monitor runs. It is mandatory, if

MONITOR is set to yes.

MONITOR DISPLAY : speci�es the SPADE Monitor display. It is mandatory, if MONITOR is

set to yes.

Here follows a sample con�guration �le:

#

SPADE SAMPLE CONFIGURATION FILE

#

O2 PARAMETERS

O2_SYSTEM_DIR /home/rossini/O2

O2_SERVER_NAME rossini

SPADE_SYSTEM_NAME SPADE

SPADE_BASE_NAME SPADEBase

SPADE file system root dir

Chapter 5: Process Enactment Environment 64

SPADE_ROOT /usr/local/SPADE

PE MANAGER PARAMETERS

PE_MGR_HOSTNAME rossini.cefriel.it

PE_MGR_ARCH SPARC

PE_MGR_CONFIG_FILE /usr/local/SPADE/CONF/.PEM.test

PE_MGR_LOG_FILE /tmp/.ProcessEngineManager

PE PARAMETERS

PE_ARCH SPARC

PE_LOGGING yes

SCI PARAMETERS

SCI_ARCH SPARC

SCI_HOSTNAME bellini

SCI_DISPLAY bellini:0.0

SCI_LOG_FILE /tmp/.SCI

MONITOR PARAMETERS

MONITOR yes

MONITOR_ARCH MIPS

MONITOR_HOSTNAME bach

MONITOR_DISPLAY bellini:0.0

5.8.2 Process Engine Manager con�guration

The behavior of the Process Engine Manager, concerning the allocation of active copies

(and therefore SLANG Interpreter instances) to the Process Engines, can be customized.

The Process Engine Manager con�guration �le can be speci�ed using the PE MGR CONFIG -

FILE variable in the SPADE con�guration �le. The Process Engine Manager con�guration

�le contains entries in the form of:

variable value

and it is divided in two main parts: the �rst one speci�es some general parameters for

the Process Engine Manager (see below), the second one speci�es the host name for each

Process Engine. The Process Engine-related part starts with a line beginning with an

asterisk. The number of Process Engine host names must be equal to the Process Engine

Manager con�guration variable MAX_PE_INST.

Chapter 5: Process Enactment Environment 65

The variables and their meanings are:

MAX PE INST : it takes an integer value. It speci�es the maximum number of Process

Engine processes (O2 clients) that will be available during enactment. The variable

value does not include a possible Process Engine inside the Process Engine Manager

process.

STARTUP PE INST : it takes an integer value. It speci�es the number of Process Engine

processes that will be invoked at startup time. Since it takes a relatively long time

for a Process Engine to start, when a timely response from the Process Engines

is needed, it is recommended to invoke all the Process Engine instances at startup

time.

INTERPR INST THRESHOLD : it takes an integer value. When the Process Engine Manager

has to determine the recipient Process Engine of a newly invoked active copy, it

looks for the less loaded Process Engine. If the minimum load is bigger than the

speci�ed threshold a new Process Engine process is invoked, if possible.

PE MGR IS A PE : it takes the values yes or no. If set to yes, it will cause the Process

Engine Manager to have also a \PE behavior", i.e., the Process Engine Manager will

behave as both a Process Engine Manager and a Process Engine. This is useful when

there is only one O2 client available for the SPADE-1 environment. It should be clear

that performance is improved if no \PE behavior" is requested to the Process Engine

Manager.

FIXED PE MGR INTERPR INST : it takes an integer value. This variable must be set when

\PE behavior" for the Process Engine Manager is requested. If set to a non-zero

value it will limit the number of SLANG Interpreter instances assigned to the Process

Engine inside the Process Engine Manager process.

HOST : it speci�es the name of a host in the LAN that will execute a Process Engine

process.

Lines beginning with a # are considered to be comments.

Here is an example:

#

PEM SAMPLE CONFIGURATION FILE

#

MAX_PE_INST 4

Chapter 5: Process Enactment Environment 66

This means that no more than four PEs will be running.

STARTUP_PE_INST 0

No PEs will be invoked at startup time:

their invocation will simply follow

the needs of process enactment.

INTERPR_INST_THRESHOLD 5

During enactment, if every running PE has five

or more running SLANG Interpreter instances

and a new active copy must be interpreted,

another PE is forked by the PEM, if possible.

PE_MGR_IS_A_PE no

No "PE behavior" is requested inside the PEM process.

FIXED_PE_MGR_INTERPR_INST 0

Since no "PE behavior" is set,

this variable has no meaning.

Here begins the PE-related part

HOST bellini

A PE instance will be executed

on the machine named "bellini".

HOST hendel.cefriel.it

A PE instance will be executed on the machine whose

name is "hendel.cefriel.it".

HOST rossini

A PE instance will be executed

on the machine named "rossini".

Chapter 5: Process Enactment Environment 67

HOST bellini

Another PE instance will be executed

on host "bellini"

We stress that the Process Engine host names have to be as many as speci�ed by the

MAX_PE_INST variable.

Another example follows. This time, we will describe a Process Engine Manager con-

�guration �le that allows the use of a single O2 client for process enactment. This con�g-

uration is mandatory whenever only one O2 client license is available. The Process Engine

Manager process behaves as a Process Engine Manager and a Process Engine.

#

PEM SAMPLE CONFIGURATION FILE

(single O2 client)

MAX_PE_INST 0

This means that no PE processes will be running.

STARTUP_PE_INST 0

Since there are no PE processes,

no PEs will be invoked at startup time.

INTERPR_INST_THRESHOLD 0

Zero threshold must be specified

since no PE instances will be forked at enactment time.

PE_MGR_IS_A_PE yes

"PE behavior" is requested inside the PEM process.

FIXED_PE_MGR_INTERPR_INST 0

No fixed number of SLANG Interpreter instances

for the PEM's PE must be specified,

since all the SLANG Interpreter instances

will be executed by the PE inside the PEM.

No PE host names are needed

Chapter 6

SLANG Interpreter

The interpreter is the heart that makes a SLANG process model work. It enacts active

copies evaluating guards, �ring transitions and interacting with the user environment

through the SCI.

6.1 Requirements for the SLANG interpreter

Recalling the principles in chapter 2, we present below the basic requirements related to

the SLANG interpreter.

� SLANG de�nition: the de�nition of the SPADE modeling language must be used.

The interpreter must implement kernel SLANG syntax and semantics. Full SLANG

primitives are accomplished by kernel SLANG net macros.

� Process model and data de�nition independency: the interpreter code must not de-

pend either on one particular activity de�nition or on one particular type de�nition.

Therefore, it accept an activity and a set of types as parameters.

� Time constraints: though SPADE-1 is not a hard real-time system, time is a variable

of the enactment. It is necessary to express time constraints like any other guard

condition. The interpreter must also take into consideration the particular nature

of such guards because their value may not depend only on input places.

� E�ciency: this roughly means a fast execution using available resources. Much e�ort

has been made in order to pursue good performances. This requirement has been

the most e�ective guideline for the development of each part of the interpreter. To

some extent, e�ciency is the only requirement, while other functional requirements

are to be considered constraints.

68

Chapter 6: SLANG Interpreter 69

Other requirements have been set by the global architectural design:

� Step-by-step execution: the multiple execution of active copies, in the Process En-

gine, is a \round-robin" execution of a single step of the interpreter, one for each

active copy. Thus the interpreter algorithm must be shaped to export a step-by-step

execution method.

� Global data access and concurrency: the interpreter must be able to access places

belonging to other running active copies (shared and global places), and must be

responsible for concurrency control over such operations.

6.2 Interpreter schema

The term \SLANG interpreter" is often overloaded. Actually there is no function nor

method implementing what is meant to be the SLANG interpreter algorithm. This algo-

rithm is a virtual single function, accepting an active copy with an initial marking, and

yielding the same active copy evolved to a �nal state. Due to the step-by-step requirement

this logical function is unfolded and distributed along several executions of one method.

Another reason why it is di�cult to locate the interpreter code, is that some parts of

it are not even present in the SPADE-1 schema. These parts, concerning the evaluation

of guards and the execution of actions, are tightly related to the model de�nition. During

the enaction the static interpreter code, the one from the SPADE-1 O2 schema, uses some

dynamic code, the one implementing guards and actions, previously generated according

to the model de�nition.

In this perspective the interpreter can be analyzed at three levels of abstraction: a

logical level where we take into consideration one entire execution, focusing on the overall

behavior of the interpreter. The execute level, where the objective is the analysis of one

single step. And last the implementation level that describes the single methods in the

static code and the functions of the dynamic code. This conceptual schema is shown in

�gure 6.1.

For the purpose of giving a precise context to each component of the interpreter, we

present �rst the logical level, then how the logical components are mapped on the objects

and methods of the implementation O2 schema.

6.3 Logical level: the interpreter algorithm

At this level of abstraction the interpreter is a function taking an active copy, i.e., an

activity de�nition with a state. The activity de�nition is a SLANG net, the state is the

Chapter 6: SLANG Interpreter 70

execute

Black transitionUser place

pysical

guard action fire asynch. update

execute:

dynamic code

Asynchronous events:

evaluation

firing

Logical

level

level

level

Figure 6.1: Interpreter conceptuals levels.

initial marking. This function processes the active copy causing the evolution of the active

copy state. The active copy is returned as the result of the function as soon as one ending

transition is �red.

The algorithm The algorithm driving the net execution is straightforward:

1 - initialize data structures

2 - choose a transition

3 - evaluate the guard

4 - IF enabled THEN fire the transition

5 - look for asynchronous events

6 - update data structures

7 - repeat from (2) until an ending transition is fired

8 - STOP

The algorithm repeatedly searches for an enabled transition, the �rst one that is en-

abled is immediately �red. After the �ring or after the unsuccessful evaluation of the

transition, the interpreter checks the connections (see section 6.6) for an asynchronous

event occurrence, in case it executes the corresponding actions.

Steps 2 to 7 correspond to the single step. The semantics of the language concerning

guards and actions is implemented in step 3 and 4 by some dynamically generated functions

(see section 6.8).

Much of the algorithm logic is hidden inside the auxiliary data structures mentioned

in step 1 and 6 (see section 6.7). They implement the policy for choosing the guards to

Chapter 6: SLANG Interpreter 71

be evaluated (step 2). In the logical level the evaluation sequence follows some precise

criteria.

� priority: lower priority transitions are taken into consideration only after all the

higher priority ones have been evaluated with a negative result.

� e�ciency: the interpreter �rst evaluates the transitions that are much likely to be

enabled. Transitions whose preset has not changed since the last negative evaluation

are not evaluated again.

Step 5 controls the mechanism of interaction with the \outside" world. Namely, catches

incoming messages, i.e.,black transition terminations and noti�cations directed to some

user place. Step 4 performs some output operations related to the �ring of black transi-

tions. Thus the I/O mechanisms are implemented by step 5 and 4 respectively.

Note that transition evaluations are, by far, the most frequent events in the net evo-

lution, so an asynchronous events look-up for every guard evaluation seems to be a waste

of time. Our little experience in \using" SPADE-1 has emphasized the importance of a

short reaction time to user actions. This has to be a strong point for the development of

the algorithm, so we preferred to give the highest priority to user messages.

6.4 Execute level

The starting point for the analysis of the algorithm is the execute method of the class

ActiveCopy. It implements the sequence 2..6 in the logical view given in section 6.3 on

page 70.

At this level the execution is a sequence of separate steps. The steps are independent

from each other. The Process Engine that executes the interpreter, can not distinguish

between two execution steps. As we can see in �gure 6.1, one single step can yield either

one or no one transition �ring (i.e. when all the transitions are evaluated with negative

result).

In order to pursue the correct overall behavior, the interpreter has to save the context

of each step in temporary data structures. As explained in the following section, these

data structures are part of the ActiveCopy type.

The execute method returns TERMINATE when an ending transition is �red, SUSPEND

when a suspending transition is �red, otherwise it returns SUCCESS.

Chapter 6: SLANG Interpreter 72

6.5 Implementation level

The central component of the interpreter is one active copy object, thus the structure of

the interpreter corresponds to the type of the class ActiveCopy. An architectural schema

of this class is sketched in �gure 6.2. The most important data held by one ActiveCopy

object concerns:

� activity de�nition

� activity state

� additional data structures

� links to other architectural components

TransitionQueues

queues

arcs

transitions

places
SCI

PEM

BlkBox

Definition

TransitionQueues

SI SCI

Black transition instances

Activity definitionActiveCopy

to SCI

to PEM

Figure 6.2: Active Copy architecture.

Other minor variables are present. One is an integer counting the black transition

instances, that is used to give them a unique identi�er. Another two are not used at

all by the interpreter, but serve the suspension mechanism (see section 5.6.2), they are

the SI holding the active copy, and a
ag relating the state of the active copy (run-

ning/suspended). Finally the active copy identi�er, an integer, used by the interpreter

when notifying transition �rings and activity invocations.

6.5.1 Active copy de�nition and types

The dynamicity of the SPADE process modeling approach supports activity and types

evolution during active copy execution. This means that one active copy may be edited.

Its de�nition may change while the global de�nition, the one contained in the Activities

Chapter 6: SLANG Interpreter 73

global place, does not. This apply to types as well, so for example, one active copy using

the class Document, may add some new features to that class without a�ecting the global

de�nition of Document stored in the place Types. For such reason an active copy must

be a self-contained object, and must be equipped with copies of both activity and types

de�nition.

Activity de�nition holds the data specifying the SLANG net topology and all the

information attached to arcs, places and transitions (weight of the arcs, places types,

transitions guards and actions, transition priority etc.). The attribute definition, an

object of the class Activity does this job.

Type de�nitions are listed in a set of MetaType objects. Each one provides the O2C

code that de�nes attributes and methods of the class, and other information related to

the type management system (see appendix C.4).

The interpreter actually uses a little part of these de�nitions, in particular only the net

topology is consulted run-time. All the other relevant aspects of the activity and types

are implicitly accessed through compiled functions implementing guards and actions (see

section 6.8).

6.5.2 Active copy state

The state of the active copy is the collection of all the model data associated with that

particular activity instance. In a SLANG model, data are tokens, thus the state is the

marking of the net. Each place de�nes a token repository, namely an object of the class

Container, the set of all the containers holds the state of the active copy.

There is no particular attribute encapsulating the state in an ActiveCopy object.

Instead, each token container is directly accessible through its Place object in the activity

de�nition (see �gure 6.3).

Definition

state

state
Places

Arcs

Transitions

Activity

Active copy

Places

Arcs

Transitions

Activity
state

state

Place

PlacePlace

Place

PlaceState

PlaceState

tokens

tokens

Container Container

Figure 6.3: Activity and Active copy with state.

Chapter 6: SLANG Interpreter 74

Local places and shared places The state attribute of the class Place is the link

that dynamically binds the Container object associated to a place. As far as place state

is concerned we must distinguish two kinds of places. Local places, which are private in

the activity, and shared places, that are accessible by two or more active copies. A local

place has a private state, its container is not accessible by any other active copy.

Shared places can be further partitioned. A shared place that is in the activity im-

plementation, is said to be an actual place and has a direct reference to the container.

Conversely, when the active copy shares the place through a link, i.e., when the place

belongs to the activity interface, the shared place is called formal place, and it has a

symbolic reference to the actual container.

Given these preliminary de�nitions, we can examine container references in details.

state is an object of class PlaceState, this class has two sub-classes: LocalPlace and

RemotePlace. There are only instances of these two classes. The �rst case apply whenever

the place is normal or an actual shared place. The second class represents a symbolic link

to a shared formal place.

Both LocalPlace and RemotePlace have a private data structure containing the

pointer to the actual container. LocalPlace objects are initialized with a brand new

container, while the initial value for RemotePlace objects is nil. A RemotePlace also

holds a couple of other items that are the symbolic link to the actual container:

owner : it is the integer identi�er of the active copy holding the actual place. Comparing

activity invocation with procedure call in a structured programming language, it is

just like the address of the activation record containing data.

remoteName : it is the string identi�er of the place containing the actual container, in the

owner activity de�nition (the actual name). Again in usual programming languages

it is the o�set of the variable in the activation record.

Access to place contents In both LocalPlace and RemotePlace the actual container

is returned by the method contents. In class LocalPlace it simply returns the pointer to

the container; in RemotePlace the private pointer to the actual container is initially nil;

the �rst call to contents solves the symbolic reference searching ACPool for the owner

active copy and then its de�nition for the right place; every following call will simply

return the previously computed pointer.

6.5.3 Locks

The interpreter must control concurrent access to shared places. The critical section

is between step 3 and 4 of the algorithm (page 70). In order to show the potential

Chapter 6: SLANG Interpreter 75

inconsistency, we ought to expand these two steps a little bit. The operation sequence is:

3 -

a. collect input places container: build input tuple

b. call the guard function passing input tuple

c. get the enabling tuple

4 -

a. IF the enabling tuple is not empty (enabled):

b. THEN extract the tokens belonging to the enabling tuple

c. Call the action function passing the enabling tuple

d. ELSE drop the enabling tuple

Suppose there is one shared place in the preset, what happens if the shared container is

modi�ed by another running active copy between step 3.a and 4.b?

The lock mechanism In order to avoid these inconsistencies, the collected containers

must be previously locked. For this purpose, a boolean private attribute called locked

is used in class Container to implement a simple semaphore. The primitives that set

and release the lock are the two public methods testAndSet and unlock. If the value of

locked is true, testAndSet returns false, else is sets locked to true and returns true.

unlock always set locked to false.

The above sequence is slightly modi�ed by the additional lock mechanism, here is the

result:

3 -

a. try and lock input shared places container

b. IF one lock fails:

THEN unlock the successfully locked places

append the transition to its queue

go to asynchronous events (5)

c. ELSE (if all input places are locked successfully)

d. call guard function passing input tuple

e. get the enabling tuple

4 -

a. IF the enabling tuple is not empty (enabled):

b. THEN extract the tokens belonging to the enabling tuple

c. unlock all the locked input places

Chapter 6: SLANG Interpreter 76

d. call the action function passing the enabling tuple

e. ELSE (not enabled)

f. unlock all the locked input places

Step 3.a correspond to applying method testAndSet to all the shared places in the

transition preset. On a successful lock, the interpreter evaluates the guard, if the transition

is enabled, prior to the transition �ring, it pops the tokens of the enabling tuple out of

their containers and unlock the input tuple. If the lock operation fails, due to the fact

that one place is already locked by some other active copy, all the other previously locked

places are released, then the transition is enqueued, so that it will be evaluated again.

6.6 Active copy connections

One active copy has four classes of connections:

� one O2 socket connecting the PEM;

� one SCI protocol socket connecting the SCI;

� a set of O2 socket connection to O2 tools;

� a set of sockets connections for black box tools.

The �rst two are stable links, they are set up by method prologue of the class

ActiveCopy, and live as long as the active copy is executed by the interpreter. The

other ones are created when necessary (i.e., when a black box tool is invoked and when it

is necessary to pass O2 objects to user tools). Each one of these temporary connections,

serves one single tool invocation or one single service. When the �ring of the transition

corresponding to the service is completed, the O2 connection is dropped and implicitly

closed.

Connection with PEM This connection serves both some noti�cations and other ac-

tive copy exchange. Noti�cations regard transition �ring or activity invocation event

occurred during the enactment process. The mechanism of the activity invocation un-

derlying the SPADE-1 enactment environment is accessible through this connection. In

this implementation, only outgoing noti�cations are used, however the mechanism may be

used also to control some services exported by the interpreter. For example the interpreter

could provide a graphical local monitoring facility that could be switched on and o� by

the PEM.

Chapter 6: SLANG Interpreter 77

Connection with the SCI This is the access port to the user environment. It is based

on the SCI protocol. Service requests and noti�cations are multiplexed on this connection.

6.7 Additional data structures

execute method computes one single step of enactment. In order to save the \context"

of each step, the execute code relies on some additional data structures. Two kinds of

information need to be persistent during the whole execution (logical view):

� some transition queues, recording the transitions that are likely to be enabled. Used

in step 2.

� black �ring instances, each one recording the data associated with one �ring of a

black transition. An asynchronous event, communicating the end of an external

action, matches one of these record and uses its information to complete the �ring.

6.7.1 Priority

Before we explain the behavior of the transition queues, it is necessary to de�ne in a

precise way another property of transitions.

An early approach to the problem of satisfying time constraints in a process model

introduced priorities among the features of SLANG. The original idea was to label some

transitions of an activity As Soon As Possible (ASAP). The meaning of such distinction

is that ASAP transitions are to be considered urgent actions, thus the interpreter should

�re ASAP transition �rst. Or in other words:

non-ASAP transition can be �red only after all the ASAP transitions have been evaluated

and are not enabled.

This primitive partitioning schema has been extended to an ordinal scale of priorities.

The priority value for a transition is an integer, the semantics is:

a transition labeled with priority p can be �red if all the transitions with priority q such

that q > p have been evaluated and are not enabled.

In the original de�nition of SLANG, priorities are never mentioned. They de�nitely

do not add computational power to the ER nets formalism, and more, they are far from

being a suitable solution to real time process modeling. However, they may be useful in

order to tune the behavior of the interpreter, some full SLANG functional properties of a

net, costing a complex expansion, can be easily achieved by adjusting priority levels.

Chapter 6: SLANG Interpreter 78

6.7.2 Transition queues and evaluation policy

The transition queues are the image of the partitioning of the transition set, de�ned by

priority values. Transition queues are encapsulated in an object of the class TransQueue.

Each priority level de�nes a queue. The queues are updated in such a way that, at a given

time, they contain only the transitions that are likely to be enabled.

Two methods access the queues for writing: append(t) appends the transition t to

the queue corresponding to its priority, while insert(t) puts t at the beginning of the

corresponding queue. Method popFirst returns the �rst transition, extracted from the

queue of the highest not empty priority level.

When the execution begins, the TransQueue object is �lled in with all the transitions

of the activity. This is done in step 1 of the logical view (page 70). Then, during usual

execution steps, the evaluation policy is very simple: in step 2, the interpreter takes the

�rst transition of the queues calling method popFirst.

The evaluation policy actually depends on the way the interpreter updates transition

queues. When a transition is evaluated, it is extracted from its queue, if the evaluation

fails (i.e., the transition is not enabled) the transition is simply dropped. On a successful

evaluation, the transition is appended to its corresponding queue (this is because there

might have been more than one enabling tuple, the transition is potentially enabled by

other tuples), and then �red. Transition queues are updated (step 6) whenever one of the

following events takes place:

� the preset locking fails (thus the transition can not be evaluated). In this case the

transition is appended so that the evaluation is delayed. Anyway, the transition must

be evaluated before it is extracted from the queue.

� one transition is evaluated and is not enabled. The transition is simply extracted

from the queue.

� one transition is evaluated and is �red. The transition is appended because the �ring

takes one tuple, other enabling tuples, not computed during the �rst evaluation

may be present. The transitions, whose preset has been touched by the �ring, are

inserted.

� one token is inserted into a user place. All the transition having the user place in

their preset, are inserted.

� a black transition completes its �ring. The transitions, whose preset has been

touched by the �ring, are inserted.

Chapter 6: SLANG Interpreter 79

Summing up, these are the updates to the TransQueues structures for each execution

step:

� extract evaluated transition;

� append �red transition (if any);

� insert transitions a�ected by the �ring;

� insert transitions a�ected by user places events;

� insert transitions a�ected by black transition events;

� append transitions with shared places in preset.

If a transition is already present in the queue, an insert moves the transition to the

front of the queue, while an append moves the transition to the end of the queue.

6.7.3 Black transition �ring instances

Black transitions �rings are not atomic events (see section 6.10.2), their execution may be

active over several execution steps. Moreover, one black transition may �re many times

so that di�erent external actions originated by the same transition can be active at the

same time, and the order in which they terminate is not predictable. Thus, the interpreter

must store the informations bound to each black transition �ring. These are:

� the transition;

� the enabling tuple;

� some other information concerning the external action and the external result.

The �rst two items are common to every �ring instance class, they do not need any

comment. The third one depends on the semantics of the black transition �ring. As

explained further in section 6.10.2, a black transition has three di�erent semantics: black

box, SCI service request and SLANG interpreter. Each one is represented by a di�erent

object, the class hierarchy is shown in �gure 6.4.

The BlkBBO2 and BlkSCIO2 subclasses correspond to external action that require O2

data connections.

The interpreter has three lists containing BlkBB, BlkSCI and BlkSI objects, named

BBHeap, SCIHeap and SIHeap respectively. New objects are created and �lled in by method

fire (section 6.10), then they are inserted in the corresponding list. The interpreter

consults the black instances lists when asynchronous events are examined by method

readAsynchEvent (see sections 6.11).

Chapter 6: SLANG Interpreter 80

BlkInstance

BlkBB BlkSCI BlkSI

BlkBBO2 BlkSCIO2

Figure 6.4: Class hierarchy for black transition �ring instances.

6.8 Guard and action functions

The interpreter basically evaluates guards and executes actions. As already pointed out,

the following constraints apply to guards evaluation and action execution:

� SLANG semantics: guards and actions are pieces of SLANG code, thus their imple-

mentation strongly in
uences the semantics of the language.

� Dynamicity: guards and actions are process-dependent. They may use all the meth-

ods and de�nitions of the user abstract data types. There can be no limitations for

user guards and actions other than the SLANG syntax and semantics (e.g., limited

fan-in and fan-out for transitions).

� Independency of the interpreter code: the interpreter uses informations taken from

the activity de�nition and from the abstract data type schema. Such data are

parameters for the interpreter, i.e. they can not be anyhow \hard wired" in the

interpreter code.

� Performances: a fast action execution and an e�cient guard evaluation should be

achieved. Note that while these actions play a small part in the whole SPADE-1

environment architecture, they are executed very often. Hence, their code is critical

with respect to computational overhead problems.

More about dynamicity: evolution The dynamicity requirement, as de�ned above,

is only a part of the problem. The other part concerns the evolution of the process. In

SPADE-1, process evolution is achieved by means of language re
ectivity.

SPADE supports two main classes of change. In SLANG, an activity de�nition is

a token. Hence it can be modi�ed by the process. When that activity de�nition (the

token) is used in the activity invocation (i.e. when an active copy is created), the SLANG

interpreter must bind the latest de�nition. This discussion is exactly the same for type

de�nitions.

Chapter 6: SLANG Interpreter 81

The other class of change concerns active copies. It is also possible to modify active

copies by suspending them and editing them in the form of a token. When the execution

is resumed, the interpreter uses the new version of the active copy.

In order to have a truly dynamic environment, the SLANG interpreter should really

act as an interpreter. Thus it should perform time consuming interpretation and dynamic

type checking. Just to give an example, it should look up the type de�nition each time it

creates a new object or each time it executes a method.

SPADE-1 solution There is clearly a trade o� between dynamicity of the model and

fast execution. The SPADE-1 solution is a compromise between dynamicity and perfor-

mance needs. In fact the SLANG interpreter of SPADE-1 can be logically divided in two

distinct parts. The static code is the part coming with the SPADE-1 schema. This part is

completely independent with respect to the process model de�nition. It implements the

evaluation policy, the asynchronous events and the access to common data.

The dynamic (or we better say semi-dynamic) part concerns the model dependent

information. In particular it implements guards evaluation and actions execution. This

part consists of some functions attached to transitions. These functions are generated by

the interpreter using all the information from types and activity de�nition. The functions

related to an activity are generated and compiled when the activity (the token) is created

or modi�ed.

Note that each time a type or an activity de�nition is modi�ed, other types and

activities may require modi�cations. For example we may modify a class C that is used

by some activities (e.g., in places type or local variables) and in other types (e.g., in

methods code or type de�nition). When C is actually modi�ed, a new version of the class

is compiled. As a follow up of the modi�cation of C, the activities and the types that use

C must be updated. Again the updated types may be used by other types and activities.

Hence, this process must be recursively repeated in order to cover the transitive closure

of the uses relationship. The mechanisms for the management of types and activities are

presented in appendix C.

Summing up:

� all the model-dependent information are assigned and available from the activity

and types de�nitions;

� these information seldom change;

� the changing does not a�ect running active copies;

Chapter 6: SLANG Interpreter 82

� interpreter code must not be a�ected by model-dependent information. Thus the

code concerning these sections may be dynamically generated and compiled according

to the particular type and activity de�nition;

� the interpreter must provide the modeler with some means to manage types and

activity dynamic compilation.

Dynamic functions

Let us concentrate on the functions implementing guards and actions. Functions are gen-

erated when the activity de�nition is completed. Dynamicity is granted because variable

declarations, assignments and return statements of these functions are built according to

the activity de�nition. Thanks to the meta-schema feature provided by O2, new classes

and function can be added to the O2 schema at run-time. The new functions are then

compiled through a

Meta_schema->command()

They become part of the schema and are managed just like every user-de�ned class or

type.

The names of the generated and compiled functions are stored in some attributes of

the corresponding transition. Since the O2C language doesn't allow pointers to functions,

the only way of calling a dynamically determined function is an O2 query, for example the

query for a guard evaluation is:

o2query(result, (self->guardName+"($1)"), param);

where self is the transition being evaluated and param is a list of containers representing

the actual transition preset. This query is part of the interpreter code, so the signature of

the functions is standard.

6.9 Guards

6.9.1 Guards compilation

The guard expression is evaluated by a function called by the interpreter. The function

signature for a transition called \Trans" is:

function _G_Trans(param:list(Container)):Tuple;

Chapter 6: SLANG Interpreter 83

Parameter param correspond to the input tuple, the result of the function is the enabling

tuple. If the transition is not enabled, the function returns nil. The outline of the

compiled function for a guard is:

1. variable declarations:

(a) result tuple (returned by the function);

(b) input places variables and sets;

(c) auxiliary boolean variables;

(d) user-de�ned local variables;

2. assignments of input places sets;

3. for cycles;

4. translated guard;

5. return statements;

The evaluation is compiled in a set of nested for cycles that correspond to the implicit

existential quanti�ers (see appendix A.1). User guard is completed with all the necessary

declarations, input places are assigned with the appropriate cast to the corresponding

container; then quanti�ers are expanded in other cycles (see next section) and, eventually,

the code for the return statement is added. All these information are retrieved from the

preset de�nition.

Compilation of guard boolean expression

This section refers to point 4 of previous section. The power of the SLANG language is

due to guards expressive semantics. As the O2C language does not compute quanti�ed

logical expressions, this ability must be achieved by translating such predicates into some

O2C code. The idea is simple: the guard quanti�er expressions have the form:

forall varId in setV ar : expr(varId)

or

exists varId in setV ar : expr(varId)

which, in usual notation, means:

8varId : varId 2 setV ar) expr(varId)

and

9varId : varId 2 setV ar ^ expr(varId)

In the �rst case the value of the expression is initially true, then, for every element varId

Chapter 6: SLANG Interpreter 84

of the set setV ar, the function computes the rest of the expression, a false value is

returned as soon as the expression is not satis�ed by that value of varId. The second

expression is just the opposite.

The translation grammar for quanti�ed expression is presented. The BNF syntax for

user guards is:

user guards! quant expr

quant expr ! simple expr

quant expr0 ! forall varId1 in varId2 : quant expr1

quant expr0 ! exists varId1 in varId2 : quant expr1

simple expr! :::

(other usual rules de�ne the plain boolean expression of the O2C language)

The translation (expansion) schema for the last two rules is:

forall: translation(quant expr0) is

_tmp0 = true;

for(varId1 in varId2)

{

translation(quant expr1) /* the result of expr1 is assigned to _tmp1 */

if (_tmp1 == false)

{

_tmp0 = false;

break;

}

}

exists: translation(quant expr0) is

_tmp0 = false;

for(varId1 in varId2)

{

translation(quant expr1) /* the result of expr1 is assigned to _tmp1 */

if (_tmp1 == true)

{

_tmp0 = true;

break;

}

}

For a complete example of a guard function expansion see appendix A.2.

Chapter 6: SLANG Interpreter 85

6.10 Actions

An action body is the SLANG (O2C) code which processes tokens from the enabling tuple

and produces new tokens for output places. The term \transition �ring" refers to action

execution, that corresponds to step 4 in the logical view. As explained in section 6.8, the

interpreter has a static part and a dynamic part. The dynamic one is mostly concerned

with guards and action execution. The action execution static part is jointly implemented

by method fire of the class ActiveCopy and method exe of the classes WhiteBody and

BlackBody. The following paragraph describes the details about the static code. Other

paragraphs focus on the dynamic part classifying the transition according to their color.

fire method

The execution is implemented by the firemethod on the ActiveCopy object. This method

takes the enabling tuple and the transition to be �red. Each transition has an action

attribute which can be either a BlackBody or a WhiteBody object. The fire method

dynamically binds the transition action and calls the exe method on it. On WhiteBody

actions, exe calls the fuction corresponding to the whole action body and updates output

places with the resulting tokens. On BlackBody objects, it calls the function imlementing

the pre-action and returns the external action command and its parameters.

The result of the exe call is analyzed by fire method, whose primary functionality is

to implement the di�erent semantics of transition �rings, in particular four cases apply:

� white transition;

� black box tool;

� service request;

� SLANG interpreter.

6.10.1 White actions

White actions are associated with white transitions, their execution covers the whole action

body in one step and immediately
ushes the results into output places. Input variables

are de�ned and automatically bound to the enabling tuple. Outpot variables are initialized

with new tokens or empty sets, in this way the modeler can directly refer to objects. Local

variables declaration is simply added to the function code, so no initial values are provided

other then the default ones. The scope of every variables include all the action code. Input

and output variables can be used like any other local variable. The return statement can

Chapter 6: SLANG Interpreter 86

not be used. The tokens actually inserted in the output places correspond to the very last

assignments to output variables.

Compilation schema a white transition action is associated with one O2 function, the

signature for a transition called \White" is:

function _A_White(param:Tuple):Tuple;

This function takes the enabling tuple and computes the output tuple. The outline of the

compiled function for an action body is:

1. variable declarations:

(a) result tuple (returned by the function);

(b) input and output places variables;

(c) user-de�ned local variables;

2. assignments of input places;

3. creation of new tokens or empty sets for output variables;

4. user action code;

5. return statement.

6.10.2 Black actions

Black transitions actions are made of two distinct bodies called pre-action and post-action.

Each one generates an O2 function. The pre-action is executed by the fire method. The

post-action is executed by the completeFiring method (see section 6.11).

Pre-action The pre-action code does all the computations that are necessary in order

to determine the external action and its parameters. Output tokens are not declared in

pre-action bodies. Local variables are declared as usual. The signature of a pre-action

function for a transition called \Black" is:

function _Pre_Black(param: Tuple): tuple(extA: string,

parL: list(Object));

This function takes the enabling tuple and returns the values of extAction and parList.

The outline of the compiled function for a pre-action body is:

Chapter 6: SLANG Interpreter 87

1. variable declarations:

(a) result tuple (returned by the function);

(b) input place variables;

(c) user-de�ned local variables;

(d) o2 string extAction;

(e) o2 list(Object) parList;

2. assignments of input places;

3. creation of new tokens or empty sets for output variables;

4. user action code;

5. return statement;

Post-action The post-action code retrieves the result of the external action. The result

is an object. User may declare the result type, in this case, the proper variable is declared

and assigned. The result is given to the user by means of the extResult variable. The

input tuple is visible and corresponds to the tuple that enabled the �ring. Local variables

are declared as usual, but their value is initialized. thus the assignments of the pre-

action get lost. Output tokens are declared and initialized. The signature of a post-action

function for a transition called \Black" is:

_Post_Black(param: Tuple,

_extR: Object): Tuple;

This function takes the enabling tuple and returns the values of extAction and parList.

The outline of the compiled function for a pre-action body is:

1. variable declarations:

(a) result tuple (returned by the function);

(b) input place variables;

(c) user-de�ned local variables;

(d) extResult

2. assignments of input places;

3. creation of new tokens or empty sets for output variables;

Chapter 6: SLANG Interpreter 88

4. assignment and cast for extResult;

5. user action code;

6. return statement;

extAction and parList These two variable de�ne the external action and the optional

O2 parameters for that operation. The value of extAction in particular, determines

the semantics of the black transition �ring and, as a consequence, the behavior of the

interpreter. The meaning and the use of extAction is widely explained in chapter 3. Now

we focus on the reaction of the interpreter given each class of command. Three classes of

actions are recognized by the fire method:

SLANGInterpreter : the value of extAction is "SLANGInterpreter", parList con-

tains the active copy that must be executed. It corresponds to the invocation of

another SLANG Interpreter, this is presented to the kernel SLANG user like any

other black box O2 tool. Its actual implementation is the focus of the whole enact-

ment environment. These are the action performed by the interpreter:

� a unique identi�er is generated.

� a BlkSI object is created and �lled in with the unique identi�er, with the

enabling tuple and with the transition.

� the BlkSI object is inserted in the temporary list for SLANG interpreter in-

stances (SIHeap).

� an O2 message is posted to the PEM connection with the unique identi�er and

the active copy.

ServiceRequest : the value of extAction is a string beginning with "ServiceRequest",

parList may contain O2 objects. It is the invocation of a service. From the SLANG

interpreter point of view it does not metter whether the service is provided by the

SCI or by an integrated tool. The interpreter then checks the presence of the "-O2"

option at the end of the extAction string. If the option is present:

� a unique identifyer is created;

� the O2 connection is set up;

� the objects of the parList are sent over the O2 connection;

� a blkSCIO2 object is created and �lled in with the proper data concerning the

identi�er and the O2 connection as well as the transition and the enabling tuple;

Chapter 6: SLANG Interpreter 89

� the "ServiceRequest" pre�x is stripped o�, and the number of the O2 con-

nection is appended to the message string.

� the message is posted to the SCI.

If the request does not involve O2 data, i.e. the "-O2" is not present, a blkSCI

object is created and �lled in as usual, while parList value is ignored. In any case

the black transition instance tag is appended to the SCIHeap list.

BlackBox : if the value of extAction does not match the two conditions above, it is

interpreted as a UNIX black box command. Again the interpreter distinguishes

O2 black box tools thanks to the "-O2" option terminating extAction string. In

case, the O2 connection is created, the objects given in parList are sent over and

a BlkBBO2 instance is recorded. The mechanism used to treat black box action is

slightly di�erent from other message-based control given by the stable connections

with the SCI or with the PEM. The black box action is actually invoked by a special

function called StartUnixTool. The function forks a process connected by a pipe

to the interpreter, the interpreter records in the BlkBB or BlkBBO2 instance, the

�le descriptor of the pipe. This third party process executes the action through

the system system call, which suspends the process. After the termination of the

external action and consequently of the system function, the third party process

sends out a control message on the pipe and then terminates.

Summing up, these are the commands executed when there is no O2 link:

� a BlkBB object is created;

� the tuple and the transition are attached;

� the StartUnixTool function is called with extAction;

� the integer returned by the function (the �le descriptor) is recorded in the BlkBB

objects.

Some other steps are added when the O2 connection is needed.

6.11 Asynchronous events

From the model point of view, the interaction between user environment and process

model is achieved through two primitive concepts:

� user places, and

� black transitions.

Chapter 6: SLANG Interpreter 90

Both user places and black transition are managed through a set of control messages.

Sometimes the control messages (either \user place" or \black transition") are multiplexed

on one channel. In other circumstances, they are associated with one private channel.

The objective of this section is mapping of these primitives on the connections between an

ActiveCopy object and the \outside" world. In particular here we deal with the incoming

messages and the related action performed by the interpreter.

Referring to the readAsynchEventmethod, the interpreter selects in sequence its input

channels:

SCI : examined by readSCIEvent method. The SCI connection can deliver user noti�-

cations or black transition termination corresponding to service requests.

PEM : the method readO2Event reads the Process Engine Manager connection. The

PEM connection returns executed active copies corresponding to SLANG interpreter

black transition terminations.

UNIX pipes : the terminations of black box tools are noti�ed by these connections.

Note that while PEM and SCI messages are multiplexed on a single connection

and are tagged with a unique identifyer, UNIX pipes are one-to-one with black box

tools �ring instances, thus only one ending message can arrive from one pipe. The

interpreter scans the SIHeap list that contains BlkBB objects, each one containing

the pipe �le descriptor. When one message is received, the corresponding black

transition is terminated and the pipe is closed.

For each kind of connection and for each kind of messages we describe the reaction of

the interpreter.

6.11.1 User place messages

User place messages are very simple: one message corresponds to one token. The inter-

preter always creates one object of the class Message, then, it parses the incoming string

and writes the message �elds in the newly created token. The message speci�es the name

of the user place in which the token must be inserted. If the place exists in that activity

de�nition, then the token is inserted in the corresponding container.

6.11.2 Black transition messages

Black transition messages (remember we are talking about incoming messages) have to

match the black instance that generated the external command. On a SCI or a PEM

message, the interpreter searches SCIHeap or PEMHeap lists for the instance matching the

Chapter 6: SLANG Interpreter 91

identi�er contained in the message. Black box instances do not need any further search,

because the necessary information are bound to the channel identi�er. Once the right

instance has been picked up from the temporary lists, the transition �ring is completed

by the method completeFiring.

One more problem concerns the optional values returned by the �ring through the

extResult variable. Its value, that is an object, must be passed to the completeFiring

method. In order to get this object, the SLANG interpreter always calls method result

on the black instance objects. Then, thanks to the dynamic binding, the proper method is

executed according to the actual type of that instance. O2 instances, black box or service

requests, return the object extracted by the O2 connection. Other service requests return

an object of the class Message �lled in with the information given by the message.

Chapter 7

SPADE Communication Interface

The SPADE Communication Interface is responsible for the communication between the

User Interaction Environment and the Process Enactment Environment. If the process

model being executed in the PEE could not interact with the human environment, it would

be quite useless. On the other side, if the UIE could not receive control information, it

would be without guidance.

The SCI is a Unix process. Communication between the SCI and entities belonging

to the User Interaction Environment and to the Process Enactment Environment is based

on the message passing paradigm and follows the SCI communication protocol. The SCI

and the communicating entities are organized as a client/server architecture.

SCI clients can be divided into:

� PEE clients: they are PEE entities which want to communicate and interact with the

\outside world", i.e., the User Interaction Environment. Actually, they are SLANG

Interpreters1.

� UIE clients: they are entities in the UIE which provide services and noti�cations of

relevant events to the PEE. They are represented by integrated service-based tools

as well as bridges, i.e., interfaces to integrated service-based tool sets.

PEE clients request services to UIE clients or to the SCI itself. UIE clients and the

SCI reply to service requests. Moreover, UIE clients notify the PEE of relevant events.

The SCI tasks are the dispatching of service requests and replies between SCI clients,

and the multicasting of noti�cations, coming from UIE clients, to PEE clients which have

advertised their interest in receiving them.

1At this level of description, the term \SLANG Interpreter" refers to the SI object together with its

ActiveCopy object.

92

Chapter 7: SPADE Communication Interface 93

PEE client

Interpreter

SLANG

Interpreter

SLANG

PEE client

Process Enactment Environment

PEE client

SLANG

Interpreter

User Interaction Environment

Bridge

SCI

UIE client UIE client UIE client

Service-Based
Tool

Service-Based
Tool

Tool
Service-Based Service-Based

Tool

Figure 7.1: High-level view of SCI architecture.

Section 7.1 describes the SCI communication protocol. Sections 7.2 and 7.3 de�ne the

semantics of the exchanged message. Section 7.4 outlines the inner structure of the SCI.

7.1 SCI communication protocol

The SCI communication protocol de�nes rules to exchange messages through connections

between the SCI and its clients. The SCI communication protocol is based on the SPADE

communication protocol and provides abstraction and information hiding. The protocol

consists in:

1. Communication initialization: the SCI creates the communication access port, using

the openSCIPort primitive.

2. Connection setup: SCI clients connect to the SCI using the connectToSCI primitive,

passing, as input parameters, the SCI host name, their own client type (i.e., \PEE"

or \UIE"), and a proposed identi�er (which is non-zero if they have been invoked

by the SCI, see section 7.2.2). If the connection setup is successful, they receive, as

output parameters, their �nal identi�er and the connection descriptor.

The SCI checks-in clients connection requests using the checkInSCIClient primi-

tive. The primitive retrieves the client kind, the proposed client identi�er, and the

client connection descriptor. If the SCI interprets the connection request as ille-

gal, it rejects the connection using the checkOutSCIClient primitive, passing, as a

Chapter 7: SPADE Communication Interface 94

parameter, the connection descriptor. Otherwise, the SCI accepts the connection re-

quest using the acceptSCIClient primitive, passing, as a parameter, the �nal client

identi�er.

3. Message exchange: the SCI and its clients exchange messages using the readSCIMsg

and writeSCIMsg primitives. Messages are strings with the following format:

<modi�er> <reference> <address> <name> <data>

A description of each �eld follows:

� modi�er: a string, which contains information to interpret the rest of the mes-

sage. It may be null, if the message meaning is uniquely identi�ed otherwise.

� reference number: an integer, representing the message identi�er.

� address: a dot-separated list of integers, which may represents either the address

of the message recipient or the address of the message sender.

� name: a string, representing the type of message.

� data: a string, containing the message data.

The SCI and its clients own a unique identi�er, represented by an integer number.

The SCI identi�er is zero. SCI clients identi�ers are assigned by the SCI either

during connection setup or implicit invocation. UIE clients may be interfaces to sets

of tools, called bridges. Thus, addresses are structured in a hierarchical way, using an

IP style, to allow SLANG Interpreters to easily and
exibly specify the recipients of

their service requests. A composite address is a list of dot-separated identi�ers. The

leftmost identi�er is the bridge one, while the rest of the address uniquely identi�es

entities managed by the bridge (e.g., address \11.3" speci�es the service-based tool

whose identi�er is 3, managed by the bridge identi�ed by 11). The SCI is concerned

only with the �rst �eld of composite addresses. Interpretation of complete addresses

is left to bridges.

4. Disconnection: SCI clients request to disconnect from the SCI using the disconnect-

FromSCI primitive, passing, as input parameter, the SCI connection descriptor. The

SCI receives the disconnection request message and checks-out the client using the

checkOutSCIClient primitive.

5. Communication shutdown: the SCI closes the communication access port, using the

closeSCIPort primitive.

Chapter 7: SPADE Communication Interface 95

7.2 Service requests

PEE clients can request services to tools in the UIE or to the SCI itself. PEE clients

request services sending a service request message to the SCI.

The service request message contains:

� a client-de�ned message reference number;

� the address of the service provider;

� the service name;

� the service data.

Since a message coming from a PEE client can be only a service request, the message

modi�er is missing.

7.2.1 Tool services

When the SCI receives a service request message from a SLANG Interpreter, it checks the

leftmost identi�er in the recipient address. If the identi�er is zero, the message represents

a service request to the SCI itself. Otherwise, the message recipient is a service-based

tool in the UIE (i.e., a UIE client or a tool managed by a UIE client). In the latter

case, the SCI extracts from the message address the recipient SCI client identi�er. Then,

using the identi�er as a key, the SCI retrieves the corresponding connection from the

connection table, in which the identi�er of each SCI client is stored, together with its kind

and connection. Successively, the SCI generates a unique message reference number and

stores it in the request table, together with the sender message reference number (which is

not unique) and the sender identi�er. Finally, the SCI forwards the message, with the new

reference number, to the recipient UIE client. If the UIE client is a bridge, the message is

forwarded to the recipient tool or to another (subordinate) bridge.

The recipient tool processes the message, executes (if possible) the requested service,

and produces a service reply message, containing:

� a service reply message modi�er (i.e., ServiceReply);

� the reference number of the corresponding service request;

� its own address;

� the reply name;

� the reply data.

Chapter 7: SPADE Communication Interface 96

Original service request message Forwarded service request message

Service-Based Editor (28)

ClientKindClientId ClientConn

PEE

SenderIdSCIRef SenderRef

2066 49816

16

28

modifier

reference

address

name

data

EditorOpenFile

ServiceReply

SUCCESS

498

modifier

reference

address

name

data

EditorOpenFile

/docs/techreport.txt

498

28

28

modifier

reference

address

name

data

EditorOpenFile

/docs/techreport.txt

2066

modifier

reference

address

name

data

EditorOpenFile

ServiceReply

2066

SUCCESS

28

28

11

23

SI (16)

Forwarded service reply message Original service reply message

UIE

Request table entries

Connection table entries

SCI

Figure 7.2: A service request example.

The message follows backward the path of the service request message and reaches the

SCI.

Upon receiving a service reply message, the SCI uses the message reference number as

a key to retrieve the service requester identi�er, as well as the original reference number,

from the request table. Then, using the requester identi�er as a key, the SCI retrieves the

requester connection from the connection table. Finally, it forwards the message to the

requester with the original reference number.

For example, let us consider a SLANG Interpreter requesting a service to a service-

based editor, as depicted in �g. 7.2. The SLANG Interpreter identi�er is 16 and its con-

nection identi�er is 11. The Editor identi�er is 28 and its connection identi�er is 23. The

SLANG Interpreter requests the service EditorOpenFile on the /docs/techreport.txt

�le to the editor, sending a message to the SCI. The message is marked with its own

reference number, i.e., 498. The SCI receives the message and recognizes it as a service

request. Then, the SCI retrieves the editor identi�er from the message, and uses it as a

key to retrieve the editor connection identi�er from the connection table. Successively,

the SCI generates a unique message reference number, i.e., 2066, and stores it, together

with the SLANG Interpreter identi�er and the original message reference, in the request

table. Finally, the SCI forwards the message to the editor with the new reference number.

The editor receives the service request message and successfully opens the �le, displaying

its contents to the user which owns the editor. As a consequence, the editor produces a

reply message containing the string SUCCESS as data, with the reference number of the

corresponding service request, i.e., 2066. The SCI receives the message and recognizes it

as a service reply. Therefore, the SCI retrieves the identi�er of the SLANG Interpreter

which requested the service and the original message reference from the request table,

using the reply reference number as a key. Then, the request table entry is removed.

Chapter 7: SPADE Communication Interface 97

The SCI retrieves the SLANG Interpreter connection identi�er from the connection table,

using the SLANG Interpreter identi�er as a key. Finally, the message is forwarded to the

SLANG Interpreter with the original reference number, i.e., 498.

7.2.2 SCI services

PEE clients can request services to the SCI, sending service request messages with an

address of zero. The SCI provides two kind of services to PEE clients:

� Con�guration.

� Integrated service-based tool invocation.

Con�guration SLANG Interpreters can ask the SCI to receive noti�cation messages,

matching a particular pattern, in a place of the activity they are executing. This is

achieved by requesting to the SCI the con�guration service. The service request message

name is ConfigSCI and the message data contains a string in the following format:

<operator> <address pattern> <name pattern> <place name>

where:

� operator takes the values \+" or \-", stating that the con�guration data must be

respectively added or removed from the SCI database.

� address pattern may be:

{ a constant address (e.g., 23 or 26.6), stating that only noti�cation messages

coming from a particular tool must be matched;

{ an address terminated by an asterisk (e.g., 19.71.* or 29*), stating that all

messages, whose address begins with the same pattern, must be matched;

{ a single asterisk, stating that all addresses must be matched.

� name pattern is either a constant name (e.g., EditorFileClosed), stating that only

those particular messages must be matched, or a name terminated by an asterisk

(e.g., Editor*), stating that all messages whose name begins with the same constant

pattern must be matched.

� place name is the name of a user place in the activity de�nition of the active copy

being executed by the requester SLANG Interpreter.

Chapter 7: SPADE Communication Interface 98

ClientKindClientId ClientConn

66PEE

Connection table entry

99

modifier

reference

address

name

data

ServiceReply

modifier

reference

address

name

data

SI (99)

Service request message

144

0

ConfigSCI

+ * Login Logins

144

0

ConfigSCI

0

Notification table entry

Name Pattern Place Name ClientId

Logins 99Login*

Addr Pattern

Service reply message

SCI

Figure 7.3: A con�guration request example.

The SCI, upon receiving a con�guration message from a SLANG Interpreter, updates

the noti�cation table, adding or removing an entry containing the speci�ed address pattern,

name pattern, and place name, together with the SLANG Interpreter identi�er. Then,

the SCI replies with a message containing, as data, the integer 0, if the operation could

be performed, the integer -1, otherwise.

For example, suppose that the SLANG Interpreter, whose identi�er is 99, wants to

receive all the noti�cation messages, whose name is Login, in the user place named Logins.

The messages produced and the noti�cation table entry added are showed in �g 7.3.

Tool invocation PEE clients can request to the SCI the invocation of an integrated

service-based tool. The service name is StartTool. The data part of the service request

message contains the host name on which the tool must be executed, followed by the tool

command.

When the SCI receives an invocation request message from a SLANG Interpreter,

it generates a unique client identi�er, and stores it in the request table, together with

the SLANG Interpreter identi�er and the message reference number. Since client identi-

�ers and message reference numbers are generated using the same counter, consistency is

maintained. Then, the SCI forks, on the speci�ed host, the tool, passing, as process envi-

ronment variables, the tool identi�er and the SCI host name. The tool retrieves its own

identi�er and the SCI host name from the environment and passes them, as parameters, to

the primitive connectToSCI, when requesting a connection to the SCI. The SCI checks-in

the connection request and �nds the proposed identi�er. Consequently, it checks if there is

a corresponding entry in the request table. If it is so, the SCI accepts the tool connection

request and it sends a reply message to the SLANG Interpreter containing, as the message

data, the identi�er of the invoked tool. If the SCI does not �nd any entries associated to

Chapter 7: SPADE Communication Interface 99

SCIRef SenderId

41 16782099

Request table entry

SenderRef

modifier

reference

address

name

data

ServiceReply

modifier

reference

address

name

data

Service request message

0

0

1678

1678

SI (41) StartTool

bach xquestion -display ravel:0.0

2099

xquestion tool (2099)

Proposed Id:2099

Final Id
: 2099

StartTool

Service reply message

ClientKindClientId ClientConn

PEE 66

Connection table entry

41

SCI forks

Figure 7.4: An integrated service-based tool invocation request example.

the tool identi�er, the connection is refused. Moreover, if the SCI fails forking the tool, it

sends a reply message with a negative tool identi�er.

For example, consider �g. 7.4, in which the SLANG Interpreter, whose identi�er is 41,

wants to invoke the integrated service-based tool xquestion on host bach.

7.3 Noti�cations

Tools in the UIE can notify the PEE of relevant events, sending a noti�cation message

to the SCI. The SCI multicasts noti�cations to SLANG Interpreters which previously

registered themselves for that message.

Noti�cation messages contain:

� the noti�cation message modi�er (i.e., Notification);

� the address of the notifying tool;

� the noti�cation name;

� the noti�cation data.

Since noti�cation messages are not bound to any request coming from the PEE, the

message reference number has no meaning.

Upon receiving a noti�cation message, the SCI matches the message name and address

against every entry in the noti�cation table. For each matching entry, the SCI retrieves

the SLANG Interpreter identi�er and the place name in which the message has to be

delivered (as a token). Then, the SCI forwards a message containing:

Chapter 7: SPADE Communication Interface 100

ClientId ClientConn

47 74

70 90

Connection table entries

77 91

PEE

UIE

ClientKind

PEE

*

Addr Pattern

SCI

ClientId

47

Name Pattern

AgendaStartTask StartedTask

Place Name

AgendaNotifAgenda*77

Notification table entries

70

modifier

reference

address

name

data

Notification message

Notification

77

AgendaStartTask

EditDoc GUI.c

modifier

reference

address

name

data

Notification message

77

AgendaStartTask

EditDoc GUI.c

SI (70) SI (47)

modifier

reference

address

name

data

Notification message

77

AgendaStartTask

EditDoc GUI.c

@AgendaNotif @StartedTask

Agenda (77)

Figure 7.5: A noti�cation example.

� a message modi�er, consisting of the symbol \@", followed by the place name;

� the address of the notifying tool;

� the noti�cation name;

� the noti�cation data.

Upon receiving noti�cation messages, SLANG Interpreters process it, and put the

corresponding token in the proper user place of the activity de�nition corresponding to

the active copy they are executing.

As an example, consider the management of a service-based agenda tool. The agenda

presents to the user a set of tasks to be performed. The user chooses a task and be-

gins his/her job. Two activities have been de�ned in the process model. The activity

AgendaManager, whose task is the management of a particular instance of the agenda tool,

and the activity GlobalReport, which produces a daily report about all the tasks per-

formed by software developers. Consider now an instance of the agenda tool, whose identi-

�er is 77. The tool is managed by an active copy, instance of the AgendaManager activity,

executed by a SLANG Interpreter, whose identi�er is 70. There is also an active copy,

instance of the GlobalReport activity, executed by a SLANG Interpreter, whose identi�er

Chapter 7: SPADE Communication Interface 101

is 47. The AgendaManager active copy has asked the SCI to receive all the noti�cation

messages, coming from tool 77, in the place named AgendaNotif. The GlobalReport ac-

tivity instance has asked the SCI to receive all AgendaStartTask messages, coming from

all the agenda tools, in the place named StartedTask. Suppose now that the agenda tool

presents to the user two possible tasks to perform:

1. write the documentation regarding the software module GUI.c;

2. prepare the cost estimation of the project EDAPS.

The user, hating to think about money, chooses the �rst task. Therefore, the agenda tool

noti�es the PEE of the user's choice, sending a message to the SCI. The message contains:

� the noti�cation message modi�er;

� the agenda address (i.e., 77);

� the noti�cation name, AgendaStartTask;

� the noti�cation data, i.e., EditDoc GUI.c.

Upon receiving the message, the SCI recognizes it as a noti�cation. Then, the SCI

matches it against the noti�cation table, obtaining two matching entries. The �rst one

corresponds to the SLANG Interpreter 47, and contains the place name StartedTask.

Thus, the message is forwarded to the SLANG Interpreter with @StartedTask as the

message modi�er. The second matching entry corresponds to SLANG Interpreter 70, and

contains the place name AgendaNotif. Then, the message is forwarded to the SLANG

Interpreter with @AgendaNotif as the message modi�er.

The SLANG Interpreters, upon receiving the message, produce the corresponding to-

kens in the named user places, in the activity de�nition of the active copy they are exe-

cuting.

7.4 SCI modules

The SCI, in order to successfully perform its tasks, maintains an updated database regard-

ing the connected clients and the messages they exchange. Moreover, the SCI manages

the SCI protocol when communicating with its clients.

The SCI relies on two modules in doing its job: the Port Manager and the Message

Manager (see �g. 7.6).

Chapter 7: SPADE Communication Interface 102

SCI main loop

Connection Handler

Message Handler

SCI

Connection Table

Request Table

Notification Table

Port Manager

Message Manager

Figure 7.6: SCI internal modules.

The Port Manager provides high-level primitives to manage the SCI communication

protocol, and it maintains in the connection table the information about SCI clients iden-

ti�ers, kinds and connections, allowing simple queries and easy updating. Moreover, the

Port Manager handles exceptions like SCI clients hangups and Unix signals.

The Message Manager module provides high-level primitives to retrieve and parse

incoming messages, to handle errors in message �elds values, and to forward request,

reply and noti�cation messages to SCI clients. Moreover, the Message Manager maintains

the request and noti�cation tables, providing primitives for their updating and querying.

SCI execution is event driven. The SCI main loop function continuously polls the

communication access port and the connections with the SCI clients, waiting for an event

to occur.

When a connection request from a SCI client appears on the SCI port, the connec-

tion handler function is called. The connection handler checks-in the connection request,

manage the connection protocol, and updates the connection table using the primitives

provided by the Port Manager module.

When a message appears on one of the SCI clients connections, the message handler

function is called. The message handler function uses the primitives provided by the

Message Manager to retrieve the message and interpret its meaning. Then, the message

handler reacts to the message, forwarding request, reply or noti�cation messages, or pro-

viding requested services, as needed. The connection handler relies on the Port Manager

methods, for the necessary queries on the connection table.

The SCI Motif graphical interface presents, to the SPADE-1 system manager, a graphic

display of the exchanged messages (see �g. 7.7). The SCI window displays two message

lists: the request service message list and the reply/noti�cation message list. The SPADE-

1 system manager can monitor the message tra�c and diagnose misbehaviors.

Chapter 7: SPADE Communication Interface 103

Figure 7.7: SCI graphical interface.

Chapter 8

User Interaction Environment

The User Interaction Environment is the environment in which interaction with process

agents takes place. Human actors in the software process cooperate among each other

using tools. Editors, compilers, e-mail managers, are examples of widely used tools. Soft-

ware productivity is improved if such tools are able to interact among each other, in order

to provide an integrated environment [SvdB93]. Controlling and coordinating tool inter-

actions requires an approach to tool integration that is both
exible and adaptable to suit

di�erent user needs, as well as simple and e�cient, in order to meet the requirements of

tool developers.

Tools integrated in the SPADE-1 2.0 environment belong to two big groups, according

to their integration granularity: black-box tools and service-based tools. Black-box tools

are viewed by the process model as an atomic transformation performed on some input,

that may produce some output or have some e�ects in the User Interaction Environment.

No interaction between the process and the black-box tool occurs during tool execution.

Moreover, from the process perspective, it is not relevant whether the function is performed

automatically by the tool or with user intervention. Service-based tools, instead, provide

a programmatic interface that can be used to integrate the functionalities o�ered by the

tool in the process.

This chapter approaches the problem of tool integration in the User Interaction Envi-

ronment.

8.1 Control integration

The control integration approach to tool integration is based on viewing a Software Devel-

opment Environment (SDE) as a collection of services provided by di�erent tools. Actions

carried out by a tool are announced to other tools via control signals, represented, for

104

Chapter 8: User Interaction Environment 105

example, by messages. The tools receiving such signals can decide if the other tool actions

require that they take any actions themselves.

Following the control integration approach, the SPADE-1 User Interaction Environ-

ment includes a collection of service-based tools, each one exporting some services [gro93].

In the SPADE-1 environment, service-based tools do not directly exchange messages with

each other. They are completely submitted to the process model commands. In this

perspective, the process model is a privileged service client and the only tool controller.

Having the ability of controlling one single tool, as well as the interaction between two or

more tools, it is the process model that regulates the actions and the cooperative work of

the user environment agents.

The e�ective control over SPADE-1 tools is accomplished through two simple mech-

anisms, based on message passing: service request and event noti�cation. These two

mechanisms are mapped on the SLANG constructs of black transitions and user places.

A service request is the command, coming from the Process Enactment Environment,

that invokes a service. The service may accept some parameters and return some struc-

tured or atomic results. Tools in the user environment must always answer to a service

request with a reply message which states that the service is terminated. The SPADE

Communication Interface delivers the service replies to the SLANG Interpreter that made

the request.

Noti�cations acknowledge the process model for relevant events that occurred in the

User Interaction Environment. Noti�cations are one-way messages. They are originated

by service-based tools and are delivered to the SPADE Communication Interface. The SCI,

in turn, broadcasts noti�cation messages to all the SLANG Interpreters that registered for

that kind of message. Then, it is up to the process model to react to the event noti�cation

in the proper way.

8.2 Data Integration

SPADE-1 process models manipulate complex data, described and stored using the O2

data base. The problem of data integration concerns the possibility for the process model

exchange O2 objects with user tools, in order to have them processed, and to collect other

O2 objects that are the results of the service performed by the tool. Some tools of the

User Interaction Environment may have access to the O2 repository. These tools, either

black-box or service-based, may use O2 objects and return them back to the process like

other atomic parameters attached to control messages.

SPADE-1 tackles this problem by setting up dedicated connections for transmitting

O2 parameters and the O2 result, using the O2 sockets primitives. These connections are

Chapter 8: User Interaction Environment 106

established when the service (or the tool) is invoked and are implicitly closed when the

service terminates.

Service-based tools retrieve their connection using an identi�er attached to the ser-

vice request message. Black-box tools retrieve the connection identi�er from the process

arguments. Tools are then responsible for matching the O2 connection, for retrieving

parameters and for posting the result before the service (or tool) termination.

This solution is orthogonal with respect to the service granularity and to the control

mechanism. It can be used with any combination of parameters and results, i.e., one

service may require O2 parameters and return a atomic reply, another may return an O2

object needless for O2 parameters, and, of course, one can take O2 parameters and have

an O2 result.

8.3 Black-box tools

Black-box tools are viewed by the process model as functions performed on some input

and producing some output. A black-box tool is invoked by the SLANG interpreter as a

follow-up of the �ring of a black transition. The actual invocation and the termination of

the tool are managed by a program called StartUnixTool. Its only function is to fork the

tool and then notify the interpreter for the tool termination.

Black-box usually are Unix programs, like make, cc, or emacs. They take atomic data

as input and produce some output.

Black-box tools can also manipulate O2 objects. These tools must be O2 clients and

must be structured as follows:

1. Connection to the O2 data base.

2. Connection to the SPADE-1 environment.

3. Retrieval of the O2 parameters (if any).

4. Execution of the tool body.

5. Deliver of the O2 result (if any).

6. Disconnection from the SPADE-1 environment.

7. Disconnection from O2 and termination.

Chapter 8: User Interaction Environment 107

8.4 Service-Based Tools

Service-based tools provide services and notify relevant events to the Process Enactment

Environment. They can be invoked by the SPADE Communication Interface as a follow-

up of a request coming from the PEE, as well as by a user who wants to interact with the

process enactment.

Service-based tools implementation follows these steps:

1. Connection to the SCI, using the SCI protocol primitives.

2. Main loop:

(a) service request retrieval;

(b) service request reply;

(c) events noti�cation.

3. Disconnection from the SCI.

Upon receiving a service request, they perform, if possible, the requested service and

then they send a reply message containing the result or simply an acknowledge of the

performed action.

Service-based tools can receive O2 objects as service requests parameters. Management

of structured message data is trasparent to the user.

8.5 Integration of SDEs based on message passing

It is possible to integrate Software Development Environments (SDE) based on message

passing into SPADE-1 2.0.

Possible candidates to integration in the SPADE-1 2.0 environment are:

� Steven Reiss' FIELD environment [Rei90].

� Hewlett-Packard SoftBench [Ger90].

� Sun Microsystems ToolTalk [Sun91].

� DEC FUSE [Dig91b].

The above listed SDEs are based on the message passing approach, i.e., tools in the SDE

communicate by passing messages informing other tools of their actions, and requesting

services from other tools. Each SDE owns a message server, which plays the central role of

Chapter 8: User Interaction Environment 108

Message Server

DEC FUSE

ToolTool

Message Server

DEC FUSE

SoftBench

Bridge

Tool

Tool

Tool Tool Tool

Tool

Tool

Tool

SCI

XFUEB

XFUEB

Broadcast

Message

Server

Tool

Figure 8.1: Integration of di�erent SDEs in the SPADE-1 environment.

dispatcher of all messages between tools. The presented SDEs are single-user, i.e., message

servers cannot be shared between users. There are no or little mechanisms to integrate

and coordinate SDE intances owned by di�erent users. Moreover, there are no standard

protocols that allow the communication between di�erent kinds of SDEs.

SPADE-1 provides such control and integration in a
exible way. The integration of

SDEs in the SPADE-1 environment is achieved building an ad hoc �lter, called user en-

vironment bridge, which map the SCI protocol to the target integrated system protocol

(see �g. 8.1). Bridges play the double role of SCI clients and SDE tools. Messages coming

from the PEE are delivered to bridges, which interpret their meaning, and forward them

to tools in the SDE they are connected to. Tool instances in a particular SDE can be se-

lected by service requesters thanks to the hierarchical structure of SCI protocol addresses.

Viceversa, messages produced by tools (replies to service requests or noti�cations) are

\captured" by the bridge, sharing the same SDE instance. The bridge translates them in

the proper format, and, �nally, it forwards them to the SCI.

Currently, a bridge for the DEC FUSE software development environment has been

developed. The FUSE bridge, called XFUEB (X FUSE User Environment Bridge), allows

the PEE to interact directly with tools integrated in FUSE [Dig91a]. Integration of new

tools in FUSE requires little e�ort and message dispatching is completly trasparent to the

tool developer. Integration in the SPADE-1 environment allows interaction between tools

belonging to di�erent instances of FUSE.

For example, suppose user Antonio has to supervise an important document before

Giovanni reads it. The FUSE service-based editor in the Antonio's FUSE instance, has

been opened on the document by a service request coming from the PEE. When Antonio

Chapter 8: User Interaction Environment 109

�nishes and closes the �le, a noti�cation message is generated. The XFUEB catches the

message and forwards it to the SCI. The PEE receives the message and, following the

execution of the supevisoring activity, a service request message is sent to Giovanni's

instance of DEC FUSE. The corresponding XFUEB receives it and translates it into a

DEC FUSE message requiring the invocation of an editor on the speci�ed �le.

8.6 Tool developer interfaces

SPADE-1 2.0 provides to tool developers sets of primitives to easily build tools integrated

in the SPADE-1 environment.

8.6.1 O2 black-box tools

Black-box tools that do not need to exchange structured data (O2 objects) do not require

any particular integration primitive.

SPADE-1 2.0 o�ers to the tool developer a set of high-level primitives to build O2

black-box tools. These primitives allow the tool to retrieve of O2 parameters and to

deliver the O2 result. They are built on top of the C interface to the O2 OODBMS. A

description follows.

connectToSPADEparam : it connects the tool to the SPADE-1 environment. It takes the

process arguments as parameters, namely argc and argv. It returns a negative

integer value if an error occurs.

readO2parList : it retrieves the tool O2 parameters. It takes, as argument, the address

of a void pointer. The pointer represents the handler of an O2 object list. It returns

a negative integer value if an error occurs.

writeO2result : it writes an O2 object result. It takes, as argument, a void pointer,

representing the handler of an O2 object. It returns a negative integer value if an

error occurs.

disconnectFromSPADEparam : it disconnects the tool to the SPADE-1 environment. It

returns a negative integer value if an error occurs.

For example, consider the tool showobj. Its task is to display the contents of an O2

object. Users can modify its contents using the O2 graphic interface. The outline of the

tool implementation follows.

#include <o2_c.h>

Chapter 8: User Interaction Environment 110

#include <stdio.h>

#include <spadeo2tool.h>

int main(argc, argv)

int argc;

char *argv[];

{

static O2_sinit o2sinit; /* O2 init structure */

int o2LookMode = 0; /* uses O2 Look */

void *objList; /* object list reference */

void *queryResult; /* dummy query result */

void *obj;

/* initializes the O2_sinit structure */

o2sinit = ...

/* connects to O2 */

o2_link_init(argc, argv, &o2sinit, o2LookMode);

...

/* connects to SPADE in order to receive

its O2 parameter list */

connectToSPADEparam(argc, argv);

/* retrieves the O2 parameters */

readO2parList(&objList);

/* extracts the first element of the list */

o2query(&obj, "$1[0]", o2_handle(objList));

/* displays the object */

o2query(&queryResult, "$1->display", o2_handle(obj));

/* sends back the (modified) object */

writeO2result(obj);

Chapter 8: User Interaction Environment 111

/* disconnects from SPADE */

disconnectFromSPADEparam();

/* disconnects from O2 */

o2_link_end();

/* terminates */

return;

}

8.6.2 Service-based tools

Service-based tools that only need to exchange atomic data can be built using high-level

primitives written in the C language, and archived in the spadetool library. These prim-

itives allow a tool to connect to the SPADE-1 environment (actually to the SCI), to

receive service requests messages, to send replies and noti�cation, and to disconnect from

the environment. Received and sent messages are of type Message, and contain:

name : a string, representing the message name.

par : a string, representing the message data.

The \tool kit" is composed of the following set of functions:

int connectToSPADE() : it links the tool to the SPADE Communication Interface, this

way allowing message exchange with the Process Enactment Environment. If the

tool is not invoked by the SCI, the environment variable SCI_HOSTNAME must be ex-

plicitly set (to the name of the SCI host) before calling the connectToSPADEmethod.

connectToSPADE returns an integer, representing the SCI socket �le descriptor on

success, or a negative value on failure. Usually, the tool developer has not to bother

with this descriptor. Nonetheless, the socket �le descriptor may be useful in event

driven programming (i.e., it can be used in a call to the XtAddInput Xt Toolkit

function).

int recvRequest(Message* msg) : it �lls the Message structure argument with an in-

coming request message. It returns zero on success or a negative value if an error

occurs. recvRequest fails if there are pending service requests. The tool must reply

to a received service request before fetching the next one1.

1It must be noted that the request-reply sequentiality constraint is a limit of the particular interface

implementation, not of the service request protocol.

Chapter 8: User Interaction Environment 112

Figure 8.2: The xquestion service-based tool.

int sendReply(Message* msg) : it sends the reply message passed as the function ar-

gument. It returns zero on success, a negative value if an error occurs. The call to

sendReply fails if there is not a service request to reply to.

int sendNotification(Message* msg) : it sends a noti�cation message to the process

enactment environment. The noti�cation message is passed as an argument. It

returns zero on success, a negative value if an error occurs.

int disconnectFromSPADE() : disconnects the tool from the SPADE-1 environment. It

returns zero on success, a negative value if an error occurs.

Consider, for example, a graphic integrated service-based tool, called xquestion. It

presents a question and a set of answers to the user, displaying, on the user screen, a

window with a set of buttons. The user can answer clicking on the corresponding button

(see �g. 8.2).

The tool o�ers two services: QuestionDisplay which creates the window on the user

screen, and QuestionKill which requests tool termination. During startup, the tool

advertises the PEE of the availability of its services, using the QuestionAvailable noti-

�cation message, passing, as the message parameter, the display it is connected to.

The (incomplete) code of the xquestion tool follows.

#include <spadetool.h>

...

int main(int argc, char** argv)

{

int connection;

Message *startMsg;

...

/* connects to the SPADE environment */

Chapter 8: User Interaction Environment 113

connection = connectToSPADE();

/* notifies service availability */

startMsg = (Message *) malloc(sizeof(Message));

startMsg->name = "QuestionAvailable";

startMsg->par = getenv("DISPLAY");

sendNotification(startMsg);

... /* X initialization */

/* adds the SPADE connection file descriptor to the sources

of events to be managed, associating the toolMsgHandler

function to service requests */

XtAppAddInput(appContext, conn, XtInputReadMask, toolMsgHandler, NULL);

/* silently enters the X main loop */

XtAppMainLoop(appContext);

}

void toolMsgHandler()

{

Message* msg;

char* answer;

int result;

/* initializes the message */

msg = (Message *) malloc(sizeof(Message));

/* reads the request */

result = recvRequest(msg);

/* if message check-in fails, returns */

if (result < 0) return;

/* parses the message */

if (strcmp(msg->name, "QuestionDisplay")) == 0) {

Chapter 8: User Interaction Environment 114

/* displays the windows and returns a string

containing user's choice */

answer = displayWindow(msg->par);

msg->par = answer;

sendReply(msg);

}

if (strcmp(msg->name, "QuestionKill") == 0) {

/* disconnects from SPADE */

disconnectFromSPADE();

}

return;

}

8.6.3 O2 service-based tools

Tools that need to exchange O2 objects to accomplish their services, can use an high-

level interface to the SPADE-1 environment, written in the O2C language. The interface

is represented by an object of class SPADEInterface. The interface provides methods

to connect to the SPADE-1 environment, receive requests, send replies and noti�cations,

and disconnect from the SPADE-1 environment. Received and sent messages are of class

ToolMsg. Each message contains:

name : an O2 string, representing the message name.

par : an O2 string, containing atomic data.

o2par : a list of O2 objects, containing the structured objects involved in service requests.

The SPADEInterface class o�ers the following methods:

connectToSPADE : it links the tool to the SPADE Communication Interface, this way

permitting, message exchange with the Process Enactment Environment. If the tool

is not invoked by the SCI, the environment variable SCI_HOSTNAME must be explic-

itly set (to the name of the SCI host) before calling the connectToSPADE method.

connectToSPADE returns an integer, representing the SCI socket �le descriptor on

success, or a negative value on failure. Usually, the tool developer has not to bother

with this descriptor, as well as with the internals of the SPADEInterface class.

Chapter 8: User Interaction Environment 115

Nonetheless, the socket �le descriptor may be useful in event driven programming

(i.e., it can be used in a call to the XtAddInput Xt Toolkit function).

recvRequest : it returns an incoming request message2, or a null reference if no requests

are present. The call to recvRequest fails also if there are pending service requests.

The tool must reply to a received service request before fetching the next one3.

sendReply : sends a reply message. It takes the reply message (of type ToolMsg) as

argument. The call to this method fails if there are no service request to reply to.

sendNotification : sends a noti�cation message to the Process Enactment Environ-

ment. The noti�cation message is passed as an argument and cannot contain an O2

parameter. If present, the O2par �eld is simply ignored.

disconnectFromSPADE : disconnects the tool from the SPADE-1 environment.

An example follows:

function Tool;

function body Tool

{

SPADEInterface spade;

ToolMsg msg;

o2 myClass myObject;

o2 string mystring;

spade = new SPADEInterface;

/* connects to the SPADE environment. We suppose

that SCI_HOSTNAME env var has been set to the proper value */

spade->connectToSPADE();

while (true) {

/* waits for a service request */

do

2WARNING! Due to an O2 bug the message received is persistent (despite it has been removed from

any persistency root) and must be modi�ed while in transaction mode.
3It must be noted that the request-reply sequentiality constraint is a limit of the particular interface

implementation, not of the service request protocol.

Chapter 8: User Interaction Environment 116

msg = spade->recvRequest();

while (msg == nil);

/* parses the message and acts accordingly */

if (msg->name == "Service1") {

myString = ...;

myObject = ...;

/* creates a new message and replies */

msg = new ToolMsg;

msg->name = "Service1";

msg->par = myString;

msg->O2par = list(myObject);

spade->sendReply(msg);

}

if (msg->name == "Service2") {

...

if (...) {

/* sends a notification */

msg = new ToolMsg;

msg->name = "Event";

msg->par = ...;

spade->sendNotification(msg);

}

/* creates a new message and replies */

msg = new ToolMsg;

msg->name = "Service2";

msg->par = ...;

msg->O2par = list(...);

spade->sendReply(msg);

}

Chapter 8: User Interaction Environment 117

else {

/* unknown service */

msg = new ToolMsg;

msg->name = "Error";

msg->par = "UnknownService";

spade->sendReply(msg);

}

}

}

This example describes the function Tool, implementing a service-based tool able to pro-

vide two services: Service1 and Service2. The tool connects to the SPADE-1 environ-

ment and then waits for a service request. When the tool receives a service request, it

matches the message name against the names of the services it is able to provide. If match

fails, a reply, containing an error message is sent to the service requester. If the message

name matches Service1, the tool processes the message and produces a reply. If the name

matches Service2, the tool processes the message. If some condition holds true, the tool

sends a noti�cation message. In every case, a reply message is sent back to the service

requester.

8.6.4 DEC FUSE service-based tools

Tool developers can develop tools integrated in the DEC FUSE and controlled by the

SPADE-1 process model. DEC FUSE tools must adhere to the SPADE-1 \philosophy"

and verify these constraints:

� they must not bypass the process;

� they cannot send request messages to the PEE;

� they must register their messages to the SPADE-1 environment.

Message registration is achieved including the til �le of the tool in the SPADE.til

�le, and the prototypes of the messages in the SPADE.proto �le. These �les will be used

in generating FUSE bridge module.

DEC FUSE-O2 service-based tools

Tools integrated in the DEC FUSE environment can exchange only atomic data. SPADE-

1 provides a set of primitives to overtake this limit, allowing to exchange O2 objects.

Chapter 8: User Interaction Environment 118

The primitives are based on the C interface to the O2 OODBMS. Tools that want to

exchange O2 objects have to declare for each service request, an additional parameter

named SPADE of type char *. This system parameter must be passed as an argument

to the getO2par function, which retrieves the corresponding list of O2 objects from the

database. In addition, every reply to a service request must be preceeded by a call to

sendO2par, passing, as a parameter, the handle of a list of O2 objects.

As an example, consider a service-based object editor integrated in the DEC FUSE

environment. One of its exported services is the editing of an O2 object. An outline of

function which is called when the EditObject message is received, follows.

void FUSE_RECV_EditObject(char* command,

char* SPADE,

int call_id)

{

void* o2par;

char* par;

/* retrieves the O2 object list */

o2par = getO2par(SPADE);

... /* uses the object list */

/* sends the object list */

sendO2par(SPADE, o2par);

/* replies to the service request */

FUSE_reply(call_id, par);

}

Chapter 9

Conclusions

Our work concerned the development of SPADE-1 2.0. In this thesis we presented the

basic features and the design and implementation issues of the SPADE-1 2.0 environment.

By re-designing the SPADE-1 architecture and by implementing the whole system from

scratch, we have been able to provide:

� Improvement and extension of the SLANG modeling language including dynamicity,

powerful semantics and straightforward tool integration primitives (process modeler

point of view).

� Concurrent interpretation of SLANG activities, based on a distributed con�gurable

system.

� Powerful mechanisms for tool integration (tool developer point of view), control

integration at di�erent granularity levels, and data integration.

SPADE-1 2.0 is not meant to be a commercial package, nevertheless much e�orts

have been made to achieve good performance and easy-to-use powerful features. In this

perspective we claim that our work yielded a usable and complete system.

Future work

In order to prove the e�ectiveness of the SPADE principles, SPADE-1 2.0 must be used.

Thus, one task for the future is modeling and enacting real software processes. These

models should be able to use (and test) all the features of SPADE-1 2.0.

There are other future plans that are related to the validation of SPADE-1 2.0. In

particular the system supporting dynamicity must be tested. Accordingly, a model that

implements the editing of activities and types (meta-process) should be provided. A to-

tally dynamic mechanism with garbage collection facilities should be studied, considering

119

Chapter 9: Conclusions 120

performance trade-o�s. Some facilities for the SLANG process modeler should be im-

plemented, e.g., a SLANG debugger or a syntax-driven SLANG editor. These SLANG

programming tools should come with integration facilities in order to be integrated in the

meta-process.

Commercial Software Development Environment, like Sun Tooltalk or HP SoftBench,

should be integrated in the SPADE-1 2.0 environment, as it is for DEC FUSE.

The architecture of SPADE-1 2.0 could be analyzed in a more formal way. Compo-

nents could be given precise interfaces and connectors could be de�ned in terms of formal

protocols. This activity could help us in understanding the problems related to archi-

tectural description languages, and could highlight inconsistencies or redundancies in our

framework.

SPADE-1 2.0 numbers

Just to give the
avor of the implementation issues of SPADE-1 2.0 we report some

numbers.

SPADE-1 2.0 has been developed at CEFRIEL. The complete process took about ten

months. We delivered more than 16000 lines of code, 6000 lines of O2C code corresponding

to over 100 O2 classes, and more than 10000 lines of C and C++ code. We produced about

300 pages of documentation.

Bibliography

[ABGM92] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. Software Process

Representation Languages: Survey and Assessment. In Proceedings of the 4th

International Conference on Software Engineering and Knowledge Engineer-

ing, pages 455{462, Capri (Italy), June 1992. IEEE Computer Society Press.

[AG94a] Robert Allen and David Garlan. Beyond de�nition/use: Architectural inter-

connection. In Proceedings of the Workshop on Interface De�nition Languages,

Portland (OR), 1994.

[AG94b] Robert Allen and David Garlan. Formalizing Architectural Connection. In

Proceedings of the 16th International Conference on Software Engineering,

Sorrento (Italy), May 1994.

[BBFL93] S. Bandinelli, L. Baresi, A. Fuggetta, and L. Lavazza. Requirements and

Early Experiences in the Implementation of the SPADE Repository. In 8th

International Workshop on Software Processes, Berlin, 1993.

[BBFL94] S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza. The Architecture of

the SPADE-1 Process-Centered SEE. In 3rd European Workshop on Software

Process Technology, Grenoble (France), February 1994.

[BdPS93] P. Battiston, G. Galli de' Paratesi, and M. Signori. L'architettura di SPADE-

1, un Ambiente di Supporto al Processo di Sviluppo del Software. Technical

report, CEFRIEL, June 1993.

[BEM91] N. Belkhatir, J. Estublier, and W.L. Melo. ADELE 2 - An Approach to Soft-

ware Development Coordination. In Alfonso Fuggetta, Reidar Conradi, and

Vincenzo Ambriola, editors, Proceedings of the First European Workshop on

Software Process Modeling, Milano (Italy), May 1991. AICA{Italian National

Association for Computer Science.

121

BIBLIOGRAPHY 122

[BF93] S. Bandinelli and A. Fuggetta. Computational Re
ection in Software Process

Modeling: The SLANG Approach. In Proceedings of the 15th International

Conference on Software engineering, Baltimore, (USA), May 1993. IEEE.

[BFG93a] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process Modeling-in-the-large

with SLANG. In Proceedings of the Second International Conference on the

Software Process, Berlin (Germany), February 1993.

[BFG93b] Sergio Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Process Model Evolu-

tion in the SPADE Environment. IEEE Transactions on Software Engineer-

ing, 19(12):1128{1144, December 1993.

[BFGG92] S. Bandinelli, A. Fuggetta, C. Ghezzi, and S. Grigolli. Process Enactment

in SPADE. In Proceedings of the Second European Workshop on Software

Process Technology, Trondheim (Norway), September 1992. Springer-Verlag.

[BK91] N. Barghouti and G. Kaiser. Scaling up rule-based software development envi-

ronments. In Axel van Lamsweerde and Alfonso Fuggetta, editors, Proceedings

of ESEC '91{Third European Software Engineering Conference, volume 550 of

Lecture Notes on Computer Science, Milano (Italy), October 1991. Springer-

Verlag.

[Car94] Antonio Carzaniga. The SLANG Interpreter. Technical report, CEFRIEL,

1994.

[CPV94] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing

and Implementing Inter-Client Communication in the O2 Object Oriented

Database Management System. In Proceedings of the AICA ISOOMS,

September 1994. (to appear).

[Deu91] O. Deux. The O2 System. Communications of the ACM, 34(10), October

1991.

[Dig91a] Digital Equipment Corporation, Maynard, Massachusetts. DEC FUSE En-

CASE Manual, December 1991. Version 1.1.

[Dig91b] Digital Equipment Corporation, Maynard, Massachusetts. DEC FUSE Hand-

book, December 1991. Version 1.1.

[Fer92] Fabrizio Ferrandina. Uso di Basi di Dati ad Oggetti come Supporto ad un

Ambiente per la Modellizzazione dei Processi di Produzione del Software,

1992. Politecnico di Milano.

BIBLIOGRAPHY 123

[Fer93] C. Fernstr�om. PROCESS WEAVER: Adding Process Support to UNIX.

In Proceedings of the 2nd International Conference on the Software Process,

Berlin (Germany), February 1993.

[Ger90] C. Gerety. HP SoftBench: a new generation of Software Development Tools.

HP journal, June 1990.

[GJ82] Carlo Ghezzi and Mehdi Jazayeri. Programming Language Concepts. John

Wiley & Sons, 1982.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software

Engineering. Prentice Hall, Englewood Cli�s (NJ), 1991.

[GMMP91] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezz�e. A Uni�ed High-level Petri

Net Formalism for Time-critical Systems. IEEE Transactions on Software

Engineering, February 1991.

[gro93] The CEFRIEL group. Functional Requirements for the SPADE-1 Basic

Toolset. Technical Report RT930XX, CEFRIEL, Via Emanueli, 15 - 20126

Milano (Italy), December 1993.

[Gru91] V. Gruhn. Validation and Veri�cation of Software Process Models. PhD thesis,

University of Dortmund, 1991.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In

V. Ambriola and G. Tortora, editors, Advances in Software Engineering and

Knowledge Engineering, volume I. World Scienti�c Publishing Company, 1993.

[GZ94] Giorgio Girelli and Edoardo Ziliani. Un insieme di strumenti avanzati integrati

in un ambiente centrato sul processo: il caso di SPADE-1. Tesi di laurea,

Politecnico di Milano, Dipartimento di Elettronica ed Informazione, July 1994.

[Hel91] Dan Heller. Motif Programming Manual. O'Reilly & Associates, Inc, 1991.

[HSO90] D. Heimbigner, S. Sutton, and L. Osterweil. Managing change in process-

centered environments. In Proceedings of 4th ACM/SIGSOFT Symposium on

Software Development Environments, December 1990. In ACM SIGPLAN

Notices.

[ISO91] ISO 9000. Quality Management and Quality Assurance standards. ISO{

International Organization for Standardization, �rst edition, 1991.

BIBLIOGRAPHY 124

[Kel91] M. Kellner. Software Process Modeling Support for Management Planning and

Control. In Proceedings of the 1st. International Conference on the Software

Process, Redondo Beach CA (USA), October 1991.

[Lip93] Patrizia Lippi. De�nizione del linguaggio SLANG per la speci�ca dei processi

software. Tesi di laurea, Politecnico di Milano, Dipartimento di Elettronica

ed Informazione, July 1993.

[Mas93] Beppe De Mastro. A SLANG Model for a Software Product Review Process.

Technical report, CEFRIEL, 1993.

[O292] O2. The O2 User Manual. O2 Technology, 1992.

[Par94] Alessandro Parimbelli. L'integrazione di strumenti in un ambiente centrato

sul processo: l'esperienza di SPADE. Tesi di laurea, Politecnico di Milano,

Dipartimento di Elettronica ed Informazione, February 1994.

[Pic93] G. Picco. Modeling a real software process with slang. Internal Report

RI93059, CEFRIEL, Via Emanueli, 15 - 20126 Milano (Italy), June 1993.

[PS92] B. Peuschel and W. Sch�afer. Concepts and Implementation of a Rule-based

Process Engine. In Proceedings of the 14th International Conference on Soft-

ware Engineering, pages 262{279, Melbourne (Australia), May 1992. ACM-

IEEE.

[PV93] Gianpietro Picco and Giovanni Vigna. The SPADE Way to Inter-Client Com-

munications in < O2. Technical report, CEFRIEL, December 1993.

[Rei90] S. Reiss. Connecting Tools using Message Passing in the FIELD Program

Development Environment. IEEE Software, pages 57{67, July 1990.

[SIK93] M. Suzuki, A. Iwai, and T. Katayama. A Formal Model of Re-execution in

Software Process. In Proceedings of the 2nd International Conference on the

Software Process, Berlin (Germany), February 1993.

[Sun91] Sun MicroSystems, Inc. Solaris Open Windows: The ToolTalk Service, 1991.

[SvdB93] D. Schefstr�om and G. van den Broek. TOOL INTEGRATION. John Wiley

& Sons, 1993.

[tea93] GoodStep team. The SLANG 1.1 Process Modeling Language Reference Man-

ual. Project deliverable, GOODSTEP, October 1993.

BIBLIOGRAPHY 125

[VZ93] Giovanni Vigna and Edoardo Ziliani. The SPADE-1 Process Enactment En-

vironment Architecture. Technical report, CEFRIEL, 1993.

Appendix A

SLANG language

A.1 Guards formal semantics

Notation: Let AC be active copy whose activity de�nition contains a place P ; then:

CAC
P is the set of all the tokens currently in place P of active copy AC.

Let S be a set:

S1 is the set S itself

S
�
is the power set of S

Sn where n = 2; 3; 4; ::: is the subset of S� made of all the elements of S� having cardinality

n.

Example: place P of active copy X contains tokens a, b, and c:

CX
P;1 = fa; b; cg

CX
P;2 = ffa; bg; fa; cg; fc; bgg

CX
P;3 = ffa; b; cgg

CX
P;� = ffag; fbg; fcg; fa; bg; fa; cg; fc; bg; fa; b; cgg

CX
P;4 = �

Guard semantics : each free variable, corresponding to a place in the enabling tuple,

is implicitly under the scope of an existential quanti�er, thus a transition with two places

A and B with user guard:

p(A;B)

has the actual guard:

9A : 9B : A 2 CA;wA ^ B 2 CB;wB ^ p(A;B)

126

Appendix A: SLANG language 127

3 *

CBA

2

*

ED

Figure A.1: Example of a Transition.

where wA and wB are the weights of the arcs connecting places A and B to T.

A.2 Example of guard and action expansion

Example of variables in a transition We have the transition shown in �gure A.1,

being typA, typB, typC, typD and typE the types associated with places A, B, C, D and E.

The following local variable are de�ned:

o2 typB b;

o2 typC c;

o2 integer i;

The topological de�nition together with arc weight de�nes the following variables visible

to the guard:

/* input variables */

o2 typA A;

o2 unique set(typB) B;

o2 unique set(typC) C;

/* local variables */

o2 typB b;

o2 typC c;

Appendix A: SLANG language 128

o2 integer i;

and these are visible to the action:

/* input variables */

o2 typA A;

o2 unique set(typB) B;

o2 unique set(typC) in_C;

/* output variables */

o2 unique set(typD) D;

o2 unique set(typE) E;

o2 typC out_C;

/* user local variables */

o2 typB b;

o2 typC c;

o2 integer i;

The following de�nition are given for guard and action:

Guard:

forall c in C: exists b in B: (A->cod == b->xxx) && (b->yyy == c->zzz)

Action:

..

...

Here it is not important the actual action code, it is preferable to insert here a meaningless

code in order to focus on the compilation expansion.

Local variables:

o2 typB b;

o2 typC c;

They follow the standard O2C syntax.

Places A, B, C, D and E contain tokens of types typA, typB, typC, typD and typE respec-

tively. It is necessary to have all the types used in these sections as part of the schema;

the expansion and compilation methods assume all the necessary classes and types are

compiled in the schema.

The function associated with the guard de�nes the following variables:

Appendix A: SLANG language 129

A: typA;

B: unique set(typB);

C: unique set(typC);

corresponding to input places, other temporary variables are declared by the quanti�ers

expansion:

o2 boolean _tmp0;

o2 boolean _tmp1;

o2 boolean _tmp2;

The complete code for this function is:

/* GUARD */

function G_T(param:list(Container)):Tuple;

function body G_T(param:list(Container)):Tuple

{

o2 Tuple result;

o2 unique set(typA) A_set;

o2 typA A;

o2 unique set(unique set(typB)) B_set;

o2 unique set(typB) B;

o2 unique set(unique set(typC)) C_set;

o2 unique set(typC) C;

o2 boolean _tmp0;

o2 boolean _tmp1;

o2 boolean _tmp2;

o2 typB b;

o2 typC c;

A_set = (o2 unique set(typA))(param[0]->contents);

B_set = (o2 unique set(unique set(typB)))(param[1]->powerN(3));

C_set = (o2 unique set(unique set(typC)))(param[2]->power);

for(A in A_set)

for(B in B_set)

for(C in C_set)

{ _tmp0=true;

for(c in C)

{ _tmp1=false;

for(b in B)

Appendix A: SLANG language 130

{ _tmp2=(A->cod == b->xxx) && (b->yyy == c->zzz);

if(_tmp2)

{ _tmp1=true; break; }

}

if(!_tmp1)

{ _tmp0=false; break; }

}

if (_tmp0)

{

result = new Tuple;

result->elements = list();

result->elements += list(unique set(A));

result->elements += list(B);

result->elements += list(C);

return result;

}

}

return (o2 Tuple)nil;

};

Note that the return statements included by the expansion assigns the elements of the

resulting tuple according to their type.

Input variable declared and assigned with the appropriate cast like in the guard func-

tion. Output variable are declared and initialized:

o2 unique set(typD) D;

o2 unique set(typE) E;

o2 typC out_C;

The only ambiguous name is C so input and output variable are called in C and out C

respectively;

The function associated to the action is:

/* ACTION */

function A_T(param:Tuple):Tuple;

function body A_T(param:Tuple):Tuple

{

o2 Tuple result;

o2 typA A;

Appendix A: SLANG language 131

o2 unique set(typB) B;

o2 unique set(typC) in_C;

o2 unique set(typD) D;

o2 unique set(typE) E;

o2 typC out_C;

/* user local variables */

o2 typB b;

o2 typC c;

/* parameters substitution and init */

A= (o2 typA)element(param->elements[0]);

B = (o2 unique set(typB))param->elements[1];

in_C = (o2 unique set(typC))param->elements[2];

D= unique set();

E= unique set();

out_C= new typC;

/* user action code */

..

...

/* return values */

result = new Tuple;

result->elements = list();

result->elements += list(D);

result->elements += list(E);

result->elements += list(unique set(out_C));

return result;

};

Appendix B

Example of tool integration

This example uses the following tools:

Black box tools:

- emacs

- latex

Service-based tools:

- SPADELogin

- Xquestion

The interface of SPADELogin is

Notifications:

Services: -

The interface of Xquestion is:

Notifications:

Services:

The SLANG ADTs used in the process model corresponding to the example are:

class Element inherit ModelType public type

tuple(name: string,

responsible: string,

fileName: string,

compOK: boolean)

method public myTypeIs: string

132

Appendix B: Example of tool integration 133

end;

method body myTypeIs: string in class Element {

o2 string tmp;

if ((self->name)[0:2] == "Doc")

tmp = "Document";

else

tmp = "Chapter";

return tmp;

};

class Document inherit Element public type

tuple(chapters: list(string))

end;

class Chapter inherit Element public type

tuple(ownerDoc: string)

end;

class User inherit ModelType public type

tuple(name: string,

role: string,

usrDisplay: string,

xQuestionId: string)

end;

class Answer inherit ModelType public type

tuple(objName: string,

value: string)

end;

class UnixFile inherit ModelType public type

tuple(fileName: string,

owner: string)

Appendix B: Example of tool integration 134

end;

class Counter inherit ModelType public type

tuple(value: integer)

end;

The root activity is shown in Figure B.1 and the corresponding transition guards and

actions are the following:

ACTIVITY Root

TRANSITION RejectLogin

guard:

Answers1->value == "No" && Answers1->objName == AskingUsers->name

action:

TRANSITION ConfigureSystem

guard:

true

prologue:

extAction = "ServiceRequest 0 ConfigSCI + * Login* LoginMessages";

epilogue:

TRANSITION EvaluateLogin

guard:

true

local:

o2 User usr;

action:

Answers1->objName = LoginMessages->parameter(0);

for (usr in RegistredUsers) {

if (usr->name == LoginMessages->parameter(0)) {

Appendix B: Example of tool integration 135

*

Configure System

Start Enaction

Configured System

Login
Messages

Registred Users

Evaluate Login

Reject Login

Rejected Logins

Working Users

Edit/Compile/Quit

Quit

Chapters

Start Edit

End Edit

Document ?

Documents *

*

*

*

EDIT COMPILE

End Compile

Continue

Compiled Elements

Compiled Documents

Asking UsersAnswers 1

Selected Chapters

Answers 2

*

Compile

Answers 3

Selected Documents

Release Document ?

Answers 4
Release Document

Released Documents

Ended Enaction

End Enaction

*

*

Chapter &

No Compilation

Kill XQuestion

& Kill XQuestion

Documents’ Chapters

IsItAChapter ? IsItADocument ?

Pending Documents

Document Counter

Types

Activities

DynTreeLock

SuspendedAC

ACtoBeRestarted

SuspendingRequest

DynTree

Start
XQuestion

Compilation
Chapter

Compilation
Document

7

5

7

3

2

Figure B.1: Activity Root (and initial state for the root active copy).

Appendix B: Example of tool integration 136

AskingUsers->name = usr->name;

AskingUsers->role = usr->role;

AskingUsers->usrDisplay = LoginMessages->parameter(1);

Answers1->value = "Yes";

break;

}

}

if (Answers1->value != "Yes") {

Answers1->value = "No";

AskingUsers->name = LoginMessages->parameter(0);

}

TRANSITION StartXQuestion

guard:

Answers1->value == "Yes" && Answers1->objName == AskingUsers->name

prologue:

extAction = "ServiceRequest 0 StartTool rossini

/home/bach/se/SPADE/TEST/BIN/SPARC/xquestion -display "

+ AskingUsers->usrDisplay;

epilogue:

WorkingUsers = AskingUsers;

WorkingUsers->xQuestionId = extResult->parameter(0);

TRANSITION DocumentComp

guard:

forall s in Documents->chapters: exists ch in Chapters:

ch->name == s && Documents->responsible == WorkingUsers->name

&& WorkingUsers->role == "DR"

local:

o2 string s;

Appendix B: Example of tool integration 137

o2 Chapter ch;

prologue:

extAction = "ServiceRequest " + WorkingUsers->xQuestionId +

" QuestionDisplay Do you want to Compile your Document ?\

|Yes|No|";

epilogue:

Answers3->objName = Documents->name;

Answers3->value = extResult->parameter(0);

SelectedDocuments = Documents;

for (ch in Chapters) {

DocumentsChapters += unique set(ch);

}

TRANSITION NoCompilation

guard:

forall ch in DocumentsChapters:

ch->ownerDoc == SelectedDocuments->name &&

WorkingUsers->name == SelectedDocuments->responsible &&

WorkingUsers->role == "DR" && Answers3->value == "No"

local:

o2 Chapter ch;

prologue:

extAction = "ServiceRequest " +

WorkingUsers->xQuestionId + " QuestionKill";

epilogue:

Documents = SelectedDocuments;

for (ch in DocumentsChapters) {

Chapters += unique set(ch);

}

Appendix B: Example of tool integration 138

TRANSITION IsItADocument

guard:

forall ch in DocumentsChapters:

ch->ownerDoc == CompiledElements->name &&

CompiledElements->myTypeIs == "Document"

local:

o2 Chapter ch;

action:

CompiledDocuments->name = CompiledElements->name;

CompiledDocuments->responsible = CompiledElements->responsible;

CompiledDocuments->fileName = CompiledElements->fileName;

CompiledDocuments->compOK = CompiledElements->compOK;

for (ch in DocumentsChapters) {

CompiledDocuments->chapters += list(ch->name);

}

TRANSITION IsItAChapter

guard:

CompiledElements->myTypeIs == "Chapter" &&

CompiledElements->name == SelectedChapters->name

action:

Chapters->name = CompiledElements->name;

Chapters->responsible = CompiledElements->responsible;

Chapters->fileName = CompiledElements->fileName;

Chapters->compOK = CompiledElements->compOK;

Chapters->ownerDoc = SelectedChapters->ownerDoc;

TRANSITION EditCompileQuit

guard:

Chapters->responsible == WorkingUsers->name &&

Appendix B: Example of tool integration 139

WorkingUsers->role == "CR"

prologue:

extAction = "ServiceRequest " + WorkingUsers->xQuestionId +

" QuestionDisplay Choose an action to perform on

your Chapter |Edit|Compile|Quit|";

epilogue:

SelectedChapters = Chapters;

Answers2->objName = Chapters->name;

Answers2->value = extResult->parameter(0);

TRANSITION QuitChapter

guard:

Answers2->value == "Quit" &&

Answers2->objName == SelectedChapters->name &&

WorkingUsers->name == SelectedChapters->responsible

prologue:

extAction = "ServiceRequest " +

WorkingUsers->xQuestionId + " QuestionKill";

epilogue:

Chapters = SelectedChapters;

TRANSITION ReleaseDocument

guard:

CompiledDocuments->responsible == WorkingUsers->name &&

WorkingUsers->role == "DR"

prologue:

extAction = "ServiceRequest " + WorkingUsers->xQuestionId +

"QuestionDisplay Do you want to release your

Document ? |Yes|No|";

Appendix B: Example of tool integration 140

epilogue:

Answers4->objName = CompiledDocuments->name;

Answers4->value = extResult->parameter(0);

PendingDocuments = CompiledDocuments;

TRANSITION Continue

guard:

Answers4->value == "No" &&

Answers4->objName == PendingDocuments->name

action:

Documents = PendingDocuments;

TRANSITION RelDocAndQuit

guard:

Answers4->value == "Yes" &&

Answers4->objName == PendingDocuments->name &&

WorkingUsers->role == "DR"

prologue:

extAction = "ServiceRequest " +

WorkingUsers->xQuestionId + " QuestionKill";

epilogue:

ReleasedDocuments = PendingDocuments;

TRANSITION EndEnaction

guard:

forall d in ReleasedDocuments: exists usr in WorkingUsers:

count(ReleasedDocuments) == DocumentCounter->value &&

d->responsible == usr->name && usr->role == "DR"

Appendix B: Example of tool integration 141

local:

o2 User usr;

o2 Document d;

action:

INVOCATION Compile

INTRANSITION CompileDocument

guard:

Answers3->value == "Yes" &&

Answers3->objName == SelectedDocuments->name

INTRANSITION CompileChapter

guard:

Answers2->value == "Compile" &&

Answers2->objName == SelectedChapters->name

INVOCATION:

ACTIVITY Edit

INTRANSITION StartEdit

guard:

Answers2->value == "Edit" &&

Answers2->objName == SelectedChapters->name

Activity Compile is shown in Figure B.2 and the corresponding transition guards and

actions are the following:

ACTIVITY Compile

TRANSITION EndCompile

guard:

true

Appendix B: Example of tool integration 142

Working Users

Compiled Element

End Compile

SPADELatex

Element to be
Compiled

Compile Chapter Compile Document

Selected Chapters

Selected Documents Answers 3Answers 2

LATEX Result

Figure B.2: Activity Compile.

Appendix B: Example of tool integration 143

action:

CompiledElements = LatexResult;

TRANSITION SPADELatex

guard:

ElementToBeCompiled->responsible == WorkingUsers->name

local:

o2 SpadeText tmpTxt;

prologue:

extAction = "/usr/local/X11R5/bin/xterm -display " +

WorkingUsers->usrDisplay +

" -e $SPADE_ROOT/DEMO/LATEXDOC/SPADELatex " +

ElementToBeCompiled->fileName +

".tex; /bin/grep 'No pages' " +

ElementToBeCompiled->fileName + ".log > " +

ElementToBeCompiled->fileName + ".grp";

epilogue:

LatexResult = ElementToBeCompiled;

tmpTxt = new SpadeText;

tmpTxt->read_file(ElementToBeCompiled->fileName + ".grp", "w");

tmpTxt = new SpadeText;

if (tmpTxt->txtToStr == "\n")

LatexResult->compOK = true;

else

LatexResult->compOK = false;

TRANSITION CompileChapter

guard:

Answers2->value == "Compile" &&

Answers2->objName == SelectedChapters->name

Appendix B: Example of tool integration 144

action:

ElementToBeCompiled = SelectedChapters;

TRANSITION CompileDocument

guard:

Answers3->value == "Yes" &&

Answers3->objName == SelectedDocuments->name

action:

ElementToBeCompiled = SelectedDocuments;

Activity Edit is shown in Figure B.3 and the guards and actions of its transitions are:

ACTIVITY EDIT

TRANSITION ReEdit

guard:

WorkingChapter->compOK == false

action:

ChapterToBeEdited = WorkingChapter;

LogToBeViewed->fileName = WorkingChapter->fileName;

LogToBeViewed->owner = WorkingChapter->responsible;

TRANSITION Edit

guard:

ChapterToBeEdited->responsible == WorkingUsers->name

prologue:

extAction = "/usr/local/bin/emacs -display " +

WorkingUsers->usrDisplay + " " +

ChapterToBeEdited->fileName + ".chp";

epilogue:

ModifiedChapter = ChapterToBeEdited;

Appendix B: Example of tool integration 145

View Log

Viewed
Log to be

Edit

Viewed LogModified

End Edit

Chapters

Working Users

Chapter

Chapter to be
Edited

First Edit Re-edit

Start Edit

Answers 2

Selected Chapters

Working Chapter

Figure B.3: Activity Edit.

Appendix B: Example of tool integration 146

TRANSITION StartEdit

guard:

Answers2->value == "Edit" &&

Answers2->objName == SelectedChapters->name

action:

WorkingChapter = SelectedChapters;

TRANSITION FirstEdit

guard:

WorkingChapter->compOK == true

action:

ChapterToBeEdited = WorkingChapter;

ViewedLog->fileName = WorkingChapter->fileName;

ViewedLog->owner = WorkingChapter->responsible;

TRANSITION ViewLog

guard:

LogToBeViewed->owner == WorkingUsers->name

prologue:

extAction = "/usr/local/bin/emacs -display " +

WorkingUsers->usrDisplay + " " +

LogToBeViewed->fileName + ".log " +

" -f toggle-read-only ";

epilogue:

ViewedLog = LogToBeViewed;

TRANSITION EndEdit

guard:

Appendix B: Example of tool integration 147

ModifiedChapter->fileName == ViewedLog->fileName

action:

Chapters = ModifiedChapter;

Finally, the Root active copy initial state is given by the following assignments:

/* START ENACTION */

tk = new Token;

/* CHAPTERS place */

ch1 = new Chapter;

ch1->name = "TrialCh11";

ch1->responsible = "se6";

ch1->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/chapter11";

ch1->compOK = true;

ch1->ownerDoc = "DocTrial1";

ch2 = new Chapter;

ch2->name = "TrialCh12";

ch2->responsible = "se7";

ch2->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/chapter12";

ch2->compOK = true;

ch2->ownerDoc = "DocTrial1";

ch3 = new Chapter;

ch3->name = "TrialCh13";

ch3->responsible = "se9";

ch3->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/chapter13";

ch3->compOK = true;

ch3->ownerDoc = "DocTrial1";

Appendix B: Example of tool integration 148

ch4 = new Chapter;

ch4->name = "TrialCh21";

ch4->responsible = "se5";

ch4->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/chapter21";

ch4->compOK = true;

ch4->ownerDoc = "DocTrial2";

ch5 = new Chapter;

ch5->name = "TrialCh22";

ch5->responsible = "picco";

ch5->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/chapter22";

ch5->compOK = true;

ch5->ownerDoc = "DocTrial2";

/* USERS place */

usr1 = new User;

usr1->name = "baresi";

usr1->role = "DR";

usr2 = new User;

usr2->name = "bandinel";

usr2->role = "DR";

usr3 = new User;

usr3->name = "picco";

usr3->role = "CR";

usr4 = new User;

Appendix B: Example of tool integration 149

usr4->name = "se5";

usr4->role = "CR";

usr5 = new User;

usr5->name = "se6";

usr5->role = "CR";

usr6 = new User;

usr6->name = "se7";

usr6->role = "CR";

usr7 = new User;

usr7->name = "se9";

usr7->role = "CR";

/* DOCUMENTS place */

dc1 = new Document;

dc1->name = "DocTrial1";

dc1->responsible = "bandinel";

dc1->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/document1";

dc1->compOK = false;

dc1->chapters = list("TrialCh11", "TrialCh12", "TrialCh13");

dc2 = new Document;

dc2->name = "DocTrial2";

dc2->responsible = "baresi";

dc2->fileName = "$SPADE_ROOT/DEMO/LATEXDOC/document2";

dc2->compOK = false;

dc2->chapters = list("TrialCh21", "TrialCh22");

Appendix B: Example of tool integration 150

/* DOCUMENT COUNTER place */

cnt = new Counter;

cnt->value = 2;

/* TYPES place */

mt1 = new MetaType;

mt1->name = "UnixFile";

mt1->version = "1.0";

txt = new SpadeText;

txt->addStr("class UnixFile inherit ModelType public type");

txt->addStr("tuple(fileName: string,");

txt->addStr(" owner: string)");

txt->addStr("end;");

mt1->definition = txt;

mt2 = new MetaType;

mt2->name = "User";

mt2->version = "1.0";

txt = new SpadeText;

txt->addStr("class User inherit ModelType public type");

txt->addStr("tuple(name: string,");

txt->addStr(" role: string,");

txt->addStr(" usrDisplay: string)");

txt->addStr(" xQuestionId: string)");

txt->addStr("end;");

mt2->definition = txt;

Appendix B: Example of tool integration 151

mt3 = new MetaType;

mt3->name = "Document";

mt3->version = "1.0";

txt = new SpadeText;

txt->addStr("class Document inherit Element public type");

txt->addStr("tuple(chapters: list(string))");

txt->addStr("end;");

mt3->definition = txt;

mt4 = new MetaType;

mt4->name = "Chapter";

mt4->version = "1.0";

txt = new SpadeText;

txt->addStr("class Chapter inherit Element public type");

txt->addStr("tuple(ownerDoc: string)");

txt->addStr("end;");

mt4->definition = txt;

mt5 = new MetaType;

mt5->name = "Counter";

mt5->version = "1.0";

txt = new SpadeText;

txt->addStr("class Counter inherit ModelType public type");

txt->addStr("tuple(value: integer)");

txt->addStr("end;");

mt5->definition = txt;

Appendix B: Example of tool integration 152

mt6 = new MetaType;

mt6->name = "Answer";

mt6->version = "1.0";

txt = new SpadeText;

txt->addStr("class Answer inherit ModelType public type");

txt->addStr("tuple(objName: string,");

txt->addStr(" value: string)");

txt->addStr("end;");

mt6->definition = txt;

mt7 = new MetaType;

mt7->name = "Element";

mt7->version = "1.0";

txt = new SpadeText;

txt->addStr("class Element inherit ModelType public type");

txt->addStr("tuple(name: string,");

txt->addStr(" responsible: string,");

txt->addStr(" fileName: string)");

txt->addStr(" compOK: boolean)");

txt->addStr("method public myTypeIs: string");

txt->addStr("end;");

txt->addStr("method body myTypeIs: string in class Element {");

txt->addStr(" ");

txt->addStr("o2 string tmp;");

txt->addStr(" ");

txt->addStr("if ((self->name)[0:2] == \"Doc\"");

txt->addStr(" tmp = \"Document\";");

txt->addStr("else");

txt->addStr(" tmp = \"Chapter\";");

txt->addStr("return tmp;");

txt->addStr("};");

Appendix B: Example of tool integration 153

mt7->definition = txt;

/* ACTIVITIES place */

/* Here there are copy of Activity Root, Edit, Compile */

/* DYNAMIC TREE place */

dt = new DynamicTree;

dt->activeCopyId = 0;

tmpTreeNode = new TreeNode("root", 0);

dt->root = tmpTreeNode;

/* DYNAMIC TREE LOCK place */

tk = new Token;

/* PATH place */

ptN = new PathNode(0);

ptL = new PathList;

ptL->rootNode = ptN;

ptL->lastNode = ptN;

/* COUNTER place */

cntr = new CounterAC;

cntr->invokedActiveCopy = 0;

Appendix B: Example of tool integration 154

pl->addToken(cntr);

/* PLACECORRESP place */

acTab = new DynamicTable;

for (p in act2->places where p->corresp != unique set ()) {

for (ref in p->corresp) {

acTab->insertLocRef(p->name, (o2 KernelRef) ref);

};

};

Appendix C

Dynamicity of types and activities

In SPADE-1, a model de�nition (activities and types) is implemented by means of some

elements in the O2 schema. In particular guards and actions are associated with O2

functions. While types de�nition correspond to O2 classes. The changing of the model

causes the creation of new O2 classes and functions.

The objective of the schema management system is to manage the dynamicity of the

model. This means using the latest versions of types and activities. While keeping the

older versions for the active copies that refer to them.

C.1 Requirements

The schema management system should make sure that:

� every activity invocation binds the latest version of the activity de�nition and of all

the types and classes used.

� every running active copy refers to the versions of types and activity de�nition taken

at the time it has been invoked.

C.2 Principles

Schema management system is based on the following ideas:

� The interpreter ignores every schema manipulation.

� The interpreter assumes that the received active copy is READY to be executed.

That is: the functions corresponding to guards and actions are compiled and every

class used by these functions is in the schema.

155

Appendix C: Dynamicity of types and activities 156

� Everything concerning schema is managed at Activity/Types de�nition time.

� As the editing of Activities and Types is part of the process, the schema manage-

ment procedures are part of the meta-process. Thus it is the meta-process that is

responsible for schema maintenance and consistency.

C.3 Symbolic schema and O2 schema

When an activity is invoked, the de�nitions contained in places Types and Activities

apply. The newly created active copy uses these de�nitions. Suppose during the execution

of this active copy, a type is modi�ed and a new activity is invoked. Now the new de�nitions

bind the last active copy types. So we have two running active copies using two di�erent

de�nitions of one symbolic type. The schema management system must manage di�erent

\instances" or versions of a single \symbolic" class. The \symbolic" class is the de�nition

written by the process modeler. The O2 schema, on the other hand, contains the actual

\instances" of this class.

C.4 The SpadeClass SPADE class (!)

Schema management is carried out through some additional data structures encapsulating

types. A sort of type descriptor is provided by the class SpadeClass:

class SpadeClass inherit Token public type

tuple(public timeStamp: SpadeDate,

upToDate: boolean,

o2class: string,

name: string,

dependencies: list(string),

definition: SpadeText)

end;

Here is a brief description of each attribute:

name : is the symbolic class identi�er de�ned by user. It appears in other classes type,

places type and local variable declarations.

o2class : a class of the O2 schema implementing the symbolic de�nition, this identi�er

is substituted to the class symbolic name in every actual class and function of the

schema.

Appendix C: Dynamicity of types and activities 157

upToDate : is a boolean. It is true when the class is compiled in a consistent state. It

is set to false when the class is modi�ed or when its state is not consistent because

of the modi�cation of another class.

dependencies : is a list of all the classes related to this class. The consistency of the

class depends directly on the consistency of all the classes of the dependency list.

In other words, it is the list of the names of the classes \used" by this class. The

names of the classes in this list are the symbolic ones.

de�nition : it is the textual de�nition of the class, it includes its type, methods signatures

and methods bodies. As this text is edited by the process modeler, every variable

declaration and every signature refers to symbolic names for classes.

Dependency : The dependency (or \use") relationship is the core of all the type man-

agement system. The meaning of this relation is straightforward, it is anyway useful to

mention the di�erent occurrences of a used class. We say a class X uses class Y i�:

� X inherit from Y

� Y is used in the type of X

� Y is the return type of a method of X

� Y is the type of a parameter of a method of X

� Y is the type of a local variable of a method of X

Clearly the dependency relation is transitive, however the dependencies attribute of a

SpadeClass stores the direct dependencies only.

The Types global place is a SpadeClass token container. Each ModelType class is

represented by a SpadeClass token.

C.5 The TypeSet SPADE class

Due to the dependency relations, the editing of one class often involves a large number of

classes. The SPADE class TypeSet has been de�ned to group a set of related classes. The

de�nition is simple:

class TypeSet

public type

tuple(classes: list(SpadeClass));

end;

Appendix C: Dynamicity of types and activities 158

This class implements the core procedures of the schema management system. Three

methods are de�ned for this purpose:

method public closure(name:string) in class TypeSet;

method public substitute(c:SpadeClass):string in class TypeSet;

method public compile in class TypeSet;

Section C.6 gives the details about these methods, further an example of the use of such

features in a meta-process is presented.

The functionalities of a TypeSet object assure consistency only if its class list is closed

with respect to the dependency relation. In turns, for each SpadeClass C of a TypeSet T ,

all the classes that are \used" by C must be included in T . The forementioned example

also shows a guard expression that binds a closed set of types.

Each active copy has its TypeSet. The types mentioned for an activity TypeSet are

related to:

� places (typeName)

� local variables declarations

For example consider classes A, B and C de�ned by user as follows:

class A inherit ModelType

public type

tuple(num:integer,

x: C)

end;

class B inherit A

public type

tuple(name:string)

end;

class C inherit ModelType

public type

tuple(stack: list(B))

end;

The corresponding entries in a TypeSet are:

Appendix C: Dynamicity of types and activities 159

name O2class upToDate dependencies de�nition

A A1 true C ...

B B3 true A ...

C C1 true B ...

Class A depends on ModelType because of the inheritance relationship and it depends

on C because of a use relationship. Note that, since dependency is a transitive relationship,

actually class C depends on class A (and vice versa). However only direct dependencies

appear in the table.

Each activity has a reduced TypeSet. The types stored in an activity TypeSet are

related to:

� places (typeName)

� local variables declarations

when the activity is a token of the place Activities, the table shows the latest binding

between actual and symbolic classes.

Every active copy holds in its activity de�nition its private table which keeps the values

given at creation time, taken from the Activities place. These data are used whenever the

active copy is suspended, for activity and type modi�cation.

C.6 Schema modi�cations

The goal of the schema management system (see section C.1) is well described by the

following invariant statement:

Every TypeSet must be \upToDate", if the TypeSet is bound to an Activity, then the Activ-

ity must be compiled with that TypeSet. In this section the details of TypeSets maintenance

and consistency procedures are investigated.

Every modi�cation of a typeSet is originated by a type modi�cation. So suppose the

following TypeSet represent place Types:

name O2class upToDate dependencies de�nition

A A1 true B, D ...

B B3 true - ...

C C1 true B ...

D X7 true C ...

while place Activities contains activity AC1 using types A and B. The activity is com-

piled with the binding A! A1 and B! B3, so the invariant statement is clearly satis�ed.

Appendix C: Dynamicity of types and activities 160

Now suppose class C is modi�ed and saved. This user action triggers some meta-process

procedures:

1. compute the obsolete classes set (transitive closure).

(a) set upToDate to false for class C.

(b) for each class, check the classes in the dependency list. If one of the class of

the list is not upToDate, then set that class not upToDate.

(c) repeat step 1b until no more classes become obsolete.

In our example the result would be:

name O2class upToDate dependencies de�nition

A A1 false B, D ...

B B3 true - ...

C C1 false B ...

D X7 false C ...

2. for each obsolete class choose a new class name.

3. compile new classes prototypes:

class _C2

end;

class _X8

end;

...

now the TypeSet is �lled in with the new names:

name O2class upToDate dependencies de�nition

A A2 false B, D ...

B B3 true - ...

C C2 false B ...

D X8 false C ...

4. for each obsolete class, every occurrence of any obsolete symbolic class name is

replaced with the new actual name.

Appendix C: Dynamicity of types and activities 161

5. for each obsolete class, the new full description is compiled.

6. the Activities a�ected by table updates are compiled: every transition guard and

action function is compiled.

Again, since all these procedures access the global places Activity and Types, they

must be included in the meta-process activity.

C.7 Activity invocation

The kernel-SLANG expansion of an activity invocation should provide a deep copy of all

the type de�nition used in the activity in addition to the private copy of the above table.

The de�nitions copied are taken from the place Types

C.8 Schema garbage collection

This schema management system produces lots of classes and functions. Many of these

classes become soon obsolete because of activity or types modi�cations. The schema

management system should cope with the growing number of obsolete classes.

First of all let us de�ne clearly what does obsolete mean. An actual class X class

becomes obsolete when:

� it is not yet the latest actual class of any symbolic class, in the activity de�nitions.

� no active copies (running or \token") use X in their tables.

Note that the class is obsolete only when both these conditions apply. The �rst one is very

easy to verify. An actual class is no longer the latest version of a global type de�nition, as

soon as this de�nition is modi�ed.

The second condition poses some serious problems. It is very di�cult to verify because

active copies and activities can be tokens, and the condition must be valid for the whole

process model. Thus a complete check would involve all the active copies and their state.

In this perspective it is not clear whether this procedure is part of the model or it must

be performed \o� line" by suspending the whole process.

Here are two ideas:

� No run-time garbage collection is provided. The number of the classes of the

schema grows monotonically. Actual classes (under ModelType) are removed from

the schema when the root active copy terminates.

Appendix C: Dynamicity of types and activities 162

+ : very simple and fast solution.

� : a long lasting model would probably be stuck because of schema saturation.

� A periodic \overnight" house keeping procedure could suspend the execution allow-

ing a complete check of the model data. All the functions and classes that are not

referenced by any de�nition can be deleted.

+ : an e�ective solution.

� : this procedure must be manually activated. It require global suspension mecha-

nisms. This procedure should navigate throughout the active copies, visiting their

state and their temporary edata structures.

A usable mechanism for schema garbage collection is not yet implemented.

