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Abstract—In a best-effort publish/subscribe network, publica-
tions may be delivered out of order (e.g., violating FIFO order).
We contend that the primary cause of such ordering violations
is the parallel matching and forwarding process employed by
brokers to achieve high throughput. In this paper, we present
an end-to-end method to improve event ordering. The method
involves the receiver and minimally the sender, but otherwise
uses the broker network as a black box. The idea is to analyze
the dynamics of the network, and in particular to measure the
delivery delay and its variation, which is directly related to out-
of-order delivery. With these measures, receivers can determine
a near-optimal latch time to defer message delivery upon the
detection of a hole in the message sequence number. We evaluate
the performance of this ordering scheme empirically in terms
of the reduction in out-of-order deliveries, the delay imposed by
the latch time, and its automatic adaptability to variable network
conditions and input loads.

I. INTRODUCTION

In the content-based publish/subscribe communication

model, or simply content-based communication, the address-

ing of messages is implicit and controlled by the receivers.

Receivers express their interests through subscriptions that

state conditions on the content of messages, while senders

simply publish messages without any set address. Each mes-

sage is then delivered to all receivers whose interests match

the content of the message. Content-based communication

has a variety of applications, such as system monitoring and

management, information dissemination, resource discovery,

stream processing, and distributed simulation.

In spite of substantial efforts to devise and implement robust

and efficient content-based publish/subscribe systems [1], [2],

[3], [4], a few proposals have considered the issue of message

ordering and its most basic form, FIFO ordering: two messages

published by the same sender must be delivered to a receiver

in the same order they were published. FIFO ordering is

typically implemented using sequence numbers set on the

sender side to reflect the sending order, and checked on the

receiver side to enforce the same order for delivery [5]. When

the network delivers a message with a higher-than-expected

sequence number, the receiver must decide whether to wait for

the missing message or to proceed by delivering the message

it has received. However, because of the implicit addressing

induced by the content-based model, the receiver does not

know whether the hole in the sequence is due to a message

that was delayed along the delivery path, or to a message that

does not match the receiver’s interests.

In this paper we present a probabilistic method to achieve

FIFO ordering in content-based communication. We illustrate

this method using B-DRP, a high-throughput content-based

network [6]. B-DRP implements “best-effort” with respect to

ordering and reliability, does not store messages at interme-

diate brokers, and does not use acknowledgments to confirm

delivery. Also, B-DRP’s design is intended to achieve high

delivery rates thanks to an efficient routing scheme as well as

highly parallelized matching and processing within brokers.

Thus, B-DRP is arguably an ideal testbed to experiment with

message ordering. Yet, the method is generic, as it applies to

end-points (publishers and subscribers) and treats the whole

network as a black box.

Intuitively, FIFO violations are caused by short-term varia-

tions of the end-to-end delay of messages, which may occur

in the presence of different delivery paths or if the forwarding

process is parallelized and therefore does not itself maintain

FIFO ordering. At a high-level, our approach is to measure

the delay variations, and then compensate for their effect.

To understand and measure delay variations, we study the

dynamics of an actual content-based network. We show that

the end-to-end delay of messages along a specific path follows

a hypoexponential distribution. We also develop a way to

measure the parameters of this distribution dynamically, and

therefore a method to calculate the probability of a FIFO

violation upon the observation of a hole in the sequence

numbers. We also use the same model and technique to

estimate the necessary latch time (i.e., deferring the delivery

of messages to the application) to reduce the probability of

a FIFO violation. We then enhance the receiver’s decision

algorithm with a method to estimate the relevance of missing

messages, to prevent the unnecessary holding of a message

when none of the missing messages matches any local interest.

We have fully implemented and experimentally evaluated

our technique. Extensive experiments with networks of up to

46 brokers and 2500 clients reveal that our model reflects the

dynamics of the network in various working conditions, and is

able to avoid more than 95% of FIFO violations while keeping

the extra delay caused by latching to a minimum.

In Section II we begin by motivating this work and

overviewing the problem and our proposed solution. We then

detail the model and our probabilistic FIFO ordering algorithm

in Section III. We present an experimental evaluation of the

proposed algorithm in Section IV. We review related work in

Section V, and offer some concluding remarks in Section VI.
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II. OVERVIEW OF PROBLEM AND SOLUTION

FIFO is a simple ordering condition defined for each

sender/receiver pair: considering a sender s and a receiver

r, for every pair of messages m1 and m2 sent by s and

received by r, a FIFO violation occurs whenever s sends m1

before m2 but r receives m2 before m1. It is also useful to

express this condition in terms of the total travel time of each

message: let departure(m) be the departure time of a message

m, and assume δ = departure(m2)−departure(m1) > 0; let

arrival(m) be the arrival time, and delay(m) = arrival(m)−
departure(m) the total travel time of a message m. Then, a

FIFO violation occurs when delay(m1)− delay(m2) > δ.

Furthermore, the total travel time of a message can be

expressed as the sum delay(m) = delay∗(m) + vardelay(m)
of a nominal delay, delay∗(m), representing the long-term-

average link, queuing, and processing delays, plus a short-

term-variable delay vardelay(m). This distinction is useful

because, ignoring pathological cases, FIFO violations occur

only when the departure interval δ is small, and therefore when

the long-term-average delays of m1 and m2 can be reasonably

considered constant. This means that FIFO violations are

essentially a function of the short-term-variable delays and

the departure interval δ. Specifically,

FIFO violation ⇔ vardelay(m1)− vardelay(m2) > δ (1)

Equation (1) expresses the essence of the problem as well

as the idea upon which we develop a solution.

Our guiding principle is to address FIFO violations with

an end-to-end solution. This means that we propose to detect

FIFO violations and perform the necessary reordering on the

receiver side and independently of the underlying network.

This mechanism can be incorporated into the client’s mid-

dleware or be part of the application logic. This design has

multiple advantages, the most important of which is that

it is applicable to virtually every publish/subscribe system,

regardless of their architectures, routing protocols, and broker

technologies. Moreover, maintaining FIFO ordering within

brokers can be memory intensive and would delay all messages

without distinction. By contrast, when ordering is handled

by end-points, it is up to the client to decide the right

balance between strictness of the ordering and cost in terms

of additional delivery delay.

FIFO ordering is typically implemented with sequence

numbers attached to each message by the sender to reflect the

sending order, and used by receivers to follow the same order

for delivery. One might try to apply the same sequencing tech-

nique to content-based communication. However, in this case,

holes in the sequence (e.g., receiving m7 immediately after

m5) must be treated differently. Specifically, because of the

implicit addressing of the content-based model, the receiver

does not know—and in some cases it can not know—whether

a hole in the sequence is due to a message being delayed along

the delivery path (e.g., due to its longer processing time) or

whether that message was not supposed to be delivered at all

because it does not match the receiver’s interests.

Therefore, in order to avoid (or minimize) FIFO violations,

we must solve two problems: first, a receiver must decide

whether or not to wait for a missing message; second, if

the missing message is determined to be likely to arrive,

the receiver must determine an appropriate buffering time (or

“latch” time) for the message(s) received out of order. The next

section details our solution to each one of these two problems.

III. PROBABILISTIC FIFO ORDERING

The method we propose is probabilistic in nature, since it

is based on a probabilistic model of delay variations. We now

detail this model and how we use it to reduce FIFO violations.

A. Model of end-to-end delay

We model the end-to-end delay of a message m as the

sum of a long-term average delay plus a short-term variation

vardelay(m). Since we are interested in comparing the end-

to-end delay of pairs of messages sent by the same publisher

within a short interval, we consider the long-term-average

component of these delays to be the same. Thus, we focus

on the delay variation vardelay(m). In particular, we model

vardelay(m) as a random variable with a probability distri-

bution whose parameters are also constant during the short

interval that separates two consecutive messages.

In general, the variable component of the processing time

(including queuing) and the transmission times at each hop

in the publish/subscribe network contribute to the end-to-

end variable delay. Typically, a broker has a set of tables to

store subscriptions and routing information, and forwarding

a message involves comparisons against the entries of the

subscriptions table and/or a lookup in the routing table. As a

result, the processing time may vary according to several fac-

tors, including the number of subscriptions, their constraints,

the number of attributes in the message, and the matching

algorithm, which might itself be randomized.

Furthermore, in a typical modern implementation on multi-

processor hardware, the forwarding process is usually paral-

lelized for maximum throughput, at a minimum with each

message handled by a separate thread, and possibly with

finer-grained parallelism. Therefore, since forwarding incurs

minimal (if any) contention on shared data, the processing

times for two different messages are mostly independent.

Similar considerations apply to the transmission time, although

typically with much less variability, to the point that transmis-

sion time for two messages published withing a small time

frame can be considered equal.

In summary, considering two messages m1 and m2 that

might give rise to a FIFO violation, we model their short-

term variable delays vardelay(m1) and vardelay(m2) as

two independent and identically distributed random variables

whose distribution depends essentially on the processing time

in brokers. (We validate this model experimentally and discuss

our findings in Section IV-A.) Thus, our goal is to charac-

terize this distribution in general, and then to measure and

parametrize it at run-time.
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B. Measuring delay differences

Measuring end-to-end delays with a significant precision

requires synchronized clocks, and therefore is not practi-

cal outside of a tightly controlled environment. On the

other hand, the difference between the delays of two mes-

sages m1 and m2 can be readily computed, without syn-

chronized clocks, using the time stamps associated with

messages. In practice, a receiver stores the departure time

departure(mi) stamped on mi by the sender, records its

arrival time arrival(mi), and also records departure and

arrival times, departure(mi−1) and arrival(mi−1), for the

previous message mi−1. With this information, it computes

delay(mi)−delay(mi−1) = [arrival(mi)−arrival(mi−1)]−
[departure(mi)−departure(mi−1)]. The crucial point here is

that, by subtracting a departure time from a departure time, and

an arrival time from an arrival time, the result is not affected

by the lag between the two clocks. We do assume though that

the imprecision due to clock drift during delivery is negligible.

In summary, a receiver can measure the distribution of the

difference between end-to-end delays, and can then use it

as the basis for the estimation of the probability of FIFO

violation and the estimation of the optimal latch time. In our

model, any two messages that a subscriber receives from a

specific publisher go through the same route and hence the

same number of brokers. Consider two messages mx and

my received by a subscriber that is k brokers away from

the publisher. Subtracting the delay of two messages cancels

out the constant component of the delay and the subtraction

reduces to subtracting two random variables. Writing each

variable in terms of its components we have:

delay(mx)− delay(my) =

(X1 +X2 + · · ·+Xk)− (Y1 + Y2 + · · ·+ Yk) =

(X1 − Y1) + (X2 − Y2) + · · ·+ (Xk − Yk) (2)

where Xi and Yi, 1 ≤ i ≤ k, are the independent and

identically distributed random variables representing the pro-

cessing time of messages mx and my at each broker i.
Observe that in the last form of Equation (2) each term of

the summation (i.e., Xi − Yi) is itself the difference between

two independent and identically distributed random variables

and hence is a symmetric random variable with a mean of

zero. As such, without making any further assumption about

any of the random variables involved in this equation, we

can find probabilistic bounds on the value of the above delay

difference using, for example, Chebyshev’s inequality. In more

specific cases, when the broker-hop count is known (e.g., from

a hop-count header) we can also use Bernstein inequalities or

Hoeffding’s inequality to find better bounds. This is indeed

of great advantage because as we will detail later, to find the

latch time we need to find the probability of delay difference

being more than a given value.

Due to space limitations, we do not elaborate further on the

use of probabilistic inequalities in the general case. Instead, we

focus on a more accurate characterizations of the distribution

of delay differences, and how to measure its parameters.

C. End-to-end delay distribution

In order to model the difference between end-to-end delays,

which is the observable distribution for a receiver, we start

from the distribution of end-to-end delays. In the context of

IP networks, researchers have proposed different models to

describe end-to-end packet delays. For instance, Zhang et al.

found that a power-law distribution offers a good model [7],

while Mukherjee [8] reported that Internet packet delays can

be represented by a shifted Gamma distribution whose shape

and location factor depend on traffic load and path length.

In our experiments with many various combinations of

parameters (e.g., network size and topology, subscription and

publication patterns and rates, and link delays) we observed

that neither Gamma nor power-law distributions fit the traces

of the end-to-end message delay. Figure 1a shows the delay

distribution for messages received by a subscriber from a pub-

lisher through 3 brokers. All delays have a fixed component

of 100 milliseconds, since the two inter-broker links have a

delay of 50 milliseconds. Beyond that, this distribution has

two pronounced characteristics: a long tail (low frequencies at

large values) and a large density around its mean.

As mentioned in Section III-A, the variable component of

the delay of a message is the sum of the processing delays

at all the brokers the message goes through. So, we begin the

analysis with a specific experiment to measure the distribution

of processing times in a single broker. In a typical setup with

a few brokers and 10 clients per broker, we observed that

most messages are processed in a few milliseconds while a

few of them need longer processing times. More specifically,

in the case of our subject system B-DRP, measurements

with different combinations of workload parameters (number

and sizes of subscriptions, number and sizes of messages)

reveal that the processing time is best fit by an exponential

distribution.

We therefore proceed to model the variable component of

the end-to-end delay as the sum of n exponentially distributed

random variables, where n is the number of brokers between

the publisher and the subscriber. The result is what is called a

hypoexponential distribution, which is a member of a general

class of distributions called phase type distributions. To test

this model, we use a method described by Asmussen et al. [9]

to fit the measured end-to-end delay (minus the fixed inter-

broker delay component) within a hypoexponential distribu-

tion with the appropriate number of phases, where a phase

corresponds to a hop in the network. We measured delays

under a variety of configurations and with different numbers

of brokers and topologies up to a diameter of 10 hops. In all

cases, the data closely follow the theoretical distribution.

Figure 1b shows the cumulative distribution function of

6500 samples of end-to-end delay measurements, for a given

publisher-subscriber pair, fitted into a hypoexponential distri-

bution with 5 phases (in the experiment, the publisher and the

subscriber were 5 brokers apart). Next, we detail how we use

this model to find the distribution of delay differences.
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Fig. 1. (a) End-to-end delays for a sender/receiver pair 3 brokers apart. (b) Cumulative distribution of end-to-end delay samples fitted to a 5-phase
hypoexponential distribution. (c) Histogram of the delay difference for a sender and receiver separated by 5 brokers. The thick line is the approximation with
the sum of two Laplacian random variables.

D. Distribution of delay differences

We established that the end-to-end delay of a message is a

hypoexponential random variable, resulting from the sum of

exponentially distributed random variables, each representing

the processing time at a broker.

Therefore each term in the second form of Equation 2

(i.e., Xi − Yi) is the difference of two identically distributed

exponential random variables, which is known as a Laplacian
random variable. It follows that the distribution of differences

of end-to-end delays is the sum of independent Laplacian

random variables. The probability density function of a Lapla-

cian random variable is f(x) = 1
2be

− |x−μ|
b where μ is the

mean of the distribution and b is its scale parameter. So, our

analysis shows that the difference between end-to-end delays

for a given publisher/subscriber pair can be modeled as the

sum of k Laplacian random variables, where k is the number

of hops between the publisher and the subscriber. However,

unfortunately, determining an analytical expression of the dis-

tribution of the sum of k > 2 Laplacian random variables with

different scale parameters is still an open problem [10]. So, as

an approximation, we use the statistical properties—namely,

the probability distribution, cumulative density, and quantile

functions—of the sum of two Laplacian random variables.

Even though this model is not mathematically rigorous, we

have empirical evidence that the two-sum distribution also fits

reasonably well the sum of up to 8 Laplacian random vari-

ables. The sum of two independent and identically distributed

Laplacian random variables with mean μ = 0 and scale factor

b has probability density f(x) = (|x|+b)
4b2 e−

|x|
b and cumulative

distribution F (x) = Pr[X < x] for X > 0

F (x) = 1− (2b+ x)

4b
e−

x
b (x > 0) (3)

The estimation of the scale factor b based on a set of n samples

is possible with maximum likelihood estimation, which yields

b = 2
3n

∑n
i=1 |xi|. Figure 1c shows the histogram of delay

differences for messages received 5 hops away from the

sender. The thick line represents the sum of two Laplacian

random variables whose parameter is estimated from the data.

The sharp spike around zero, falls outside of the approximate

distribution because of the approximation of sum of 5 random

variables to only two. In other words, as the number of broker-

hops increases, the density of the real distribution increases

around the mean and the tails become shorter, while the

approximation is less dense around zero but has longer tails.

This does not cause a problem though, since in determining

the latch time, the likelihood of the extreme values of delay

difference is used (i.e., the tails of its distribution) which we

will detail next.

E. Determining the latch time
Based on the model we developed, we now go back to

Equation (1) to estimate the probability that m1 and m2 are

received out of order (a FIFO violation). This probability is

a function of the difference between their departure times,

δ = departure(m1)− departure(m2). In particular,

Pr[FIFO Violation] = Pr[delay(m1)− delay(m2) > δ]

= 1− Pr[delay(m1)− delay(m2) < δ] = 1− F (δ)

where F (·) is the cumulative distribution of delay differences.
Whenever the receiver detects a gap in the sequence num-

bers, it can virtually increase δ by latching the messages

whose delivery would cause the FIFO violations so that the

probability of a FIFO violation drops below a given threshold.

More precisely, we would like to determine a latch time τ that

reduces the FIFO violation probability below a given threshold

Pt for a pair of messages m1 and m2 published δ time units

apart from each other. Thus

τ = F−1(1− Pt)− δ (4)

where F−1 is the quantile function of the delay variation.

Intuitively, τ is the minimum amount of time that the receiver

has to hold m2 and wait for the missing message m1 based on

the sampled delay difference. We call Pt the FIFO violation
coefficient. Higher values of Pt map to smaller latch times and

more FIFO violations. F−1 is the inverse of Equation (3) and

corresponds to

F−1(p) = b[ω(4e−2(p− 1)) + 2] (0.5 ≤ p ≤ 1) (5)

where ω(·) is the Lambert Omega Function, and can be

efficiently computed using several existing numerical methods.
Now let us consider cases with more than one message

missing (e.g., a receiver receives message m6 immediately

followed by m10).
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Let Φ(m,n) denote the occurrence of a FIFO violation for

messages m and n, let δm,n = departure(m)− departure(n)
denote the time difference between the publication time of two

messages m and n, and let τm,n be the latch time given by

Equation (5) for messages m and n. Since δ10,9 ≤ δ10,8 ≤
δ10,7 it follows that Pr[Φ(m9,m10)] ≥ Pr[Φ(m8,m10)] ≥
Pr[Φ(m7,m10)] and therefore τ9,10 ≥ τ8,10 ≥ τ7,10.

In words, in this probabilistic model, the latch time is

independent of the number of messages in a chain of missing

messages. In such cases, in order to calculate the latch time,

the receiver only considers the time difference between the

latest received message and the latest missing message.

F. Publication record

So far we have assumed that whenever there is a gap in

the message sequence number, the missing messages would

match the interests of the receiver. This assumption enforces

the assessment of a latch time upon every message that causes

a gap in the sequence, even when the missing messages

are not even supposed to be received because they do not

match the subscriber’s interest. Obviously, this may introduce

unnecessary delivery delays.

To eliminate (or reduce) this problem, we propose to attach

to each message some information about previously published

messages along with their publication timestamps. We call

this information the publication record of the publisher. As

a simplistic example, consider attaching to each message a

copy of the previous 3 messages sent by the same publisher.

In this case, a receiver receiving m10 right after m6, and

therefore detecting a gap of three messages, might be able

to deliver m10 immediately after checking that none of the

missing messages (attached to m10) matches its subscriptions.

The question then becomes how to compile a compact and yet

informative publication record.

In topic-based pub/sub systems this is easily achieved by

attaching the topic of the last k messages to each new

publication. Things are not as simple in content-based pub-

lish/subscribe systems, although it is possible to attach a

summary of the content of the previous k messages. A good

encoding for this summary is a message representation based

on Bloom filters that we developed for B-DRP. The salient

properties of this encoding, which we detail elsewhere [6],

are that it is compact and it admits to a fast matching

algorithm, but it may incur false positives, meaning that an

encoded message may be found to match the interests of the

receiver while the original message would not. This does not

compromise correctness but may lead to unnecessary delays.

Nevertheless, given that in general only a small percentage

of the publications of a publisher match the interests of a

given subscriber, in most cases this simple method is effective

in preventing unnecessary delivery delays. We call this the

enhanced mode of the probabilistic FIFO ordering protocol as

opposed to the basic mode in which messages do not carry

any publication record.

As mentioned above at the end of Section III-E, when

the sequence number gap contains more than one message,

in basic mode the receiver has to consider only the latest

missing message. Instead, in enhanced mode, the receiver has

to consider only the latest missing message that is found to

match local subscriptions. Referring to the example where a

receiver receives message m6 immediately followed by m10,

if the receiver detects that m9 does not match local interests

(through the publication record attached to m10) but m8 is of

interest, it takes m8 into account to calculate δ in Equation (4)

since m9 will not be received anyway.

We are currently studying ways in which we can exploit

temporal locality of events to increase efficiency of our encod-

ing scheme. Generally speaking, temporal locality of events

implies that events published close to each other in time (by

the same publisher) are likely to have similar contents, which

could lead to additional compression in publication records

and therefore to the reduction of transmission overhead.

IV. EVALUATION

We implemented the recovery protocol as a pluggable

module which integrates into any publish/subscribe application

and protocol. Specifically, the publication record and other

metadata that is required by the ordering protocol is attached

to messages as an array of bytes, perceived by brokers as

application payload.

We now present the experimental evaluation of the FIFO

ordering method proposed in this paper. This evaluation

addresses three high-level questions. First, it validates the

statistical models, developed in Section III, upon which the

method is built. Second, it evaluates the benefits, costs, and

scalability of the method in its basic and enhanced form. Third,

it evaluates the ability of the method to respond and adapt to

dynamic workloads.

We ran all our experiments on a testbed consisting of a

cluster of Dell PowerEdge with two dual core 2GHz AMD

Opteron processors and 4GB of main memory running Linux

with a 2.6.32 kernel. Connectivity is through an isolated high-

throughput Gigabit Ethernet switch. B-DRP is implemented in

Java and runs on the 64-bit open-JDK VM. More details on

these experiments that we can not include here are available

in a technical report [11].

A. Network delay model validation

This first experiment we present corresponds to a network of

8 brokers, diameter 3, in which messages are published with

increasing and variable rates intended to induce low traffic,

high traffic, and up to congestion in brokers. In these varied

conditions, we look at the distribution of end-to-end delays

and their variations.

In order to validate the model we formulated, we iso-

late a single publisher/subscriber pair and measure end-to-

end delays and delay differences. We purposely select a

publisher/subscriber pair that experiences an intense flow of

messages that ultimately causes congestion in the intermediate

brokers. We first examine the delay of pairs of consecutive

messages recorded over the entire duration of the experiment.

The results are reported in the scatter-plot of Figure 2a. The
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Fig. 2. (a) End-to-end delays of consecutive messages for a chosen pair of publisher and subscriber. (b) and (c) Delay variation distribution for messages
with end-to-end delay below and above 1500ms, respectively.

plot highlights two facts. First, the delays of two consecutive

messages are highly correlated; second, the delays vary sig-

nificantly throughout the experiment, and since the data refers

to a single publisher/subscriber pair, this indicates the effect

of significant queuing delays.

We then take a closer look at the effect of delays and

congestion, on delay variation. In particular, we test our

intuition that queuing delays do not have any substantial effect

on the distribution of delay variation. To do that, we consider

the distributions of delay variations for delays above and below

1500ms, respectively. The two distributions, plotted in figures

2b and 2c, respectively, demonstrate that the delay variations

are essentially independent from the delay. A Wilcoxon rank-

sum test confirms this visual analysis with a p-value of 0.35.

B. Effectiveness of the ordering protocol

We evaluate the effectiveness of the ordering protocol

through various experiments. In general, these experiments are

intended to measure both the reduction in FIFO violations and

the additional latency incurred by the protocol. Specifically, to

characterize the trade-offs between these benefits and costs

and also to obtain a comparative baseline, we juxtapose

the performance of our probabilistic protocol with that of a

simpler protocol that uses a static latch time. This protocol

latches each message that creates a gap for a fixed amount of

time. However, to obtain the most conservative comparison,

we first select the parameters of our probabilistic protocol

and measure its performance in terms of FIFO violations,

and then configure the static protocol with the optimal latch

time that achieves the same (or nearly the same) level of

FIFO violations. (We determine the optimal static latch time

experimentally with a trial-and-error binary search.)

We set up and perform each experiment so that receivers run

multiple instances of static and probabilistic ordering protocols

with different parameters. This enables us to compare the ef-

ficiency of the protocols and the effect of different parameters

in the exact same scenario. We tested networks of 8 and 46

brokers, where each broker serves 10 clients. Here we present

the results for the 46-broker network. This is a low-degree

network topology with a graph diameter of 15. These and

other results are reported more extensively elsewhere [11].

The results of these experiments are summarized in Fig-

ure 3. Each data set corresponding to the static protocol is

labeled “CST-t,” where t is the constant latch time (mil-

liseconds); and each set of the probabilistic FIFO ordering

protocol is labeled “P-x-y,” where x is the probabilistic FIFO

coefficient Pt, and y is the number of previously published

messages whose encoded Bloom filters are attached to each

message (in the enhanced version of the algorithm). The

probabilistic FIFO ordering protocol also uses a sample buffer

Q of size 25 in all the experiments, and uses an encoding

of the publication record that uses 16 bytes per message, so

for example, “P-0.2-5” and “P-0.2-25” indicate experiments in

which the enhancement of the publication record introduces an

overhead of 80 and 400 bytes, respectively.

Figure 3a compares the total number of FIFO violations

observed with and without ordering mechanisms. Note that

for a given Pt, the size of the publication record does not

have any effect on the performance of the protocol in terms

of the number of reduced FIFO violations. Recall in fact

that the use of the publication record allows the receiver

to assess a reduced latch time, but does not change the

behavior of the protocol in terms of FIFO violations. Hence,

we only plot the number of FIFO violations for the basic

mode of the probabilistic protocol. The results show that our

probabilistic ordering algorithm is very effective. For example,

with Pt = 0.05, the algorithm prevents 99.5% of all FIFO

violations. Furthermore, as we will now show, this reduction

of FIFO violations comes at a minimal cost in terms of delay.

To analyze delays, and specifically to demonstrate the

benefit of the probabilistic FIFO ordering algorithm when

compared to the ideal static protocol, we measure the average
extra delay. A message m is held at the receiver waiting for

missing messages until all missing messages arrive, or until

the latch time expires. This is the extra delay of m. Figure 3b

presents the average extra delay (over all received messages)

incurred by the static and probabilistic FIFO algorithms for all

of the pairs of publisher and subscriber. The box plots show

the quartiles of those averages over all publisher/subscriber

pairs. We first observe that the maximum extra delays incurred

by the static algorithms are limited by the fixed latch time of

the algorithm, whereas our adaptive protocol may incur higher

delays. However, if we compare each static algorithm with the

corresponding parametrization of our adaptive algorithm that

achieve the same level of reduction of FIFO violations (e.g.,

compare CST-250 with P-0.05-*) we observe that the adaptive
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Fig. 3. Effectiveness of different FIFO algorithms in a 46-broker setup. (a) Total number of FIFO violations with and without ordering. (b) Average extra
delay caused by different ordering algorithms.

algorithm has a better median delay even in basic mode

(no publication record). Also, adding a publication record

increases the advantage of the adaptive algorithm significantly.

For example, with a publication record of 25 entries (P-0.05-

25) the average extra delay is nearly zero for more than 50%

of the nodes and less than 190 milliseconds for 90% of them.

C. Adaptivity of the protocol

Figure 4 shows the dynamics of the FIFO-ordering protocol

for a publisher/subscriber pair in response to changes in publi-

cation rate. The top frame pinpoints out-of-order deliveries in

the message stream; the second frame shows the publication

rate of the publisher (messages per second); the third frame

plots the changes in FIFO-violation probability calculated by

our algorithm; and the two bottom frames show the changes

in latch time when the publication record is 0 (basic mode)

and 25 (enhanced mode).

The FIFO violation probability and the latch time follow

the trend in the changes of publication rate. This is the

result of delay variation and change of time gap between two

consecutive messages. Observe that, in the basic version of

the protocol, where there is no publication record attached

to messages, the latch time spikes more frequently. This is

because there are many cases in which the missing message

does not match the subscriptions of the receiver but the

ordering algorithm still latches the messages for the computed

time frame.

V. RELATED WORK

The out of order reception of messages due to parallelism

and queuing complexities has been acknowledged and studied

by the networking community. In particular, Bennet et al.

suggest that IP packet reordering is not a pathological be-

havior but rather, an inevitable outcome of highly parallelized

processing [12], [13], [14].

As for content-based communication, systems can be gener-

ally divided into two categories with respect to their message

ordering guarantees: those that provide an ordered delivery

service and those that provide a best-effort service. Systems

in the first category are designed to offer a safer abstraction

for applications, and are typically implemented with a store-

and-forward mechanism. Systems in the second category work

under the assumption that ordering violations are reasonably

rare, and/or applications can tolerate them, and favor a design

that enhances throughput.

Bhola et al. [15] propose a form of store-and-forward

mechanism in which publishers and subscribers together with

brokers form a tree called “knowledge graph.” Soft-state mes-

sages labeled “knowledge” and “curiosity” flow downstream

and upstream on the tree, and ensure ordered one-time delivery

even in the presence of failure. This method can guarantee

FIFO and total order, but it introduces complexities in the

implementation of the broker and does not easily integrate

with existing broker technology.

Aguilera and Storm [16] propose another form of store-and-

forward network that guarantees deterministic, uniform total

order of messages. In this network, some of the nodes act

as merger nodes, each one responsible for a subset of the

subscribers. All messages go through a sequence of merger

nodes to be ordered in a globally uniform manner before

they are forwarded to the subscribers. This ordering algorithm

assumes that publishers have access to synchronized clocks

and that they have a known publication rate. Although this

algorithm has the interesting ability to determine an upper

bound on the delivery delay, it is prone to substantial delays

and has limited scalability. Furthermore, the scheme requires a

balanced assignment of subscribers to merger nodes to prevent

overloading of some mergers.

The main pitfall of the store-and-forward design is that

it induces high delivery delays. Moreover, when the publi-

cation rate is high, logging messages onto disk might in-

duce congestion. On the contrary, best-effort systems do not

generally log messages onto stable storage, nor they require

acknowledgments, and in general do not include any reliability

mechanism within the broker network [17], [2], [18]. This

results in a streamlined processing of messages that yields high

delivery rates and reduces the failures caused by congestion.

This difference is evidenced by an experimental comparison

between B-DRP, ActiveMQ, and WebSphereMQ [6].

VI. FINAL REMARKS

In this paper we presented our approach to enhance FIFO

ordering in best-effort, content-based publish/subscribe net-

works. Our general idea is to implement an end-to-end, proba-
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Fig. 4. From top to bottom: timestamps of out of order receptions; publication rate; probability of a FIFO violation; latch time in enhanced mode with a
publication record of size 25; latch time in basic mode.

bilistic algorithm to avoid FIFO violations. More specifically,

first we studied and modeled the causes of FIFO violations,

and showed experimentally that the major cause of FIFO vio-

lations is the variation in end-to-end delays. Then, based on a

simple analytical model of the end-to-end delay, we developed

a method to quantify its variation, which we also validated

experimentally. This allowed us to devise an algorithm to

estimate the probability of a FIFO violation whenever there is

a gap in the sequence number of an incoming message stream.

The same estimation also allows us to find an adequate latch

time for some of the received messages in order to reduce the

FIFO-violation probability below a desired threshold. Through

experiments, we showed that this method can mitigate up to

99.5% of the FIFO violations while keeping the unnecessary

delivery delay to a minimum.

The work presented in this paper is part of a larger project

to develop what amounts to a transport layer for a content-

based network. Our current and future plans are to develop

other traditional functions of a transport layer, such as a

method to increase reliability and a method to prevent or

control congestion. In this pursuit, we can of course draw from

the extensive literature and technical progress in traditional

networking. However, we argue that the content-based commu-

nication model—and in particular its lack of explicit addresses

and therefore its lack of identifiable end-to-end connections—

poses interesting and challenging problems also for these other

transport-layer functions.
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