Chapter 6
Cooperation Control in PSEE

Editor: Claude Godart

Contributors: Noureddine Belkhatir, Antonio Carzaniga, Jacky Estublier, Elisabetta
Di Nitto, Jens Jahnke, Patricia Lago, Wilhelm Schaefer, Hala Skaf

6.1 Introduction

6.1.1 Objective

Cooperation is “acting together in a coordinated way in the pursuit of shared goals”.
Cooperation has numerous benefifficiency where cooperation minimises the effort
required to achieve the goahhanced capabilityyhere a group can achieve a goal not
possible for one person to achiesgnergy where the cooperating partners can together
achieve a different order of result from that achievable separately. Cooperation has also
one main disadvantage: there is always an associated energy anddimead.

Current software processes are cooperative and our objective in this chapter is not to
propose new cooperation patterns. It is, rather, to describe and support current cooper-
ative software processes, with an emphasis on the problems of consistency and integrity
maintenance of software artifacts.

In fact, software artifact consistency and integrity maintenance on the one hand, and
cooperation support on the other hand, are somewhere antagonistic. Classically, con-
sistency and correctness are achieved by isolating the processes which execute in par-
allel (typically, most traditional database transaction protocols imposes isolated
execution of processes). However, cooperation means that it is beneficial for the people
involved in the processes which execute in parallel to interact. Thus, a challenge when
building a PSEE to support software processes is to enable cooperation while continu-
ing to achieve correctness.

Three approaches can be considered. A cooperation policy can be based on:

a) the responsibility of human agents alone, as it is the case in most current software
development applications,

b) the knowledge included in the software process model without identifying any spe-
cific knowledge related to cooperation support. This makes the hypothesis that all the
interaction cases are forecast. ADELE and SPADE appear in this category.

¢) some predefined strategies, not depending on a particular process and which can be
reused from one process to another. This is the transaction paradigm as in COO, and
Merlin for example.

J.C. Derniame, B.A. Kaba, and D. Wastell (Eds.): Software Process, LNCS 1500, pp. 117-164, 1999.
O Springer-Verlag Berlin Heidelberg 1999



118 6 Cooperation Control in PSEE

In general, a cooperation policy is a combination of these approaches: transactions
make the hypothesis that processes can be launched at the appropriate time (based on
some knowledge of the process) and knowledge can be organised in reusable libraries
(which can be considered as predefined strategies as transaction models are).

In the rest of this chapter, we illustrate these approaches by means of a common
example: COO and Merlin are representative of the transaction paradigm, ADELE and
SPADE of the purely process based approach. This objective is achieved, on the one
hand by a short description of the architecture of each system considered, and by the
implementation of the example introduced in the following section (Section 6.1.2) in
each system.

6.1.2 An lllustrative Example

Let us consider a supposed simple software process (see Figure 6.1). The objective of
the task is to produce the code of a module B which depends on a module A. Module A
and module B are developed by two groups of people who want to work in synergy.
This is a very common situation in software processes and that defines a pattern which
can apply to different artifacts at different levels of a software life cycle.

\

Produce Produce
ObjEct Code Object Code
N orA ForB
s ) oo Jlee ) 83 ) cape
of Ay of Ay Int%'][aé:e of By of By

Figure 6.1 A simple process

This process is hierarchically organised. The root process represents the whole proc-
ess which breaks down into sub-processes. The leaves are atomic processes (which exe-
cute atomically in isolation), and the upper levels are compound processes.

The objective of th coding_tas process is to “produce the object code for a module
A and the object code for a module B”. Thcoding_taslsplits into two sub-processes:
produce_object_code ( andproduce_object_code (. Each sub-process executes as
a consistent combination of one or several occurrencedit_interface, edit_bocand
compile applied to A or B. Each leaf process is an abstractic reac and write oper-



6.1 Introduction 119

ations. Lets now suppose that the body of the module,Bd@&oends on the interface
of the module A (A. This can be interpreted aslit_body(B)s an abstraction foread
(Ay), andwrite(By). In this context, it is clear that the two operatiedd_interface(A)
andedit_body(B)are concurrent when accessingafad that the produce_object_code
(B) sub-process must at least enforce a rule which ensures the body Qfi8 €Bited
with the final (last) value of the interface of A;JAThis rule describes a part of our
knowledge about theoding_taskprocess and a correct executioncofling_taskis
always an execution of the six (sub-)processadit_interface(A),edit_body(A)
compile_body(A), edit_interface(Bgdit_body(B) compile_body(B)which respects
the policy (rules) just defined.

Let us now consider three scenarios on the following pages.



120 6 Cooperation Control in PSEE

Scenario 1 is a correct executioncoding_tas in which produce_object_code(A)
andproduce_object_code( execute without interaction. The only object in shared by
the two processes, the interface of A, is accessed fiproduce_object_code(, then
by produce_object_code(. Clearly, assuming the atomicity of leaf sub-processes, this
execution is equivalent to the serial executioproduce_object_code( followed by
produce_object_code(B).

Table 6.1Scenario 1: correct and without interaction execution of coding_task

produce object code A produce object code B

edit_interface(A)
edit_body(A)
compile_body(A)
edit_interface(A)
edit_interface(B)
edit_body(A)
compile_body(A)
edit_body(A)
compile_body(A)
edit_body(B)
compile_body(B)

edit_body(B)

compile_body(B)




6.1 Introduction 121

In contrastScenario 2 depicts an execution in whigbduce_object_code(Bgads
the interface of A at the same time it is being modifieghtmduce_object_codejAln
fact, produce_object_code(Blees an intermediate valuepsbduce_object_code(A)
the two processes interact. Clearly, this schedule can be non serialisable. Nevertheless,
we can verify that this scenario is also correct. This is based on the following reasoning.
Firstly, produce_object_code(Bgads the final value of the interface of A, since the last
edit_body(B)appears after the lastit_interface(A) Secondly the lastdit_body(B);
compile_body(B) sequence compensates all the previous ones (in the sense that its
result is the same as if the previous sequences did not occur). Thus, even if the value of
the body of B is inconsistent pbint 1because it is based on an intermediate value of
the interface of A, the final value of the body of Bpatint 2is consistent with module
A because it is based on the final value of the interface of A.

Table 6.2 Scenario 2: correct and with interactions execution of coding_task

produce object code A produce object code B

edit_interface(A)
edit_interface(B)
edit_body(B) <- point 1

compile_body(B)

edit_body(A)
compile_body(A)
edit_interface(A)
edit_body(A)
compile_body(A)
edit_interface(A)
edit_body(B)
edit_body(A)

compile_body(A)

compile_body(B) <-point 2




122 6 Cooperation Control in PSEE

Scenario 3 demonstrates that some sequences of the same atomic processes can be
incorrect: the last value of the interface of A reacedit_body(B)is not the final one.
The interface of A has been changed since the last edition of the body of B.

Table 6.3 Scenario 3: incorrect execution of coding_task

produce object code A produce object code B

edit_interface(A)
edit_interface(B)
edit_body(B)
compile_body(B)
edit_body(A)
compile_body(A)
edit_interface(A)
edit_body(A)
compile_body(A)
edit_body(B)
edit_interface
edit_body(A)

compile_body(A)

compile_body(B)

We have pointed out two executions of the same process which are both sequences
of the same atomic activities and which are both correct. However, these schedules are
not equivalent. The second allows interactions to occur betpreeluce_object_code
(A) and produce_object_code(Byhile the first does not. We think that interactions
between processes must generally be supported. In fact, interactions between activities
also imply interactions between people which are generally positive in social processes
such as software development processes. Nevertheless, it is also clear that in some cases
interactions can be considered as undesirable, and visibility of intermediate results must



6.2 Moving from Traditional to Advanced Applications 123

be prohibited. This is especially the case when intermediate results are used by proc-
esses which cannot be easily compensated (as an example, putting an insufficiently
tested product on the market can have huge consequences). In such case, an isolated
execution as in Scenario 1 is the most commonly adopted solution.

This example illustrates a simple case of positive interactiocpageration Others
are characterised in the rest of this chapter.

6.1.3 Organisation of the Chapter

The following section (Section 6.2) makes a survey of traditional and advanced trans-
action models. It identifies their limits and advantages with regards to our process char-
acteristics: uncertain duration (from hours to months), uncertain developments (i.e.
activities that are unpredictable at the beginning), and interaction with other concurrent
activities. The motive is to introduce the problems related to consistency maintenance
in general and the basis on which “predefined strategies approaches” are founded. Sec-
tion 6.3 addresses the issue of how cooperation control impacts the PSEE architecture.
Section 6.4 describes the current work on the topic in the Promoter Working Group.
The last section, (Section 6.5) concludes.

6.2 Moving from Traditional to Advanced Applications

The definition oftransactionfor advanced applications changes, mainly due to human-
interaction. It is transformed from a pre-programmed implementation to a variable
working session. Accordingly, a fundamental difference from traditional transactions is
represented by characteristics like non-atomicity and non-isolated execution.

Before deepening this evolution, we are reminded of the basic properties, called
ACID, of traditional transactions. [Bern87a] provides a sound introduction to concur-
rency control and transaction processing.

6.2.1 ACID Properties

An important concept for traditionalatabase transactionis the ACID properties
(Atomicity, Consistency, Isolation and Durability).

Atomicity: A transaction is an atomic unit of processing. It either executes in its entirety
or not at all. This is the “all or nothing” law.

ConsistencyA transaction execution results in a database state that satisfies all the con-
sistency constraints of the application; that is, if the program has functioned accord-
ing to its specificatioh

Isolation: A transaction should not make its modification visible to other transactions
until itis committed, i.e, until its effects have been permanently recorded in the data-
base.

1. This assumes the specification is correct and complete.



124 6 Cooperation Control in PSEE

Durability: Once a transaction results in a new database, the performed modification
must never be lost because of system failure.

These propertieare too strict for software processes. This is especially dueatohe
micity andisolatior properties.

6.2.2 From ACID to Non-ACID

Atomicity and Isolation have two implications. First, it limits cooperation: if requested
data is kept private or locked by one long transaction until it terminates, other concur-
rently running transactions will be forced to wait for its termination. Thus, it prevents
data from being freely exchanged among humans, and made accessible as soon as pos-
sible.

Second, if a transaction fe2, the work done inside its context should be undone. A
lot of work could be thrown away, although not influenced by the causes of failure. Fur-
ther, if cooperation took place with the failed transaction, transactions cooperating with
it could possibly be aborted in cascade. Thus, a requirement for long transactions allow-
ing cooperation is to separate work done privately from work done cooperatively (and
thus influenced) by many transactions. In fact, in the case of failure, it should be possi-
ble to un-do one transaction’s (private) work at a fine-grained level, and to restart it,
without causing related, but not affected, cooperators to clash.

6.2.3 From Flat to Nested

Flat transaction are allowed to execute atomic data acce Nested transactiol may

also start new (sub-) transactions, that is decompose themselves into transaction hierar-
chies. Nested transaction are well adapted to hierarchically organised processes such as
software processes.

6.2.4 From Closed to Open

Nested transactions in general refers to closed-nested transactions, as opposed to open
nested transactionClosed-nested transactic have been mainly introduced to limit

the impact of a logical or physical failure to a sub-transaction. Atomicity and isolation

of (sub-)transaction executions is preser Opened-nested transactic relax isolation

and can relax atomicity by allowing partial results to be observed outside the transaction
before its completion. To maintain consistency of execution, although the isolation
principle is not preserved, the semantics of high-level operations are exploited. On
account if the long duration, uncertainty and interactive nature of our processes, open-
ness is preferred.

2. Failure may be either user-driven (e.g., certain activity is cancelled from a project), or process-
driven (e.g., due to conflicts with other activities).



6.2 Moving from Traditional to Advanced Applications 125

6.2.5 Hierarchical versus Layered

When a transaction splits into sub-transactions, a question «do we need to pre-

serve consistency globally or locallCan we have one scheduler per (sub-)transaction

or must we have a global scheduler for all the nested transactions? Theory demonstrates
that we can have one global scheduler or, with some restrictions on the organisation of
the transaction, one scheduler per level. In the first case, we refer to (vihierar-

chical transactio breakdown, in the second case, we refer to (horizontal) layered trans-
action management. We think t layered transactior are too rigid because of the
dynamism of our processes.

6.2.6 Homogeneous versus Heterogeneous

Homogeneit refers to the way transactions are scheduled, or more generally, how
transaction behaviour is managed. A global scheduler can either integrate local sched-
ulers which implement the same protocol, or schedulers which implement different pro-
tocols. In the first case, the scheduler is homogeneous, in the second case, it is
heterogeneous. It must be also noted that not all combinations are possible. Clearly, in
the case of a layered transaction, different protocols can be implemented at different
levels without restriction. In the case of one heterogeneous global protocol, interfer-
ences between sub-protocols must be managed.

6.2.7 From Transient to Persistent

Persistencis the ability of objects to persist through different program invocations
[Atki96]. Accordingly, objects may be eithtransientor persister. Transient objects

are only valid inside the program scope, and they are lost once the program terminates.
Persistent objects are stored outside the program and survive updates. In other words,
they persist across program execution, system crashes, and even media crashes. These
objects are the recoverable data of the management system, and are shared, accessed
and updated across programs.

Traditionally, transaction structures are in main memory, i.e., they are not persistent.
Thus, if a failure occurs, the transaction rolls back. This is not acceptable for long term
transactions: transaction structures must persist in such a way that, in case of a failure,
the process engine is able to restart from a state close to the failure state.

6.2.8 Available Advanced Transaction Models

This section reviews several representative advanced transaction models: closed nested
transactions, split transactions, cooperative transactions, layered transactions, and the
S-transaction model. This is done through the definition of a transaction model in terms
of its three components: structure, primitives and protocol.



126 6 Cooperation Control in PSEE
6.2.8.1 Advanced Transaction Models: Classification

To reason about the transaction requirements for a particular application class,
advanced transaction models are first analysed at the design I¢ransaction model

is a representation of the elements relevant for transaction definition and execution. It
consists of three main parts:

Transaction structure: it defines how single transaction types are defined, and how
sets of transactions are syntactically related together. Transactions rACIDe
(i.e., atomic units that fulfil ACIDity);Compensatin (i.e., transactions that can
semantically undo the effects of an associated transaction after this has been commit-
ted [Wach92]) Contingen (i.e., alternative transactions that are executed if a given
transaction fails); aVital (i.e., transactions whose termination influences the termi-
nation of the related transaction. For example, if a sub-transactiovital relation
with the parent, then its abort causes the parent abort).

Transaction primitives: which are the basic operations, i.e., to manage internal behav-
iour (e.g., creation, execution, termination), and external behaviour with respect to
other cooperating transactions (e.g., communication, data transfer, data access syn-
chronisation).

Transaction protocol: which is the behaviour of a set of transactions viewed as a glo-
bal unit that execute concurrently and need to cooperate. Related issues are concur-
rency control and recovery.

In summary, the transaction structure reflects the organisation/work breakdown,
while a transaction protocol defines how transactions can interact, and how they can
access data.

6.2.8.2 Closed Nested Transactions
The enhancement of flat to nested transactions introduces two main important advan-
tages [Moss85]:
1) execution parallelism internal to a non-leaf transaction (intra-parallelism), and
2) finer control over failures and errors, thus achieving recovery guided by semantic
information.
Transaction Structure

Transactions can have infinite levels of nesting. The semantics is that of decomposing
a transaction into a number of sub-transactions, the overall structure being a tree (or
hierarchy).

Transaction Primitives

Apart from traditional atomic operations for transaction creation and termination
(Commit and Abort), and for data access (Read, Write, Update and Creation), transac-
tions are allowed to invoke atomic transactions as well. By invoking a transaction from
within its scope, a sub-transaction is created and the nesting is implicitly achieved.

Transaction Protocol



6.2 Moving from Traditional to Advanced Applications 127

Several protocols have been modelled to achieve transaction synchronisation. The
way transactions declare their work intentions (i.e., how they reserve data) differs from
model to model. Their suitability depends on the kind of application the model is used
for. The main techniques are based on locking and time-stamps.

Furthermore, locking can be exclusive or refined into read and write mode. In both
cases, to preserve isolation, the parent inherits the lock mode (at child commit) and
stores it in its own place-holder. The effect is to grant data access only to descendants:
if a transaction tries to lock some data, it is allowed to do so only if either the data has
no lock at all (i.e., is free) or its parent already has the lock in its place-holder.

If a child transaction aborts, locks are simply released and not inherited by the parent
as no effects on data persist.

6.2.8.3 Split Transactions

Split transactions propose a solution for restructuring in-progress transactions, still pre-
serving consistent concurrent data access. Split transactions support open-ended activ-
ities like CAD/CAM projects and software development. A practical example of this
model’s usage is in user-controlled processes, where users determine what database
operations to perform dynamically, during execution. In real applications, split transac-
tions are a natural means of committing some work early or dividing on-going work
among several co-workers. Further, a split transaction can hand over results for a co-
worker to integrate into his/her own ongoing task.

Advantages of this model are:

a) adapting recovery effort: because split transactions can abort without affecting the
result of the original (splitting) transaction.

b) reducing isolation: by committing part of a transaction, resources can be released
whenever needed, thus achieving higher concurrency.

Transaction structure

The original (simple) model assumes transactions as composed of a sequence of oper-
ations, similar to ACID transactions, i.e., abstracted into Read and Write operations,
starting with Begin, and ending with either Abort or Commit.

To include parallelism, the model has been extended with nesting, where a set of top-
level transactions may be executed concurrently. Later on, super-transactions have been
included (see [Hard93]): a super-transaction includes two or more independent transac-
tions, and makes them appear atomic to transactions outside the super-transaction itself.

Transaction primitives

Primitives peculiar to split transactions are Split and Join [Kais92]. The Split opera-
tion divides the on-going transaction into two (or more) serialisable new transactions,
and assigns its resources among the resulting transactions. Thus, Split and Begin repre-
sent the set of initiation operations by means. The Join operation merges two or more
transactions that are serialisable with respect to each other, into a single transaction as



128 6 Cooperation Control in PSEE

if they had always been part of the same transaction, and all their work is now commit-
ted or aborted together. Thus, Join, Abort and Commit represent the set of termination

operations.
Transaction protocol

The major purpose of splitting is to commit one of the resulting transactions to reveal
useful results from the original transaction. An example is shown in Figure 6.2, where
transaction T initiates a Split operation that results in two new transactions (A and B)

replacing T.

Split-in Split-in

Pre-order

Figure 6.2 Split transaction T into transactions A and B

Of course, when splitting, consistency on data must be preserved. For instance, sup-
posing in the example that transaction A and B fulfil properties:

WriteSef A n WriteSef B 0 WriteLas{( B

ReadSet An WriteSe( B = O
WriteSef A n ReadSdt B = SharedSet
B must be executed after A, as the work context of B depends on results in the work
context of A. In other words, for property 1, any data written by both A and B is written
last by B (i.e. A cannot overwrite B’s output), for property 2, A does not have visibility

on data which is changed by B (and thus does not depend on B), while for property 3,
B has visibility of data changed by A.

To allow A and B to be independent, the following properties should hold:

WriteSef An WriteSef B = O

ReadSdt An WriteSe( B = O

WriteSef An ReadSdt B= 0O



6.2 Moving from Traditional to Advanced Applications 129

6.2.8.4 Cooperative Transactions

The concept of cooperative transaction was introduced in [Nodi92] to support a higher
level cooperation than in traditional transaction models. This model substitutes the
notion of correctness defined by serialisability, with a notion of user-defined correct-
ness by means of Finite State Automata. In this way, cooperative transactions can use
different correctness criteria (the most suited for their own purposes). Further, isolation
is not required, and hierarchy allows both close cooperation to take place, and easier
management for long-lived transactions.

Transaction structure

Transactions are organised in a rooted hierarchy, where internal nodes represent
groups of transactions that cooperate to perform a single task, while external (leaf)
nodes are associated with individual designers. A transaction group (TG) is thus a col-
lection of cooperative transactions that cooperate to perform a specific task, or other
TGs. It can be seen as the abstraction of a task, undertaken by its members. With this
viewpoint, TGs are spheres of control over children. A cooperative transaction (CT) is
a program that issues a stream of operations to the underlying database. It can be
defined as the sphere of control over actions on data.

Transaction primitives

In terms of primitives this model does not define new constructs (using the traditional
begin and commit/abort), but define a particular way in which they are managed. In fact,
primitives define atomic actions on a single object by a single CT member of a TG. Ato-
micity in this case means that primitives cannot invoke other primitives, and are defined
either on objects (e.g., Read or Write), or on their interface.

During its lifetime, a CT issues primitives on objects in its TG. There primitives are
executed by the TG once it determines that they conform to its correctness specification.
If not, primitives are rejected, i.e., individually aborted. This means that primitives are
submitted to the TG which uses the correctness criteria to abort those which are not
valid and accept those which are valid.

Transaction protocol

Transaction behaviour is modelled by a correctness specification (or criteria) of TGs
on each single CT.

A correctness specification is defined in terms of:

a) conflicts, identifying primitives that are not allowed to execute concurrently,
b) patterns, defining sequences of primitives that must occur,
c) triggers, taking actions when a request by a CT begins or terminates.

A TG specification describes its valid history; the allowed sequence of primitive
invocations issued by its member CTs. Thus a TG identifies the sphere of cooperation
that takes place among its component CTs. Thus, correctness is defined in a top-down
fashion, pertaining the TG members. Moreover, a TG history is correct if it satisfies its



130 6 Cooperation Control in PSEE

own criteria, and the histories of its member CTs are correct, i.e., if it conforms to all
the patterns and contains no conflicts.

A certain transaction protocol is defined for each TG, by the relative specification.
Two alternative ways can be used to enforce a protocol: optimistic, where CTs issue
their entire sequence of primitives and thereafter this is checked against the protocol, or
on-line, where each primitive is controlled when issued. The latter is a better solution,
in that it avoids potential wasted effort. Nevertheless, to be feasible, any solution should
be able to recognise correct histories as well as valid prefixes of correct histories. The
difficulty arises because specifications can vary over time as members are added or
removed from a TG, and more generally because correctness rests on definitions of cor-
rect histories and is not easy to prove.

6.2.8.5 Layered Transaction Model

Layered transactions were introduced to handle applications that are naturally organised
in layers like federated databases (four database layers that collect data into a federation
of local databases, each organised in clusters of objects), operating system transactions
(ISO/OSI seven layers), and federated DBMSs. For instance, the latter is a collection of
DBMSs that cooperate loosely but are not fully integrated. It therefore involves the
coexistence of global transactions, divided into local sub-transactions on the different
DBMSs, and local (independently issued) transactions active on the local sites. In such
an architecture, global transactions and local sub-transactions may have a non-serialis-
able schedule, while the coexistence with local independent transactions causes pseudo-
conflicts, i.e., conflicts at the database level.

The layered transaction model is a variant of nested transactions where the nodes of
the transaction tree define execution of operations at particular levels of abstraction in
alayered system ; operations are treated as sub-transactions, ;7 operations as the
actions that constitute sub-transactions. The key idea of layered concurrency control is
to exploit the semantics of operations in level-specific conflict relations that reflect the
commutativity of operations. In this way, a schedule at le;"may be serialisable and
operations may be executed in parallel whereas their implementation at'j is not,
therefore needing a different concurrency control mechanism. Intra-transaction paral-
lelism is achieved by handling sub-transactions at a lower level uniformly, regardless
of whether they belong to different ancestors or to the same. In this respect, layered
transactions are a specialisation of open nested transactions, where the tree of sub-trans-
actions is balanced. In fact, (1) sibling transactions are executed independently from the
parents, and (2) each top-level transaction is described at a fixed number of abstraction
levels, equal to the number of layers of which the system is composed.

6.2.8.6 S-transaction Model

S-transactions (where “S” stands for semantic) have been developed for large-scale
inter-organisational autonomous environments like international banking, to model
communication protocols.



6.2 Moving from Traditional to Advanced Applications 131

The main basic concept is autonomy: the ability to decide or choose a behaviour dif-
ferent from what is expected by the rest of the environment. There are various types of
autonomy. For instance, design (or data definition) autonomy is when an organisation
has full self-determination with respect to control the structure-type of interactions, i.e.,
when choosing hardware or software, when developing the database schema or other
applications. S-transactions’ applicability is immediately identified in the fields of
banking, software engineering, and CIM.

Transaction structure

S-transactions are normal transactions associated with a corresponding compensating
transaction. They preserve isolation and are defined in terms of local data (requested
either to a remote S-transaction, or to the common database), and entry points (like
attach channels) for continuations (e.g., sub-transaction activation or remote transac-
tions' messages) and compensations, thus representing compensating transaction like an
integral part.

Transaction primitives

Both semantic and compensating S-transactions are associated with traditional prim-
itives Begin, Commit, and Abort. The difference lies in the semantics assigned to them.
For instance, rules for compensation are defined to enact a compensating S-transactions
that reverses the effects of the corresponding S-transaction, when the latter has failed.

Transaction protocol

The S-transaction model’s potential is fully exploited by applications that manage
large amounts of complex data, where interacting processes have semantics known in
advance. Interaction takes place partly on the communication level (message
exchange), and partly on the inter-operation level (partially ordered sequences of
actions).

6.2.9 Summary and Analysis

The main characteristics of the models presented in Section 6.2.8, are sketched out in
Table 6.4. It outlines the properties that each model directly addresses and aims to sup-
port. The objective is to guide the reader in choosing the right model for his/her pur-
poses. Typical applications are also given For each model, possible answers to property
coverage are:

yes means fully supported,

yes:<comment>, means that the property is supported, limited to the context indicated
in the comment,

no:<comment>, means that the property is not supported, except for the context indi-
cated in the comment,

no, indicates that the property is not supported, neither in extended models based on the
referred one.



132 6 Cooperation Control in PSEE

No indication (i.e., an empty box) indicates that the “pure” model does not address the
property, even though extended models based on it might do. For each model, the
answer written in bold indicates the most significant property issued by the model..

Table 6.4 Properties covered by advanced models

con-
user-
currency co- open- defined
Models control operation ending | correctness applications
nested- yes: CAD/CAM,
trans. yes intra-trans. | no SEE
CAD/CAM,
split-trans. | yes yes yes SEE
coopera- desian, SEE,
tive trans. | yes yes yes yes CSCw, CE
no: operating
Iev_el-based trans- systems.
layered actions. commu- | FDBMSs,
trans. yes no no tativity OODBMSs
S-trans. yes no yes yes SEE, int.
banking, CIM

6.2.9.1 Available Issues and SEE Transactions

Transaction suppo in SEE’s has to fulfil basic requirements that reflect the behaviour

of software activities. In software developmecooperatiol anduser independen are

key requirements. The first concerns the possibility of having control in a cooperative
work environment. The second concerns the freedom to take dewn-the-flyduring
development, in spite of control (and being therefore responsible for consequences).
SEE's need therefore to embrace long-lived and cooperative transactions, to adequately
control software processes.

Table 6.4 emphasises that concurrency control is managed by all models (at least as
a contingent topic). Cooperation support, which is one of the most important topics in
SEE transactions, has been undertaken by all of the described models, except S- and
layered- transactions, which are specific to user-defined correctness. The last two prop-
erties are specific to advanced applications and have therefore only been addressed by
recent models. Nested transactions do not support either of them. Layered transactions
focus on user-defined correctness. The others support open-ending, which is the main
topic of split transactions.

The most advanced support available in commercial systems is through nesting. Fur-
ther, each system approaches cooperation from various viewpoints. For example, by
allowing transactions to dynamically start, or by supporting undefined levels of nesting,



6.3 Impact of Cooperation Control on the Architecture of PSEE 133

with an undefined number of sibling sub-transactions, or by transaction sharing among
multiple-users.

In general, the nested transaction model suits SEE needs, as:

a) transaction hierarchy reflects a natural breakdown of work,

b) transaction nesting implements internal concurrency by allowing sub-transactions
of the same parent transaction to run concurrently,

c) recovery is kept under control, by limiting undo to sub-transactions,

d) dynamic restructuring supports eventual open-ended activities, by allowing transac-
tion adding and removal whenever a new transaction clustering is needed.

With regard to user independence, characteristics such as user-defined correctness
and open-ending are not yet implemented in commercial systems. The main reason
seems to be the need for a deeper knowledge of the exact definition of correctness in
SEEs. In fact, being software activities controlled by humans, and due to the differ-
ences between processes, it is very difficult to define a standard and satisfiable set of
common statements for consistency. A trend is to allow user-defined protocols to be
written through rules (e.g., ECA rules), each associated with a transaction class. The
extension of nesting with the cooperative transaction models seems to be suitable,
although no commercial or academic results have reached a status stable enough for
commercial implementation.

6.3 Impact of Cooperation Control on the Architecture of PSEE

This section provides more details to the architecture introduced in the previous chap-
ter from the point of view of cooperation support. It makes no important presumptions
nor restrictions on the architectural alternatives introduced in (Section 5.2.5, Chapter
5). Typically, the ADELE system (Section 6.4.3) has an architecture of type Il, Merlin
Section 6.4.2 of type Ill, COO (Section 6.4.1) also of type Ill but with some restric-
tions on the relationships between Process Engines. As depicted in Figure 6.3, we have
identified five layers of abstraction which can be seen as service layers.

We will explain the impact of cooperation control on each of these layers.

The bottom layer is theepositorylayer. It mainly provides for object and schema
management services and tool execution services. As emphasised earlier, in a modern
PSEE numerous resources and software artifacts are managed. The modelling and
management of these artifacts and their versions needs a powerful object manager. The
properties of the underlying object model deeply influences the transaction models.
Clearly, implementing the same transaction model on top of a different data model can
be of different complexity: explicit links, composite objects, etc. are not easy to man-
age (to copy, to lock, etc.). On the other hand, distribution of the repository (clearly as
in architecture alternative IV) generally increases the complexity of synchronisation,
especially in the case of heterogeneous object management systems and even more so
in the case of heterogeneous object model.



134 6 Cooperation Control in PSEE

Interface

process design assistance
view, editors
next step prediction assistance

Knowledge

process modelling language
process model instantiation
constraint management

Transaction

pre-defined synchronisation strategies
negotiation
strategy integration

Process Engine

Working Areas

relationships between spaces

version management Transfer operafions
object identification tool identification

Repositories

REP

object model object storage

ACID transactions triggers

(local and common)

Figure 6.3 Transaction abstraction lay 2rs

In any multi-user environment, processes operate on a limited part of the object base.
Typically, traditional transactions operate on object copies until commit; that is, copies
define their working area. We therefore introduce working are: layer to reason
about process isolation and object transfers without consistency considerations due to
concurrent object accesses. Thus, the objective of this layer is limited to basic object
transfers, i.e object identification. However, the characteristics of working areas can
limit the supported transaction models. Typically, long duration and uncertainty of soft-
ware processes imply that a working area must be able to outlive the sessions which cre-
ate or modify it. In addition, the working area layer must be general enough to allow
implementation of different transaction protocols simply by specializing and/or restrict-

ing transfers between working areas.



6.3 Impact of Cooperation Control on the Architecture of PSEE 135

The Predefined Strategie:or Transactionlayer introduces consistency support and
provides mechanisms to assert correctness of parallel processes. These mechanisms
implements synchronisation strategies which are general enough to apply to different
processes and to be predefined in a PSEE. This indicates that these mechanisms are
mainly independent of the semantics of the processes which are controlled. Clearly,
most traditional transaction models come into this category. For example, the 2PL pro-
tocol [Gray78] only exploits general propertiesread andwrite operations.

The knowledgedayer provides the means to enforce constraints which define software
development policies. This layer may utilise (or not) the previous layer. Some
approaches only provide syntactic constructs to model synchronisation, without reusing
predefined strategies: synchronisation strategies must always be modelled from scratch.
On the other hand, predefined strategies rest on :consistency hypothe, and the
knowledge layer must assume this hypothesis. For example, the 2PL protocol assumes
that each transaction is an individual correct program: if it executes in isolation and
starts its execution in a consistent state, then it terminates in a consistent state. In addi-
tion, knowledge is often used to break traditional isolation of transaction executions and
to control dynamic interactions

Finally, the humarinterface layer assumes the interface between the process and
human agents. It must allow human agents to create, control and terminate processes. It
should also allow human agents to be aware of past, ongoing and future work. Transac-
tion states represent valuable information for a human agent who observes and analyses
a process. Finally, synchronisation specification can directly influence the process
design process which is an important part of the interface layer.

6.3.1 Impact of the Repository on Consistency Maintenance

Among repository functionalities discussed in (Section 5.1.5, Chapter 5), we stress the
following as crucial to support consistency maintenance.

6.3.1.1 Data Model

Maintaining consistency means enforcing constraints on object values and process
states. The richer the data model, the richer the semantics which can be expressed by
constraints. A consistency-maintenance mechanism based on an Entity-Relationship
class model is naturally more powerful than a mechanism built on top of a file system.
We particularly emphasise the use of process knowledge to relax serialisability of tra-
ditional transaction models as required by software processes.

New concepts introduced to enhance the modelling power of data models influence
the complexity of transaction protocols. Conceptually, these new concepts reduce this
complexity by filling the gap between the real word and its computer description. Tech-
nically, they increase it due to the need of complex techniques to manage complex
objects (versioning, locking, copying, etc.). In addition, these techniques are not so
mature.



136 6 Cooperation Control in PSEE

An analysis of some of the most representative transaction models for PSEE, as
described below in Section 6.4, indicates the importance of version management in
transactions. It is not sufficient to distinguish between only two levels of consistency
(consistent and inconsistent) as is traditional. It is necessary to distinguish between sev-
eral levels of consistency. That is, at a given tinlogical object can exist in several
differentversiors and these different versions must be maintained mutually consistent.

Another consistency-maintenance capability is the ability to provide different views
of the object base to facilitate integration of the different points of view which different
people can have of the process. The more integrated the process description, the easier
this is to maintain.

6.3.1.2 Impedance Mismatch between Object Management
and Operating Systems

The less the impedance mismatch between the operating system command language
and the object management language, the easier it is to maintain consistency of software
artifacts.

If tools do not operate directly on the internal process objects which represent the
state of the current process, but on “converted” files, or through another additional inter-
face, there is a risk of introducing inconsistencies.

In addition, we show below how the ability to store system concepts as persistent
objects provides support for evolution and recovery and other interesting aspects,
including the ability to model and integrate different synchronisation stra?.egies

6.3.1.3 ACID Transactions

There is always a level of abstraction at which a process is a serial execution of ACID
short-term transactions. As a consequence, the repository must provide ACID transac-
tions.

6.3.2 Workspaces: an Abstract Level to Support Flexibility
6.3.2.1 A Working Area as a Sphere of Isolation

A working area manager is intended to identify and to provide software developers with
(only the) artifacts needed to reach their objectives. This helps avoid unintended, and
unauthorised manipulation of objects, i.e, to preserve object integrity.

In traditional transaction models, a working area is seen as a sphere of isolation where
a software developer can work individually. That is, when a transaction executes, it
modifies copies of the objects which effectively persist in the object base. These copies
define the working area of the transaction.

3. Synchronisation strate is used as an alternativetransaction protocol.



6.3 Impact of Cooperation Control on the Architecture of PSEE 137

However, strict isolation is not viable for software processes which are interactive by
nature. Indeed, developers must both be able to work in isolation when they want, and
to share objects and to synchronise changes on shared objects in different working
areas, when they want. This idea is central to most transaction models for advanced
applications.

This indicates that a working area basically supports the idea of transaction. That is,
the working area manager provides capabilities to transfer object copies to a place
where developers can work in isolation. This basic capability is extended to allow shar-
ing of object modifications. This is specified by the definition of transfer operations
between working areas, or rather by constraints on these transfer operations.

6.3.2.2 Reasoning on Transactions as Constraints on Transfer Operations

Relationships between transaction protocols and constraints on object transfers can be
easily established. For example, the 2PL can be seen as the following transfer rules:

a) to operate on an object, a transaction must transfer it from the object base to its work-
ing area check ou),

b) an object which is shared between two working areas cannot be modified,

c) a transaction cannot transfer an object which has been modified from its working area
to the object bastcheck i1) before it commits,

d) a transaction which has read an object and frees this object for other transactions can-
not check out another object.

Clearly, these rules imply completely isolated execution. Deletin¢c) is sufficient
to break isolation. It is also sufficient to break all the guarantees of correct execution (of
serialisability, i.e. correctness must be assumed in some other way). This shows that
reasoning on consistency maintenance has much to do with reasoning on transfer oper-
ations between working areas, and vice-versa.

Returning to our example, this means that to make an object visible before its com-
pletion, a transaction must use other considerations to assert correctness of executions.
Section 6.4 shows how more cooperative correctness criteria can be implemented in
this way.

Another result demonstrated in [Unla92] is that, if an environment allows definition
of a transaction protocol by integrating different (sub-)protocols, it is necessary to trans-
fer i.e. to make a physical copy of an object which is checked-out, both for read and
write accesses. Thus the working area manager must provide basic transfer operations
which must not impose limits to transaction protocols, especially if we want to be able
to allow different synchronisation strategies to run in different working areas.

6.3.2.3 Relationships between Working Areas

Relationships between process engines can be specialised to build a specific architec-
ture: flat, hierarchical, multi-level, etc. Working areas can be similarly structured.

Typically, a process is often hierarchically organised. A process hierarchy reflects
rich semantics about cooperation possibilities. Hierarchical organisation also fits the



138 6 Cooperation Control in PSEE

idea of nested transaction. Thus, transfer operations are mostly related to parent-chil-
dren relationships.

6.3.2.4 Persistent Working Areas

Workspaces will normally persist, i.e. working areas exist as objects of the object base.
This can be used to maintain and express the relationships between working areas,
transactions and processes. It can supply humans with query possibilities like:

a) which working areas contain a version of obozt
b) which is the version of the objeo on which the process p operates?
¢) which processes can access verv of objecto?

Note that a persistent working area is close to a sub-object base and inherits some of
the same qualities in case of failure, i.e the ability to recover a consistent state from a
previous check point.

6.3.3 Predefined Synchronisation Strategies Layer
6.3.3.1 Classical ACID Transactions

The first assumption is that some synchronisation strategies can be defined independ-
ently of a particular software process. The second is that these strategies are sufficiently
well defined and well accepted to be predefined. It is the fundamental idea of traditional
database transaction model; it is the case of the classical pessimistic or optimistic trans-
action protocols.

As mentioned, traditional transaction protocols are too restrictive for software proc-
esses, due to the trivial operations they are supposed to support. Fortunately, predefined
strategies do not imply a traditional strict correctness criteria such as serialisability and
a rigid protocol such as ACID-transactions. These strategies must rather consider
aspects of software processes such as user interaction, cooperation, long duration,
uncertainty and so on. For example, in the COO system, a predefined protocol allowing
intermediate result visibility has been defined. In Merlin, object consistency is main-
tained by synchronizing data accesses with four predefined classes of conflicts. Thus,
the concurrency control protocol can allow interactive execution of processes.

6.3.3.2 Considering the Human Agents’ Knowledge of the Process

In both COO and Merlin, resolving a conflict can ultimately rely on the human agent.

In other words, the predefined strategies, whose goal is to synchronise processes with-
out taking explicit account of process knowledge, exploit the knowledge of the human
agents. This can be generalised: the transaction layer must also support the interaction
between the environment and the human agents in a consistent way, at the appropriate
place and time. This is especially interesting if we assume that a software process can-
not be completely modelled in advance.



6.3 Impact of Cooperation Control on the Architecture of PSEE 139
6.3.3.3 Programmable Concurrency Control

Such concurrency control implies that conflict resolution should consider not only
(read/write) and (write/write) patterns. It should also exploit pre-programmed patterns
of the processes involved.

6.3.3.4 Heterogeneous Protocols

Different agents in different working areas should be allowed to choose their own syn-
chronisation strategy, their own concurrency protocol. However, these different indi-
vidual strategies must be integrated into one global synchronisation strategy, a so-called
heterogeneous protoc. This implies certain technical consequences, e.g. to copy an
object each time it is reserved, independently of the mode with which it will be operated
upon. There are also theoretical constraints on combinations of strategies, A PSEE
transaction layer must provide not only predefined synchronisation strategies, but
should also provide predefined means to combine them.

6.3.3.5 Persistent Transactions

We emphasise again that persistent transaction structures can facilitate reasoning about
transactions, especially in the context of programmable concurrency control, of hetero-
geneous protocols, and to assist error recovery.

6.3.4 The Knowledge Management Layer

Knowledge management is crucial for consistency maintenance, whether the PSEE pro-
vides a transaction layer or not.

Note that predefined strategies to control concurrency were initially introduced for
traditional database applications. For software engineering, synchronisation was gener-
ally explicitly programmed, from scratch.

The rationale behind each approach is very different. In the former domain, it is not
possible to forecast all the kinds of interactions between processes; in the latter it is pos-
sible to completely specify processes and process interactions. In the former domain,
we must define general, but restrictive synchronisation strategies. In the second domain,
we must develop specific, but possibly more efficient strategies.

Both approaches exist in software engineering research, with current SEEs favouring
either one approach or the other. Nevertheless, the trend is for a mixture of both
approaches. It is not realistic to assume that everything can be forecast; it is also unac-
ceptable not to exploit stated knowledge to relax the rigidity of predefined protocols.

6.3.4.1 From-scratch Synchronisation Strategies

Some systems do not provide a transaction layer but simply provide syntactic constructs
to model synchronisation strategies.



140 6 Cooperation Control in PSEE

The SPADE system provides a high level Petri Net formalism to model non tradi-
tional database applications, including complex dependencies among transactions.
However, the synchronisation algorithm has to be specified from scratch.

The ADELE system fits very well with our architecture but with the transaction layer
missing. Synchronisation strategies are programmable with powerful triggers which
specify object sharing rules between working areas.

6.3.4.2 Predefined Synchronisation Strategy

As expressed above, any transaction model exploits knowledge of the process, even the
basic 2PL assumes that serial executions are correct executions, i.e. that individual iso-
lated processes respect constraints.

The same assumption applies for advanced transactions models.

In COOQ, itis assumed that pre-and postconditions of transfer operations respect some
rules with regards to safety and liveness constraints. If not, execution correctness cannot
be proved. More explicitly, it is possible to make visible an intermediate level only if
the previously applied operations can be compensated in some way. Process knowledge
is also used by human agents when they are asked to decide how to resolve a conflict.
Process knowledge is also used in Merlin where a conflict resolution can depend on the
processes which produced the conflict.

More generally, process knowledge is a key component in recovering a consistent
state in case of failure or of reorganisation, i.e. to compensate a process instead of abort-
ing it.

6.3.5 The Interface Layer

The interaction between human interface and consistency maintenance can be seen
from four points of view:

a) the software developer who executes processes

b) the software developer or project manager who observes a process,

c) the software developer or project manager who makes some prediction on the next
steps of a process,

d) the process designer.

When executing a process, software developers are directly influenced by the con-
flicts which occur. In case of automatic synchronisation, the interface must at least
report on conflicts and their consequences. In the case of interactive conflict solving,
the developer contributes directly to synchronisation, deciding on whether or not to
allow shared writing, or simultaneous reading and writing of an object.

When a developer observes a process, the transaction structures contain information
on the current and past operations which have been applied to objects, and by which
processes. For instance, we may request which other developer concurrently accesses a
given object.



6.4 Current Work 141

Prediction of process future and consistency maintenance are related. In most cases,
both transactions protocols and planning mechanisms exploit the same process knowl-
edge, i.e. integrity (safety and liveness) constraints. Transaction structures can also be
directly exploited for this purpose. As an example, inter-dependencies among pre-
declared transaction intentions are directly exploited to support planning and impact
analysis.

Finally, (sub)-process synchronisation must be considered by the process design
process: different synchronisation rules can lead to different process styles. In COO, for
instance, processes may execute in a serialisable way or in a cooperative way. A first
set of design rules produces process models which allow only serialisable executions.
A second set of design rules produces process models which allow cooperative execu-
tions.

6.4 Current Work

6.4.1 The COO System

The COO system is a research prototype being developed by the ECOO team at CRIN.
Its current version executes in a PCTE context. A new version is being designed to sup-
port cooperation in a Java - Internet Environment with the objective of addressing a
larger set of applications. The COO project is a continuation of the ALF project to fur-
ther research the problems related to cooperation support and especially maintaining
consistency between software artifacts.

6.4.1.1 Organisation of Processes

A COO process breaks down into sub-processes. Each (sub)process executes in its own
working area governed by its knowledge. Each developer operates through their own
interface upon objects in their working area: a sub-database which consists of the coop-
erative versions of the objects in the common repository.

6.4.1.2 Th« Repositor Layer

The COO repository, called P-Rc?, implements an object oriented version of the
PCTE® interfaces. Its data model is based on an ERA [Chen76] data model extended
with inheritance, and different categories of relationships between objects (composi-
tion, reference, designation, existence). PCTE data types are defined in schemas
which are used to define the view a process has of the object base. In fact, each process
is associated with a list of schemas, calleworking schem. The view of the process

on the object base is constrained by the 8 of the type definitions of each schema

4. P-RooT stands for PCTE Redesign with Object Orientation Technology
5. Portable Common Tool Environment

6. Union of two schemas means, for each object type, the union of its properties. Problems due
to synonyms and homonyms are directly resolved by the typing system



142 6 Cooperation Control in PSEE

in its working schema. Processes are instantiated in the object base as objects. Thus,
PCTE provides an integration of both operating system services and database system
services. PCTE provides a closed nested transaction mechanism based on a locking
mechanism. The P-RooT trigger mechanism is based on a simple event-action mode
where an event is an operation call and an action is an operation invocation.

‘ Interface ‘

process design assistance
process view management,

| Knowledge |

logic based process modelling
tools enveloped with pre- and post-conditions

| Predefined Strategies |

control of intermediate result visibility
advanced check-in

parameterisable concurrency control
conflict resolution negotiation

| Working areas |

tree of sub-databases check-in, check-out

| Repositories |

P-Root: PCTE + object orientation + triggers

Figure 6.4 COO Architectur 2

6.4.1.3 TheWorking AreasLayer

The working area layer implements an object base/sub-base architecture. It provides
object identification services and version management services. The working area layer
organises the object base into a hierarchy of working areas. Thus, each working area has
a parent working area except the initial one which is the root of the working area hier-
archy and which directly feeds into repositon object base.



6.4 Current Work 143

To operate on an object, a process must transfer it from its chain of ancestor working
areas to its own working area: this transfer is done bcheck oL operation. This oper-
ation creates a new version of the object which is inserted in the working area. Thus,
several physical copies of the same reference object can exist in different working areas.
The physical copies of the reference object, we call a reference otvariani, are
related together through a version graph, i.e. successor/predecessor links. Versioning is
transparent to processes and a process issues a request to a variant object. To identify
the version the process must operate on, a mapping is built which associates a physical
copy of the variant object with the working area from which the request is issued. One
can transfer a copy of a variant object in the working area into its parent working area:
this is done by thcheck it operation. After «check inoperation, the transferred copy
of the variant replaces the previous value of this variant in the parent working area. The
updat¢ operation is used to (re)synchronise an object in a working area with the current
version of this object in its parent working area. This creates a new version in the work-
ing area of the process which initiated the request. This new version has two predeces-
sors: the (old) version in its working area and the version in its parent working area and
is built bymergingthe two ancestor versions. Tmergeoperation is done in the current
working area. Due to the variety of merging operations, we do not provide a general
mergingoperation; nevertheless, we will discuss a special case of merging in the next
section.

Workspaces persist as PCTE objects. This is of interest in the case of a logical or
physical failure. It means also that a working area can be considea sub-databas.e

6.4.1.4 Thi Predefined StrategieLayer

In COO, we distinguish between three levels of consistency:

a) globally stable objects.
b) locally stable objects.
c) intermediate result objects.

Globally stable objects are objects which are consistent with regards to any process
definitions. Locally stable objects are objects which are consistent with regards to the
local process definition, but which can be inconsistent with regard to one or several
enclosing processes. Intermediate results objects are objects which can be inconsistent
with regard to the definitions of the process which produced them, and which can be
operated on again by this process.

Processes are hierarchically organised and when a process wants to access an object,
the version of the object it will attempt to obtain is: the closest intermediate result of this
object if it exists, or the closest locally stable object if it exists and no intermediate result
exists, or finally the globally stable object.

Clearly, visibility of intermediate results allows the relaxation of the constraint on
isolated execution by allowing a process to see intermediate results of siblings. Inter-
mediate results are transferred by a transfer activity cupward comm. To maintain
consistency with intermediate results, we say that, when a plA has read an inter-
mediate result of a proceB, Adepends oB. When a process depends on another proc-



144 6 Cooperation Control in PSEE

ess, it canncterminate¢ withoutupdating the intermediate result in the dependence with

the corresponding final value. Trefreshoperatiolis a special case updat¢ where
themergeoperation consists simply in the replacing of the value in the child working
area by the value in the parent working area. By nature, commit dependencies can be
crossed, and more generally, the dependency graph can be cyclic. In such a case, all
processes in a cycle are requested to terminate “simultaneously” with the same values
of objects involved in the dependencies. This is implemented by a ktwo phase

commi protocol inspired by [Gray78Check iris now reserved for the transfer of final
results (marked as final). It means the objects cannot be modified again by the same
process. We authorise (advanccheck it of an object.

A COO process executes as a nested transaction. The root transaction represents the
whole process, at the leaves are atomic processes called activities, at the intermediate
levels are compound processes called tasks. A task is simply a synchronisation entity:
it delegates object modifications to its enclosed activities. Each time a process is initi-
ated, structures are created, including a new working areacheck ot is done on all
input (parameter) objects. A transactcomplete when the enclosed process succeeds
in executing it terminateactivity. The effect is 1 check inany results which have not
already beeichecled in.

An intermediate result can be produced only if the process which produces it is com-
pensatable. In other words, transfer operations must be constrained, and, in the worse
case, intermediate results must be prohibited. To support this unfavourable case, the
default protocol implemented in COO s the 2PL nested protocol, check ot and
check inencapsulate respectively the rolereadand write. Atomicity of basic activ-
ities is assumed by the repository level: all activities, including transfer activities, exe-
cute in isolation. Then from this basis, to support interactions, the 2PL compatibility
table can be modified to allow, on the authority of human agents, a transaction to
upward commian intermediate result, i.e. a transaction to read an intermediate result
of another transaction and two transactions to write the same object. This decision rests
on the responsibility of the human agent or can be programmed depending on the proc-
esses in the conflict.

Finally, note that all transaction structures persist. This is of the greatest importance:
in recovering a consistent state in the case of a logical or physical failure, in defining
new predefined synchronisation strategies, and in integrating different strategies in the
same protocol.

6.4.1.5 TheKnowledg: Layer

The transaction layer assumes consistency on the basis that processes are consistent
with respect to their definitions. As the COO PML is logic based, activities, including
transfer activities (check in, check out and upward commit), are extended with pre- and
post-conditions.



6.4 Current Work 145
6.4.1.6 ThdInterface Layer

COO provides a means to assist process design. We distinguish between a conceptual
level where software development rules are expressed in a limited form of temporal
logic and a logical level where these rules are implemented in terms of pre- and post-
conditions on activities.

The behaviour of a process is defined by aggregating several schemas which define
its context. It means at least the P-RooT schema, the Workspace schema, one Transac-
tion schema, and one Constraint schema. This provides a very flexible and extensible
way to model and enact processes. As an example, for a given process model, choosing
between a serialisable and a cooperative execution mode is simply a matter of choosing
between one constraint schema and another.

6.4.1.7 The Cooperation Example

As a short illustration, let us consider how COO manages the situation depicted in our
motivating example in Section 6.1.2, Scenario 2.

Table 6.5 A correct scenario

POCM for Produce the object
POCM(A) POCM(B) code for a module

init(POCM(A))* init(POCM(B))*
edit_interface(A)
POCM(A) upward commits the

intermediate value of the interface
of A (when edit_interface(A)

upward_commit(interface(A)) completes)

edit_interface(B)

POCM(B) checks out the interface
of A, intermediate result of
check_out(intface(A)) POCM(A)

edit_body(B)
compile_body(B)
edit_body(A)
compile_body(A)
edit_interface(A)

POCM(A) upward commits the
upward_commit(interface(A)) new value of the interface of A

edit_body(A)
compile_body(A)

edit_interface(A)

upward_commit(interface(A))




146 6 Cooperation Control in PSEE

Table 6.5 A correct scenario

POCM(B) refreshes its current
refresh(interface(A) ) value with this new value

edit_body(B)
edit_body(A)

compile_body(A)
POCM(A) declares all its results
as final results, including the inter-
terminate(POCM(A))* face of A

compile_body(A)
as it has read the final value of the
interface of A, POCM(B) can com-
terminate(POCM(B))* ~ mit

* init andterminateare COO activities introduced to manage pre- and post-conditions
of compound processes. Especially, when a process terminates, it checks_in all its
results which are outstanding. As a consequence, it declares them as final results.

Circulation of the interface of A between workspaces in the related scenario

Figure 6.5 shows the circulation of the interface of A between POCM(A) and
POCM(B). This is controlled by Coding Task. In particular, Coding Task will not
accept POCM(B) to terminate if it has not read the final value of the interface of A.

Process Modelling

A process model (PM) in COO isa 7-tuple< S, V, H, P, O, I, C> where

a) S is theSignature(parameter types) of the PM,

b) V is theView of the PM on the object base,

¢) H is theHumanAgents (roles) needed to enact a process of the PM,

d) P is thePreconditionof the PM,

e) O is theDbjectiveof the PM,

f) I is thelmplementatiorof the PM, i.e. the list of sub-process models,

g) C a set ointegration constrairg which describes how sub-processes can interact to
reach the goal of a process they implement (we distinguish between safety and live-
ness constraints). For more about this model, see [Goda93a, Goda95].

The process Coding Task which governs our example scenario is primarily related to
the liveness constraint which says “if the interface of A is modified and B is a module
which depends on A, the body of B must be modified before Coding Task terminates”.

In our PML, it is translated:

from new((interface(A)) and depends_on(A,&)netimenew(body(B)peforeter-
minated



6.4 Current Work 147

CODING TASK

C’PRIV

POCM (A) POCM (B)
- — — — 9 Repetitive upward_commit of an intermediate result (points 1,3,4)
and finally check in (point 6)
> First check out of an intermediate value of this result (point 2)

> Refreshing of this intermediate result(, at least) with the final
value (point 5)

Figure 6.5Circulation of the interface of A

To maintain this constraint, we introduce the predicate: inevitable_before (IBB(A
which allows the storage of the useful history. If this predicate exists, it means that a
value of the interface of A (Aneeds to be consumed to update the value of the body
of B (By) before Coding Task is able to terminate.

We can transform this constraint into preconditions and postconditions of the activi-
ties as shown in the following table. This table results from the application of our trans-
formation rules as described in [Goda95].

Activities in Activities in . .
POCM(A) POCM(B) Preconditions Postconditions
upward_commit(4) inserf(I_B(A;,B)) with B
depends on A
checkin(A) insert(I_B(Ai,B)) with
B depends on Ai
checkin(B,) delete(I_B(A,B))
terminate there is no |_B{)

a. “insert a tuple” effectively inserts this tuple only if it does not already exist.



148 6 Cooperation Control in PSEE

6.4.2 The MERLIN System

The MERLIN system has been developed by the Software Engineering team at Pader-
born with a particular interest in the impact of cooperation on consistency maintenance
and user interfaces.

‘ Interface ‘

process view management
process design assistance (OMT->Prolog)

| Knowledge |

logic based process modelling
Prolog rules

| Predefined Strategies |

cooperation patterns
synchronisation rules for process transaction

| Working areas |

O, views

| Repositories |

O,

Figure 6.6 MERLIN Architecture

6.4.2.1 TheWorking areasLayer

In contrast with many other PSEEs the Merlin Session Layer is not implemented as a
base/subbase implementation with check out and check in functionality. All documents
of a particular configuration reside in a common repository. For each user the Work-
space Management (cf. Section 5.1.4, Chapter 5) creates his/her personal workspace as
a view on all documents depending on the users identity, role and access rights. In this
approach intermediate modifications are immediately propagated to all other users with
changed documents in their workspace.

Transactions are initiated by a user corresponding to his/her personal workspace, e.g.
the user may start a working context transaction (wé@Pgontrol all activities per-
formed on documents in this workspace. In the case of conflicting transactions, such



6.4 Current Work 149

that an activity (e.g. editing a document) has to be aborted, the user can store his/her
intermediate results as a new document version that may be merged with the current
version after the other conflicting transaction has committed.

6.4.2.2 Cooperation Patterns

Cooperation Patterns (CP) have been developed in Merlin to coordinate multiple users’
work. They correspond to transaction types. In “traditional” applications only one type
of transaction exists, namely the ACID-like transactions mentioned in Section 6.2.1
Merlin distinguishes CPs used to control user performed activities and CPs used to con-
trol activities which are performed automatically by the PSEE.

The CPs used to control user performed activities differ with respect to the number of
objects they access. A CP either controls the execution of a single activity on a single
document (e.g. editing a module) or it includes and controls all activities performed
within a working context (e.g. editing several source code modules, compiling and link-
ing them). The first one is called activity CaCF) and the second one working context
CP wcCF).

Merlin further distinguishes two CPs to control automatically executed activities.
Either the PSEE follows some automation conditions in the process definition, and
therefore changes the states of documents and invokes tools (e.g. compilation of a mod-
ule after the imported modules have been finished), or document accesses and corre-
sponding document state changes are triggered by some consistency conditions (e.g. re-
compilation of an already compiled module because an imported module has been mod-
ified). The CPs corresponding to the latter two types of activities are called automation
CP autoCF) and consistency ClconsCF) respectively (this distinction is similar to the
separation between automation chains and consistency chains in Marvel [Barg92]).

Each transaction, or rather activity performed, is considered to be an instance of one
of the above defined CPs. As those transactions are based on specific knowledge about
a software process model definition, we call them process transactions in order to dis-
tinguish them from ACID-like transactions in the traditional sense. A process transac-
tion is defined as a tupT = (i, cp, u, r, L, T, p) with
a) ithe transaction’ldentifier
b) cpCP applied for the transaction (d{aCf, wcCF, consCF, autoCF}
c¢) u: Identifier of the usel who initiated the transaction
d) r: role of the user who initiated the transaction
e) L:Locks, L O{l 4, ..., |yl | is lock} with I; O {w(D),r(D), w(state(D)), r(state(D)) | D

is a Document}

f) T:Timestampswith T O {t,, ..., 3| t is timestamp} with; O {tw(D,T), tr(D,T),
tw(state(D),T), tr(state(D),T)| D is a document, T is a point in time}
g) p: Identifier o' theparent transaction

7. Cf. the earlier definition of process transaction and cooperation patterns.



150 6 Cooperation Control in PSEE

Besides a unique identifier of a process transaction and the CP which defines the syn-
chronisation of the transaction with others (see below), the user who initiated the trans-
action as well as the user’s role are associated with the transaction. This information is
provided to users involved in a concurrency conflict.

Transactions are synchronised either in a pessimistic or optimistic way. In the pessi-
mistic case attributLocks describes the locks held by a transaction. In the optimistic
case attributTimestamp describes a set of timestamps. The last attriparen con-
tains the parent transaction identifier, if the transaction is initiated as a subtransaction.

6.4.2.3 Synchronisation Rules for Process Transactions

The following three sets of rules form the fundamental basis for synchronizing concur-
rently running process transactions.

(1) All transactions except those of tyaCF are synchronised in a pessimistic way,
i.e. if a transaction is started all needed locks are acquired. The transaction is not started
if a lock cannot be acquired. A transaction of taCF can run in an optimistic or pes-
simistic mode. In the case of an optimistic mode, its timestamps are validated at the end
of its execution. If another transaction has acquired locks the optimistic transaction of
type aCF is aborted. If another optimistic transaction of tyaCF has committed
already and has accessed the same objects while they were accessed by the transaction
to be validated, the transaction is also aborted.

(2) Synchronisation is based on the definition of priorities. In case of a conflict the
access right is usually granted to the transaction that has the highest priority whereas the
other is aborted (exceptions from this rule exist, as the example below will show).
Transactions of typconsCF have the highest priority because they are applied to pre-
serve the consistency of a process. Next at the same level of priority are transactions of
typewcCF or aCF, if the pessimistic mode has been chosen for the latter one. Next are
transactions of typautoCF. Transactions of typaCF have the lowest priority, if the
optimistic mode has been chosen.

(3) Transactions of tyrconsCF or autoCF are always executed as subtransactions of
transactions of typwcCF or aCF, because activities automatically executed by the
PSEE are always triggered by a user activity. The subtransactions have access to the
locks still held by the parent transaction. In case the parent transaction is aCPpe
in optimistic mode the timestamps are transformed to locks at validation time. If the val-
idation fails, the parent transaction is aborted.

These rules avoid the situation whiconsistenc or automatiol activities triggered
by a user’s activity cannot be performed because in the meantime locks were acquired
by other transactions. For example, a compile activity is triggered and performed when
a user has finished editing a module. Consequently, a project, i.e. all its corresponding
documents, is always in a consistent state.

Based on these rules we have defined a number of more sophisticated synchronisation
rules which we do not give in full detail here but refer to [Junk94]. The following exam-
ple should illustrate that even withdrawing locks is a possible conflict resolution.



6.4 Current Work 151

Consider the conflict between a transaction of wcCF oraCF (in optimistic mode)
on one hand and a transaction of tconsCF on the other. In such a conflict, it is dis-
tinguished whether or not tiwcCF- or aCF-transaction has already started subtransac-
tions.

The first case means that the user has already finished his activity in the working con-
text. If a subtransaction (of tiwcCF oraCF transaction) of typconsCF concurrently
accesses the parent’s lock which causes the conflict, the requconsCF is aborted.

If a subtransaction of tyrautoCF currently accesses the parent’s locks, the transaction
of typeautoCF is aborted and the lock is withdrawn from the parent transaction of type
wcCF oraCF. If no subtransaction currently accesses the parent’s lock, the lock is with-
drawn from the transaction of tywcCF or aCF.

In the second case (no subtransactions initiated yet, i.e. the user activity is still run-
ning) it has to be distinguished whether the conflict is caused by concurrent accesses to
a document or a document state. If the transaction oiconsCI requests a state lock,
this lock is divested from the pessimistic transaction of wcCF or aCF without
aborting the transaction. This solution is based on the specific application knowledge
that a document’s state is only changed by the user at the very end of the development
activity. Withdrawing the state lock enables the user to continue the activity (e.g. edit-
ing a source code module), but does not allow him to change the module’s state at the
end of his activity. In order to change the state, the user has to finish his/her activity and
to start a new one later. Note, that the performed modifications are not lost. Only if the
conflict betweera consCPtransaction andwcCF- oraCF-transaction concerns a doc-
ument’s lock, the transaction of tywcCF or aCF is aborted. Then the already per-
formed modifications are stored in the user’s private workspace. Thus a new version of
a document is created. Furthermore the “losing” user is informed about the user who
caused the conflict (and that user’s role) such that the two users are able to discuss fur-
ther synchronisation of their work, possibly off-line.

6.4.2.4 TheKnowledg: Layer

The Merlin transaction model and in particular the synchronisation rules are formally
defined in a set of PROLOG rules. These rules are efficiently executable and act as an
inference engine for software processes. A particular software process is defined in an
OMT-like notation [Junk94] which is mapped to PROLOG facts and thus can be inter-
preted by the inference engine.

Further PROLOG rules define all the preconditions which have to be fulfilled in order
to build a particular user’s working context or to execute a particular activity. A partic-
ular working context or the intended execution of an activity are described as PROLOG
goals. By interpreting the PROLOG program the PSEE checks preconditions, for exam-
ple, a user’s responsibilities, access rights or document states. An activity whose pre-
conditions are true is displayed in a working context (possibly on demand) or
automatically executed (e.g. compile). Performing an activity could result in new pre-
conditions becoming true (based on the user input of status information, or on the results
of automatic activity executions) and consequently new activities displayed. The



152 6 Cooperation Control in PSEE

PSEE’s major job in the context of managing working contexts is thus to evaluate all
preconditions and to refresh all displayed working contexts accordingly (on demand).

6.4.2.5 TheRepositor Layer

In Merlin the fully object oriented database syster; [Banc92] is used to maintain all
information about software development projects including access rights on documents
and document states. The schema is defined us;C which is an object oriented
extension of the programming language C. Furtherms provides an implementation

of the standard DDL/DML for object management systems proposed by ODMG
[ODMG97]. C, provides a simple ACID transaction mechanism for optimistic and pes-
simistic transactions. The Merlin transaction model uses pessimistic (short time) ACID
transactions to modify those PROLOG facts that reflect the current state of the coop-
eration model.

6.4.2.6 The Example Scenario

In this section we apply Merlin process transactions to the sample scenario. Table
6.6 maps each activity of the scenario (middle column) onto the corresponding process
transactio® (right column). Nested process transactions are explicitly marked by a shift
to the right. Each event (starting or terminating process transaction) that results in a
modification of a document state is given a unique number in the left column. These
event numbers are used to illustrate the transitions of the four documents in Figure 6.7
over.

Table 6.6 Application of Process Transactions to the Scenario

Event Activity Process Transaction

1 edit_interface(A) (iy, aCF, -, Ty)

1.1 (ip, autoCF,
{w(state(body(A))}, 1)

2 edit_interface(B) (i3, aCP, -, T)

2.1 (i4, autoCF,
{w(state(body(B))}, 3)

3 edit_body(B) (i5, aCF, -, T3)

4 compile_body(B) (ig,autoCF,
{w(state(body(B))}, 5)

5 edit_body(A) (i7, aCF, -, Ty)

6 compile_body(A) (ig, autoCF,

{w(state(body(A))}, 7)

8. In this notation of process transactions identity and role of users are skipped for sake of better
readability, since there is no need of these attributes here.



6.4 Current Work 153

Table 6.6 Application of Process Transactions to the Scenario

Event Activity Process Transaction
7 edit_interface(A) @ acCP, -, Tg)
7.1 (i10 cONSCR {w(state(inter-
7.2 face(A))}, io)
73 (iy1, consCR
7.4 {w(state(body(A)),
w(state(body(B)))}, é)
edit completed
(iy, autoCR,
{w(state(body(A)),
w(state(body(B)))}, 4)
8 edit_body(A) (i» aCP, -, Tg)
9 compile_body(A) (i3, autoCR,
{w(state(body(A))}, i2)
10 edit_interface(A) (4 aCP, -, Ty)
10.1 (iy5 consCR {w(state(inter-
10.2 face(A))}, i1y
10.3 (i1 cONSCR
10.4 {w(state(body(A)),
w(state(body(B)))}. 14)
edit completed
(i17, autoCP,
{w(state(body(A)),
w(state(body(B)))}, i4)
11 edit_body(B) (s aCP, -, Ty)
12 edit_body(A) (g aCP, -, Tg)
13 compile_body(A) 6o, autoCPR,
{w(state(body(A))}, ho)
14 compile_body(B) h, autoCPR,
{w(state(body(B))}, ig)

Figure 6.7 is a diagram that shows the sequence of state transitions for each document
in the example. States are represented by ovals while directed edges denote transitions
between states. The initial state is as noted at the top of each diagram. Edges are anno-
tated with event numbers in order to have a mapping with process transactions that
cause the corresponding transitions (Table 6.6).

6.4.3 The ADELE System

The ADELE system is developed at the LSR-IMAG laboratory in Grenoble. It was ini-
tially designed to manage versions and configurations during software development,
and there is a commercial version that is confined to this task. In this section we will



154 6 Cooperation Control in PSEE

Interface of Module A Body of Module A

d ( could_not_be_impleme@ed
\1, 7.3,10.3 / 1.1,7.2,10.3
7.1, 10. (not_yet_implement@i
6,9, 13
Interface of Module B Body of Module B

d ( could_not_be_impleme@ed

\2 7.2,10; Nz, 7.4,10.4
(not_yet_implementeyi

3,11

implemented

Figure 6.7 State Transitions of Evolved Documents

consider an enhanced version, which the objective of improved support for “Team
Work”.

6.4.3.1 TheRepositorylayer

ADELE proposes its own data repository as default. The ADELE data model is

designed for the support of Software Engineering work in general, and configuration
management in particular. It features an EER (Extended Entity Relationship) model,
where relationships are first class citizens, with identity, attributes and methods, in the
same way as objects. Multiple inheritance is available for both objects and relation-
ships. Special attention was devoted to complex object control. Composition relation-
ship semantics is not predefined by the system but explicitly declared by the data
modeller. Components of complex objects can be automatically found using explicit
built rules. This is an extension of configuration construction, where components can
be found using the “dependency” relationship and selection rules.

ADELE considers the File Systems as one of its repositories, and as such, most com-
mands can work in the same way on files in a file system or on its data repository.
Recovery and transactions span over all the repositories.



6.4 Current Work 155

‘ Interface ‘

Apel, Tempo

| Knowledge |

Event-Condition-Action rules

| Predefined Strategies |

shared vs private workspaces
cooperation rules library

| Working Areas |
tree of working areas check-in check-out
| Repositories |
ADELE own

Figure 6.8 ADELE Architecture
6.4.3.2 TheWorking AreasLayer

A working area, called Workspace (WS), is a kernel concept. It is built as a part of the

DB. A WS is the implementation of a sub DataBase: an identified sub set of another

WS, where the original WS is the repository. Thus WSs are nested, the DB being a tree
of WSs.

The kernel WS manager recognises two classes of WSs, Database WSs and File Sys-
tem WSs. A Database WS is a sub-DB, i.e. a sub set of the entities and relationships
pertaining to another WS. The WS manager is responsible for the identification of the
entities, to ensure transfers between the original WS (the parent), to the destination (the
child), and to avoid any malicious or unintended access to objects not pertaining to the
WS. All transfers are implicit and transparent.

WSs raise the granularity of most commands from a single file to the whole WS, for
example: create, delete, resynchronise. WSs are created by the make Workspace com-
mand “mkws object-list -t WS_type ...”, which is issued from parent WS, by default the
repository (i.e. the root WS). This granularity is much closer to the engineers’ concep-
tual world. For instance “mkws V2Conf -t develop -u Jim” createslifora develop-



156 6 Cooperation Control in PSEE

men WS containing the configuraticv2Con, itself containing perhaps thousands of
files (in other words, files can be checked-out set by set).

A File System WS is the file system image of a DB WS i.e. all WS object representing
a file is really a file in a file System. A File System WS acts as an extended file system,
with attributes, relationships and abstract objects. A component, the “File System Map-
per”is in charge to translate any command argument from files into their corresponding
objects. ADELE File System WSs dransparen, i.e. users and tools work as normally
in a real file system, with no changes in routine and (almost) no overhead.

6.4.3.3 Predefined Strategies
Shared or private workspaces

A WS has a parent (except the root WS), and may be one of several different children.
Each child contains a sub set of the objects of its peéCooperatiol refers here to the
way the “same” object is managed in both WSs. The kernel WS manager recognises
only two cooperation policies: Shared and Private.

Sharec means that the parent and its child really share the same object, i.e. a change
is immediately visible in both WSs. It exists physically as a single object, with no con-
currency control except the DB short ACID transactions, and the explicit locks pro-
vided as part of the Configuration Manager.

Private, conversely, means a WS acts as a (very long) ACID transaction containing
persistent objects i.e. changes are local to the WS, and any change performed outside
the WS are not visible. In long transactions, as soon as an object is modified, the kernel
WS manager creates, transparently, a copy of that object, visible and accessible only in
that WS. In short transactions, a lock is set to prevent conflicts. At WS commit changed
objects are resynchronised (i.e. merged) with their original in the parent WS. Change
propagation is only allowed along the WS tree, and at WS completion.

WSs are typed, and a different policy can be set for arbitrary set of objects. Thus a
part of a WS can be shared, and the rest can be private. Using only the kernel WS man-
ager, most of the usual cooperation policies can be implemented.

Rules library

An advanced feature of ADELE is that it allows tried and tested synchronisation strat-
egies to be organised in libraries. In other words, a strategy which has been developed
in a process, and whose correctness has been established through “experimentation” can
be stored to be reused in another process. Strategies are expressed as Event-Condition-
Action rules, see Section 6.4.3.4 .

6.4.3.4 TheKnowledg: Layer

A strategy formally defines which kind of data must be transferred between WSs, at
which time, and between which WSs. It extends the kernel WS manager in that (1)
cooperation can be implemented between any pair of WSs with common objects (not
only the parent/child tree), (2) the data exchange can take place at any defined instant



6.4 Current Work 157

(not only at WS commit), (3) different policies can be active simultaneously for a given
object with respect to different coordinated WSs (instead of a single parent coordinated
WS), and (4) cooperation policies can be set, removed and modified at any time
between any WS pair.

The DB becomes a network of coordinated WSs, exchanging information in a prede-
fined manner, and following an explicit model.

A WS type is defined explicitly, WS instances are objects themselves. The process
engine notifies the WS manager each time an event occurs on an object. The WS man-
ager, if the object is coordinated, and depending on the coordination policy(ies), dis-
cards the event or executes the action defined in the policy. (The action may be merge
both objects, notify the user, ask the user what to do etc.).

A WS type is defined as follows: WStype = (Content*, Sub WSs*, coordinated*, role)
with

a) conten, the list of object types contained in the WS,

b) Sub W. the child WS types,

c¢) Coordinatet. Coord = {OrigWs, DestWS, which, when, policy}, wiOrigWs and
DestW:! the coordinated WS pawhicl a filter defining which objects are the sub-
ject of the policieswher is a condition expressing when the policy must be executed,
andpolicy is what is to be done when twher condition becomes true. Examples of
coordinations are given in C1-C4 below.

Integration = (SourceCode, {Analysis, Development}, {C1, C2, C3, C4}, Integrator)
where:

C1 = (Self, Analysis, SourceCode, True, shared)

C2 = (Self, Development, SourceCode, True, private)

C3 = (Development, Development, (type = Header), save, resynch),

C4 = (Development, Development, (Itype = Body), become_ready, notify);

Line 1 expresses thintegratior WSs contairSourceCod, have sub WSAnalysis
anddevelopmel, uses coordination (1o C4, and are used by engineers with the role
of Integratol.
C1 expresses thiAnalysit WSs aresharing the source code with the Integration WS
(sel). C3 expresses that between any Developmer child WSs, theheader: are to
beresynchronise as soon as a modifilHeade is saveu.
C4 expresses that a notificaticnotify) is to be sent to the WS responsible as soon as a
program body become_ready. The eventbecomes_rear being defined as “event
becomes_ready = (Icmd = mda and !a = state and !val = ready)” i.e. the state attribute
is changed to ready.

C1 and C2 simply use the kernel WS facilities, while C3 and C4 define advanced
cooperation policies, based on a library of predefined policies.



158 6 Cooperation Control in PSEE

6.4.3.5 Thelnterface Layer

In particular, this layer supports the modelling of software project activities. It is organ-
ised in two parts. The basic process engine language, based on triggers, and two
advanced formalisms: the Tempo and APEL process languages for the definition and
enactment of process models.

The basic process engine interprets all the events occurring in the system according
to the current process model. Events are all accesses to the system, or accesses to any
data (objects as well as relationships) contained in any repository. Pertinent events are
explicitly declared. Triggers are Event-Condition-Action rules, and are defined as part
of a type definition.

The high level languages include constructs to describe: (activities related to a
life cycle model, (the model specifies the objects to manipulate, tools to invoke, the
authorised agents, and constraints to check the validity of operations carried out in an
activity), (2) relationship: between the activities, (decomposition of an activity into
subactivities) (3) thcoordinatior among the activities (sequencing, parallelism, data
flow) which specifies certain constraints on the execution of activities.

Tempo is a textual language emphasizing an object oriented style for process descrip-
tion. One feature of Tempo related to synchronisation is that it offers advanced mecha-
nisms for cooperation support. We have identified two major capabilities. The first is
the process layer which defines specific scenarios for cooperation and synchronisation
appropriate for these scenarios. The software process is specified as long term and com-
plex events which perform activities in response to appropriate conditions. The second
is the cooperation layer which controls the degree of parallelism in resource sharing
allowing different strategies on a per-application basis, without using transactions hier-
archies.

In combination with TempcAPEL (Abstract Process Engine Language) is a graphi-
cal language primarily designed for capturing and understanding processes. Then, by
recursive refinement, the degree of description becomes sufficient for generating the
code for enaction. APEL offers process engineers four aspects: Control flow (including
multi instance activities, control by event), data flow (including asynchronous data
transfers), data definition (including versioning and measure aspects), and Work Space
(including cooperation policies, user role and State Transition aspects).

6.4.4 The SPADE System

The SPADE system [Band93, Band94, Band94b] is developed by the Software Engi-
neering Team at Politechnico di Milano. Software processes in SPADE are specified
using a high-level Petri net notation which covers all aspects of processes, including
cooperation.



6.4 Current Work 159

6.4.4.1 SPADE Architecture

The SPADE architecture is structured in four different layers: the Repository, the Proc-
ess Engine, the User Interaction Environment, and the SPADE Communication Inter-
face. The Repository stores both process model fragments and process artifacts. It has
been implemented on top of th;, database. The Process Engine is responsible for the
execution of the SPADE LANGuage (SLANG) process models. Different fragments of

a process are associated with one SLANG interpreter that executes as a thread of the
Process Engine. The User Interaction Environment (UIE) is a collection of tools, avail-
able in the development environment, that take part in the process enactment. Process
users always interact with the Process Engine through the services provided by these
tools. The SPADE communication interface (SCI) behaves as a communication bus,
connecting SLANG interpreters with tools in the UIE. The SCI defines a message based
control integration protocol. To extend the scope of the process model control to other
tools that do not know this protocol, a number of bridges can be added to the SCI. A
bridge is a gateway that translates control messages from the SCI protocol into another
control integration protocol. SPADE comes with bridges for DEC FUSE, SUN
ToolTalk and Microsoft OLE/DDE.

6.4.4.2 SPADE Language

SPADE defines a process modeling language called SLANG that supports process
description from two different perspectives. The data perspective is given by a set of
classes (or abstract data types) caProcessTyp¢, and the workflow perspective is
given as a set of activities calliProcessActivitie. The two process views are inte-
grated: the data manipulated by activitiesProcessActivitie are instances of the
classes contained ProcessType.s

The ProcessType set is organised in a class generalisation hierarchy, following an
object-oriented style. Each class has a unique name, a type representation, and a list of
operations, that may be applied to objects of the class. Each class can be used to repre-
sent different kinds of process data in the process model. Process data includes: process
products and by-products (source code, executable code, design documents, specifica-
tions, etc.), resources and organisational process aspects (such as roles, skills, human
resources, computer resources, etc.), as well as process model and state information (for
example, activity definitions, activity instances, class definitions etc.).

Each activity in theProcess Activitie set describes the workflow within a process
fragment. Activities are specified using a high-level Petri net notation. Petri net transi-
tions represent process steps and Petri net places behave as typed data (token) contain-
ers. The Petri net topology of an activity describes precedence relations, conflicts, and
parallelism among process steps. Usually, a transition affects only the data contained in
its pre-set and in its post-set and corresponds to a transaction in the underlying database.
Some special transitions, callblack transitions are able to affect the User Interaction
Environment by executing tools and invoking the services provided by these tools. An
activity definition may also include the invocation of other activities.



160 6 Cooperation Control in PSEE
6.4.4.3 The Concurrent Coding Activity Example

To show how coordination and data sharing are managed in SPADE, let us consider the
motivating example presented earlier Section 6.1.2 . This process is the parallel coding
of two modules, A and B. These two modules are interdependent. In particular, B
depends on A. According to the Scenario 2 (see Table 6.2), the coding of the modules
can be performed in parallel, provided that the last version of module B is generated
using the last delivered version of module A.

Figure 6.9 shows the SLANG activity that describes the process of coding one of
these modules. The activity is parametric with respect to the module to be developed,
that is, it describes the process to be followed for coding any of the modules composing
a software system. When needed, this activity can be instantiated in multiple active cop-
ies, that are executed in parallel by different SLANG interpreters for supporting the
(possibly parallel) implementation of several modules. Figure 6.10 shows a process
fragment in which two instances of this activity are invoked. PlinfoModuleA
andInfoModuleB  contain, at the invocation time, the information related with the
module to be coded. PlaGlobalWs is shared between the two activity instances, that
is, both activities can use and change its contGlobalWS represents a common
workspace in which the modules under development are stored in their intermediate and
final versions. As for Figure 6.9, the coding activity is started when the information on
the module to be coded are available in the input place cdnfoModule . Each
module ininfoModule is characterised by a name, a person responsible for its devel-
opment, and a list of modules it depends on.

All the modules under development are represented by tokens in the shared place
GlobalWs °. Each module iiGlobalWs is characterised by a version number that is
increased each time a new version of the interface of the module is dedS. oped

The definition of the coding activity supports users in executing the following steps:

a) edit the interface of the module;

b) edit the body of the module;

¢) compile the coded module;

d) terminate the execution of the coding activity.

Users issue commands related to these steps using some tools in the SPADE UIE.
These commands are received by the coding activity as tokens inUserCom-
mand. This is a special place (it can be distinguished by the others for its graphical
appearance), calleuser place as it is used to manage the interaction between the UIE
and the Process Engine. A user place can be configured to receive specific types of mes-

9. GlobalWs has associated a type called module. This type characterises all the tokens that can
be stored in the place. For the sake of brevity, type definitions and transition codes are just infor-
mally described.

10. For the sake of simplicity, in this context, we do not consider the problem of how to manage
several versions of the same module. In the example, we just keep track of the number of inter-
face versions that have been developed for each module.



6.4 Current Work 161

Q Modulelnfo

T ConfigureUserPlace

[ editinterface

Global WS

iation

EndCoding

CodingResults

Figure 6.9 The parallel coding activity

sages. In this example, transitiConfigureUserPlace enables placUserCom-

mand to receive all the commands of editing, compilation, and termination issued for
the module whose development is supported by the activity. The occurrence of a token
in UserCommand enables transitioreditinterface , editBody , compile , or
TerminateCoding . They fire provided that their guard is true.

Let us consider the flow of the process when transeditinterface fires. In
this case, a request to edit the interface of the module is represented by a token in place
UserCommand and a token representing the module is in pModuleToCode (this
happens if no other editing operation on the same module is being performed). The fir-
ing of editinterface starts the editing procedure and enables the execution of
check-outDepend . This last one makes a local copy of all the module interfaces on



162 6 Cooperation Control in PSEE

which the module to be coded depends. In particular, the last delivered versions of each
interface are retrieved from the common repositGlobalWs ) and copied in place
Dependencies . TransitionRunEditor executes an editor on the user’'s worksta-
tion, thus allowing the user to edit the module interface. The copies of the other inter-
faces checked out from the common workspace are also loaded in the editor. As soon
as the user terminates the editing phase, the new version of the module interface is put
in placeGlobalWS and is made available to all the depending modules.

When the user requests the termination of the coding activity, tranTermi-
nateCoding can be enabled to fire. It fires if the module under development has been
compiled at least once (a token exists in pCompilationResult ). After execu-
tion of TerminateCoding , the guard of transitionEnableTermination and
ForbidTermination are evaluated. The guardEnableTermination is true
only if the dependencies (i.e. the module interfaces which the module under develop-
ment depends upon) have been officially released, and also the module under develop-
ment has been compiled for the last time using the final release of each dependency. The
firing of EnableTermination enables the execution EndCoding that marks
the last version of the module under development as final, and terminates the execution
of the activity.ForbidTermination fires wheneveEnableTermination can-
not fire. It enable:NotifyError that sends an error message to the user. In turn,
NotifyError inserts the token representing the module under development in place
ModuleToCode thus enabling the user to issue other editing and compilation
requests.

6.4.4.4 Mapping SPADE on the Proposed Framework

In this section we map the SPADE architecture and philosophy on the framework pre-
sented in this chapter. In particular, for each of the layers of the framework, the corre-
sponding SPADE elements are highlighted.

Repository: SPADE relies on the 5 database system for storing both process model
descriptions and process artifacts. SPADE users do not interact directly 5, butO
they have visibility on its mechanisms in two cases:

GlobaWs

nfoModuleA

InfoModuleB

StartCodingl
CodingActivity
EndCodingl

StartCoding2
CodingActivity
EndCoding2

CodingResultsM oduleA CodingResultsModuleB

Figure 6.10Invocation of two active copies of the coding activity



6.4 Current Work 163

a) In the definition of ProcessTypes and of guards and actions of transitions. In this case
they exploit the QC language constructs.

b) During the execution of transitions. Each transition, in fact, executes as an ACID
transaction exploiting the transactional mechanisms offered,by O

Workspaces In general, a workspace is modelled as a place in a SLANG model. As
shown in the example of Section 6.4.4.3 , places can be either private to an activity or
shared among activities. In this last case, each sharing activity can read and update the
contents of the place. Thus, a common workspace can be naturally implemented with a
shared place linked by one or more activity invocations.

Transactions and Knowledge The granularity of an atomic event in a SLANG
model is that provided by the transition construct. The process engine assures that all
the transitions that do not involve external events are ACID transactions. SLANG does
not offer any primitive mechanism for long or nested transactions. However, such
mechanisms can be programmed. From the invoking activity viewpoint, an activity can
be viewed as a nested transaction, which in turn may contain both transitions and other
activity invocations. In addition, it is easy to add to each activity a net fragment that
implements any consistency check before enabling the termination of the activity. In the
example (see Figure 6.9), such consistency checks are enabled by the firing of transition
EndCoding . They are needed to verify that the implementation of a module relies on
the final versions of all the modules it depends on, and not on some temporary release.
This technique can be combined wétharedplaces that can be used by one activity to
publish the intermediate results of its enactment. Note that SPADE requires an explicit
management of consistency and cooperation issues because these “high-level” concepts
are not native to the system. Other systems may not require the process modeller to pro-
gram these parts of the behaviour of the model or they may provide a means to express
constraints in a declarative language. The choice of the SPADE system clearly favours
flexibility and simplicity, but at the cost of a more detailed model specification. On the
contrary, other approaches reduce the process modeling efforts, but at the cost of
reduced flexibility.

Interface: The interface layer manages the interaction between the process engine
and the human agents who are involved in some way in the process enactment. The
interaction with process users is supported by the SPADE communication interface and
is always delegated to some tools in the user environment. That is, the user ifgerface
a tool that can be controlled by the process model. SPADE provides process modeller
with a few integration primitives, a basic set of integrated tools, a set of protocol
bridges, and the libraries that are needed to integrate new tools. Like an event driven
system, a SLANG model can be programmed to catch a number of events coming from
the integrated tools (representing user’s actions) and to react to those events according
to any particular policy. In the example of Section 6.4.4.3 the coding activity reacts to
the users’ commands appearing as tokens in flaeeCommand. These tokens ena-
ble the execution of transitions depending on the user message they encapsulate and on
the internal state of the process.



6.5 Conclusion 164

Interacting with process managers, for control purposes, and with the process model-
ler, for process debugging, poses different requirements. In particular, it requires the
ability to examine the evolution of every step of the model as well as its state. This kind
of deep insight into a model that is being enacted is provided in SPADE by means of a
privileged system tool called SPADE Monitor.

6.4.5 Other Facets of Cooperation

The advanced transactions models presented in this chapter provide good support for
the execution of activities that require for non real-time coordination and data sharing.
However, they fail whenever activities like meetings and cooperative editing of docu-
ments are to be supported. Such activities pose particular requirements on the architec-
ture of the PSEE. For instance, the PSEE should provide mechanisms with strict
synchronisation requirements to multicast data among the participants.

CSCW (Computer Supported Cooperative Working) environments address these
issues. However, they usually support specific activities and are not well suited when
such activities need to be executed within the context of a more complex and articulated
process. SPADE addresses this issue by integrating CSCW tools that extend its cooper-
ation support abilities to synchronous cooperation [Band96].

6.5 Conclusion

This chapter has illustrated the complexity of cooperation control in software processes
and the variety of approaches which can be followed to solve the related problems.

Other work has been done on this topic in the context of Promoter: the EPOS
approach can be compared with that of ADELE. ProcessWise and SOCCA model coop-
eration from scratch as SPADE does, but using different formalisms, objects for Proc-
essWise, state transition diagrams for SOCCA.



