
Efficient Tree-Based
Content-Based Routing Schemes

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Koorosh Khazaei

under the supervision of

Prof. Antonio Carzaniga

February 2018

Dissertation Committee

Prof. Fernando Pedone Università della Svizzera Italiana, Switzerland
Prof. Patrick Eugster Università della Svizzera Italiana, Switzerland
Prof. Fabian Kuhn University of Freiburg, Germany
Prof. Pascal Felber Université de Neuchâtel, Switzerland

Dissertation accepted on 5 February 2018

Research Advisor PhD Program Director

Prof. Antonio Carzaniga Prof. Walter Binder

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Koorosh Khazaei
Lugano, 5 February 2018

ii

To my lovely wife, Paniz Afroughi

iii

iv

I do not pretend to start with
precise questions. I do not think
you can start with anything
precise. You have to achieve such
precision as you can, as you go
along.

Bertrand Russell

v

vi

Abstract

This thesis is about routing and forwarding for inherently multicast communi-
cation such as the communication typical of information-centric networks.

The notion of Information-Centric Networking (ICN) is an evolution of the
Internet from the current host-centric architecture to a new architecture in
which communication is based on “named information”. The ambitious goal
of ICN is to effectively support the exchange and use of information in an
ever more connected world, with billions of devices, many of which are mobile,
producing and consuming large amounts of data. ICN is intended to support
scalable content distribution, mobility, and security, for such applications as
video on demand and networks of sensors or the so-called Internet of Things.

Many ICN architectures have emerged in the past decade, and the ICN
community has made significant progress in terms of infrastructure, test-bed
deployments, and application case studies. And yet, despite the impressive re-
search effort, the fundamental problems of routing and forwarding remain open.
In particular, none of the proposed architectures has developed truly scalable
name-based routing schemes and efficient name-based forwarding algorithms.

This is not surprising, since the problem of routing based on names, in its
most general formulation, is known to be fundamentally difficult. In general,
one would want to support application-defined names (as opposed to network-
defined addresses) with a compact routing scheme (small routing tables) that
uses optimal paths and minimizes congestion, and that admits to a fast for-
warding algorithm. Furthermore, one would want to construct this routing
scheme with a decentralized and incremental protocol for administrative au-
tonomy and efficient dynamic updates. However, there are clear theoretical
limits that simply make it impossible to achieve all these goals.

In this thesis we explore the design space of routing and forwarding in an
information-centric network. Our purpose is to develop routing schemes and
forwarding algorithms that combine many desirable properties. We consider
two forms of addressing, one tied to network locations, and one based on more
expressive content descriptors. We then consider trees as basic routing struc-

vii

viii

tures, and with those we develop routing schemes that are intended to minimize
path lengths and congestion, separately or together. For one of these schemes
based on expressive content descriptors, we also develop a fast forwarding al-
gorithm specialized for massively parallel architectures such as GPUs.

In summary, this thesis presents two efficient and scalable routing algo-
rithms for two different types of networks, plus one scalable forwarding algo-
rithm. We summarize each individual contribution below:

• Low-congestion geographic routing for wireless networks. We develop a
low-congestion, multicast routing scheme designed specifically for wireless
networks. The scheme supports geographical multicast routing, meaning
routing to a set of nodes addressed by their physical position. The scheme
builds a geometric minimum spanning tree connecting the source to all
the destinations. Then, for each edge in this tree, the scheme routes
a message through a random intermediate node, chosen independently
of the set of multicast requests. The intermediate node is chosen in the
vicinity of the corresponding edge such that congestion is reduced without
stretching routes by more than a constant factor.

• Multi-tree scheme for content-based routing in ICN. We develop a tree-
based routing scheme designed for large-scale wired networks such as
the Internet. The scheme supports two forms of addresses: application-
defined content descriptors, and network-defined locators. We first show
that the scheme is effective in terms of stretch and congestion on the cur-
rent AS-level Internet graph even with only a few spanning trees. Then
we show that our content descriptors, which consist of sets of tags and
that are more expressive than the name prefixes used in mainstream ICN,
aggregate well in practice under our scheme. We also explain in detail
how to use descriptors and locators, together with unique content iden-
tifiers, to support the efficient transmission and sharing of information
through scalable and loop-free routes.

• Tag-based forwarding (partial matching) algorithm on GPUs. To accom-
pany our ICN routing scheme, we develop a fast forwarding algorithm
that matches incoming packets against forwarding tables with tens of
millions of entries. To achieve high performance, we develop a practical
solution for the partial matching problem that lies at the heart of this for-
warding scheme. This solution amounts to a massively parallel algorithm
specifically designed for a hybrid CPU/GPU architecture.

Acknowledgments

I would like to express my deepest appreciation and gratitude to my advisor
and friend Antonio Carzaniga for all the support and friendship you have given
me over the years. This dissertation would not have been possible without your
guidance and patience. I would not be who I am or where I am today if I had
not had the privilege to know and work with you.

ix

x

Contents

Contents xi

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 The Importance of Scalability 3
1.2 The Importance of the Naming Scheme 4
1.3 Contributions of This Thesis . 4
1.4 Preliminaries . 8

1.4.1 Communication Models 10
1.4.2 Network Models . 11
1.4.3 Characteristics of Routing Algorithms 12
1.4.4 Compact Routing: Memory Vs. Congestion 16

1.5 Structure of the Document . 16

2 Scalable Routing for
Tag-Based Information-Centric Networking 19
2.1 A New Perspective on Routing in ICN 20
2.2 Network Architecture . 22

2.2.1 Content Descriptors . 23
2.3 Routing Scheme . 25

2.3.1 ICN Routing on One Tree 26
2.3.2 Unicast Routing on Trees 27
2.3.3 Locators and the Request/Reply Service 27
2.3.4 Using Multiple Trees . 29
2.3.5 Hierarchical Multi-Tree Routing 30

xi

xii Contents

2.3.6 RIB Representation . 32
2.3.7 Locator-Based Matching Algorithm 34

2.4 Evaluation . 35
2.4.1 Speed of Unicast Forwarding Using TZ-labels 36
2.4.2 Effectiveness with k Trees 36
2.4.3 Application Workloads 40
2.4.4 Memory Requirements 43

2.5 Related Work . 45
2.6 Summary . 46

3 TagMatch: A Fast Matching Algorithm for Tag-Based Information-
Centric Networking 47
3.1 Subset Matching . 48

3.1.1 Definitions . 49
3.1.2 Existing Solutions and Related Work 51

3.2 Proposed Solution . 53
3.3 System Model . 55
3.4 System Implementation . 57

3.4.1 Off-Line Partitioning . 60
3.4.2 Pre-Process . 62
3.4.3 Subset Match . 64
3.4.4 Key Lookup/Reduce and Merge 68
3.4.5 TagMatch Adaptation as an ICN Message Forwarder . . 69

3.5 Evaluation . 69
3.5.1 Subjects and Experimental Setup 70
3.5.2 Workloads . 71
3.5.3 Performance and Scalability 73
3.5.4 Comparison with MongoDB 85
3.5.5 Experience with an Alternative Design 87

4 An Ideal Routing Scheme for a Wireless Network Model 89
4.1 Problem Setting . 90
4.2 Related Work . 92
4.3 Model and Definitions . 93
4.4 Problem Statement . 95
4.5 Geometric Multicast . 97

4.5.1 Analysis . 99
4.6 Name-Based Multicast . 105
4.7 Simulation Analysis . 107

xiii Contents

4.7.1 Variants of the Routing Algorithms 107
4.7.2 Experimental Setup and Parameters 109
4.7.3 Results . 112

5 Conclusion and Future Work 115

xiv Contents

Figures

2.1 Multi-Tree Routing Scheme. 26
2.2 Hierarchical Routing: Inter-AS. 31
2.3 RIB Indexed by Tag Set. 33
2.4 PATRICIA Trie Used for the RIB. 34
2.5 Stretch Problem. 37
2.6 Congestion Problem. 37
2.7 Path Stretch. 38
2.8 Link Congestion. 39
2.9 Sizes of Inter-AS RIBs. 43
2.10 Sizes of Intra-AS RIBs. 44
2.11 RIB Scalability. 45

3.1 The Architecture of TagMatch. 56
3.2 Compression of Forwarding Table. 72
3.3 Average Throughput for match-unique. 74
3.4 Average Output Rate for match-unique. 75
3.5 Average Throughput for match and match-unique. 76
3.6 Effect of Number of Threads On TagMatch. 78
3.7 Latency of TagMatch. 79
3.8 Effect of Partition size on Average Throughput of TagMatch. . . 80
3.9 Partitioning Algorithm with Most Balanced Bit as Pivot. 81
3.10 Partitioning Algorithm with Most Frequent Bit as Pivot. 81
3.11 Most Balanced Bit Strategy. 83
3.12 Most Frequent Bit Strategy. 83
3.13 TagMatch Partitioning Time. 84
3.14 TagMatch Memory Usage (GB). 85
3.15 Comparison with MongoDB. 86
3.16 Scalability of MongoDB with Sharding. 87

4.1 Choice of Intermediate Node . 98

xv

xvi Figures

4.2 Alternative Selection of Intermediate Node 108
4.3 Examples of the Three Classes of Workloads 111
4.4 Comparison of Geographic Routing Algorithms 112
4.5 Comparison of Intermediate Point Selection Methods 113

Tables

1.1 Properties of the Routing Schemes Considered in This Thesis . . 6

2.1 Stretch of Compact Routing Schemes in Practice. 39

3.1 Throughput of TagMatch vs. CPU-Only and GPU-Only Systems. 54
3.2 TagMatch Interface. 55
3.3 Comparison of TagMatch with Existing Solutions 76
3.4 Effect of Kernel Optimizations on TagMatch. 77

4.1 λpad in Practice . 109

xvii

xviii Tables

Algorithms

1 Locator-Based Forwarding Algorithm. 35

2 Common-bit Partitioning Algorithm. 61
3 Pre-Process Stage. 63
4 Pre-Process Stage in More Details. 63
5 High-level Subset Match Kernel. 65
6 Pre-Filtering in Subset Match Kernel. 66

xix

xx Algorithms

Chapter 1

Introduction

The current Internet implements a communication model based on “host” ad-
dresses that are essentially location-dependent and in any case network-defined.
With these addresses, the network supports almost exclusively unicast informa-
tion flows. This communication model might have satisfied the communication
needs of applications from the early stages of the Internet. However, today’s
end-user applications use the network not to access or connect to any specific
host, but rather to exchange information or perhaps to connect two or more
users. Similarly, other applications, such as data-center applications, are also
based primarily on content-driven data flows or on symbolic services, not on
pure host-based communication.

Modern applications also require multicast flows. An example of an applica-
tion where content has to be delivered to multiple receivers is video conferencing
or live video streaming. As it turns out, the vast majority of the current In-
ternet traffic—a “high 90% level of traffic”—consists of data disseminated from
a source to a number of users.1 In other words, most Internet traffic is essen-
tially multicast. Such multicast flows can be supported through unicast flows,
although the redundancy of such flows leads to inefficiencies and possibly to
congestion. A good network-level multicast primitive may overcome this prob-
lem, but current multicast solutions such as IP multicast are available almost
exclusively to network operators but not to users and content providers.

In short, there is a gap between the needs of applications and the basic host-
based unicast network service available at the network level. Many application-
level communication systems (middleware) are already there to fill this gap.
One such system that is ubiquitous and very successful—and also essential—is
the domain name system (DNS). Still, DNS provides access to a content space

1Van Jacobson. A New Way to look at Networking. Google Tech Talk, August 30, 2006.

1

2

(domain names) that is very static and arguably very far from applications,
in the sense that applications have no control over it. So, we start from the
presupposition that there is still a significant gap, and that new applications
require or at least would greatly benefit from richer modes of communication.

One such novel mode of communication is what is embodied in Information-
Centric Networking (ICN). The main purpose of an information-centric network
is to transmit information rather than to connect to specific hosts. Thus a
consumer would request the desired information, and the network would deliver
it, regardless of the host where the information originated or where it might
be stored. Information centric networking is also inherently multicast, in the
sense that information would naturally flow to all interested consumers.

This thesis addresses some fundamental problems in information-centric
and multicast communication.

In Chapter 4 we focus our effort specifically on an optimal solution for the
congestion problem in multicast communication. Beyond that, we continue to
pay special attention to multicast communication and congestion throughout
the rest of this thesis. In fact, we consider multicast communication as a
fundamental requirement for our proposed ICN routing schemes.

Congestion and multicast are not the only concerns in designing new com-
munication schemes. Our general goal is to provide an communication ser-
vice that is close to the needs of applications. As we argued so far, many
applications are most fundamentally interested in information, regardless of
the network location where that information may reside, and regardless of
the network-defined address to which that information may be sent. In other
words, such applications would benefit from a content-based addressing model
whereby information is delivered to any and only those hosts that are inter-
ested in that content. And once again, this is one of the primary goals of
information-centric networking (ICN).

Therefore the design of ICN includes provisions for scalability in content
distribution, as well as features that the current Internet lacks, and especially
features suitable for modern Internet applications. An ideal ICN design would
natively support mobility, multi-point access, and multi-homing, as well as any-
cast, multicast, and broadcast. Data would become independent from location,
application, storage, and means of transportation, enabling in-network caching
and replication. ICN has purported benefits also for security, specifically for
authentication. In particular, since information could be addressed by unique
identifiers visible and understood at the network level, information could also
be equipped with appropriate signatures which would also allow the network
itself to verify authenticity on the behalf of users applications. Finally, these

3 1.1 The Importance of Scalability

ICN communications services should be scalable to support billions of devices
that produce and consume large amounts of digital information.

Such an ICN design is quite ambitious and, perhaps not surprisingly, its
realization has been difficult. Many ICN architectures have emerged in the past
decade, but they mostly focused on a small subset of the goals envisioned for
ICN. In particular, none of the proposed architectures has developed scalable
name-based, let alone true content-based routing schemes and corresponding
efficient forwarding algorithms, which must be the pillars of any ICN scalable
communication scheme. These are the problems we attempt to solve with this
thesis.

1.1 The Importance of Scalability

The current Internet is very different from its early days. In terms of size, it is
estimated that currently 15 billion devices are connected to the Internet. Cisco
estimates that 50 billion devices and objects will be connected to the Internet
by 20202, the Internet of Things World Forum (IoTWF) estimated this number
to reach 82 billion in 2025 3, and Intel estimates 200 billion devices by 2020.4

Regardless of whose estimate will be closer to reality, the so-called Internet
of Things (IoT) is expected to contribute a lot to these numbers. Moreover, so
many connected devices, such as smart phones, can produce as well as consume
huge amounts of data. This creates a new demand for the network. Namely,
the network should provide easy ways for consumers to get the content they
are interested in also from this new type of producers. However, if content is
addressed directly at the network level, allowing every node to be a content
producer would have a significant impact on the size of the Routing Informa-
tion Base (RIB). This is perhaps the most crucial aspect of scalability for an
information centric network. In fact, many proposed ICN architectures do not
allow this to happen, mainly due to the fact that their routing algorithms are
either based on link-state or distance-vector routing and can not cope with the
magnitude and distribution of user-produced content.

Scalability, specifically for highly distributed application-defined content
descriptors, is an explicit and fundamental goal for this thesis.

2http://www.cisco.com/web/solutions/trends/iot/overview.html
3IDC Worldwide Internet of Things Installed Base by Connectivity Forecast, March 2017.

Link:https://www.idc.com/getdoc.jsp?containerId=US42331917
4http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

http://www.cisco.com/web/solutions/trends/iot/overview.html
https://www.idc.com/getdoc.jsp?containerId=US42331917
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

4 1.2 The Importance of the Naming Scheme

1.2 The Importance of the Naming Scheme

Most of the current proposed architectures for ICN, including the mainstream
CCN and NDN projects, use a hierarchical naming scheme to address content.
As we show in more detail later in Section 2.2.1, this way of naming information
has some important limitations. First of all, hierarchical names impose a fixed
hierarchical partitioning of the content space that might be too restrictive
for many applications. Also, hierarchical names may or may not aggregate
well. Names aggregate by common prefix, which might not lead to an effective
aggregation with data produced by several applications dispersed throughout
the network, especially when names are unrelated to the network topology.
This is why many ICN implementations disallow true network-independent
naming and instead impose network-specific prefixes similar to DNS names,
thereby limiting even more the expressiveness of the naming scheme from the
viewpoint of applications.

We consider the expressiveness of the naming scheme to be of fundamental
importance. However, we also see the difficulty of scaling up routing for very
expressive names. Therefore, in this thesis we propose a dual naming scheme
that combines expressive content descriptors consisting of sets of tags, which
are application defined and therefore may or may not aggregate well, with
opaque locators, which are network defined and therefore can be very efficient
for routing. We then develop a routing scheme and a forwarding algorithm for
these two schemes.

1.3 Contributions of This Thesis

There are a number of important objectives that every good routing scheme
tries to achieve. The first objective is to obtain routing paths that “stretch”
as little as possible beyond the optimal distance. This is important since the
stretch of routing paths has a direct impact on the efficiency of the commu-
nication in the network. The second objective is to incur low congestion in
the network. A third important goal for a good routing scheme is to reduce
the amount of memory required at each node of the network to maintain the
routing paths. In summary one would want a routing scheme that has low
stretch, low congestion, and low memory utilization.

Unfortunately, for most network models and routing algorithms, there is
a trade-off between every two of these objectives. These trade-offs for rout-
ing algorithms have been studied extensively for the unicast communication

5 1.3 Contributions of This Thesis

model. For example the trade-offs between memory and stretch are well stud-
ied under the rubric of “compact routing”. There are also routing algorithms
for congestion optimization (see Section 1.4).

Researchers usually study one of these trade-offs in isolation in order to
make the study more tractable. Therefore, the research literature is very lim-
ited regarding the development of routing schemes that consider all three trade-
offs (stretch, congestion, memory)). This is especially the case for the ICN
communication model, which is the main focus of this thesis.

Moreover, the focus of this research is to design and develop ICN routing
schemes that are not only efficient, again in terms of memory stretch and con-
gestion, but also practical. In order to be practical, a routing scheme must be
distributed, meaning amenable to a decentralized construction; it must be on-
line, in the sense of supporting application demands that are not completely
known in advance; it must be dynamic, in the sense of supporting evolving
networks and/or naming schemes; and finally it should be accompanied by a
fast forwarding algorithm (see Section 1.4). We summarize the desired prop-
erties of an ideal routing scheme in the first row of Table 1.1. On the basis of
these desirable properties, we then characterize the contribution of this thesis,
comparing the schemes and algorithms developed here with the ideal routing
scheme.

The trade-offs between stretch, congestion, and memory usage are funda-
mental. In other words, there are theoretical limits to achieving optimality in
all of these objectives in the most general network model. Hence our approach
is to study specific networks and communication models with special proper-
ties. This helps us to exploit those properties and to design routing schemes
with minimal stretch, low congestion and low memory usage.

A fundamental choice in our approach is to work on tree-based routing
schemes. A tree is an ideal structure to reach multiple destinations. It is
loop-free by construction, and admits to an efficient forwarding of unicast or
multicast packets. Routing on trees is particularly suitable for network models
such as geometric networks, where routing trees can be built based on the
location of nodes. Trees are also good in networks such as the Internet that
are already structurally similar to a tree. Furthermore, for such networks it
is also easy to maintain a hierarchy of trees spanning the network at different
levels (e.g., inter-AS and intra-AS). Finally, since tree structures are very well
studied, we can benefit from a trove of knowledge and existing algorithms.

This thesis makes three contributions in the study and design of information-
centric networking.

6 1.3 Contributions of This Thesis

routing scheme network service model features
ideal scheme any unicast

multicast
ICN
name-independent

compact
low stretch
low congestion
fast forwarding
on-line
distributed
dynamic

tree-based
(Chapter 2)

internet
inter-AS
intra-AS

tag-based ICN
name-independent

compact (partially)
low stretch
low congestion
on-line
dynamic (partially)
hierarchical

geo-multicast
(Chapter 4)

geographical
unit-disc
wireless

multicast
name-dependent

compact
low stretch
low congestion (opt.)
on-line
dynamic
oblivious

Table 1.1. Properties of the Routing Schemes Considered in This Thesis

1. Multi-tree routing scheme for content-based routing in ICN. We develop
a practical approach to the routing problem in information-centric net-
working. At a very high-level, we consider a network model corresponding
to an unweighted AS-level Internet topology, and focus on application-
defined, tag-based addressing. Since the Internet topology, especially at
the AS-level, is already structurally similar to a tree, we build a routing
scheme using trees.

Trees simplify many routing problems, especially for multicast routing.
However, trees also have clear disadvantages for routing. First, paths
might be stretched, meaning the distance between two nodes on the tree
might be longer than their distance on the full graph. Second, traf-
fic would flow only on the tree, thereby reducing the overall network
throughput. It is well known that these sorts of problems can be al-
leviated by using multiple trees, each with their own forwarding state,
but in principle that requires more memory. This question of memory

7 1.3 Contributions of This Thesis

complexity is one of the fundamental issues we examine in this thesis.

We first show experimental results that indicate that multi-tree routing
is a good candidate for information centric Networking on the Internet
AS-level network [22]. Then we show that we can achieve different indi-
vidual objectives, such as low memory requirement, low stretch, and low
congestion by changing the way we construct these trees (see Section 2.3).
Properties of this routing scheme are summarized in the second row of
Table 1.1.

2. Tag-based forwarding (partial matching) algorithm on GPUs. Since a fast
forwarding algorithm is a fundamental part of any good routing scheme,
we put a lot of effort in designing one for the routing scheme we developed
based on trees. We adopt a tag-based model for content descriptors
(detailed in Section 1.4), which means that our forwarding algorithm
amounts to a very fast solution for the subset query problem, which in
turn is equivalent to the partial matching problem. Briefly, given a set P
of N subsets of a universe U , |U | = m and a query set Q ⊂ U , we have to
find all P ∈ P such that P ⊆ Q. We give formal and precise definitions
for this problem in Section 3.1.1.

While this problem is well studied theoretically [73, 27] and practically
(e.g. in the the database literature), existing solutions are not suitable to
be used as a forwarding algorithm, especially for forwarding tables of the
magnitude we expect in the ICN context. Solutions such as linear scan,
signature-based methods, inverted-indexes, tries and other theoretical
solutions such as [27], either consume too much memory that forces them
to store the data structure on disk, or use too much computational power
that makes them slow and not suitable for our problem domain. In
fact, this problem is believed to be inherently difficult due to the “curse
of dimensionality” [15] which means that there is no algorithm for this
problem which achieves both “fast” query time and “small” space.

We expect an ICN forwarding table to contain tens of millions of entries.
Therefore we need to design a solution for this specific problem-size that
does not consume too much memory and yet can achieve an acceptable
performance when matching incoming packets against large forwarding
tables. To achieve this goal, we develop a system that we call TagMatch
that in essence scans the problem space linearly for a single query. To
achieves high performance it processes many queries in a highly parallel
fashion. TagMatch is composed of several components each optimized so

8 1.4 Preliminaries

as to achieve high performance. TagMatch is designed to benefit from
the power of both CPUs and general-purpose GPUs (GPGPU).

The “pre-process” stage on the CPU side performs an initial filtering of
the incoming packets and assigns them to multiple queues while “subset
match” component that runs on GPU processes each queue in parallel
to find all the matches and reports back the result to the CPU for fur-
ther processing. Chapter 3 details to specifics of this system and the
evaluation of its performance.

3. Low-congestion geographic routing for wireless networks. While our gen-
eral goal is to design information-centric routing schemes, in particular
with content-based addressing and with all the desired features and prop-
erties as shown in the first row of Table 1.1, we started this research with
a simpler routing scheme where we put restrictions on both the commu-
nication and network models. We present this contribution in the latter
part of the thesis even though chronologically it was developed earlier.

For the network model, in this case we consider unit-disc communication
in geographical networks to model ad-hoc wireless networks. Because of
the nice properties of this network model, there is no need to construct a
fixed number of spanning trees to route multicast requests. Instead, we
build multicast trees on-the-fly as a message moves toward its destina-
tions.

Based on this model, we propose and analyze an oblivious randomized
multicast routing scheme that is compact (low memory) and has low
stretch and low congestion [21]. Properties of this routing scheme are
summarized in the third row of Table 1.1.

In the next section in this introductory chapter we describe the preliminary
notions and terminology used throughout the rest of the thesis. After that, in
Section 1.5, we outline the structure of this dissertation.

1.4 Preliminaries

In this section we review some basic notions regarding routing. We start with
the brief definitions of many essential terms and concepts that are frequently
used throughout this thesis. We then elaborate a bit on the communication
model, the network model, and routing.

9 1.4 Preliminaries

Network A network is a collection of processors interconnected by commu-
nication channels that allow them to communicate with each other. We
model a network by a corresponding graph in which processors are rep-
resented by nodes and communication channels or links are represented
by bidirectional edges between nodes. Processors host applications and
also act as routers. Thus a router v can send and receive messages (or
packets) to and from its δ(v) neighbors through δ(v) interfaces numbered
1 . . . δ(v). For uniformity, it is convenient to model the communications
of applications running on a node v as messages going through a special
interface number 0. Therefore, a message originating at node v0 is im-
plicitly received by v0 through its interface 0, while one being delivered
to an application on v0 is forwarded through interface 0.

Path A message originating at node v0 and delivered to node vk is forwarded
by a series of intermediate routers v1, v2, . . . , vk−1. The sequence of edges
(v0, v2), (v1, v2), . . . , (vk−1, vk) . . . define a path from node v0 to vk, and
the number of edges in the sequence is called the length of the path.

Routing scheme A routing scheme is a distributed algorithm that installs
forwarding state (or a forwarding information base, or FIB) in each
router.

Forwarding scheme A corresponding forwarding scheme is a local decision
procedure that executes at each router v whenever v receives a message
and, given the message m and v’s FIB, determines a set of output inter-
faces to which the router then forwards a copy of the input message. A
forwarding scheme may also rewrite forwarded message.

Addressing scheme The addressing scheme is the way the originator of a
message indicates one or more recipients for the message. This can be
done either explicitly by specifying the recipients, or implicitly by de-
scribing the content of the message itself and then letting the network
deliver a message to interested recipients. With an explicit addressing
scheme, each node in the network is assigned a name, while with implicit
addressing each node describes the kind of messages or information they
intend to receive. Different addressing schemes enable the network to
support different types of communication models. Routing and forward-
ing schemes are both based on the addressing scheme.

• Name-dependent vs. name-independent addressing: With an explicit
addressing scheme, each node in the network must be given a name,

10 1.4 Preliminaries

and each message contains the exact name of its destination node.
Some routing schemes can work with whatever names, perhaps as-
signed by applications independently of the network topology. Such
schemes are said to be name-independent. Other routing schemes
require that names be assigned in a certain way, typically by the
the routing scheme itself. These latter schemes are said to be name-
dependent or labeled.

• Content-based addressing: A content-based addressing is an implicit
addressing scheme whereby a message is delivered to nodes that are
interested in its content. In this model, a consumer node may declare
its interests by specifying some content. Then, when a producer
node sends a message with content (or a special content-descriptor
header) matching that specification, the network delivers the mes-
sage from the producer to that consumer and possibly to others
interested in the same content. There are several different ways to
specify and therefore to “address” content. A hierarchical name with
prefix matching is a simple form of content addressing. A “flat” name
with exact matching, which corresponds to an explicit addressing
scheme, can also be seen as a special case of content-based address-
ing. More elaborate forms of content addressing include content
specifications in the form of a sort of query. Carzaniga et al. [24]
propose a language for such queries to describe information within
their notion of content-based networking. A conceptually similar but
also simpler way of describing and addressing information is to use
sets of tags.

1.4.1 Communication Models

Communication models or service models define different delivery services that
a network might provide to applications. In general, a sender node issues a
request (or routing request) containing the message that needs to be delivered
plus possibly additional information needed to perform the service, such as
a destination address, a content descriptor, or other parameters that would
determine one or more destination node or the mode of delivery. In the follow-
ing we provide simple definitions of common communication models and their
routing requests.

Broadcast Broadcast is one of the simplest form of communication in the
network. In this model a routing request R = (m, s) consists of a message

11 1.4 Preliminaries

and the identifier of the sender. The message will be delivered to all nodes
in the network (except s).

Unicast In unicast model the goal is to establish communication between any
two nodes as sender and receiver. In this point-to-point communication
model, each node has a unique identifier. When a node s issues a unicast
request R = (m, s, t), the network has to deliver message m from source
node s to the destination address t.

Multicast In multicast, a sender can send a message to several receivers in one
single transmission. In this addressing scheme, each node can announce
itself as a member of a multicast group and join the group. A sender
sends its message to a multicast group and network nodes replicate the
message if necessary and send it to all group members. Here a multicast
request is in this form: R = (m, s, groupID).

For the sake of simplicity, sometimes we may assume that the sender
knows the address of all the multiple destinations for a message m. The
sender can therefore issue a multicast request R = (m, s, T) that, addition
to the message content and source identifier, carries the list of destination
T = {t1, t2, . . . , tk}.

Anycast the anycast model is similar to the multicast model, except that the
network can satisfy an anycast request by delivering the message to at
least one of the members of the group.

Notice that when the addressing scheme is implicit, such as with content-
based addressing, the communication model can be any or all of the models
listed above.

1.4.2 Network Models

The way nodes are interconnected in a network greatly influences the prop-
erties of the network for the purpose of routing. Depending on the network
model, additional information about the network might be available and more
or less structured. This includes link costs, node or edge capacities, single or
bidirectional communication channels, etc.. Below we briefly describe two cat-
egories of networks that are the main focus of our research, namely geographic
networks and Internet-like networks:

12 1.4 Preliminaries

Geographic Networks

Nodes of the network are situated in a Euclidean space, and the distances
between nodes are Euclidean distances (based on the positions of the nodes).
One important property of distances in a geographic network is that they obey
the triangle inequality: if three edges form a triangle in the network then the
sum of the lengths of any two edges of this triangle is always greater than the
length of the third edge. One can infer from this inequality that a direct line
between two nodes is also the shortest path between them. There are different
ways to establish communication between nodes of such network. Unit-disk
communication model is often used in conjunction with geographic networks
to represent wireless ad-hoc networks.

In the unit-disk model, we assume that every node has a communication
range equal to one unit, such that two nodes located within one unit of each
other can communicate directly. Unit-disk communication is often used to
model wireless ad-hoc networks in which every node is assumed to be equipped
with a wireless communication device that has a symmetric and limited range
of communication. In Chapter 4, we study a special variant of geographic
networks that uses unit-disk as the communication model.

Internet-Like Networks

Internet-like networks, as the name suggests, have a connectivity structure that
is very similar to the structure of the Internet. The Internet is an interconnec-
tion of many administratively independent and often competing entities called
Autonomous Systems (AS). For commercial reasons, very few autonomous sys-
tems reveal their internal structure publicly. ASes typically also conceal their
external interconnections and their routing policies, although some connectiv-
ity information can be inferred from global routing information. All of this is
to say that it is very difficult if not impossible to determine the exact detailed
structure of the Internet. Still, this structure has been studied extensively,
mainly through large collections of traced routes, or through BGP or IGMP
data. As a result, there Internet can be mapped quite accurately at the high-
level (AS), and in general it can also be characterized in terms of a number of
connectivity properties.

1.4.3 Characteristics of Routing Algorithms

A routing scheme consists of a set of algorithms that induce transmission paths
through the network. Below are the main features and complexity measures of

13 1.4 Preliminaries

a routing scheme.

Memory Requirements

Memory usage is an important characteristic of any routing scheme. The mem-
ory requirement of a routing algorithm can be measured in different ways. One
metric is the average memory required at each node of the network. Another
one is the maximum amount of memory needed by the algorithm at any given
node. Sometimes, for the sake of comparison between different routing al-
gorithms, we use the average of the memory consumption over all nodes of
the network. Other times it is better to consider the distribution of memory
requirements over all nodes, and more specifically some indicative quantiles,
including the maximum.

Path Stretch

The stretch induced by a routing scheme S for the path between two nodes u
and v is the ratio between the length of the path connecting u and v as defined
by S, and the distance between u and v in the network graph G (that is, the
minimal path length between u and v in G).

stretch(u, v) =
|routeS(u, v)|

distG(u, v)

More generally, given a route request r in a network G, a routing scheme S
induces a stretch

stretchS,G(r) =
|routeS(G, r)|
|routeOPT(G, r)|

Where routeOPT(r) is an optimal routing of request r on G, which depends
on the network model and communication scheme. For example in the case of
unicast communication in general networks, an optimal route corresponds to a
minimal path between source and destination, while for multicast communica-
tion an optimal routing is a minimal Steiner tree between the nodes that are
involved in the multicast request.

The stretch of a routing scheme for a given network G is the maximum
stretch of any allowable routing request in G.

Congestion

Every network element (node or edge) has limited resources that it can allo-
cate to routing tasks. When the routing scheme puts demands for resources

14 1.4 Preliminaries

that exceed the limits of one or more element, we say that the network and
specifically those elements are congested. Typically, there are two important
resources that are subject to congestion: link capacity and node capacity. Link
capacity is the maximum amount of information a link in a network can carry
at any instance of time. Depending on the network model, links or edges in the
network may have uniform or varying capacities. Node capacity is very similar,
specifically it is the maximum amount of information a node can process at
any instance of time.

Adaptive Vs. Oblivious Schemes

A routing algorithm may use knowledge of previously routed requests to in-
fluence its current routing decisions. This is what we call an adaptive routing
scheme. By incorporating this additional information in the decision-making
process, an adaptive routing scheme might perform better for load balancing
and to avoid network problems such as deadlock and livelock. In the opposite
case—when routing decisions do not take into account previous requests in any
way—we refer to such schemes as non-adaptive or oblivious routing.

Dynamic Vs. Static Schemes

A static routing scheme uses only network information that does not change
in time, while a dynamic one uses the current state of the network. This
dynamism can be further characterized depending on the type of informa-
tion undergoing changes. In particular, we distinguish topological and non-
topological changes. As an example of non-topological changes, we may have
a static multicast scheme in which multicast groups are fixed, and conversely a
dynamic multicast scheme in which group membership may change over time.
In this document, we focus on non-topological dynamism in the network. In
other words, we assume that topological changes are either non-existent or slow
enough not to be a concern for our routing scheme.

Compact Routing: Memory Vs. Stretch

In the unicast model, a trivial solution for routing on the shortest paths between
any two nodes would be to store, at every node v, the next hop of all all-pairs
shortest paths, which means the next hop on each of the shortest paths from v

to all other n−1 nodes. This solution, which is fully deterministic and optimal
in terms of path lengths, requires O(n log n) bits of memory in each node of

15 1.4 Preliminaries

the network. However, this solution is not good enough for large networks in
which nodes have limited resources.

One can imagine other trivial unicast routing schemes. For example, a
probabilistic one would be that each node v delivers the messages addressed to
v, and otherwise forwards every other message at random. In this case, each
node requires that each node v stores its own identifier, with O(log n) bits,
and nothing else. So, this scheme would be extremely compact, but at the
same time it would also be extremely inefficient in terms of path lengths, since
the path lengths induced by the scheme (in expectation) would be much worse
than the optimal.

Research on compact routing has focused almost exclusively on the unicast
model. A notable exception is the work by by Abraham et al. on compact mul-
ticast routing [6]. The several compact algorithms proposed by Abraham et
al. are very interesting, but they are not very practical, in the sense that they
pose extreme trade-offs between memory and stretch. For example, one of the
proposed algorithm is a name-dependent multicast routing scheme whose mem-
ory requirement at each node is Õ(n1/k), uses labels of size Õ(n1/k), employs
headers of size Õ(n1/k), whose stretch is 4k−2.5 Another algorithms is a name-
independent multicast routing scheme whose total memory is Õ(kn1+1/k log ∆)

with stretch O(k).
Therefore, a new generation of routing schemes for the unicast model have

been studied during the previous three decades under the general title of “com-
pact routing”. In brief, research in compact routing studies the fundamental
limits of routing scalability, as well as algorithms that try to reach those lim-
its. In another words, compact routing is the investigation of the necessary
trade-off between routing-table sizes and routing stretch.

In general, compact routing schemes are divided into two categories: name
dependent and name independent schemes. This categorization is based on
the respective addressing scheme they require. Here we briefly summarize the
research achievements in each category for the unicast communication model.

Name-dependent routing This category includes optimal compact rout-
ing schemes for general graphs and other restricted forms of graphs.
Cowen [28] introduced the first non-trivial scheme with stretch 3 which
needed Õ(n2/3) memory. Thorup and Zwick [79] provided the best known
stretch-3 name-dependent routing scheme with only Õ(

√
n) memory.

Thorup and Zwick also generalize their scheme so that it achieves stretch
4k−5 (and even 2k−1 with handshaking) with Õ(N1/k) memory, and also

5Soft-O notation: f(n) = Õ(g(n)) if f(n) = O(g(n) logk(n)) for some k.

16 1.5 Structure of the Document

introduce an optimal name-dependent routing schemes in trees that re-
quires Õ(1) memory and Õ(1) header size (Fraigniaud and Gavoille [30]
obtained the same result independently). Because of its compactness,
this scheme became a building block for many other compact routing
schemes [79, 4, 3, 1, 53, 9].

Name-Independent Routing This category started with the work of Awer-
buch et al. [11]. Awerbuch and Peleg [12] were the first to show that
constant stretch is possible with o(n) memory per node, albeit with a
large constant. After a gradual improvement on bounds, finally, Abra-
ham et al. [4] obtained an optimal, stretch-3 routing scheme that uses
Õ(
√
n) memory for a weighted undirected network. In another work [3],

Abraham et al. showed that any name-independent routing scheme (even
for single source) with maximum stretch strictly less than 2k+ 1 requires
Ω((n log n)1/k) bit routing table.

1.4.4 Compact Routing: Memory Vs. Congestion

That of the memory requirements is the first problem that researchers faced
in the scalability analysis of any routing scheme. However, with today’s tech-
nological advances, increasing the speed and memory capacity of individual
nodes in the network is not as problematic as it used to be. In a large-scale
distributed system such as Internet, the connection bandwidth between nodes
of the network is usually the primary performance bottleneck. In other words,
the problem is congestion rather than memory. Of the few works that have
studied the theoretical boundaries of the congestion problem, the most promi-
nent one is the work by Harald Räcke [70]. Räcke developed a hierarchical
decomposition of the graph into a distribution of trees that can be used in a
probabilistic routing scheme in which each packet is randomly assigned to, and
therefore routed along one tree. With such distribution of trees, the scheme
achieves optimal congestion for unknown traffic in general graphs. However,
this method is hardly practical, since it produces O(E) trees, that is, a number
of trees proportional to the number of links in the network.

1.5 Structure of the Document

The rest of this thesis is organized as follows: In Chapter 2 we present a
tree-based routing algorithm for our tag-based information centric networking
architecture. In Chapter 3 we then present a fast forwarding algorithm that

17 1.5 Structure of the Document

combines CPU and GPU processing units to achieve high-throughput in a
tag-based ICN. Then in Chapter 4 we describe an oblivious low-congestion
multicast routing scheme for geographic, wireless networks. We conclude in
Chapter 5 with a short summary of the work and a few ideas for future work.

18 1.5 Structure of the Document

Chapter 2

Scalable Routing for
Tag-Based Information-Centric
Networking

In this chapter we focus our attention on information-centric networking, and
in particular on routing. Recall that information centric networking (ICN) is
a network architecture conceived and designed to allow applications to address
information rather than hosts. In spite of the voluminous literature covering
many different aspects of information-centric networking, routing remains an
open problem, in particular with regard to the issue of scalability.

In its early incarnation that quickly became mainstream, namely the CC-
N/NDN architecture, ICN was designed to remain compatible with, and there-
fore supported on top of traditional IP routing. Specifically, the addressing
in CCN/NDN is defined on names, and routing is based on name prefixes
analogous to IP prefixes. However, while IP prefixes are network-defined, and
therefore guarantee a basic level of aggregation when mapped onto the hierar-
chical structure of the network, the same can not be said of application-defined
name prefixes. In essence, a fundamental problem is that the number of name
prefixes would grow too large.

A related problem in the CCN/NDN architecture is the use of per-packet
in-network state as an integral part of the routing scheme to cut loops and
return data to consumers. This network state also hinders scalability.

In this chapter, we develop a routing scheme that solves these problems.
The service model of our information-centric network supports information pull
and push using tag sets as information descriptors. Within this service model,
we propose a routing scheme that supports forwarding along multiple loop-free

19

20 2.1 A New Perspective on Routing in ICN

paths, aggregates addresses for scalability, does not require per-packet network
state, and leads to near-optimal paths on average. We evaluate the scalability
of our routing scheme, both in terms of memory and computational complexity,
on the full Internet AS-level topology and on the internal networks of represen-
tative ASes using realistic distributions of content and users extrapolated from
traces of popular applications. For example, a population of 500 million users
requires a routing information base of 3.8GB with an almost flat growth. We
conclude that information-centric networking is feasible, even with (or perhaps
thanks to) addresses consisting of expressive content descriptors.

2.1 A New Perspective on Routing in ICN

A fundamental problem remains open in information-centric networking: there
is yet no demonstrably scalable scheme that supports true routing, that is,
packet switching with multiple sources and destinations, as opposed to a per-
flow or per-object lookup followed by a traditional host-based (i.e., location-
based) data transfer. In fact, largely because of this gap, the validity and utility
of a content-centric network layer has been rightly called into question [32].

The primary approach to routing and forwarding in ICN (as typified by
CCN/NDN [41], but also in the earlier work on TRIAD [33]) is to adapt IP
routing to use name prefixes instead of IP prefixes. While this approach has
the great advantage of reusing much of the current network infrastructure, it
also has fundamental limitations. First, since it is based on traditional unicast
routing, it cannot reliably support multiple sources or destinations for the same
information. A router may list multiple next hops for the same prefix, but the
routing scheme provides no indication of how to forward consistently across
routers so as to follow one path to a destination (or multiple paths to multi-
ple destinations). Moreover, multiple next hops may lead to loops. In fact,
the main approach is not to avoid loops, but merely to detect them, tracing
each packet throughout the network with per-packet state, thereby increasing
the overall cost of forwarding. For analogous reasons, unicast routing/for-
warding cannot directly support “push” ICN communication [23]. Here again,
the already vast and growing content space is believed to pose a fundamental
scalability limitation to traditional routing.

We develop a different approach to routing, one based on trees in which
edges are annotated with content descriptors. This new routing scheme has
the following novel and important properties:

• It is compatible with in-network caching, as well as the full range of ex-

21 2.1 A New Perspective on Routing in ICN

isting ICN addressing schemes, from content identifiers [47] to structured
names [41] to tag sets [22]. We choose tag sets, since they are strictly
the most expressive form of descriptor and yet admit to an intuitive and
effective aggregation that is fundamentally superior to the aggregation
of, say, name prefixes.

• It provides loop-free paths to multiple destinations, meaning that commu-
nication can be dynamically assigned an arbitrary fan out, from anycast
(forward to any one of many destinations) to m-anycast (at least or at
most any m destinations) to multicast (all destinations).

• It provides extremely compact and efficient locators that can be used to
achieve the throughput of current networks within the content-centric
service interface.

• It does not require the presence of per-packet soft state within the net-
work, unlike previous designs.

Now, a single tree may not use the most direct paths and would be more
vulnerable to congestion and network partitioning. We therefore use multiple
trees so as to reduce path lengths on average, reduce congestion, and improve
reliability. We develop a hierarchical multi-tree routing scheme that allows for
the creation of sets of trees with specific properties at different levels (e.g.,
shortest-paths trees within an AS along with policy-specific inter-AS trees).

In principle, however, multiple trees also require larger routing tables, which
leads us back to the fundamental question of scalability. We address the issue
of scalability through the aggressive aggregation of content descriptors. Be-
yond the natural aggregation of tag sets, we develop a routing table based on
PATRICIA tries that aggregate content descriptors across all trees.

We evaluate the memory complexity of the routing scheme and its imple-
mentation at the global network scale. We emulate the scheme over the full
AS-level topology of the current Internet and within a number of representa-
tive ASes. In order to test the scheme under realistic current and potential
future application demands, we extrapolate from traces of some characteristic
content-driven applications [22]. These extrapolations give us various work-
loads of content descriptors that correspond to several hundred million users.
We then use such workloads to assess the concrete memory requirements of the
scheme on routers at the local (intra-AS) and global (inter-AS) levels.

Our analysis shows that content descriptors indeed aggregate effectively
and, therefore, the routing information base remains contained in size even

22 2.2 Network Architecture

with a growing population of users and, consequently, more and more content
descriptors. For example, for a number of representative applications, a popu-
lation of 500 million users using a total of nearly 10 billion content descriptors
would require a routing information base of 3.8GB, with an almost flat growth
for additional users enabled by effective aggregation.

Here we introduce locators and content identifiers, we detail the scheme over
a hierarchy of domains, and we develop concrete data structures to represent
and aggregate routing information for which my colleague Michele Papalini has
also developed incremental update and maintenance algorithms [65, 64]. We
also conduct an extensive and in-depth analysis of the scalability of the scheme.

2.2 Network Architecture

We begin by describing the service model, addressing scheme, and architecture
of our information-centric network. The service model extends our prior ICN
design [22, 23] and is also a significant superset of other, related models [41, 47].
We review the basic model here for clarity and completeness. We also introduce
two extensions to the network architecture not previously described, namely
locators and identifiers.

The request/reply service consists of three primitive network functions:

Offer: A producer registers one or more descriptors that identify the data that
the producer are willing and able to provide.

Request: A consumer requests data by issuing a request packet carrying a
content descriptor or a content locator (detailed below). The network
then delivers the request packet to one or more producers that are willing
and able to satisfy the consumer’s request.

Reply: A producer (or a caching router) responds to a request packet by
returning a reply packet carrying the requested data.

The request/reply service define and use routing information consisting
of content descriptors. Here the producers define routing information that
attracts request packets towards them.

Both request/reply and publish/subscribe services define and use routing
information consisting of content descriptors. In request/reply, producers de-
fine routing information that attracts request packets towards them, while in
publish/subscribe it is consumers that define routing information to attract

23 2.2 Network Architecture

notifications. Thus, routing for the two services differ only in the sources
of routing information, but is otherwise conceptually identical. We therefore
propose a network interface with a single register function to define routing
information.

The semantics of descriptors is also identical for requests and notifications,
which means that the matching algorithm used for forwarding requests and
notifications is the same. However, the treatment of the two packets differ
in other ways. A request is ideally an anycast packet, while notifications are
multicast. Also, a request is expected to generate a corresponding reply, while
a notification is a one-way message. Furthermore, the caching semantics are
different. A request that can be satisfied by cached content will not be for-
warded downstream toward the original producer, while a notification must be
forwarded all the way to interested consumers (although notifications might
also be cached for reliability purposes).

The network also defines opaque host locators. Locators are attached to
requests so that the corresponding replies can be forwarded back to the re-
questing application. In addition to replies, we propose to use locators to
forward requests. In particular, a data reply can also carry the locator of the
producer so that the consumer can address follow-up requests (e.g., for the next
data blocks) directly to that producer. Locators may be implemented with sta-
ble unicast addresses (e.g., IP addresses) or they may be based on transient
state (e.g., a nonce that identifies a trail of pending interests in CCN). In Sec-
tion 2.3.2 we detail an extremely efficient form of locators usable within our
routing scheme.

2.2.1 Content Descriptors

Descriptors play a central role analogous to IP prefixes. The semantics of de-
scriptors define the semantics of the network service, and in particular they
define how data replies match requests, how offers match requests (and, there-
fore, how offers describe the data available from a producer), and how notifi-
cations match subscriptions. As discussed so far, descriptors are abstract and
generic. Indeed, much of what we propose is conceptually independent of their
specific form and semantics. However, in order to develop a concrete service
and a corresponding concrete routing scheme, we must define descriptors. For
this purpose we adopt “tags”.

A descriptor consists of a set of string tags, with the matching relations
corresponding to the subset relations between sets of tags: a descriptor R
in a request would match a descriptor O in an offer when the request con-

24 2.2 Network Architecture

tains all the tags of the offer (R ⊇ O). Consistently, a descriptor N in a
notification would match a descriptor S in a subscription when the notifica-
tion contains all the tags of the subscription (N ⊇ S). For example, an offer
for {icn14 , paper} would match a request {paper , routing , icn14} or a request
{icn14 , paper , pdf , n32}.

Notice, however, that tag sets are strictly more expressive than name pre-
fixes. A name prefix can be represented as a single tag set. For example,
/org/gnu/software/ can be written as tag set {1:org, 2:gnu, 3:software}, and
would match descriptor {1:org, 2:gnu, 3:software, 4:emacs}. Conversely, the
semantics of a tag set would require exponentially many prefixes (all permuta-
tions) to express the same descriptor.

Tag sets aggregate analogously to prefixes. In particular, a descriptor X
subsumes all other descriptors Y that contain X. For example, any descriptor
matching {music, jazz} would also match its subset {music}, so a router might
combine the two by storing only the more general tag set {music}. We discuss
more about aggregation in Section 2.3.6.

Tag sets differ from IP prefixes in a crucial way. While IP prefixes are
assigned by network designers and administrators, descriptors are assigned by
applications. This is also true of other forms of addressing in ICN, including
names in a hierarchical name space or flat identifiers. In fact, application-
defined addressing is arguably the most important defining property of ICN.
Allowing applications to define network addresses empowers applications but
at the same time leaves the network and applications themselves vulnerable to
conflicts and also abuses in the use of the address space. With tag sets, as for
name prefixes, this problem can be greatly reduced through conventions, for
example by defining reserved tags and mandatory scoping tags equivalent to
host names in URLs.

Content Identifiers

A content descriptor (a tag set) may contain a unique identifier, such as a cryp-
tographic hash of the content, or an object identifier plus a version number and
a block number. In this way, a descriptor can identify a data block uniquely.
More generally, tag sets can encode meta-data and higher-level protocol infor-
mation. However, we believe that information that has a specific function at
the network or transport level should be represented with specific headers. In
particular, at the network level we propose to use cache-control headers, as
well as a content identifier to refer to a specific data block. The form of such
identifiers is defined at higher levels, for example to allow a transport protocol

25 2.3 Routing Scheme

to refer to the next sequence of blocks within a stream.
This separation between descriptors, identifiers, and other headers is con-

sistent with the design of a protocol such as HTTP, where the URI does not
identify a piece of immutable content, but other headers can be used for that
purpose (e.g., ETags, Modified-Since) and yet other headers can specify addi-
tional properties of requests and replies, such as cache controls. This design
also allows us to represent descriptors using a compressed, fixed-width header
that hides individual tags. We describe this compressed representation next.

Representation of Tag Sets

Conceptually, a descriptor is a set of tags. Concretely, we represent descriptors
as Bloom filters, and we develop our routing scheme around this representation.
So, packets and routing messages carry Bloom filters, and the aggregation of
routing information applies equivalently to them. Matching two descriptors
amounts to checking the inclusion relation (bitwise) between two Bloom fil-
ters, while matching a descriptor against a predicate (i.e., a set of descriptors)
amounts to finding one or more Bloom filters in the predicate that are subsets
(bitwise) of the input Bloom filter.

In order to choose good Bloom filter parameters, which must be global
properties of the routing scheme, we conservatively estimate here that tag sets
would most likely contain no more than 15 tags. We therefore use Bloom
filters with k = 7 hash functions and m = 192 bits, which ensures that a
subset test S1 ⊆ S2 would be accurate up to a false-positive probability of
(1−e−k|S2|/m)k|S1\S2|. For example, for a descriptor of |S2| = 10 tags, a test S1 ⊆
S2 with another descriptor S1 that differs by |S1 \ S2| = 3 tags would evaluate
to true (a false positive, since |S1 \ S2| > 0) with probability 10−11. Of course,
these are network configuration parameters that can be set as appropriate.

2.3 Routing Scheme

We introduce a routing scheme based on multiple trees. At the core of the
scheme is content-based routing on a spanning tree. We enhance this basic
scheme with locators and with multiple trees within routing domains and over
a hierarchy of domains (intra/inter-AS).

26 2.3 Routing Scheme

2.3.1 ICN Routing on One Tree

Consider a network spanned by a tree T . For now consider a router-level
network. T is identified within each notification and request packet so that
each router v can determine the set adj Tv of its neighbors that are also adjacent
to v in T . This can be done by adding an identifier for T in the packet and
storing the adjacency set adj Tv at each router v.

The forwarding information base (FIB) of router v associates each neighbor
w in adj Tv with the union PT,w of the predicates registered by all the hosts
reachable through neighbor w on T , including w. Figure 2.1 shows an example.

a b c

d e f g h

i j k

router b:
(FIB)

tree T ,next-hop w → predicate PT,w

T1, c 7→ pc ∨ pg ∨ ph
T1, f 7→ pf ∨ pj ∨ pk
T1, e 7→ pa ∨ pd ∨ pe ∨ pi
T2, c 7→ pc ∨ ph
T2, e 7→ pa ∨ pd ∨ pe ∨ pf ∨ pg ∨ pi ∨ pj ∨ pk

trees
T1

T2

Figure 2.1. Multi-Tree Routing Scheme.

With a FIB representing PT,w for all neighbor routers w in adj Tv , forwarding
proceeds as follows: Router v forwards a packet (notification or request) with
descriptor X received from neighbor u on tree T to all neighbors w 6= u in
adj Tv whose associated predicate PT,w matches X. We say that a predicate P
matches a descriptor X if one of the descriptors in P matches X.

Since we use trees, we can control the global fan-out of a packet with local
decisions. A packet starts with its global fan-out limit k set by the sender.
A limit of k = 1, which is the default for requests, corresponds to an anycast
delivery (the network delivers one copy of the packet), while a limit k = ∞,
which is the default for notifications, corresponds to a multicast forwarding

27 2.3 Routing Scheme

(the network delivers as many copies as there are interested receivers). A
limit 1 < k < ∞ can be also used and requires only minimal additional local
processing: the router selects at most k matching neighbors and then partitions
the fan-out limit over the selected neighbors. This guarantees the delivery of
the packet to at most k destination. If the router does not partition the fan-out
limit over the selected neighbors and instead always send k as the fan-out limit
along the way, then the packet will be delivered to at least k destinations.

2.3.2 Unicast Routing on Trees

We combine a locator-based unicast routing service with descriptor-based rout-
ing. Here we provide an overview of the labeling and forwarding scheme that we
use for locators. Labeling is the process by which the network assigns locators
and locator FIBs to nodes. In their seminal paper on stretch-3 compact routing
scheme for general graphs [79], Thorup and Zwick also propose a lesser-known
but still practical compact routing scheme for trees. Since we use trees as a ba-
sic routing structure, we adopt this Thorup and Zwick scheme for locator-based
forwarding and in particular we refer to the implementation of our locators as
TZ-labels. Here we review the scheme only very briefly, without going through
the details of the labeling algorithm and its associated forwarding algorithm,
and we refer the reader to Section 2 of Thorup and Zwick. Using this scheme,
given the TZ-label of the destination plus its own TZ-label, a router can com-
pute the next-hop towards the destination.

This scheme is extremely efficient both in space and time. In terms of space,
a router needs to store its own TZ-label, which is at most (1 + o(1)) log2 n-bit
long for a network of n nodes.

The scheme can also be built efficiently. A tree can be labeled with a
two-step distributed algorithm. In the first step, which could be combined
with the construction of the tree, a converge-cast algorithm calculates the size
of descendants of each node on the tree, while the second step consists of a
depth-first-search numbering of nodes on the tree.

2.3.3 Locators and the Request/Reply Service

As discussed in Section 2.2, the network forwards packets using either an ex-
plicit destination locator or a content descriptor if no locator is given. Locators
are network-defined quantities that may or may not have permanent validity
(like IP addresses).

28 2.3 Routing Scheme

In our routing scheme we use TZ-labels to implement node locators. A
node locator consists of a tree identifier plus the TZ-label of the destination
on that tree. We now sketch a simple request/reply protocol that combines
locators and descriptors, and that can be the basis for a full transport protocol
for ICN.

The general idea is to use descriptors to find an object—that is, to forward
a request towards a producer capable of satisfying the request—and then to
use the more efficient locators to return the data block back to the consumer
and also to request other data blocks from the same producer. To implement
this idea, a request packet must carry the locator S of the source application
(the consumer). When a request reaches a producer capable of satisfying the
request or a router with a valid cached copy of the data, the producer or caching
router sends back a data reply with destination locator S, which the network
forwards back to the requesting application.

The advantage of locators within our scheme is that requests, unlike in-
terest packets in CCN [41] which create a trail of pending interests, do not
require any per-packet in-network state. Without per-router pending-interests
tables, our scheme does not support the aggregation of simultaneous identical
requests. However, identical requests that are not exactly simultaneous can
still be effectively aggregated by caching data along the forwarding path.

A data reply may also specify one or more locators of the producer as its
origin, as well as the identifiers of one or more follow-up data blocks. Specif-
ically for our scheme, the multiple locators can be obtained using multiple
trees, an approach that we detail below. A consumer receiving a data reply
with an origin locator may then use that locator to send follow-up requests
directly towards the same origin. This, in particular, can substantially reduce
the overhead of transferring large files.

Locators built on TZ-labels are relatively stable, since they change only
when trees are rebuilt, for example in response to a topology change. Still,
locators may also change within a flow if producers or consumers move within
the network. A transport protocol that intends to support such mobility must
correctly switch locators as applications move.

Lastly, a limitation of TZ-labels is that they may reveal the identity of
consumers. If anonymity is required, then locators should be based on an
appropriate anonymity-preserving routing scheme, such as onion routing [36].

29 2.3 Routing Scheme

2.3.4 Using Multiple Trees

Routing on a tree has two disadvantages. First, paths might be “stretched”,
meaning the distance between two nodes on the tree might be longer than on
the full graph. Second, traffic would flow only on the tree, reducing the overall
network throughput. It is well known that these problems can be alleviated
by using multiple trees, and therefore we extend our routing scheme to use
multiple trees. A notification or request is committed to, and thereafter routed
using, one of those trees. Therefore, the forwarding process is identical to
that over a single tree for an individual request or notification, but traffic is
more evenly distributed and path lengths shortened on average. However, two
aspects of the multiple-tree scheme are non-trivial: how to build and then select
trees, and then how to combine multiple trees at different levels in hierarchical
routing.

Building and Selecting Trees

The key to increasing throughput and reducing path lengths is in the choice
of trees: first, the routing process must produce a good set of trees; second,
when a request or a notification enters a routing domain, the access router
must assign the request or notification to a tree in that domain. The choice of
trees, the way they are built and then assigned by routers, could also be used
to implement various routing strategies and policies.

The problem of covering a network with trees so as to achieve specific design
objectives has been studied extensively from a theoretical perspective. For
example, Räcke formulated a method to cover a network with trees to achieve
the theoretically minimal congestion under unknown traffic [70]. However,
such results are not applicable in practice, primarily because they can require
an extremely high number of trees.

Our approach to building and selecting trees is therefore based on heuristics.
To date we have studied two such heuristics for global trees, which are arguably
the most crucial, and one for local trees.

H1: Latency Only (L) We choose a small number of root ASes and then
build a shortest-paths (Dijkstra) tree for each root AS. This heuristic
is intended to favor latency over any other routing objective. For the
purpose of the analysis, we use a uniform-random choice over all ASes,
which should give more conservative results. In practice, root ASes can be
chosen in a number of ways using a distributed leader-election algorithm,
perhaps favoring higher-tier ASes. Another and perhaps better way to

30 2.3 Routing Scheme

select root ASes is to do it off line through a global administrative body,
similar to the way top-level DNS servers and structures are configured
today.

H2: Latency and Congestion (LC) We start with a first shortest-paths
tree rooted at the AS with the lowest eccentricity representing the center
of the network. We then increase the cost of each link used by the tree,
and proceed iteratively to find another tree. The weight increase is by a
fixed amount and, therefore, linear in the number of trees. At each itera-
tion we select a new shortest-paths tree rooted at the AS with the lowest
eccentricity. The new tree is computed with the current adjusted link
weights and, therefore, it is likely to differ from all previous trees. These
trees can be constructed using a slightly modified version of the fast dis-
tributed algorithm of Almeida et al. [8], which computes the eccentricity
of node v in diameter(G) + ecc(v) + 2 rounds.

At the global level, trees are heavy in terms of memory because they store
the aggregated predicates of the whole network. Therefore, we compute a
relatively small number of global trees. Furthermore, we use shortest-paths
trees that can be computed efficiently in a completely decentralized manner.
Conversely, at the local level, trees are lighter and can be efficiently computed
in a centralized manner. Since latency is crucial at the local level, the heuristic
we use for local trees is also based on shortest-paths trees.

H3: Minimal Latency: We build shortest-paths trees rooted at every router
within an AS.

To assign trees dynamically, routers select trees uniformly at random at
the global level, while at the local level they always choose their own shortest-
paths tree so as to obtain latency-minimal routes. In Section 2.4 we evaluate
our scheme under the three heuristics.

2.3.5 Hierarchical Multi-Tree Routing

The routing scheme we propose can be extended over a hierarchy of levels
within the network, with multiple trees eat each level. We describe the case
of two levels (intra- and inter-AS), although the scheme generalizes to more
levels.

Routes are defined by global trees that span the AS-level network, and by
local trees that span the internal network of each AS. Conceptually, each tree

31 2.3 Routing Scheme

Figure 2.2. Hierarchical Routing: Inter-AS.

has a separate FIB, but concretely we aggregate predicates across trees so as
to reduce space (as discussed below in Section 2.3.6). The FIB of a global
tree contains the aggregate predicates of all the ASes. The FIB of a local tree
contains the predicates of each internal host, possibly aggregated at the subnet
level. An interior router needs to know only the local trees of its AS plus the
TZ-labels of at least one gateway router for each global tree. A gateway router
needs to know the local trees, the global trees, and the exterior connectivity of
all the gateway routers of its AS, including their TZ-labels on the local trees.
With this information, the network can forward packets based on either content
descriptors or locators. We describe these two algorithms in turn.

Descriptor-Based Forwarding

A packet (request or notification) is first assigned to a local tree by its access
router, and on that tree it is forwarded based on its content descriptor and
fan-out limit as explained in Section 2.3.1. In addition to that, the packet is
assigned to a global tree and sent to a gateway router that belongs to that tree
using the TZ-label of that gateway on the local tree, which is known by the
access router. On its global tree, a packet reaching a gateway router (or starting
from that gateway) may have to cross the AS of that gateway to reach other
gateways connected to the next-hop neighbor ASes on the global tree. This
again is done on a local tree based on the TZ-labels of those gateways. And if
the packet is entering that AS for the first time, then the local forwarding is

32 2.3 Routing Scheme

performed via the content descriptor.

Locator-Based Forwarding

In our hierarchical routing scheme, a locator consists of a stack of node locators,
each one consisting of a pair (T, `) where T is a tree identifier and ` is the TZ-
label of the destination node on T . With two levels, a destination locator
contains the node locator (TAS, `AS) of the destination AS on an AS-level tree
TAS plus the node locator (Tr, `r) of the destination router r on an inter-AS
tree. Given a destination (TAS, `AS)/(Tr, `r), forwarding proceeds as follows:
If already in the destination AS, the access router pops the (TAS, `AS) locator
from the locator stack and forwards the packet on tree Tr using TZ-label `r.
Otherwise, the router pushes a locator (T, `g) of a gateway router of its AS
using any intra-AS tree T , and then forwards the packet accordingly. When
a packet reaches the destination at the top of the stack, the router pops the
locator and proceeds with what is left on the stack. If the top locator is at the
AS level, then the gateway router might have to cross its AS to reach another
gateway, in which case it would push a locator of that gateway onto the stack.

Figure 2.2 shows an example for the two-level hierarchy described above.
In this example, a node in AS network A has a content that is of interest for
a node in AS network C. Node s is the access router of the producer of the
content, and node t is the access router of the interested consumer. AS-level
networks are interconnected within global trees. For the sake of simplicity, in
Figure 2.2 we only show one global tree that connects AS-level networks with
each other. and Inside each network, we only show one local tree. Gateway
routers are marked with G1, G2, G3, G4.

2.3.6 RIB Representation

We now describe a concrete implementation of the routing information base
(RIB) for the multi-tree routing scheme. Conceptually, the RIB of a router v
stores the following information for each tree T :

• adj Tv is the adjacency list of T at v, meaning the subset of v’s neighbors
adjacent to v on T .

• `Tv is the TZ-label of router v on T .

• P T
v : w → PT,w is a map that associates each neighbor w in adj Tv with

a predicate PT,w, where PT,w consists of a set of content descriptors (see
Section 2.3.1 and, in particular, Figure 2.1).

33 2.3 Routing Scheme

tree,next-hop → predicate

T1,c → 00100101
01010000
01000001

T1,f → 00100100
01010000

T1,e → 00010000
10000101

T2,c → 00100101
01000001

T2,e → 00010000
10000101
00100100

predicate → (tree,next-hop). . .
00010000 → (T1,e), (T2,e)
00100101 → (T1,c), (T2,c)
10000101 → (T1,e), (T2,e)
01010000 → (T1,c), (T1,f)
01000001 → (T1,c), (T2,c)
00100100 → (T1,f), (T2,e)

Figure 2.3. RIB Indexed by Tag Set.

Our primary goal is to obtain a compact representation of the RIB that also
allows for efficient incremental updates. adj Tv and `Tv require minimal space and
standard data structures, and are also stable with trees. The P T

v map changes
with changing application preferences (content descriptors) and is also by far
the heaviest component of the RIB. We therefore focus on the implementation
of P T

v .
With a naive implementation (depicted in Figure 2.1), multiple trees would

have completely independent predicate maps P T
v with only the basic aggre-

gation of descriptors (described in Section 2.2.1). However, trees are likely
to share many descriptors, simply because the descriptors represent offers or
subscriptions that must be reachable from all trees. This suggests a represen-
tation of the predicate maps that further compresses the routing information
across trees. To exploit this form of aggregation, we develop a data structure
in which routing information is not grouped by interface or tree, but rather by
tag set. In practice, the RIB consists of a dictionary of tag sets, each associated
with a set of tree-interface pairs. Figure 2.3 shows an example of this type of
aggregation corresponding to the network of Figure 2.1.

We use a PATRICIA trie to index the Bloom filters representing the tag
sets, and we associate each tag set with a table of 16-bit entries representing
tree-interface pairs. An example is shown in Figure 2.4. PATRICIA tries have
the advantage of requiring a minimal amount of memory, while also allowing
for simple subset/superset checks implemented as tree walks. These checks are
the essential building blocks for the maintenance of the RIB. The trie allows us
to shortcut the search, much like a prefix search: if we are looking for subsets

34 2.3 Routing Scheme

PATRICIA tries indexed by Hamming weight

00010000
0 1

01010000

00100100

0

10

01000001

1

10

10011000

00100101

0

0 1

10000101

1

10

(T1, f)
(T1, c)
(T1, f)

(T1, e)
(T2, e)

(T1, c)
(T2, c)

(T1, c)
(T2, c)

(T1, e)

(T1, f)

Figure 2.4. PATRICIA Trie Used for the RIB.

of an input filter f , and f contains a zero in a certain position identified by
a node n, then we can skip the whole subtree of filters under n that contain
a one in that position. In addition, we group filters by Hamming weight (in
smaller tries). This allows us to skip entire tries containing filters that have
too many elements to be subsets (or too few to be supersets) of the input
filter. Since tries are independent of each other, subset/superset operations on
different tries can also proceed in parallel.

Routing information propagates through update messages containing mul-
tiple descriptors, divided into an addition delta that is a set of filters to be
added into the RIB, and a removal delta that is a set filters to be removed
from the RIB. In the presence of dynamic, user-defined addresses in ICN net-
work, an incremental maintenance algorithm is absolutely essential to keep the
RIBs up to date. My colleague Michele Papalini has developed such mainte-
nance algorithm that applies these update messages to perform incremental
RIB updates [65].

2.3.7 Locator-Based Matching Algorithm

To forward a message toward a destination node (on a tree) each intermediate
node needs only the TZ-label of the destination node (on that tree) plus its
own TZ-label, which also serves as the node’s FIB.

Algorithm 1 which is an adaptation of the algorithm described in Section 2
of Thorup and Zwick [79], indicates all the local variables that we need to store
on each node. Thus each node stores its own label (my_label), which contains

35 2.4 Evaluation

Algorithm 1: Locator-Based Forwarding Algorithm.

struct TZ_label {
uint16_t node_id;
uint16_t ifx_list;
uint16_t mask;

};
struct TZ_label my_label;
uint8_t k = leftmost_bit(my_label.mask);
uint16_t P[2] = {parent_interface, heavy_child_interface};
uint16_t f = largest_descendent_id;
uint16_t h = heavy_child_id;

int forward(struct TZ_label & dest) {
v = dest.node_id;
L = dest.ifx_list;
M = dest.mask;
return ((v >= my_label.node_id && v < h)

? (L >> k) & ((M >> k) ^ ((M >> k) −1))
: P[v >=h && v <=f]);

}

the node identifier (node_id), a list of interfaces encoded in a bit string (ifx_list),
and a mask used to extract them (mask). Each node also stores a constant k

that indicates the size of the local mask (in bits), the identifier f of the largest
descendant, and the identifier h indicating its heavy child. Heavy child is the
child through which it is possible to reach the majority of the descendants. In
addition, a node stores a vector P that contains the interfaces where to forward
packets for the parent node and the heavy child.

The forward function extracts all the information needed from the incoming
TZ-label (dest), and returns the output interface. Notice that this forwarding
decision is taken in a single line of code that amounts to a handful of machine
instructions.

2.4 Evaluation

We now present the results of an extensive experimental evaluation of our ICN
routing scheme. We first evaluate the performance of the TZ forwarder; we
then assess the effectiveness of the scheme in routing information over the
Internet using a few trees; and after that we study the scalability of the scheme

36 2.4 Evaluation

both in terms of the memory requirements posed on routers and also in terms
of the cost of maintaining routing information for large numbers of content
descriptors.

A crucial difficulty in conducting this analysis is that there is no known
deployment of an information-centric network at the scale we are targeting,
therefore we use synthetic workloads, which we also detail here in Section 2.4.3.
We conduct our analysis on the Internet AS-level topology compiled and main-
tained at UCLA’s UCLA Internet Research Lab, consisting of a graph of 42,113
nodes and 118,040 edges.1.

2.4.1 Speed of Unicast Forwarding Using TZ-labels

Using Thorup and Zwick labeling scheme, each TZ-labels computed for the AS-
level network topology is at most 46-bits long, therefore, we decided to allocate
64 bits in the packet header. These 64 bits encode the label presented in the
TZ_label structure in Algorithm 1. As you can see in this algorithm, forwarding
decision is very simple and is essentially a single line of code, which amounts
to a handful of machine instructions. To evaluate the performance of this
algorithm, we generated a traffic consisting of unicast requests between every
two nodes in the network. Then we measured the performance of every node
in the network under this traffic and took the average. On average, forwarding
decision of the TZ-matcher took 10 CPU cycles and achieved a throughput of
250M packets per second on a general-purpose, commodity CPU.

2.4.2 Effectiveness with k Trees

Here we consider the topological aspects of routing, and more specifically we
evaluate the ability of our scheme to use the underlying network effectively.
We use two measures of cost: stretch and congestion.

Stretch is the factor by which the distance between two nodes is extended
by the routing scheme. Since our scheme routes each packet on a tree, this is
the ratio between the distance on the tree and the distance on the full graph.
For example, in Figure 2.5 the distance between node i and node j is 4 on the
green spanning tree while these nodes are adjacent in the original graph. This
means that the path between node i and node j is stretched 4 times. Given
a set of k trees, the stretch for the path between two nodes is the expected

1Internet AS-level topology archive. Data retrieved 29/06/2012. http://irl.cs.ucla.edu/
topology/

http://irl.cs.ucla.edu/topology/
http://irl.cs.ucla.edu/topology/

37 2.4 Evaluation

a b c

d e f g h

i j k

Figure 2.5. Stretch problem: stretchT (i, j) =
distanceT (i, j)

distanceG(i, j)
= 4

a b c

d e f g h

i j k

Figure 2.6. Congestion problem: congestionT (e, b) = loadT (e, b) = 3

stretch; since we choose trees uniformly at random, it is simply the average
stretch.

Congestion is the factor by which the usage of a link would grow using the
routing scheme as compared to an optimal usage of the full network graph.
The optimal usage here refers to the link usage with a distribution of traffic
that achieves the best possible throughput. In practice, for each tree T , given
a link (u, v) in T , we compute the cut defined by that link on T , meaning the
partition of the nodes that are on the two sides of the link on T . We then
compute the number of links that cross the cut on the original graph, which
is the total capacity of the network over that cut. For example in Figure 2.6,
the edge (e, b) on the green spanning tree defines a cut that splits the nodes of

38 2.4 Evaluation

the tree into two partitions. On the original graph, three edges of (e, b), (e, f)

and (i, j) connect these two partitions together, hence the loadT (e, b) = 3. We
assume that, for the portion of traffic routed on T (1/k of the total traffic
for k trees), the link (u, v) would need to carry the traffic that could instead
go over all the links that cross the cut. So, for a cut of size sT,u,v on a tree
T out of k trees, link (u, v) is given a congestion of sT,u,v/k, and the total
congestion of that link is the sum of its congestion for all the k trees. Notice
that this congestion factor is a very conservative measure, since it uses the
globally optimal allocation of flow for all network cuts as a baseline.

 1

 3

 5

 7

 9

 11

2 4 8 16 32

St
re

tc
h

Number of Trees

min,1%,50%,99%,max L
LC

Figure 2.7. Path Stretch.

In Figure 2.7 we show the expected stretch for various sets of global (AS-
level) trees. We generate sets of 2, 4, 8, 16, and 32 trees using the heuristics H1
and H2 discussed in Section 2.3.4. The label L in the plots refers to the latency-
only heuristic, H1, while LC refers to the latency-and-congestion heuristic, H2.
Each box plot in the chart shows the minimum, the 1-percentile, the median,
the 99-percentile, and the maximum. The plot shows that the maximum ex-
pected stretch decreases with more trees, while more trees lead to a minor
increase of the median (expected) stretch. Despite the growth, we can see that
the stretch is low: the median always remains under 2 and the 99-percentile
under 3. There is also a clear difference between the two heuristics: heuristic
L achieves better results than LC.

Our experimental analysis is consistent with another study on the approx-
imability of the AS-level topology with trees. Krioukov et al. [49] studied var-
ious compact routing schemes with a theoretical expected stretch of 3 [28, 79],
and found that in practice, on two AS-level topologies measured by the Skitter

39 2.4 Evaluation

and DIMES tools, respectively, their average stretch is instead very close to 1.
The result of their study is shown in Table 2.1.

average stretch
Skitter DIMES

scheme (9204 nodes) (13931 nodes) number of trees
TZ 1.08 1.13 Õ(n1/2)

BC 1.06 1.03 Õ(n2/3)

TZ/BC hybrid 1.02 1.01 Õ(n2/3)

Abraham 1.35 1.45 Õ(n1/2)

Table 2.1. Stretch of Compact Routing Schemes in Practice.

These routing schemes in practice provide near optimal routing paths by
using quite a large number of trees. The routing scheme we described in this
chapter also achieves an average stretch very close to 1, but with significantly
smaller sets of trees. Note that the compact routing schemes that were the
subject of Krioukov’s study, guarantee a theoretical upper bound for the stretch
of paths. Our routing scheme does not provide this guarantee and hence it is
able to achieve near optimal average stretch with only a constant number of
trees for the AS-level topology network.

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 32

C
on

ge
st

io
n

Number of Trees

1%,5%,50%,95%,99% L
LC

Figure 2.8. Link Congestion.

Figure 2.8 shows the congestion for the same set of trees of Figure 2.7.
This plot shows the 1-percentile, 5-percentile, median, 95-percentile, and 99-
percentile of the distribution. The salient result is that most links experience no
congestion penalty at all, experiencing a congestion factor of 1, and further that

40 2.4 Evaluation

extreme levels of congestion are reduced when using more trees. As expected,
the congestion factors for the L heuristic are higher as compared with the LC
heuristic.

The analysis of stretch and congestion shows that different tree-building
strategies may be used to achieve different design goals. More importantly,
the general conclusion we can draw from this analysis is that even small sets
of trees can cover the Internet at the AS-level topology quite well, with only
minimal cost in terms of path-length stretch and link congestion.

2.4.3 Application Workloads

Our objective is to create workloads corresponding to the plausible behavior
of applications over a global-scale information-centric network. To do that, we
build models of future applications by extrapolating the behavior of existing
applications (and their users) for which we have significant real traces.

Here we are only interested in the part of such workloads that are relevant
for routing, namely (1) content descriptors used in offers issued by informa-
tion producers in “pull” information flows, and (2) content descriptors used in
subscriptions issued by consumers in “push” flows. We consider four classes of
applications: (1) “pushing” generic Web content and blog posts; (2) “pulling”
video content; (3) “pushing” short messages and following short-message pub-
lishers; and (4) “pulling” BitTorrent. We now discuss each class of application
and the corresponding network workload.
Active Web. We envision a future information-centric network used to ac-
tively distribute Web content. Rather than analyzing traditional Web requests
in terms of access to individual servers, we try to understand what users are
interested in, which in turn defines the descriptors used in subscriptions that
would populate the routing tables. Since we could not gain access to compre-
hensive per-user Web-access logs, we instead infer user interests by analyzing
the content that users bookmark. We use the bookmark collection of the De-
licious website,2 which contains the public bookmarks of about 950,000 users
retrieved between December 2007 and April 2008 [82]. The data set contains
about 132 million bookmarks and 420 million tag assignments posted between
September 2003 and December 2007. We assume that users are interested in
the content they bookmark, and that they describe the content with the tags
they assign. Therefore, we derive plausible subscriptions from user tag sets.
We slightly clean the data by applying a simple language-based summarization

2http://delicious.com

http://delicious.com

41 2.4 Evaluation

using stemming and removing duplicate tags. In total we derive 123,248,896
subscriptions for 922,651 users.

We also analyze data collected from blogs. In particular, we study the
Blog06 collection from the Text Retrieval Conference (TREC),3 which contains
3,215,171 blog posts from 100,649 unique blogs. We use the latent Dirichlet
allocation (LDA) algorithm to extract 400 topics that cover these blog posts.
We then assume that an author has an active interest in a specific topic if they
write more than two relevant posts on that topic, and consider a post to be
relevant only if the probability of the post being classified under that topic is
more than 20%. For each topic, we select the 10 most relevant tags and use
them as a descriptor of the blogger’s interests. Ignoring irrelevant posts and
users with no significant interest in any topic, we identify 59,185 blogs with
178,189 relevant posts from which we could derive subscriptions.
Video Content. A future information-centric network will facilitate decen-
tralized distribution of video content. In order to determine which content
could be offered by users, which in turn determines the descriptors used in of-
fers, we analyze data from YouTube. Uploaders of YouTube videos can assign
keywords to their videos to allow viewers to find those videos with keyword
searches. These keywords were publicly visible until three years ago. In par-
ticular, we analyze a data set derived from 10,351 videos published by 782
uploaders in the “Politics” category.4

Social Messaging. We analyze two different aspects of a Twitter data set
to generate workloads for a plausible future messaging service. We take into
account the structure of the social graph of followers as well as the content
of tweets. We assume that followers are generally interested in the messages
posted by the authors they follow. We therefore derive plausible subscriptions
issued by the followers. We use a graph of 41.7 million Twitter users and
1.47 billion follower relations. For the content we use a collection of 16 million
tweets recorded during two weeks in 2011, corresponding to 1% of the total
tweets during that period. This data set was provided again by the TREC
conference (2011-2012). A Twitter user can attach a number of “hashtags” to
each tweet so that other users can issue searches by hashtag. A user can also
include links to other content on the Web. Out of the 16 million tweets, we
consider those that have both hashtags and links. We collect the hashtags
assigned to each link as a descriptor for that link, and then we use these
descriptors as the subscriptions for the users who tweeted that link. In total

3http://ir.dcs.gla.ac.uk/test_collections/blog06info.html
4http://www.infochimps.com/datasets/11000-youtube-videos

http://ir.dcs.gla.ac.uk/test_collections/blog06info.html
http://www.infochimps.com/datasets/11000-youtube-videos

42 2.4 Evaluation

we collect 446,370 subscriptions for 349,753 users.
BitTorrent. BitTorrent constitutes a considerable portion of the traffic of
the Internet today. Therefore, it is important to analyze how users describe
and access BitTorrent data. We use a data set of 9,669,035 queries collected
over a period of 3 months by the Computer Networking Research Laboratory
of Colorado State University. This data set contains 1,353,662 unique tags.5

General Data Normalization. Some data sets are characterized by large
sets of tags (e.g., Delicious). However, when those sets are used to express in-
terests in subscriptions, the specificity of those sets might be excessive, meaning
that those descriptors are very unlikely to match any published data. There-
fore, in order to normalize those descriptors, we always include at least 5 tags,
and then for those descriptors with more tags, we add up to 10 of the remaining
tags by selecting them with exponentially decreasing probabilities.

Data Amplification

The extrapolated workloads suffer from two limitations: they are small for the
kind of experiments we want to conduct, and they are biased due to the fact
that the English language is disproportionately represented in the application
traces.

In order to compensate for language bias, but also to expand the size of
the workload, we consider other languages that have a meaningful influence on
Internet traffic, and we extend the data to include them. We consider the 25
most-spoken languages in the world and amplify all of the data sets according
to the distribution of the number of native speakers of those languages.

We do not want to lose the semantic correlations between tags in the data
sets, therefore we derive new tags for each artificial language-specific data set
by adding a prefix indicating the corresponding language. For example, if
the English data set contains the tag “Journalist”, we amplify that data set by
creating a data set for Japanese where we insert the tag “Japanese_Journalist”.

To further expand the workload and also to avoid creating exact replicas
of the original data set, we create additional descriptors using synonyms. We
assume that at most two tags in every descriptor might be replaced by syn-
onyms, and we choose to replace one, two, or none with equal probability. We
also assume that each tag has two synonyms and with equal probability we
choose one among them. (We use artificial synonyms.) As an example, the
tag “Japanese_Journalist” might be replaced by “sy1_Japanese_Journalist”
in some sets.

5http://www.cnrl.colostate.edu/Projects/CP2P/BTData/

http://www.cnrl.colostate.edu/Projects/CP2P/BTData/

43 2.4 Evaluation

2.4.4 Memory Requirements

We now evaluate the memory requirements of our ICN routing scheme. For this
assessment we develop a synthetic workload corresponding to the plausible be-
havior of users of different applications over a global-scale information-centric
network [22]. We first analyze real traces from four classes of applications:
active Web content and blog posts (“push”); video (“pull”); short messages and
micro-blogging (“push”); and large BitTorrent downloads (“pull”). We then
synthetically expand the resulting workload to 25 other languages that have a
meaningful influence on Internet traffic, while preserving the semantic correla-
tion between tags. The full description of these workloads, the methods used
to normalize and expand them, and the way we associate users with different
applications is detailed in a technical report [67].

Memory Requirements for Inter-AS RIBs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
(G

B
)

 L
 LC

Figure 2.9. Sizes of Inter-AS RIBs.

In Figure 2.9 we show the memory used by the RIBs of the gateway routers
of different ASes. This analysis is based on simulations of the routing scheme
with 8 trees and under a workload generated for 50 million users. However,
since the exact connectivity between the ASes at the level of their gateway
routers is not publicly available, we cannot determine how many trees would
actually need to be known by each gateway. We therefore simulate all the
possible cases and derive the distribution of the memory requirement for every
case. The plot shows the minimum, the average, and the maximum amount of
memory that would be needed to store the routing information for between 1

44 2.4 Evaluation

and 8 trees. We show the data for the two sets of heuristically derived trees
labeled L and LC, as above. The variation is due to the different degree and
location of the ASes on different trees. Usually an AS with many neighbors
experiences less compression. Notice, however, that the absolute values are
relatively low: the most demanding case, which is Level3 with the L heuristic,
is less then 3.6GB of memory. Furthermore, the memory required by 8 trees
(maximum value), is always less than twice the memory required by a single tree
(minimum value). This means that under our scheme, descriptors aggregate
well across trees.

Memory Requirements for Intra-AS RIBs

For each AS we also analyze the memory requirements at the intra-AS level.
We use the internal AS topologies available from the Rocketfuel project [76].
The data are presented in Figure 2.10. The N and E labels in the graph

 0

 1

 2

 3

 4

 5

Telstra
AS1221

Sprint
AS1239

Verio
AS2914

Tiscali
AS3257

Level3
AS3356

ATT
AS7018

R
eq

ui
re

d
M

em
or

y
(G

B
)

N:355
E:700

 N:547
E:1600

N:1018
E:2300

N:276
E:400

 N:624
E:5300

 N:733
E:2300

Figure 2.10. Sizes of Intra-AS RIBs.

represent the number of nodes and edges in each AS, respectively. We plot the
minimum, average, and maximum sizes of the RIBs used to store local trees.
Recall that for the local (intra-AS) trees we store all the shortest-paths rooted
at every node (heuristic H3). The number of users inside each AS depends on
the distribution of the 50 million users over the AS-level topology. Considering
the largest results, namely Level3 and AT&T, we can see that even using a large
number of trees (since both have hundreds of routers) we still obtain good levels
of aggregation and good results in absolute terms, with a maximum memory
requirement of less than 4GB.

45 2.5 Related Work

Scalability Analysis

The results discussed so far are limited to a relatively low number of users com-
pared to the current population of Internet users. In order to better demon-
strate the scalability of our routing scheme, we focus on a particular tier 1 AS
(3257) and on a shortest-paths tree derived using heuristic H1 to study the
memory requirement under a workload of almost 10 billion content descriptors
corresponding to 500 million users. Figure 2.11 shows the memory required

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
M

em
or

y
(G

B
)

Users (Millions)

Figure 2.11. RIB Scalability.

for a gateway router for increasingly larger user populations. We can see that
the growth of the memory requirement is relatively high initially, but steadily
flattens, reaching 3.8GB for 500 million users. This is due directly to the aggre-
gation of tags under our scheme: even with high numbers of users, the memory
required to store all the routing information is likely to remain practically con-
stant, since most of the new descriptors will be aggregated at no additional
cost.

2.5 Related Work

Although routing is one of the crucial aspects for the development of the notion
of an information centric network, there is surprisingly little work on this topic.
The NDN project proposes NLSR [40], a link-state routing protocol for NDN.
NLSR is a traditional link-state protocol that uses NDN itself to transport
routing information. NLSR realizes only a traditional unicast routing scheme
that can support multiple paths with multiple runs of the Dijkstra algorithm.

46 2.6 Summary

Another interesting work is presented by Papadopoulos et al. [63] who de-
veloped two greedy forwarding algorithms in a hyperbolic space. This approach
seems promising for routing in ICN and particularly with NDN naming. How-
ever, in order to work well in practice, the name space must be hyperbolic, and
right now there is no evidence that that is the case. Another problem with
this scheme is the relation between the name space and the network topology,
meaning how names are distributed over the network. In fact, if names do not
follow the same distribution (within the hyperbolic space) then paths can be
stretched significantly. Finally, it is not clear how to compute the hyperbolic
coordinates of routers and content using only local information.

A number of ICN proposals do not implement a routing scheme based on
content names or identifiers, but instead map names or identifiers to network-
level addresses. The PURSUIT project6 uses flat names to identify each ob-
ject together with a topology/resolution service to obtain a form of network-
level unicast or multicast address used for the actual packet switching [44].
DONA [47] also uses flat names and uses a network of special “resolution han-
dlers” to locate the content at the IP network level. NetInf7 provides a name
resolution scheme in combination with a name-based routing scheme similar
to CCN/NDN. However, this name-based routing remains localized, so that
global reachability is only supported through the name resolution scheme [7].

2.6 Summary

We have examined the fundamental problem of routing in an information-
centric network, and the essential question of the scalability of routing state.
We presented and evaluated a concrete scheme based on trees that supports
expressive content descriptors consisting of tag sets. Our evaluation confirms
two intuitions: first, that the Internet can be approximated effectively with
trees and, second, that tag-based content descriptors, which are more expressive
than name prefixes, aggregate well under our scheme.

A crucial problem that needs to be addressed is tag-based forwarding. In
the next chapter we present our work on highly parallel forwarding algorithms
that combine hardware and software solutions to support high-speed forwarding
with tables of hundreds of millions of tag sets.

6http://www.fp7-pursuit.eu/
7http://www.sail-project.eu/

http://www.fp7-pursuit.eu/
http://www.sail-project.eu/

Chapter 3

TagMatch: A Fast Matching
Algorithm for Tag-Based
Information-Centric Networking

This chapter presents a fast forwarding engine for the multi-tree tag-based
routing scheme we introduced in Chapter 2. At the heart of the tag-based
forwarding problem lies the subset matching problem. The significance of the
subset matching problem is not only limited to information-centric network-
ing. Subset matching, together with its close relative superset matching, often
appears in numerous large-scale information processing applications such as
publish/subscribe and stream processing systems, database systems, and so-
cial media. For instance, in an advanced Twitter-like messaging service where
users might follow specific publishers as well as specific topics encoded as tag
sets, the service must join a stream of published messages (and their tags) with
the users and their preferred tag sets so that the user tag set is a subset of the
message tags.

In general within the context of a database system, a subset selection op-
erator selects from a table of sets the subsets of a given query set. This is an
old but also notoriously difficult problem that is not amenable to universally
effective indexing.

In this chapter we first formalize and contextualize the subset and superset
matching problems within the broad area of data processing. We then present
TagMatch, a system that solves this problem by taking advantage of a hybrid
CPU/GPU stream processing architecture. TagMatch targets large-scale data-
processing applications with thousands of matching operations per seconds
against hundreds of millions of tag sets. TagMatch primary aim is to maximize

47

48 3.1 Subset Matching

throughput.
We evaluate TagMatch on various scenarios that range from message stream-

ing to data mining, with very positive results both in absolute terms and in
comparison with existing systems that offer a similar service. As a notable
example, our experiments demonstrate that TagMatch running on a single
commodity machine with two GPUs can easily sustain the traffic throughput
of Twitter even augmented with expressive tag-based selection.

3.1 Subset Matching

While the main purpose of this chapter is to provide a forwarding engine for the
multi-tree tag-based routing scheme we introduced in Chapter 2, here we design
and explain TagMatch as a general solution for the subset query matching
problem. We then discuss the specific use of TagMatch for forwarding in ICN
in Section 3.4.5.

Subset matching is essential to global web applications. For example, within
the Twitter messaging system, the first stage in ad selection for a user query
must find a “match between user attributes and targeting criteria across the
corpus of ads,”1 which in the most basic form amounts to checking that the
attributes of the user query contain the targeting criteria of the ads. Even
more important for Twitter is the selection of the messages themselves. As
of today, Twitter allows users to “follow” a publisher for immediate delivery
of published messages. In addition, Twitter provides a keyword or tag-based
search over past and current messages. Combining these two features, a user
might want to follow a publisher but only on a specific set of keywords or tags,
or even just that set of tags without a specific publisher. This data selection
based on subset matching is also essential in databases [17, 56, 61], data min-
ing applications [26, 62, 72, 60] where it is used as a selection or join operator,
network intrusion detection and virus signature detection [34], packet classi-
fication in Internet routers [84], information retrieval systems [73], in some
publish-subscribe systems [25] and some information-centric networking archi-
tectures [65] where it is used for message brokering and routing.

We start this chapter by giving a formal definition of the subset query
problem and several closely related problems. We briefly discuss the state of
the art solutions for these problems then we continue by presenting TagMatch
as a general subset matching solver. In sections 3.3 and 3.4 we describe the
architecture of TagMatch and in Section 3.5 we use TagMatch as tag-based ICN

1https://blog.twitter.com/2016/resilient-ad-serving-at-twitter-scale

https://blog.twitter.com/2016/resilient-ad-serving-at-twitter-scale

49 3.1 Subset Matching

forwarding engine as well as a modern twitter-like application and evaluate its
performance under different realistic heavy workloads. We show that TagMatch
achieves very positive results both in absolute terms and in comparison with
existing systems that offer a similar service.

3.1.1 Definitions

In Section 2.2.1 we discussed how we use tag sets to represent content descrip-
tors and we explained the matching semantic behind it. The matching problem
we are facing in our tag-based forwarding engine is called subset query problem.
Basically, given a large corpus of sets D = s1, . . . , sn (the database) and a set
q from a high-intensity input stream (a query), subset matching means finding
the sets si such that si ⊆ q. This is a basic combinatorial problem that is also
notoriously difficult. Because of the broad usage of subset matching problem
in different domains, multiple definitions for the same problem has came to
existence. Therefore, in order to study this problem, one has to know about
other definitions and closely related problems.

Here we first provide the definition for the partial matching problem fol-
lowed by formal definitions of subset and superset query problems. We also
give the definition for the set containment problem that are mainly used in the
database literature.

Partial matching problem Given a universe U and a set D of N vectors
in {0, 1}|U |, build a data structure, which for any vector query q in
{0, 1, ∗}|U |, detects if there is any s ∈ D such that q matches s. The
symbol “∗” acts as a “don’t care” symbol, i.e., it matches both 0 and 1.
Note that one can extend any algorithm solving this problem to handle
non-binary symbols in vectors and queries, by replacing them with their
binary representations.

Superset query problem Given a set D of N subsets of a universe U , |U | =
m, build a data structure, which for any query set q ⊂ U detects if there
is any s ∈ D such that s ⊇ q.

Subset query problem The definition of subset query problem is very simi-
lar to superset query problem. Here, instead of searching for s ∈ D such
that s ⊇ q, we look for s ∈ D such that s ⊆ q. With regard to superset
query problem, this problem is essentially the other side of the same coin.

Set containment problem Set containment problem is mostly popular in
the database literature [38, 35, 78]. The definition of this problem is as

50 3.1 Subset Matching

follows: A database D, where each record t has a set-valued attribute t.s
is given. The queries we are interested in are the following:

• Subset queries. In subset queries the user asks for all records t that
contain the query set q , i.e., {t | t ∈ D ∧ q.s ⊆ t.s}.

• Equality queries. In equality queries the user asks for all records
whose set-value is identical to the query set, i.e., {t | t ∈ D ∧ q.s ≡
t.s}.

• Superset queries. In superset queries the user asks for all records
whose items are all contained in the query set, i.e., {t | t ∈ D∧q.s ⊇
t.s}.

Already from these definitions, the various problems seem similar if not
identical. In fact, all these problems are essentially equivalent. In particular,
any instance of subset or superset query can be efficiently transformed into an
instance of partial matching, and vice-versa [27, 34], and the set containment
problems from the database literature encompass both subset and superset
query matching.

However, note that the set containment problems as defined above and in
the database literature use a notion of superset query that corresponds to the
the definition of subset query given above, and vice-versa, a subset query in
a database corresponds to a superset query (as defined above). This inconsis-
tency of terminology is unfortunate, and it is not even limited to the databases
literature. Subset and superset matching problems are often mixed up, perhaps
because one can justify the use of either of the definitions depending on how
one looks at the relationship between sets. This confusion, together with the
duplication of terms, complicates the comparative study of these problems.

To be clear, as described in Section 2.2.1, the original problem we face
in our forwarding algorithm is an instance of the subset query problem. In
particular, the original problem is one in which the size of the universe is not
bounded (i.e., no limit on the number of tags). However, in order to make
the problem more tractable, we encode each tag set into a 192-bit Bloom filter.
With this encoding, we reduce the initial subset query problem (over an infinite
universe) to the corresponding partial matching problem over a finite and small
universe, |U | = 192. Therefore throughout this chapter we assume that tag sets
are represented by their corresponding Bloom filters and the subset matching
relationship between two tag sets is defined over their corresponding Bloom
filters. Note that in our setting, although the size of the universe is relatively
small, the number of vectors N is very large.

51 3.1 Subset Matching

3.1.2 Existing Solutions and Related Work

It is believed that the partial matching problem suffers from the “curse of
dimensionality” [15]. This means that there is no algorithm for this problem
which achieves both “fast” query time and “small” space. Hence any solution
to this problem faces the trade-off between memory consumption to store the
data structure and the query execution time.

A trivial solution would be to store all the N vectors in a single array.
To execute a query, a linear scan of all the vectors in needed. Therefore, we
need O(mN)-bits for the storage and O(mN) time to execute the linear search.
Another trivial solution is to store a map of all the possible 2m query vectors
to their corresponding subsets and supersets. Although the time complexity of
answering a query is O(m) in this case, the memory required to store this map
is in the order of O(2m). This solution is not practical because the memory
required to store this map is exponential in the size of the universe.

The first non-trivial result for this problem has been obtained by Rivest [73].
He proposed two solutions for this problem, one is based on hash-coding and
the other one is based on prefix tries. The more interesting of the two is the
trie solution. He showed that trie uses a linear storage and achieves sublinear
query time. The underlying assumption for his analysis is that the database
content is generated at random. Unfortunately in practice, such assumption
typically does not hold and the performance of a trie easily degrades if the
distribution of the tags in the database is skewed.

There has been other works that try to enhance the trie solution. In Sec-
tion 2.3.6 we described another solution which uses PATRICIA trie to store
Routing Information Base (RIB). PATRICIA trie is a very compact prefix trie.
At each node of the trie we store one bit-vector of sizem and two pointers to its
children, therefore the memory consumption of the trie isN×(m+2×|pointer|).

Although our PATRICIA trie has a very good performance characteristics,
when the size of the trie grows really large, its performance degrades. This
happens because in order to execute a query we have to walk over the trie. Since
this access is random, we may move data in and out of the cached memory.
This is an inherent problem of any tree like data structure. By using a locality-
aware prefix trie we can mitigate this problem but the problem emerges again
when concurrent threads execute different queries and hence access different
parts of the data structure. In [66] we investigated such a locality-aware prefix
trie that we designed specifically to solve the subset query problem. The work
on the prefix trie is not the main focus of this thesis, hence we avoid going
through the details of it and refer you to the publication itself.

52 3.1 Subset Matching

Charikar et al. [27] investigated the trade-off between memory consumption
and time complexity of any solution for this problem and presented two non-
trivial solutions with the following trade-offs:

• N · 2O(m log2m
√
c/ logN) space and O(N/2c) time for any c

• Nmc space and O(mN/c) query time, for any c ≤ N

While the solutions provided by Charikar et al. are valuable from theoretical
point of view, unfortunately in practice neither of these two solutions is suitable
for our setting. More specifically, note that in the first solution, in order for
the trade-off to be beneficial, the number of sets N should not be far smaller
than the number of all possible sets in the universe, which is 2m. We know
that in our setting, N is far smaller than 2m, hence the first solution has low
practical value. As for the second solution by Charikar et al., the problem is
that the memory requirement is unrealistically high, only to achieve a modest
improvement in time over the linear scan.

Roughly speaking, from a practical point of view, there are two kinds of
solutions for subset matching. One is to check sets si ∈ D one by one against
the query q. Typically, solutions of this kind use “signatures” sig(p) that are
compact representations of sets that admit to a fast comparison sig(si) ⊆ sig(q)

more or less exactly indicative of the relation si ⊆ q between the sets [37, 61].
Another solution is to iterate over the elements of the query, x ∈ q, and to
use an inverted index to find the list of sets si that contain x, and then to
combine those lists to find which sets are fully covered by q [42, 59, 11, 8]. This
combination of lists can be seen as an exploration of the subsets of the query.
In fact, a variant of this second solution looks for the subsets qj ⊆ q directly
in the database (e.g., using a hash table).

Thus both types of algorithms reduce to an iteration over sets and neither
one is ideal in all cases: one is a linear scan of the database; the other one
iterates over the subsets qj ⊆ q and therefore is exponential in the size of the
query q. Note that trie-based solutions fall into the later category.

Although inverted index is the state of the art approach to answer set con-
tainment queries in databases, yet it is shown that their performance degrades
when the size of the indexed database becomes very big compared to the do-
main, or when the distribution of the items is skewed. In these cases, some
inverted lists become very long and compromise the performance of query eval-
uation. The two conditions mentioned above are exactly the conditions we are
facing for our fast forwarding algorithm as well as many other real life appli-
cations of the subset query problem. Firstly, as we explained in the previous

53 3.2 Proposed Solution

chapter, our domain size is very small in comparison to the size of the database
because we have (|U | = 192)� N . Secondly, although we use k hash functions
to transform tags into k bit positions, still since the popularity of different tags
in the original database is not uniform, the frequency of occurrence of these
bits is highly skewed as well. This problem with the inverted index solution is
investigated in [78].

3.2 Proposed Solution

None of the existing solutions to this problem can achieve the desired perfor-
mance for our problem size. Also, given the long history of subset matching,
we have little hope to achieve a high throughput with a purely algorithmic
solution. We therefore take a multi-pronged approach whereby we leverage a
hybrid stream processing system of CPUs and GPUs, combining techniques
from state-of-the-art subset matching with novel algorithmic and technical im-
provements on both the CPU and GPU sides. We implement this approach in
a subset matching engine called TagMatch.

In a very abstract view, TagMatch falls into the category of solutions that
use the linear scan of the database to find all subsets of the query. In compari-
son to other algorithmic approaches, solution that are based on linear scan use
much less memory and are less complex. The drawback of this type of solu-
tions is that in order to achieve reasonable speed and throughput, the entire
database that can contain huge amount of sets needs to be matched against
queries in a relatively short period of time. The task of matching a single query
against a single set is relatively a simple. The main challenge is to perform the
matching operation against the entire database. Therefore, this approach can
benefit from highly parallelized architecture available on graphics processing
units. GPU architecture excels in solving problems in which a relatively simple
task needs to be perform on large amount of data.

Before introducing TagMatch, we emphasize that the synergistic use of
CPUs and GPUs in TagMatch is essential, as demonstrated by the summary
results of Table 3.1. Notice first that GPU parallelism alone is insufficient,
and in fact it is inferior to state-of-the-art CPU-only solutions, over which
TagMatch achieves an almost 10× speedup. Notice further that TagMatch
is also significantly faster than the best combination of CPU-only and GPU-
only solutions, and that TagMatch itself achieves a 50× speedup when running
on a hybrid system. This is because TagMatch exploits the more versatile
processing capability of CPUs in combination with the massively parallel pro-

54 3.2 Proposed Solution

database size
system 21M(10%) 42M(20%) 212M(100%)
GPU-only, plain 0.40 0.20 0.04
GPU-only, plain with batching 11.50 6.30 1.20
CPU-only, fast prefix tree 21.10 14.00 4.30
CPU-only, state-of-the-art ICN 27.60 17.40 —
CPU-only, TagMatch 3.90 3.40 0.68
TagMatch 268.80 144.40 35.30

(throughput: thousand queries per second)

Table 3.1. Summary Evaluation: Throughput of TagMatch vs. CPU-Only and
GPU-Only Systems.

cessing capabilities of GPUs. TagMatch does that with an appropriate division
of labor, specific algorithmic solutions, and an effective coordination between
CPUs and GPUs. We further discuss an alternative, GPU-only architecture in
Section 3.5.5.

To introduce TagMatch, we note that both types of existing algorithms—
iterations over si ∈ D or over qj ⊆ q—can benefit from an index to take
shortcuts. In the first case, if si is not a subset of q, then the iteration can skip
all the supersets of si. Similarly, in the second case, if qj is not in the database,
then the iteration can skip all the subsets of qj. So, both solutions can use an
index in which sets are arranged according to their subset relations, and one
such effective index is a prefix trie (or tree) like the one proposed originally by
Rivest [73], which is in fact used in many subset-matching algorithms [42, 56,
66].

TagMatch takes a similar approach, although it indexes signatures rather
than sets. In addition, TagMatch organizes the data and processing in a
platform-specific way, with a coarse-grained index on the CPU side and a fine-
grained selection on the GPU side. Specifically, TagMatch uses Bloom filters
as set signatures, and partitions the database to divide and coordinate the
work between CPUs and GPUs. Appropriately selected bit masks define the
partitions and make up the CPU index, which is designed as a compact data
structure to support a sequential but memory-efficient matching on CPUs. Cor-
respondingly, signatures are grouped and sorted within partitions on GPUs to
enable parallel processing and additional shortcuts. TagMatch then processes
queries through a pipeline that alternates CPU and GPU stages. We design
and engineer this pipeline so as to maximize the parallelism both between and
within each stage.

55 3.3 System Model

We validate this design with an extensive experimental evaluation. We
measure the performance of TagMatch in several relevant application scenarios
both comparatively and in absolute terms. TagMatch outperforms all compa-
rable systems we tested, namely a widely used database system (MongoDB),
an existing message forwarding system, and a tightly optimized matcher based
on a prefix tree that itself outperforms all subset matching algorithms we know
of as reported in the literature. In absolute terms, as a highlight of our results,
under a realistic Twitter workload with more than 212 million unique sets rep-
resenting user preferences, TagMatch can process over 30,000 subset queries
per second on a single, commodity machine with two GPUs. And under a
realistic ICN workload, it achieves throughput of 383,500 subset queries per
second using only one GPU.

Finally, it is important to mention that the performance of our proposed
system in the worst case scenario is similar to that of the linear scan solution.
Or in other words, its worst case performance is as bad as any other solution
for the subset query problem. But in cases where the input data set meets
certain condition, it outperforms other existing solutions. TagMatch is designed
and optimized to achieve good performance in situations where the size of the
universe is much smaller than the number of sets in the database.

3.3 System Model

We design TagMatch as a general-purpose subset matching engine. To make
this notion a bit more concrete, we consider sets of string tags, which is the
most common use in applications and in any case provides a very general model.
In essence, TagMatch implements a database of tag sets with a subset-match
operation and the interface shown in Table 3.2.

add-set(set , key) : void
remove-set(set , key) : void
consolidate() : void
match(query-set) : multiset of keys
match-unique(query-set) : set of keys

Table 3.2. TagMatch Interface.

The add-set and remove-set functions add and remove a set with an asso-
ciated key, where the key is simply a link to application data. These changes

56 3.3 System Model

{@
P
O
T
U
S
,e
n
er
g
y,
p
o
li
cy
}

{@
C
h
o
m
sk
y,
ed

u
ca
ti
o
n
}

{@
g
g
re
en

w
a
ld
,N

S
A
}⋆

. . .

in
p
u
t
q
u
er
ie
s
(s
tr
ea
m
)

q 1
=

0
1
0
1
0
1
··
·1
1

q 2
=

0
1
1
1
1
1
··
·0
1

q⋆ 3
=

0
0
1
1
1
0
··
·1
1

. . .

B
lo
o
m
-fi
lt
er

en
co
d
in
g

⋆
“
u
n
iq
u
e”

q
u
er
y

pre-process

C
P
U

0
n
o
n
e

1
0
1
0
0
0
1
··
·0
1
→

P
1

2
0
0
1
1
0
0
··
·0
0
→

P
2

0
0
1
0
1
0
··
·1
1
→

P
3

0
0
1
0
1
1
··
·0
1
→

P
4

3
0
0
0
1
0
1
··
·1
0
→

P
5

..
.

··
·

··
·

1
9
1

..
.

p
ar
ti
ti
o
n
ta
b
le

subsetmatch

G
P
U

P
1

0
1
1
0
1
1
··
·0
1
↔

1
0
1
0
1
0
1
··
·1
1
↔

2
0
1
0
1
0
1
··
·0
1
↔

3
..
.

P
2

0
0
1
1
0
1
··
·1
0
↔

6
2

0
0
1
1
0
1
··
·0
1
↔

6
3

0
0
1
1
0
0
··
·1
1
↔

6
4

..
.

. . .
. . .

ta
g
se
t
ta
b
le

..
.,
q 2

ba
tc
h
1

P
1

..
.,
q 2
,q

3

ba
tc
h
2

P
2

..
.,
q 1
,q

3

ba
tc
h
3

P
3

. . .

keylookup/reduce

C
P
U

1
→

k
1
,k

2

3
→

k
2
,k

6
,k

8

. . .
6
3
→

k
5
,k

8
,k

1
3

. . .

ke
y
ta
b
le

(q
2
,1
),
(q

2
,3
),
..
.

re
su
lt
s 1

(q
2
,6
3
),
(q

3
,7
1
),
..
.

re
su
lt
s 2

(q
1
,3
2
4
),
(q

3
,9
9
),
..
.

re
su
lt
s 3

. . .

q 1
→

k
3
,k

1
3
,.
..

q 2
→

k
1
,k

2
,k

2
,

k
6
,k

8
,k

5
,

k
8
,k

1
3
,.
..

q⋆ 3
→

k
9
,k

3
,k

3
7
,

k
3
,k

7
,.
..

. . .

re
su
lt
s
(s
tr
ea
m
)

merge

C
P
U

Figure 3.1. The Architecture of TagMatch.

57 3.4 System Implementation

are not immediately effective and instead are staged in a temporary index and
become effective only after a call to the consolidate function.

The match and match-unique find subsets of a given query set in the table.
match(q) returns all the keys k associated with the indexed sets s such that
s ⊆ q, possibly with multiple instances of the same key k if k is associated with
multiple subsets of q. match-unique returns a set of keys k, such that at least
one indexed set s ⊆ q is associated with k (i.e., it avoids duplicate keys).

The match-unique(q) function is useful to implement the Twitter-like appli-
cation discussed in Section 3.1 as well as an ICN router in which each packet has
to be forwarded to all the appropriate interfaces but only once per interface. In
the Twitter example, the application could store the preferences of users in a ta-
ble Users with two fields: Users .prefs and Users .id . For each tweet in a stream
Tweets , the application must find the ids of all the users interested in that
tweet, effectively computing an inner join on Users .prefs ⊆ Tweets .keywords .
Thus the application would use TagMatch to add each user preference u with
add-set(u.prefs , u.id), and then to find the matching users for each tweet t with
match-unique(t.keywords).

3.4 System Implementation

This section presents the general design of TagMatch, as well as the implemen-
tation details of its components. Figure 3.1 shows the high-level architecture
of TagMatch, where the gray boxes represent the main computational steps
of the match and match-unique functions while the white boxes represent the
main data structures. TagMatch is built on a hybrid CPU/GPU system with
one or more CPUs and one or more GPUs. Therefore, some computational
steps run on CPUs while others run on GPUs.

At a high-level, TagMatch indexes partitions of related tag sets, and there-
fore finds the subset of an input query set in two steps: The first step finds
the relevant partitions for a query set, and the second step matches the query
against the individual sets within those relevant partitions.

Specifically, the matching algorithm consists of a four-stage pipeline: (i) The
pre-process stage selects the relevant partitions for a query. (ii) The subset
match stage finds the tag sets that match a query within each partition using
a GPU. To maximize throughput and better use the processing capabilities of
GPUs, this stage operates on batches of queries, evaluating them in parallel.
(iii) The key lookup/reduce stage extracts the keys associated with each set of
tags, and groups the results by query. (iv) Finally, the merge stage combines

58 3.4 System Implementation

the results from multiple partitions into a single set of keys (for match-unique)
or a multiset (for match).

In TagMatch, we do not put any restriction on the universe of tags and it
can potentially include any sequence of characters. This brings forth the need
for a compact representation for tags and sets. Particularly such representation
should support simple ways to perform the subset operation on sets. Because of
this, TagMatch represents sets (database and query) as Bloom filters. Bloom
filters are an ideal basis for subset matching, since they are compact, fixed-
width bit vectors that admit to very simple membership and subset checks.
However, those checks are only probabilistically correct and may result in false
positives. For sets S1 and S2 represented with Bloom filters (bit vectors) B1

and B2, S1 ⊆ S2 implies B1 ⊆ B2 (bitwise), and B1 ⊆ B2 (bitwise) implies
S1 ⊆ S2 with high probability, although S1 6⊆ S2 is possible (false positive).

In cases where false positives are absolutely unacceptable, the system or
the application can perform an additional exact subset check. In the following,
whenever we mention query or database sets, we refer to their representations
as Bloom filters, and we implicitly refer to their bitwise inclusion relations.

The width and the number of hash functions that define the Bloom fil-
ter representation also determine its false positive probability, and therefore
are high-level design parameters that can be optimized for various application
domains.

In order to have reasonably small size Bloom filters with reasonably small
false positive rate, we have to put an upper bound on the number of tags each
set can hold. Based on our observation of different real world applications, the
specific implementation of TagMatch that we describe in this thesis assumes
that we have at most 15 tags per query or database tag sets. Derived from this
assumption we set the size of the Bloom filter in TagMatch to be 192 bits with
7 hash functions. This provides very conservative bounds for false positives in
all the application domains we considered.2

From the implementation point of view, we know that in order to answer
if a query vector q is a superset of the vector p, since both p and q have the
same size, we only need to evaluate “(p & ~q) == 0” statement. Note that &

2Given two sets S1 6⊆ S2, an m-bit Bloom-filter encoding with k hash functions would
result in B1 ⊆ B2 (a false positive) with probability P (B1 ⊆ B2) = (1 − e−k|S2|/m)k|S1\S2|,
where |S1 \ S2| > 0 is the number of elements of S1 that are not in S2. In our case (m =

192, k = 7), with a set S2 of |S2| = 10 tags and another set S1 that differs by |S1\S2| = 3 tags,
the Bloom-filter encoding would indicate a false positive with probability 10−11. Roughly
the same 10−11 false-positive probability exists for a set S2 of 5 tags and a set S1 that differs
by |S1 \ S2| = 2 tags.

59 3.4 System Implementation

and == are respectively bit-wise logical AND and bit-wise equality operators
that operate on bit-vectors. If the result of the evaluation is true, then q ⊇ p,
otherwise q + p.

A vector of size 192 can be represented by three 64-bit blocks, therefore we
need to evaluate “(p & ~q) == 0” only 3 times. This subset matching against
a single set can be performed very fast and needs only a handful of operations.
Hence, using Bloom filters in this way can drastically increase the performance
of the linear scan solution.

Note that with this transformation of sets to Bloom filters, the linear scan
solutions seems more promising than before. In addition to this, linear scan
solution is very memory efficient and is also very cache friendly. It is also
easy to parallelize and it remains cache friendly even then. Because of these
positive characteristics of the linear scan solution, we decided to utilize this in
the design of the TagMatch. The main drawback of the linear scan is that its
time complexity is linear, therefore in real world applications where we have a
large number of vectors to check, the performance is not acceptable.

One way to improve the performance of linear scan is to limit the scope
of the search. To achieve this, we split the set D into smaller partitions and
look only into partitions where we have a chance to find a match. This parti-
tioning can be done offline as a pre-processing stage. We will discuss various
partitioning approaches in Section 3.4.1.

Although partitioning is very effective in reducing the scope of the problem,
in practice we observe that it is not enough to bring down the running time
of the system to a desirable level. The main reason is that in each partition,
we still have to go linearly to find all the matching sets. This brings forth
the main algorithmic challenge of TagMatch which is to perform the subset
matching for each partition on the graphics processing unit and utilize the
massive parallelization power of GPUs to solve this problem in a reasonable
time.

TagMatch stores its index in three main tables in CPU or GPU memory
(see Figure 3.1): the partition table (CPU) associates each partition with its
defining bit mask; the tagset table (GPU) associates each tag set s in each
partition with a unique id that points to an entry in the key table (CPU) that
therefore associates tag sets with keys.

TagMatch is designed to exploit parallelism on both CPUs and GPUs. Thus
TagMatch can assign any number of threads to the various stages in the pro-
cessing pipeline. TagMatch may also replicate the tagset table on all available
GPUs to match queries in parallel on multiple GPUs. Alternatively, TagMatch
can also partially replicate or simply partition an extremely large tagset table

60 3.4 System Implementation

on multiple GPUs.
TagMatch batches queries and results between some processing stages to

amortize the cost of transferring information and control between CPUs and
GPUs. However, batching may also introduce excessive latency when, depend-
ing on the application, some partitions would see a few matching queries over
a significant period of time. In those cases, some batches would not fill up and
therefore would hold back the queries contained in them. To limit this holding
time, TagMatch uses a configurable timeout period after which it automatically
processes batches even if they are not full.

We now detail the off-line partitioning of the database and then the on-line
processing stages of the TagMatch pipeline.

3.4.1 Off-Line Partitioning

TagMatch indexes the database D in a number of partitions so that all tag sets
in a partition share a chosen bit mask (in their bit-vector representation).

Given a configuration parameter MAX P , TagMatch computes a set of
masks that define a set of partitions, each containing up to MAX P tag sets.
More specifically, to make the matching process more efficient, TagMatch com-
putes balanced partitions using a recursive partitioning scheme implemented in
Algorithm 2. This is done off-line within the consolidate() function.

In this algorithm, the way we select pivot defines our partitioning strategy
and plays an important role in efficiency of the algorithm. Here we briefly
discuss three different strategy for selecting the pivot.

Most balanced bit. In this strategy, before selecting the pivot, for each un-
used bit position, we find the frequency of that position being set to 1
in all sets of the current partition P . Then we find the bit position that
splits the partition as evenly as possible into two smaller partitions and
select it as pivot. We keep applying the same procedure to every newly
formed partition that is larger than a pre-configured, maximum allowed
capacity MAX P . Most balanced bit strategy assumes that the presence
of each 1-bit in the query—that is also used to form some partitions—,
has the potential to filter out some sizable partitions.

Most frequent bit. As the name suggest, in this strategy, after we calculate
the frequency for each unused bit position, we pick the bit with the
highest frequency as pivot. The thought behind this strategy is that if
such a bit is not present in the query, then there is a potential to filter
out large partitions.

61 3.4 System Implementation

Algorithm 2: Common-bit Partitioning Algorithm.
Input: database sets D , max size MAX P

Output: partition table PT : Mask → Partition

PT ← ∅
Q← {((mask = ∅)→ (P = D), (used_bits = ∅))}
while Q is not empty do
extract (mask → P, used_bits) from Q

if |P | ≤ MAX P and mask 6= ∅ then
PT ← PT ∪ (mask → P)

else
pivot ← bit 6∈ used_bits chosen according to some heuristic strategy
{pivot is a previously unused mask bit that splits P according to some
strategy into two parts P0 and P1}
P0 ← {B ∈ P |B[pivot] = 0}
P1 ← {B ∈ P |B[pivot] = 1}
used_bits ← used_bits ∪ {pivot}
add (mask → P0, used_bits) to Q
add ((mask ∪ {pivot})→ P1, used_bits) to Q

end if
end while

Variable length common prefix. This strategy is one of our initial approaches
to tackle the partitioning problem. It has less practical value than the
other two and we do not evaluate it in this thesis. In this strategy, unlike
the other two strategies that we discussed above, we do not calculate bit
frequencies of the current partition. We simply select the next unused bit
position as pivot (assuming we start from bit position 0). The advantage
of using prefixes as the common feature is that we can simply remove
the common prefix bits from each partition, and hence reduce the space
needed to store these partitions. Doing so can lead to a better overall
performance of TagMatch. But a drawback of this approach is that we
only consider certain number of consecutive bits of both queries and par-
titions to filter out non-matching queries and those bits might not be the
most effective bits that can filter out queries.

Notice that for both most balanced bit and most frequent bit it is also pos-
sible to extract the common bits information out of all the vectors of each
partition, to reduce the size of the partition. This process can be done offline

62 3.4 System Implementation

for each partition, but if we do so, we need to apply the same modification to
every query that we would like to match against that partition. This online bit
modification of queries is very expensive and can have a significant negative
impact on the matching speed of the TagMatch. Hence, it is better to avoid
the compression and fully store each partition.

Also notice that the MAX P parameter (maximum partition size) can be
used to balance the workload between the main processing stages in the Tag-
Match pipeline. Having a few large partitions would simplify the pre-processing
on the CPU side but might overload the subset match on the GPU side. Con-
versely, small and therefore numerous partitions would reduce the cost of the
subset match, but would also increase the cost of the pre-processing. We fur-
ther discuss and evaluate this trade-off in Section 3.5.

3.4.2 Pre-Process

Given a query set q, the task of the pre-process stage is to forward q for further
processing within all the partitions Pi that may contain matching tag sets for
q (i.e., subsets of q). Since each partition Pi contains tag sets that share the
same bits in mask i, then the task of the pre-process stage is to find all mask i
such that mask i is itself a subset of q (bitwise).

The pre-process stage uses a simple index for masks that is a kind of inverted
index of bit positions (partition table in Figure 3.1). Concretely, the partition
table is an array PT of 192 vectors of bit masks and the corresponding partition
identifiers, where vector PT [j] contains all the bit masks whose leftmost one-bit
(bit set to 1) is at position j.

The pre-processing (Algorithm 3) then scans the one-bits of the query set
q to classify q. The algorithm is not very sophisticated and yet it is quite
efficient in practice because the partition table is very compact and therefore
cache-efficient. Also, the concrete implementation of TagMatch uses bit vectors
made of 64-bit blocks, so the subset checks in Algorithm 3 (mask i ⊆ q) amount
to three simple block operations.3 It can also be shown that the efficiency of
Algorithm 3 does not depend on the distribution of masks over the 192 bits in
the partition table.

Whenever the pre-process stage fills up a batch for a given partition Pi,
TagMatch extracts all the queries from the queue, copies them to the GPU
memory, and invokes the subset match kernel for that batch of queries on
partition Pi.

3In C, ((~q[k] & maski[k]) == 0), for block k.

63 3.4 System Implementation

Algorithm 3: Pre-Process Stage.
Input: partition table PT , query q
Output: forward q for processing within relevant partitions
for j ∈ all one-bit positions of q do
for (mask i → Pi) ∈ PT [j] do
if mask i ⊆ q then
enqueue q for processing within partition Pi

end if
end for

end for

Algorithm 4: Pre-Process Stage in More Details.
Input: partition table PT , queue of incoming queries query_queue

Output: forward q for processing within relevant partitions
while state 6= shutdown do
q ← query_queue.dequeue() {this is a blocking operation}
for j ∈ all one-bit positions of q do
for (maski → Pi) ∈ PT [j] do
if mask i ⊆ q then

batch[Pi].add(q)

if batch[Pi].is_full() then
h ← GPU_handler .get()

output ← subset_match.match(batch[Pi], h)

process_output(output)

end if
end if

end for
end for

end while

Algorithm 4 shows the pre-process algorithm with more implementation
details. To achieve higher performance, the TagMatch uses multiple CPU
threads to run the pre-process algorithm. A single thread is responsible to read
the incoming queries and add them to the query_queue. This query_queue is
a single producer multiple consumer queue that is shared among all threads.
Every consumer thread runs the Algorithm 4 in parallel to all other threads.
Each thread picks a query q from the query_queue and runs the pre-process
algorithm to find appropriate partitions for it. Note that here Algorithm 3 is

64 3.4 System Implementation

embedded in the Algorithm 4.
Whenever the pre-process algorithm fills up a batch for a given partition

Pi, TagMatch extracts all the queries from the batch, copies them to the GPU
memory, and invokes the subset match kernel for that batch of queries on the
partition Pi. The same thread awaits until the output of subset match becomes
available. And then it starts the final processing stage.

For the case of brevity, some details are omitted from Algorithm 4. For
example when the batch of the partition Pi becomes full and is sent to the
GPU for further processing, any other threads who wants to add a query to
the batch of this partition, picks a new batch from a pool of available batches.
Whenever a thread finishes processing of the output of a GPU, it frees up the
batch and returns it to the pool.

In order to submit a batch of queries to a GPU, several different tasks
must be perform beforehand. These tasks are defined in GPU_handler. The
first task is to copy the queries to a special buffers that are optimized for
transferring data between CPU and GPU memory. The memory allocation on
the CPU side is pageable by default, but GPU can not access pageable memory
directly. Therefore GPU_handler uses a special memory allocator to allocate
page-locked or pinned memory. The memory allocated in this way is directly
readable by GPUs. This improves the data transfer efficiency between CPUs
and GPUs. In addition to this, GPU_handler is responsible for calling the
GPU matching kernel to perform the subset match on the given partition and
gets the results back from it. Finally note that in Algorithm 4, all access to
query queue and partition queues are synchronized.

3.4.3 Subset Match

The subset match stage takes a batch of queries and a single partition of the
tagset table, and returns the identifiers of the tag sets that match each query
q in the batch.

We develop the subset match on a GPU following the Single Program Mul-
tiple Data (SPMD) model using the CUDA framework. With SPMD, one
writes a “kernel” function designed to run on a single data item, then invokes
that kernel on a set of data items, and the GPU schedules the execution of the
kernel on all data items with as many parallel threads as its hardware resources
allow.

At a high-level, the subset match kernel processes a single indexed tag set
against a batch of queries (see Algorithm 5). The specific tag set is identified

65 3.4 System Implementation

Algorithm 5: High-level Subset Match Kernel.
Input: batch of queries Q, table of tag sets P (partition)
Output: vector of pairs (query,set-id) results

{kernel code invoked on each individual entry of partition
P = (s1, id1), (s2, id2), . . . , (sn, idn); automatic variable thread_id identifies
the entry assigned to this thread.}
s← P [thread_id].set

id ← P [thread_id].id

for q ∈ Q do
if s ⊆ q then
atomically append (q , id) to results

end if
end for

by an automatic thread_id variable.4 Notice that, here too, the subset check
amounts to a simple operation on each Bloom-filter block. Notice also that
the output vector (results) is shared by all the threads of a kernel invocation,
therefore the append operation uses an atomic increment on the size of the
output vector.

Subset Match Optimizations

On the basis of the high-level design of Algorithm 5, we develop and implement
several optimizations and performance improvements.

The first and most significant optimization is a pre-filtering step that takes
place before the actual subset check. In CUDA, the threads in a kernel invo-
cation are organized in blocks, such that all threads within a block run with
consecutive thread ids on the same processor and can access a fast (but limited)
block-level shared memory.

The pre-filtering exploits the thread-block shared memory as shown in Al-
gorithm 6. The first thread in the block computes the longest common prefix
for all the tag sets assigned to the threads in the block, which requires only a
simple bit-wise operation between the first and last tag sets in the block thanks
to the fact that we store the sets in the tagset table in lexicographical order.
Then, all threads in the block iterate through the original batch of queries (in

4The CUDA framework defines multiple variables to identify each thread and to control
its behavior. For ease of exposition, we abstract from these implementation details and
simply refer to a single thread_id variable.

66 3.4 System Implementation

Algorithm 6: Pre-Filtering in Subset Match Kernel.
Input: original queries Q′, table of tag sets P (partition)
Output: batch of queries Q in shared memory
if thread_id = thread_block_first_id then

first ← P [thread_id].set

last ← P [thread_id + thread_block_size].set

len ← leftmost_nonzero_bit(first ⊕ last)

shared prefix ← first with all bit pos. ≥ len cleared
shared Q ← ∅

end if
i← thread_id − thread_block_first_id

while i ≤ |Q′| do
if prefix ⊆ Q′[i] then

atomically append Q′[i] to Q
end if
i← i+ thread_block_size

end while

parallel) to exclude the queries that do not match the common prefix.
A second optimization affects the format of the output of the GPU kernel

that needs to be copied to the CPU memory. Copying data from a GPU to the
host memory is expensive because the bandwidth of the PCI-Express bus is
limited and also because each call to the CUDA API has a fixed, non negligible
cost. Therefore, one way to improve performance is to reduce the size of the
output of the GPU kernel and to store that output in a single memory region,
so as to minimize the number of copy operations.

The output consists of pairs (q, s) for a query q and a matching set s. In
practice, we use 8-bit integers to identify a query within its batch, and a 32-bit
integer to identify a tag set in the tagset table. However, because of alignment
requirements, a simple structure to represent the (q, s) pair would require 64
bits, so a vector of pairs would result in a significant waste (38%) of memory
and bus bandwidth. One way to avoid this waste is to store the query and
set identifiers in two separate arrays. However, that would require two copy
operations. We solve this problem by storing the output vector in groups of
four (q, s) pairs, with four packed query identifiers preceding four packed set
identifiers:

q1 q2 q3 q4 s1 s2 s3 s4 . . .

67 3.4 System Implementation

This layout yields a 100% or near-100% memory utilization, with a worst-
case total loss of only three bytes.

Finally, we apply various fine-grained optimizations to the kernel code. For
instance, we manually unroll simple loops and we reduce the number of loop
iterations required to read the queries in a batch by accessing two queries within
each iteration.

Workflow Optimizations

While the subset match kernel exploits multiple GPU cores, running one kernel
at a time still can not fully utilize a GPU. This inefficiency is due to the round-
trip time incurred in the processing of a batch of queries. When a CPU thread
fills a batch of queries within the pre-process stage, that thread then must
invoke the subset match kernel on that batch. In particular, the CPU thread
must (1) copy the batch of queries from CPU to GPU memory, (2) invoke the
subset match kernel on that batch of queries and the corresponding partition,
and (3) copy the results back from GPU to CPU memory. And running one
such sequence at a time leaves a GPU unused during the copy operations.

To overcome this limitation, and also to parallelize individual kernel exe-
cutions whenever possible, TagMatch uses CUDA streams to enable multiple
CPU threads to submit tasks to a GPU concurrently. A stream is an abstrac-
tion of a queue of GPU operations. Operations within the same stream execute
sequentially in FIFO order, while operations in different streams are executed
in parallel as much as possible, depending on the available hardware resources.
In TagMatch, each CPU thread that needs to invoke a kernel on a batch of
queries acquires an available stream and then issues the sequence of commands
for parameter copy, kernel invocation, and result copy, through that stream.
The GPU_handler mentioned in Algorithm 4 is responsible to perform these
operations.

Notice, however, that streams alone do not solve all synchronization prob-
lems. Consider the two copy operations. It is immediately possible for an
invoking thread to issue a command to copy the minimal amount of data to
transfer the batch of queries from CPU to a GPU, because the size of the batch
is known at the time of the invocation. However, the same thread can not know
at that same time the size of the result. A straightforward solution would be
to issue a command to transfer the size of the result, and then only later,
when that information becomes available, issue the command to retrieve the
results with a minimal transfer. However, this would introduce an additional
round-trip time and an additional synchronization point.

68 3.4 System Implementation

In TagMatch we avoid this inefficiency by associating each GPU stream with
two buffers for the results (call them even and odd), each containing a length
and a set of results. We then alternate between the two buffers as follows. In
an odd transfer cycle, we use the odd buffer to transfer the length of the next
(even) set of results, as well as the set of results for the current (odd) cycle.
And for this copy operation we can issue a command with minimal transfer size
because the exact size of this (odd) set was transferred in the previous (even)
cycle and is readable from the even buffer. Then, similarly in the following
even cycle, we find the length of the current (even) set of results in the odd
buffer, which we use to issue the copy command for the current (even) set of
results, and so on.

In summary, TagMatch takes full advantage of streams, with the following
key benefits for the pipeline architecture. First, GPUs can process multiple
batches on multiple partitions in parallel. Second, communication between
CPUs and GPUs achieves an optimal utilization of the bus in both direc-
tions. Third, CPU threads can invoke entire sequences of GPU operations
asynchronously, which means that CPU threads are no longer responsible for
the synchronization between copy and processing operations, which in turn
allows them to continue with pre-processing, key lookup/reduce, and merge
tasks. Finally, TagMatch splits the workload across all available GPUs, with
maximal inter-GPU parallelism in the case of full replication of the tagset table.

3.4.4 Key Lookup/Reduce and Merge

As shown in the previous section, the subset match stage outputs results in the
form of (q, s) pairs, where q is a query id and s is a unique identifier of a tag
set in the tagset table.

When new results become available for a partition, a CPU thread picks up
these results and performs the key lookup/reduce stage, which accesses the key
table to retrieve the set of keys associated with each set-id s. The thread then
groups these keys by query in a results table (see Figure 3.1), associating each
query with a list of sets of keys. Additions to the results table also use the
proper atomic operations to allow access from multiple threads.

For each query q going through the matching pipeline, TagMatch main-
tains a counter of all the batches (partitions) within which q is forwarded for
processing. When q’s pre-processing terminates, and the counter goes back to
zero, signaling that all the results for all the batches returning from the GPUs
have been accounted for, then TagMatch runs q through the last merge stage.
In the case of a match query, that requires no additional processing. In the

69 3.5 Evaluation

case of a match-unique query, the merge stage merges all sets of keys associated
with q into a single set.

3.4.5 TagMatch Adaptation as an ICN Message Forwarder

In Section 3.3, we laid out the system model and architecture of TagMatch as a
general subset matching engine. The main reason to develop this system was to
use TagMatch as a fast and high throughput forwarding engine to accompany
the tag-based routing scheme that we introduced in Chapter 2. To be able to
use TagMatch as an ICN message forwarder, we slightly modified TagMatch
and introduced the logic of routing trees and interfaces to it. Here we briefly
discuss the list of changes we applied to TagMatch.

First, as stated in Section 3.3, each tag-set is associated with a set of keys,
and we use a key to store a pair (tree, interface). Each tag-set together with its
set of keys represents a forwarding rule. Second, we store the table containing
the mapping set-id → keys in the GPU memory. Third, each query is an in-
coming ICN packet that, in addition to its tag set, carries a pair (t, i) indicating
that the packet is forwarded along tree t and was received from network inter-
face i. For each query/packet, we supply the (t, i) pair associated with that
packet to the GPU backend. Fourth, we modify Algorithm 5 such that, for
each query, the algorithm returns a list of interfaces associated with matching
entries that are also on the same tree t. The modified algorithm also excludes
interface i from the set of output interfaces. This ensures that the packet will
not be forwarded back to where it came from. Finally, we modify the match-
unique function such that for query q it returns all the unique interfaces that
q has to be forwarded to. These modifications enables TagMatch to operate as
a forwarding engine for our multi-tree tag-based ICN routing algorithm.

3.5 Evaluation

We now present the results of an experimental evaluation of TagMatch. The
general objective of this evaluation is to assess the performance of TagMatch
in terms of throughput. Most importantly, we are interested in (1) the effective
throughput measured in queries processed per time unit under realistic work-
loads, (2) the scalability of TagMatch with respect to the size of the database
and queries as well as to the capabilities of the platform (e.g., available CPU
threads), and (3) the performance of TagMatch relative to other comparable
state-of-the-art systems.

70 3.5 Evaluation

3.5.1 Subjects and Experimental Setup

The main subject of our experimental analysis is a C++ implementation of
TagMatch as described in Section 3.4. In addition, we use the following sub-
jects:

• prefix tree: a main-memory implementation of a subset matching algo-
rithm that indexes database sets into a prefix tree. Specifically, this
system uses a PATRICIA tree and solves the subset matching problem
by navigating that tree. This implementation is representative of most
state-of-the-art approaches based on trees (see Section 4.2).

• ICN matcher: an implementation of a state-of-the-art algorithm specifi-
cally designed to perform packet forwarding in Information Centric Net-
works (ICN) [66]. In this context, the database encodes forwarding in-
formation represented as sets of tags, and the queries are the packets to
dispatch. This algorithm is also based on a prefix tree and, similar to
TagMatch, it is designed for high throughput.

• MongoDB: theMongoDB Database Management System (version 3.2.10),
which offers an explicit subset operator.

Our testbed is a general-purpose machine equipped with two Intel Xeon E5-
2670 v3 processors, each with 12 cores running at a clock frequency of 2.30GHz,
and 64GB of RAM. The machine also has two NVidia TITAN X graphic cards
each with 12GB of GDDR5 RAM.

To make the comparison as fair as possible, we configure the prefix tree and
the ICN matcher to use Bloom filters with the same size as TagMatch (192-
bit), and we try to feed the same input and allocate the same system resources
to all subject systems. Thus for all the comparative experiments, we give each
system the same number of threads.

Still, we could not perform exactly the same experiments with all systems.
In particular, since the ICN matcher uses a significant amount of memory to
build its index, we could only test the ICN matcher with a reduced portion
of the largest workloads. We discuss this case in Section 3.5.3. We encounter
analogous and even more extreme difficulties with MongoDB. In fact, the per-
formance of MongoDB is limited to the point of making larger experiments
impossible or pointless. We therefore test MongoDB with specially crafted and
relatively small workloads. We discuss the case of MongoDB in Section 3.5.4.

71 3.5 Evaluation

3.5.2 Workloads

We evaluate the absolute performance of TagMatch using two independent
workloads one representing a forwarding engine of a tag-based ICN router which
we refer to as ICN workload and the other one representing a Twitter-like
messaging system which we refer to as Twitter workload. The ICN workload
consists of a data set of tag-sets that represents the forwarding table of an
ICN router and a set of incoming messages (packets) as queries. In the Twitter
workload, the database entries are tag sets that represent the interests of users,
the keys associated with each tag set are the identifiers of the users interested
in that tag set, the queries are the tweets published by the users, and the tags
in the queries are the hash-tags (keywords) of the tweets. In the following we
describe how we created these two.

Twitter. The Twitter workload includes 300 million users (keys), which is
roughly the number of users that are active on Twitter every month,5

and contains over 212 million unique sets representing user interests.

We generate the set of interests based on a real data set of tweets pro-
vided by the TREC conference (2011-2012), containing 16 million tweets
recorded during two weeks in 2011.6 To derive realistic relations between
users, we use a graph of 41.7 million Twitter users and 1.47 billion follower
relations [52]. To amplify the data set and to prevent a bias toward the
English language in the workload generation, we artificially create multi-
ple languages in our data set: given a tag, we “translate” it by adding a
prefix that indicates the new language. For example, the original tag cat
becomes fr_cat in French or it_cat in Italian. In our workload we assume
that 40% of the users speak only one language while the remaining 60%
speak two languages7. To select the language spoken by each user we use
two different distributions: the first one is the language distribution on
Twitter [39], while the second one is the distribution of the most frequent
second languages used in the world8.

For each user in our workload we generate a set of interests as follows.
First we select the languages spoken by the user according to the distribu-
tions mentioned above. Then we pick the number of followed publishers
according to the follower distribution that we derive from the Twitter

5Twitter stats: https://about.twitter.com/company
6https://github.com/lintool/twitter-tools/wiki/Tweets2011-Collection
7http://ilanguages.org/bilingual.php
8https://www.ethnologue.com/statistics/size

https://about.twitter.com/company
https://github.com/lintool/twitter-tools/wiki/Tweets2011-Collection
http://ilanguages.org/bilingual.php
https://www.ethnologue.com/statistics/size

72 3.5 Evaluation

graph. Then we randomly select the publishers from the list of users
available in our data set and collect their tweets. We generate one inter-
est for each publisher by randomly selecting one of their tweets and using
the hash-tags in that tweet. In addition, we “translate” the hash-tags us-
ing one of the two languages assigned to the user, since we assume that
a user follows only publishers that write in one of the user’s languages.

If the publisher of the tweet is a frequent writer, we also add the id of
the publisher as a tag in the interest. We consider a publisher to be a
frequent writer if he or she is ranked in the top 30% based on the number
of published tweets. An interest with only hash-tags describes the set of
information that the user wants to collect, while an interest that includes
a user id selects only the information of interest that are generated by
the user with that id. This procedure results in interests containing an
average of five tags.

ICN. In the previous chapter, we created a synthetic but realistic application
workload for Information centric network. The ICN data set we use for
evaluation of TagMatch engine is the one generated during the experiment
reported in Figure 2.11. This workload contains more than 91 million
routing entries or in the other words, routing rules. Each routing rule
consist of a Bloom filter f , a tree identifier t and an interface i. If an ICN
router receives a message q on tree t′ and interface i′, it should find all the
entries f in the routing table such that q ⊇ f and t′ = t and i′ 6= i, then
forwards the message q to all corresponding interfaces. This 91 million
routing entries is consist of 63 million unique Bloom filters. We create
our forwarding table by indexing the entries according to Bloom filters.
This allows us to compress the forwarding table as depicted in Figure 3.2.
In this compressed from, each entry in the forwarding table points to a
set of (tree, interface) pairs.

0 100101 · · ·01 → (t3, i2)
1 011101 · · ·01 → (t1, i7)
2 011101 · · ·01 → (t2, i6)
3 001011 · · ·01 → (t1, i7)
· · · · · ·
91m . . .

uncompressed forwarding table

0 100101 · · ·01 → {(t3, i2)}
1 011101 · · ·01 → {(t1, i7), (t2, i6)}
2 001011 · · ·01 → {(t1, i7)}
2 000100 · · ·01 → {(t5, i9), (t5, i75), (t8, i134)}
· · · · · ·
63m . . .

compressed forwarding table

Figure 3.2. Compression of Forwarding Table.

73 3.5 Evaluation

Unless otherwise stated explicitly, in most of the following experiments we
use the Twitter workload with most balanced bit as partitioning strategy. In
some other experiments we use and explicitly refer to the ICN workload.

Queries

One method to generate queries is to select the tags in each query more or
less uniformly at random. These are the hash-tags in each tweet, or tags
in ICN interests. However, that would most often result in queries that are
immediately and very efficiently discarded in the initial pre-filtering stage. So,
to be conservative, we instead create a workload in which each query matches
at least one tag set in the database. To do that, we generate each query
by selecting a tag set from the database to which we then add between two
and four extra tags selected at random. (We also experiment with a broader
range of additional tags; see Section 3.5.3.) The rationale for this generation
algorithm is that the selected set from the database would perhaps represent
a generic topic while the additional tags would characterize the specificity of a
tweet or ICN message.

Beyond that, as we said, the intended effect of this method is to obtain
conservative results for the matching throughput, since the method essentially
forces every query to go through the subset match phase on the GPU stage
and then the key lookup/reduce and merge phase on the CPU (in the case of
match-unique). We apply the same technique to generate ICN queries as well
as Twitter queries.

3.5.3 Performance and Scalability

We now present various series of experiments intended to test the performance
and scalability of TagMatch under a variety of workloads and configurations.
In these experiments we first measure the effect of partitioning parameters and
different partitioning strategies on TagMatch. Then we measure the through-
put in terms of number of processed queries per seconds, and later we measure
the matching latency. We analyze the performance of TagMatch in absolute
terms and also in comparison with the state-of-the-art prefix tree.

Size of the Query Set

In the first series of experiments we test the performance of TagMatch and
the prefix tree with queries of increasing sizes. Figure 3.3 shows the results
of these experiments. As explained in Section 3.5.2, the primary workload

74 3.5 Evaluation

we use consists of queries with between two and four additional tags, which
corresponds to the histograms at positions 2–4 in Figure 3.3.

It is clear from the figure that the number of tags in each query has a very
significant impact on performance (notice the log scale). This is intuitive from
an algorithmic perspective, since query sets of higher cardinality are likely to
lead to more one-bits in the Bloom filters, which are likely to match more
prefixes and therefore require more data transfer between CPUs and GPUs,
and also more work on both sides.

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Number of additional tags per query

TagMatch
prefix tree

Figure 3.3. Average throughput for match-unique with queries of different sizes.

However, notice that for the same intuitive reasons, the decline in input
throughput, which is what we measure in Figure 3.3, does not result in a
corresponding decrease in output throughput. In fact, as it turns out, and as
we demonstrate with the measurements of Figure 3.4, the output throughput
for the same experiments increases significantly with the query size. We argue,
intuitively, that for selective queries, meaning queries that have a few matching
sets and that represent tweets in the long tail of popularity, the most important
performance metric is the input throughput. Conversely, for queries with a high
fan-out, which represent highly popular Twitter traffic, the limiting factor and
therefore the most interesting performance metric is the output throughput.
And in this respect, the experiments show that TagMatch performs quite well.

TagMatch is also consistently faster than the prefix tree system by almost
one order or magnitude for both the input and output throughput. The results
for match (not shown) are very close to the results for match-unique.

75 3.5 Evaluation

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8 9

O
ut

pu
t t

hr
ou

gh
pu

t
(th

ou
sa

nd
 k

ey
s/

s)

Number of additional tags per query

TagMatch
prefix tree

Figure 3.4. Average output rate for match-unique with queries of different sizes.

Size of the Database

In a second series of experiments, we test the scalability of TagMatch with
respect to the size of the database. We report the results of this analysis in
Figure 3.5. Once again we measure the throughput (input) as we vary the size
of the database from 20% to 100% of the entire Twitter database of 212 million
tag sets.

The salient result of this analysis is that TagMatch can process more than
30 thousand queries per second in the case of match-unique, and more than
35 thousand queries per second in the case of match, with the full database of
212 million unique sets. This is well above the entire traffic of Twitter, which
was on average 6000 tweets per second as of 2015—on a single commodity
machine, with the added capability of filtering tweets based on their content.
In contrast, the state-of-the art CPU implementation based on a prefix tree
can process about 4400 queries per second both in the case of match and in
the case of match-unique.

As Figure 3.5 shows, and as one would also expect intuitively, the size of
the database significantly affects performance: with a database with 20% of
the entries of the full Twitter workload, TagMatch can achieve a throughput of
over 130K queries per second in the case of match-unique and more than 140K
queries per second in the case of match, compared to the CPU implementation
that achieves a throughput of less than 14K queries both in the case of match-
unique and in the case of match.

Table 3.3 compares the throughput of TagMatch with the ICN matcher [66].

76 3.5 Evaluation

 1

 10

 100

 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Database size (% of the full Twitter database)

TagMatch, match
TagMatch, match-unique
prefix tree, match
prefix tree, match-unique

Figure 3.5. Average Throughput for match (left) and match-unique (right) with
Different Database Sizes.

database size
21M(10%) 42M(20%) 21M(10%) 42M(20%)

system match match-unique
TagMatch 268.8 144.4 249.3 133.0
Prefix tree 21.1 14.0 21.0 13.8
ICN matcher 27.6 17.4 27.5 16.8

(thousand queries per second)

Table 3.3. Comparison with the CPU Prefix Tree, CPU Algorithm for ICN.
Average throughput for match and match-unique with 10% and 20% of the full
Twitter database.

In this case we could only consider up to 20% of the full Twitter database
because the implementation of the ICN matcher requires a lot of memory during
the construction phase to generate the final index that is actually used for the
matching. Creating the index for databases larger than 20% of the full workload
would require more than the 64GB of main memory available on our machine.
The ICN algorithm reaches a higher throughput than the CPU prefix tree
algorithm, but remains about an order of magnitude slower than TagMatch.

77 3.5 Evaluation

Effect of the Pre-filtering on GPU Kernel

We design the next set of experiments to evaluate the effectiveness of Algo-
rithm 6. In these experiments we use a simple CUDA kernel that only performs
the high-level subset match explained in algorithm 5. As expected, the pre-
filtering allows TagMatch to achieve a higher throughput than with the simple
kernel. Table 3.4 shows that the throughput of TagMatch is significantly higher
for a database size of 21M entries. However, this throughput gain shrinks for
larger databases. Specifically, for the 21M database, the pre-filtering improves
the throughput by a factor of 2.52. However, on the full Twitter database, the
gain is only 1.43.

This shows that the effect of pre-filtering is less significant when we use our
largest database. We suspect that the reason behind this is the load on the CPU
part of the pipeline. Our investigation reveals that in this scenario, the key
lookup stage of the TagMatch pipeline is the bottleneck of the system. In order

database size
system 21M(10%) 42M(20%) 212M(100%)
TagMatch 268.80 144.40 35.30
TagMatch, simple kernel 106.71 65.86 24.59
TagMatch, simple kernel, no lookup 106.88 66.33 25.58
TagMatch, no lookup 343.64 227.73 75.94

(throughput for match queries: thousand queries per second)

Table 3.4. Effect of Kernel Optimizations on TagMatch.

to fully focus on the effect of the GPU kernel, for the next set of experiments,
we disable the key lookup stage of TagMatch to make sure the CPU is not
the performance blocker. In this new setting, we design two experiments, one
with the simple kernel and one with pre-filtering. Disabling the key lookup
stage slightly improves the throughput of the TagMatch with simple kernel,
and achieves 25.58 thousand queries per second for the full Twitter workload.

On the other hand, TagMatch without key lookup (with pre-filtering) un-
leashes the power of the pre-filtering kernel and achieves throughput of 75.94
thousands queries per second which is 3× better than the TagMatch without
key lookup and with simple kernel.

78 3.5 Evaluation

Number of Threads

We now test the ability of TagMatch to distribute its work load over multiple
threads. In particular, we measure the throughput as we allocate an increasing
number of threads to the CPU stages.

 0

 10

 20

 30

 40

 50

 8 16 24 32 40 48

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Number of threads

TagMatch, match
TagMatch, match-unique

prefix tree, match
prefix tree, match-unique

Figure 3.6. Average Throughput for TagMatch and the CPU Prefix Tree with
Different Numbers of CPU Threads.

As shown in Figure 3.6, for both match and match-unique queries, Tag-
Match achieves an almost linear scalability in the number of threads, with a
speedup of more than 1.8× from 4 to 8 threads, and 3.3× from 4 to 16 threads.
With more than 24 threads, the throughput for match decreases, while the
throughput for match-unique keeps growing up to more than 40 threads. The
difference between the two algorithms is simply due to the higher CPU load of
the merge stage for match-unique.

The decrease in parallelism speedup over a certain number of threads is
instead due to a limitation of the GPU architecture. Basically, beyond a cer-
tain number of threads, the GPU stages become the bottleneck for the whole
pipeline. However, there are also other factors that limit the pipeline to an
overall throughput that is lower than the maximal throughput of the GPU. In
particular, CPU threads and the GPUs interact through a set of GPU “streams”
(see Section 3.4.3), and on our platform we can allocate a maximum of 20
streams (10 per GPU), primarily due to memory limitations. Having more
streams would allow for more parallelism. Furthermore, our test machine has
24 real cores, so when we allocate 32, 40, and 48 threads, those run using Intel’s
Hyper-Threading technology.

79 3.5 Evaluation

Latency

The batching of queries in the TagMatch pipeline is essential to achieving high
throughput but also induces a latency overhead. To limit latency, an applica-
tion can set a timeout after which a batch of queries will be pushed through
the GPU (see Section 3.4). In Figure 3.7 we characterize the distribution of
the matching latency for different timeout settings, including the case with no
timeout.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

200 400 600 800 no limit

La
te

nc
y

(s
)

Timeout (ms)

1%, 25%, median, 75%, 99%
maximum

Figure 3.7. Distribution of the End-to-End Latency for match-unique with the
Full Twitter Database.

These experiments show that the timeout mechanism is indeed effective in
reducing latency. Even without a timeout limit, the vast majority of queries
(99%) incur a latency of less than 2 seconds, with a median latency of under
400ms. However, the maximal latency values, also shown in Figure 3.7, can be
significantly higher.

The case in which the timeout is set to 100ms is particularly interesting.
Excluding the case with no timeout limit, the 100ms setting is the one with the
highest maximal latency at nearly 4 seconds. This is due to the fact that a very
short timeout leads to inefficiencies in the use of the CPU/GPU pipeline. In
particular, a short timeout triggers too many invocations of the GPU matching
kernels with batches of only a few queries, and since the matching kernel re-
quires the same amount of GPU resources even for small batches, this increases
the load on the GPU without a corresponding increase in throughput. In fact,
with a timeout setting of 100ms, TagMatch suffers a loss of overall throughput
of about 20% (24 thousand match-unique queries per second).

80 3.5 Evaluation

However, this inefficiency disappears very quickly with a slightly higher
timeout setting. A timeout as short as 200ms already enables TagMatch to
process more than 28 thousand queries per second, and a timeout of 300ms
further increases the throughput to 30 thousand queries per second, which is
close to the maximum achievable with no timeout limit at all.

Balance Between CPU and GPU Load

We now study another algorithmic aspect of the TagMatch pipeline that bal-
ances the load between CPUs and GPUs. As discussed in Section 3.4.1, Tag-
Match uses a configuration parameter MAX P to define the maximum number
of tag sets in each partition. Therefore, for a given set of database sets, MAX P

controls the balance between the number and size of the partitions, which in
turn can balance the load between the pre-processing phase (on CPUs) and the
subset match phase (on GPUs). Large partitions simplify the pre-processing
phase, but might overload the subset match, while several small partitions re-
duce the complexity of the subset match but increase the cost of pre-processing,
as well as the duplication of queries into multiple batches.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500 600 700 800 900

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

MAXP: Maximum size of partitions (thousands)

match
match-unique

Figure 3.8. Average Throughput of TagMatch for match and match-unique with
Different Size of Partitions.

Figure 3.8 shows the results of an experiment intended to analyze this
trade-off. The chart shows how the throughput of TagMatch changes with
different values of MAX P for the same database. We observe that TagMatch
achieves the best performance with around 200K tag sets per partition, and

81 3.5 Evaluation

that the throughput remains stable after this threshold. The results do not
differ significantly in the cases of match-unique and match.

It is also important to study the effect of different partitioning strategies on
the performance of TagMatch. For the following experiments we use the ICN
workload and a single GPU device.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000
 0

 1000

 2000

 3000

 4000

 5000

 6000

C
an

di
da

te
 M

at
ch

es
(th

ou
sa

nd
s)

N
um

be
r o

f P
ar

tit
io

ns

Maximum Partition Size (thousands)

candidate matches
number of partitions

Figure 3.9. Partitioning Algorithm with Most Balanced Bit as Pivot.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000
 0

 1000

 2000

 3000

 4000

 5000

 6000

C
an

di
da

te
 M

at
ch

es
(th

ou
sa

nd
s)

N
um

be
r o

f P
ar

tit
io

ns

Maximum Partition Size (thousands)

candidate matches
number of partitions

Figure 3.10. Partitioning Algorithm with Most Frequent Bit as Pivot.

In Figure 3.9 and 3.10 we measure the impact of MAX P on the total number
of partitions and the average size of the search space. Notice that these experi-
ments study the impact of MAX P on the search space independently from the

82 3.5 Evaluation

TagMatch engine. In both figures, we can clearly see that when MAX P grows,
Algorithm 2 produces fewer but bigger partitions. It also shows that smaller
partitions limit the average size of the search space much better than large
partitions. In these figures, Candidate Matches shows the average number of
tag sets we need to check per query.

The results also show that the most frequent bit produces slightly more
partitions than the most balanced bit for the ICN workload, but interestingly,
it performs better in limiting the search space. In other words, the number of
candidate matches that the GPU kernel has to scan (linearly) to find subsets,
is lower when we use the most frequent bit strategy for partitioning.

As discussed in Section 3.4.1, we propose three different strategies for se-
lecting a pivot in Algorithm 2. Each of these strategies directly influence the
quality of the resulting partitions. Quality here means increasing the probabil-
ity that the resulting partitions would filter out incoming queries. That is, the
probability that none of the sets in each partition would match the query, so
that partition would not have to be examined by the GPU back-end. In other
words, a good partitioning is one that would limit the overall size of the search
space for each query (in expectation).

From the three mentioned strategies, in practice we notice that the improve-
ments we gain from memory compression of the variable length prefix strategy
is not effective enough, and this method is not able to produce high quality
partitions. Hence we exclude the results of this strategy from our evaluation.

In figures 3.11 and 3.12, we measure the throughput of TagMatch for varying
MAX P sizes and different number of CPU threads for both most balanced bit
and most frequent bit strategies. TagMatch with most balanced bit strategy
achieves its highest of 361,400 queries per second with 6 threads when MAX P

is set to 200K. For most frequent bit the highest throughput is 383,500 queries
per second again with 6 threads and when MAX P is set to 225K.

Note that in Figure 3.11, after reaching the highest throughput, increasing
MAX P has a negative impact on the throughput of TagMatch. This effect is
less significant for the most frequent bit strategy depicted in Figure 3.12. In
other words, the performance of TagMatch while using the most frequent bit
strategy is less susceptible to changes of the MAX P parameter. One possible
explanation for this behavior is that, as evidenced in figures 3.9 and 3.10, the
growth in the number of average candidate matches is slower for the most
frequent bit than the most balanced bit strategy. This means that, although for
large values of MAX P we have larger partitions, the most frequent bit strategy
produces partitions that are better at filtering out the queries.

We emphasize the fact that both the partitioning strategy and the MAX P

83 3.5 Evaluation

value have a significant impact on the performance of TagMatch. Therefore,
both parameter have to be tested and optimized for different application do-
mains. For example, for the Twitter workload, TagMatch achieves the highest
throughput using the most balanced bit strategy and a maximum partition size
of 200K.

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Maximum Partition Size (thousands)

2-threads
4-threads
6-threads
8-threads

Figure 3.11. Most Balanced Bit Strategy.

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
(th

ou
sa

nd
 q

ue
rie

s/
s)

Maximum Partition Size (thousands)

2-threads
4-threads
6-threads
8-threads

Figure 3.12. Most Frequent Bit Strategy.

84 3.5 Evaluation

Off-Line Partitioning Costs and Memory Usage

TagMatch provides two functions, add-set and remove-set, to add or remove
sets from the database. However, these changes become effective only after a
call to the consolidate function, in which TagMatch builds its partition and
tagset tables using the balanced partitioning of Algorithm 2. We now evaluate
the performance of the partitioning algorithm as well as the memory usage on
both the CPU and GPU side.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Database size (% of the full Twitter database)

balanced partitioning

Figure 3.13. TagMatch Partitioning Time, MAX P = 200K.

Figure 3.13 shows the running time of the partitioning algorithm as a func-
tion of the size of the database. The experiments confirm that the algorithm
has a linear complexity, and they also demonstrate that the actual performance
is reasonable in absolute terms, with a maximum off-line running time of about
50 seconds for the full workload of 200 million tag sets. As a rough comparison,
consider that MongoDB requires about 33 seconds for a table of only 5 million
sets, for which our partitioning algorithm runs in about 2 seconds.

Figure 3.14 shows the memory usage on the CPU (Host) and GPU sides.
The Host memory is used almost exclusively for the key table, with only a
small portion for the partition table and the buffers used for communication
between the CPUs and the GPUs. The memory of the GPUs is used primarily
for the tagset table, with a small fraction used for communication buffers.

85 3.5 Evaluation

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
em

or
y

us
ag

e
(G

B)

Database size (% of the full Twitter database)

GPU, I/O buffers
GPU, tagset table

Host

Figure 3.14. TagMatch Memory Usage (GB).

3.5.4 Comparison with MongoDB

This section evaluates the performance of subset query processing in MongoDB
version 3.2.10. We treat MongoDB as a special case due to the significant
difference in performance with TagMatch. In particular, since we could not
use the full Twitter workload used in Section 3.5.3 due to the higher processing
time and memory consumption of MongoDB, we construct and experiment with
a scaled-down workload with a similar selectivity and with the same number
of additional tags per query.

We configure MongoDB to store a database of sets of tags on a RAM disk in
main memory. We also force MongoDB to index the entries of the database to
improve the performance of the query process. We run MongoDB in two config-
urations, first as single server and then by sharding the database over multiple
instances. In both settings, we use the Java API to connect and submit queries
through a TCP socket (on localhost). We then use a single thread to submit
asynchronous queries. We also experimented with multiple client connections.
However, even though MongoDB can process queries from different connections
in parallel, we did not observe any performance improvement.

Figure 3.15 shows the results of an experiments in which we compare Tag-
Match and MongoDB in the single-server setting with different database sizes,
different numbers of tags per database set, and varying numbers of additional
tags per query. Even with a small database of one million sets, MongoDB takes
more than two seconds to process a single query, and the performance decreases
significantly with the size of the database (notice the log scale), down to more

86 3.5 Evaluation

10-1
100
101
102
103
104
105
106

 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(q

ue
rie

s/
s)

Number of tags per query

TagMatch 1M
TagMatch 3M
TagMatch 5M

MongoDB 1M
MongoDB 3M
MongoDB 5M

Figure 3.15. Comparison with MongoDB. Average Throughput for match with
Different Number of Tags per Query.

than 10 seconds per query in the case of 5 million sets. Conversely, neither
the number of tags in the database sets nor the number of additional tags
in each query influence the overall performance of MongoDB, despite the fact
that they both have a significant impact on the selectivity of the workload. In
comparison, TagMatch can process more than 32,000 queries per second even
in the most challenging scenario of 2-tags database-sets and 10-tags queries.

We also test a distributed deployment of MongoDB with a database sharded
over multiple servers. In this setting, MongoDB sends each query to all the
instances for processing on each individual database shard. We perform an
experiment in this setting to evaluate the benefits and scalability of distribu-
tion and sharding. To minimize the network overhead, we run all MongoDB
instances on the same physical machine, and only consider a relatively small
deployment of up to 24 instances (the machine has CPU 24 cores and suffi-
cient memory). We show the results for a database of 3 million entries, each
containing 3 tags, and for queries of 6 tags. The results of this experiment,
shown in Figure 3.16, demonstrate that sharding and distribution are clearly
beneficial, and specifically that the throughput of MongoDB increases linearly
up to 8 instances and overall by a factor of 3 with 24 instances. However,
even assuming a perfectly linear scalability, MongoDB would require tens of
thousands of server instances to reach the level of performance of TagMatch.

87 3.5 Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

Th
ro

ug
hp

ut
(q

ue
rie

s/
s)

Number of MongoDB instances

Figure 3.16. Scalability of MongoDB with Sharding. The Database Contains 3
Million Entries, with 3 Tags Each. Queries Contain 6 tags.

3.5.5 Experience with an Alternative Design

In the early stages of the development of TagMatch, we experimented with a
design in which both the pre-process and subset-match phases would run en-
tirely on GPUs. This architecture is technically feasible thanks to the “dynamic
parallelism” of the newer NVidia GPUs.

With dynamic parallelism, it is possible to launch a new kernel from within
a running kernel on the GPU. Thus, one can launch a kernel that performs
the pre-process algorithm on a batch of input queries and that uses partition
queues in the global memory of the GPU. When one of those queues fills up,
the pre-process kernel can then invoke a new subset-match kernel on that queue
directly from within the GPU.

This architecture is potentially advantageous, since it allows for numer-
ous parallel subset-match kernels for different partitions. This approach also
overcomes one of the factors that in part limits the performance of TagMatch,
namely the need to transfer a single packet to the GPU potentially many times
(one for each matching partition). Furthermore, the pre-process algorithm is
also inherently parallelizable, and should therefore work well on a GPU.

And yet, the prototype we built was not that efficient. As it turns out, the
GPU-only design works well when the vast majority of packets are filtered out
in the pre-process phase, but not when many packets reach the subset-match
phase. In this latter case, the pre-process algorithm must copy many queries
into potentially many partition queues, which induces many atomic operations

88 3.5 Evaluation

and an almost random access pattern into the global (slow) memory of the
GPU. Also, the GPU-only design still requires synchronization, as well as the
transfer of some partial results between CPUs and GPUs, which further limits
parallelism.

Chapter 4

An Ideal Routing Scheme for a
Wireless Network Model

In our quest to develop an ideal routing scheme, with the properties shown in
Table 1.1, we started this research with a simpler routing scheme where we put
restrictions on both the communication and network models and focused our
attention on the congestion property of the proposed routing scheme.

What we present in this chapter is developed chronologically earlier than
other contribution of this thesis and we see it as an initial step that shaped our
understanding of the challenges we face in designing a multicast routing scheme
for ICN. This work is not the main focus of this thesis and is an expanded
version of the paper we published in the proceedings of the thirteenth ACM
international symposium on mobile ad hoc networking and computing (Mobi-
Hoc ’12) with the title “oblivious low-congestion multicast routing in wireless
networks” [21].

We propose a routing scheme to implement multicast communication in
wireless networks. The scheme is oblivious, compact, and completely decen-
tralized. It supports explicit addressing, so it is not itself a content-based
scheme. Still, it is intended to support dynamic and diverse multicast requests
typical of content-based communication in ICN. The scheme is built on top of
a geographical routing layer. Each message is transmitted along the geomet-
ric minimum spanning tree that connects the source and all the destinations.
Then, for each edge in this tree, the scheme routes a message through a random
intermediate node, chosen independently of the set of multicast requests. The
intermediate node is chosen in the vicinity of the corresponding edge such that
congestion is reduced without stretching the routes by more than a constant
factor. We first evaluate the scheme analytically, showing that it achieves a

89

90 4.1 Problem Setting

theoretically optimal level of congestion. We then evaluate the scheme in sim-
ulation, showing that its performance is also good in practice.

4.1 Problem Setting

Content-based communication is inherently multicast, since implicit content-
based addressing induces the transmission of a single message to multiple des-
tinations (all interested receivers). In particular, while some multicast services
are based on a few and relatively stable multicast groups (e.g., video streaming
over IP multicast) and therefore work well with stable routing state, content-
based communication is more demanding and more dynamic. This is because
receiver interests may partially overlap, forming a large number of implicit
groups, potentially a different one for each message.

We therefore consider a generic multicast primitive in which each message
may induce a unique multicast request (m, s, T). This primitive allows a source
node s to send a message m to a set of target nodes T . In particular, we
consider this primitive within a wireless network. Our goal is to implement
such a communication primitive through a routing scheme that is oblivious,
compact, low-stretch, low-congestion, and also practical.

The scheme we propose is oblivious in the sense that how a request is routed
does not depend on the set of requests and how the other requests are routed.
We in fact prove that the scheme offers the best possible performance guaran-
tees even in the presence of adversarial requests. The scheme is compact in the
sense that it requires only limited state at each node, typically O(polylog n)

bits in a network of n nodes. The scheme is low-stretch, in the sense that the
length of each path from a source to a target node, which roughly corresponds
to the latency of each delivery, is optimal up to a small constant factor. The
scheme is also low-congestion, in the sense that, for any given set of multicast
requests, the maximum amount of traffic crossing a node is only a factor of
O(log n) worse than with an ideal routing specifically optimized for that set
of requests. Notice that this O(log n) factor for congestion is optimal for any
oblivious scheme [14, 57], even for routing on 2-dimensional meshes. Lastly,
the scheme is practical in the sense that the theoretical asymptotic behavior of
the scheme can be realized in practice with good pre-asymptotic performance
and small constants.

The scheme we propose is built on top of a geographical routing service
whereby a message can be addressed to a given geographical location and
therefore can be delivered, possibly through multiple hops, to the node that

91 4.1 Problem Setting

is closest to that location. Such geographical schemes exist and are compact
and achieve low-stretch both theoretically and in practice [51]. The choice of a
geographical communication primitive implies that, in its most basic form, the
routing scheme we propose is name dependent. This means that nodes must
be identified by some kind of address dictated by the communication layer (in
this case, the node’s geographic coordinates). However, it is also possible to
extend such a basic routing scheme to be name independent, by means of a
lookup service that can also be implemented efficiently [2].

In summary, we start from a compact and low-stretch geographical routing
substrate, which for a request (m, s, t) can deliver a unicast message m from
a source s to a target destination t, and we use it to build a low-congestion
oblivious multicast scheme that can serve requests of the type (m, s, T) and
deliver m from a source s to a set of target destinations T . A simple way
to implement such a multicast scheme would be to implement each multicast
request (m, s, T) with a series of unicast requests (m, s, ti) for each ti in T .
However, such a scheme incurs high congestion. Intuitively, this is the case
when many destinations are close to each other, even without adversarial sets
of requests and instead with sources and destinations distributed uniformly
over multiple requests.

A standard way to achieve low congestion with an oblivious unicast scheme
is to use randomization in what is known as Valiant’s trick [80]. For a unicast
request (m, s, t), first route m from s to a randomly chosen intermediate desti-
nation v, and then from v to t. However, in its basic form, this trick does not
work well for arbitrary worst-case sets of requests and in particular it does not
work well for multicast requests. Consider for example a request (m, s, T) in
which the targets ti ∈ T are all clustered in a small region far away from the
source s. Even with Valiant’s trick, a series of (unicast) copies of m going from
s to a target ti in the cluster would induce high congestion in the small perime-
ter around the cluster, whereas an optimal routing strategy in that case would
send one copy of m from s towards the cluster, and then it would duplicate m
locally to all targets within the cluster.

The scheme we propose employs a local variant of Valiant’s trick, and it does
that within a routing strategy that avoids congestion in the case of multicast
requests. At a high level, the scheme routes a multicast request (m, s, T) along
the geometric minimum spanning tree that connects the source s and all the
targets in T . Then, for each edge (u, v) on that tree, the scheme uses a variant
of Valiant’s trick by routing m from u to an intermediate point wuv chosen
randomly in the vicinity of the uv segment.

In the following we formally define this routing scheme, we then analyze its

92 4.2 Related Work

theoretical properties, and evaluate it in practice using simulation. The theo-
retical analysis shows that, in terms of congestion, the scheme is competitive
with an ideal (non-oblivious) scheme up to a factor of O(log n), which is known
to be a lower bound for congestion in oblivious schemes. The simulation study
shows that the scheme is also effective in practice, with limited congestion and
stretch.

4.2 Related Work

Compared to classic wired networks, wireless ad hoc and sensor networks be-
have more dynamically. As a consequence, classical link-state routing protocols
are often not well-suited for wireless networks and other, more reactive rout-
ing strategies are required. A standard way to do this is to combine flooding
for route discovery with some caching techniques to reuse acquired routing in-
formation [18, 43, 68, 74]. While there is an abundant literature on wireless
point-to-point routing, the work on wireless multicast is much less copious. In
fact, Vershney claims that wireless multicast is still an important challenge [81].
Multicast protocols for wireless networks have been suggested, for example, by
Royer and Perkins [75] or by Xie et al. [83].

Since the presence of wireless communication links is inherently related to
the physical placement of nodes, if available, geometric information can be a
powerful tool for routing. For geographic routing, it is typically assumed that
all nodes are aware of their geographical position and the source node of a
message knows the location of the destination. The simplest possible way to
route a message that way is to proceed greedily by always forwarding a message
to the neighbor closest to the destination [77]. While greedy routing is efficient
in dense average-case scenarios, it might not always reach the destination.
The first proposed geographic routing protocol that is guaranteed to reach
the destination is face routing [48]. The delivery guarantees of the face routing
protocol come at the cost of worse behavior in well-behaved settings. Therefore
greedy and face routing have been combined to obtain average-case efficient
protocols with guaranteed message delivery [16, 45, 51]. All these geographic
routing protocols assume that the communication network is a unit disk graph.
In this work, we extend this setting with non-uniform transmission ranges in a
model similar to those proposed by others [13, 50].

To apply geographic routing, the source node of a message needs to know the
location of the destination. A typical application is geocast, a variant of mul-
ticast, where all nodes in a certain geographical region have to be reached [58].

93 4.3 Model and Definitions

If location information of the destination is not available, geographic routing
can be combined with a location service that allows to efficiently search for
location information of other nodes [2, 29, 55].

All routing schemes described so far do not explicitly attempt to mini-
mize the congestion that arises in the presence of a large number of routing
requests. From an algorithmic point of view, congestion has mainly been con-
sidered in the context of oblivious routing, i.e., if each routing path is chosen
independently. A seminal result by Valiant and Brebner [80] shows that in a
hypercube, any permutation can be routed in O(log n) steps. The path se-
lection is randomized and uses what is now known as Valiant’s trick. Each
message is first routed to a random intermediate node and from there to the
destination. The technique has been applied in various other networks and in
particular, it was shown by Kolman and Scheideler [46] that Valiant’s trick can
efficiently be used in a much more general setting. The existing work on oblivi-
ous routing culminated in a breakthrough paper by Räcke [70] that shows that
there is an oblivious protocol that routes every set of routing requests with
expected maximum node congestion within a logarithmic factor of the best
corresponding multi-commodity flow solution. In light of a lower bound that
even holds for 2-dimensional meshes, this is asymptotically optimal [14, 57].
Räcke’s result also applies to multicast and could also be used for our wireless
network model. However, the protocol state is rather heavy-weight to set up
and maintain, and the given wireless setting is amenable to specialized and
much more light-weight algorithms. Most closely related to our work are two
papers by Busch et al. that describe algorithms for unicast in 2-dimensional
meshes [20] and for geometric networks modeling dense wireless networks [19].
For unicast, this latter algorithm [19] achieves the same asymptotic bounds
as the algorithm presented here. However, we believe that our randomized
scheme based on Valiant’s trick is somewhat simpler and easier to use. A re-
cent survey on oblivious routing is also due to Räcke [71]. Other papers study
congestion in the context of wireless network routing, but are less related to
this work [31, 54, 69, 85].

4.3 Model and Definitions

We now formally state our assumptions about the communication network and
its underlying geographic routing service.

Communication Network: We assume that n wireless network nodes are
located in a bounded region in 2-dimensional Euclidean space. The nodes have

94 4.3 Model and Definitions

unique identifiers and we denote the set of nodes by V . For simplicity, we
assume that the region is a square of side length L, however, the techniques
work for any “reasonable” convex region. Further, we assume that nodes are
aware of their position in the plane. This can be achieved by equipping nodes
with GPS devices or through some localization service. Communication in the
network is characterized by two positive parameters rC ≤ rI defining commu-
nication and interference radii. Whenever two nodes u and v are at Euclidean
distance at most rC , u and v can directly communicate with each other. If two
nodes u and v are within distance rI , they can cause interference to each other.
Further, we assume that there is no direct communication or even interference
between two nodes at distance more than rI . We denote the ratio between rI
and rC by ρ := rI/rC and typically assume ρ to be a constant (independent
of n). We assume that the L× L-square containing the network is reasonably
densely covered by nodes. Specifically, we assume that there is a parameter rcov
such that for every point in the L× L-square, there is a network node within
distance rcov. We assume rcov is relatively small, such that the requirement
implies that the number of nodes is at least polynomial in L/rI .

Geographic Routing: We assume that there is a geographic routing service
in place, which nodes use for communicating with each other. More formally,
a node u can send a message to an arbitrary (x, y) coordinate pair within the
specified geometric region that contains the wireless network nodes (i.e., the
side length L square). If a message is sent to (x, y), the routing service guaran-
tees that the node closest to (x, y) (according to Euclidean distance) receives
the message. We assume that nodes populate the complete given geometric
region densely enough to enable routing on almost direct paths between all
pairs of nodes. We use the following definitions:

Definition 4.3.1 (λ-Padded Path).
A path P = u1, . . . , uk connecting coordinates (x, y) and (x′, y′) is λ-padded if
all nodes ui of P are within Euclidean distance at most λ · rI from the line
segment connecting (x, y) and (x′, y′) in the plane.

Definition 4.3.2 (σ-Sparse Path).
A path P = u1, . . . , uk is called σ-sparse if no disk of diameter rC contains
more than σ nodes ui of P .

We assume the geographic routing service induces λpad-padded, σ-sparse
paths for some positive parameters λpad and σ. Note that this in particular
implies that the node distribution is dense enough so that there is a node at
distance at most λpadrI from every point (x, y) in the geometric region covered

95 4.4 Problem Statement

by the network, i.e., rcov ≤ λpadrI . Further note that the assumption that any
two nodes within distance rC are connected implies that nodes inside a disk of
diameter rC are fully connected and therefore, paths containing more than 2

nodes in such a disk can be shortened to contain at most 2 such nodes. Hence,
if a λpad-padded path between (x, y) and (x′, y′) exists, then there is also a
λpad-padded, 2-sparse path between the two points.

Typically, for relatively dense average-case networks, services based on
greedy routing perform best. By construction, greedy routing always gives
2-sparse paths. Further, as shown in Section 4.7, it also gives good, O(1)-
padded paths. For worst-case networks, geographic routing techniques [50, 51]
can be used to find an O(1)-sparse, O(λ)-padded path, whenever a λ-padded
path exists.

4.4 Problem Statement

Multicast Routing: We consider two variants of the multicast problem.
A lower level geographic and a high-level name-based variant. In both cases,
we are given r multicast requests R1, . . . , Rr where request Ri = (mi, si, Ti)

consists of a message mi, a source node si and a set Ti of ki destinations
ti,1, . . . , ti,ki . We assume that si knows mi and Ti and the objective is for si
to send mi to all destinations in Ti. In the case of the geographic multicast
problem, each destination ti.j is given as a coordinate pair (xi,j, yi,j) and for all
i ∈ [r], message mi has to be sent to the ki actual network nodes closest to
(xi,1, yi,1), . . . , (xi,ki , yi,ki). In the more standard name-based multicast problem,
each destination ti,j is given as a node identifier. As usual in the context,
we assume that messages mi are large compared to the size of Ti, so that
the overhead of storing all destination information in the message header is
negligible [5]. The geographic multicast problem is closely related to what
is generally known as geocast [58]. Unlike specifying individual destinations,
typically, the destinations are given by a geographic region to which a message
has to be transmitted. We note that the geographic multicast service that we
present can easily be adapted to efficiently work in such a scenario. In fact, in
our communication model, sending to a geographic region can be modeled by
sending to a dense enough set of destinations within the area.

Congestion: As discussed in Section 4.3, we assume that nodes at distance at
most rI can cause interference to each other. To model congestion, we assume
that whenever a node u transmits, it causes interference at all nodes within

96 4.4 Problem Statement

distance rI from u. Let Iu be the set of nodes within Euclidean distance rI from
node u. Hence, whenever a node in Iu sends a message, it causes interference
at node u and vice versa, whenever u transmits a message, it interferes with
all nodes in Iu.

To satisfy a given multicast request Ri = (mi, si, Ti), message mi has to
be sent from si to all nodes in Ti along a subtree of the network. Given some
algorithm A, let SAi be the multiset of nodes that transmit message mi in order
to reach all destinations in Ti, i.e., SAi at least contains all the inner nodes of
the tree along which mi is sent to the destinations. Given a set of r multicast
requests R1, . . . , Rr and an algorithm A, we define the congestion congAu of a
node u and the maximum node congestion congA of A as

congAu :=
r∑
i=1

|SAi ∩ Iu|, congA := max
u∈V

congAu . (4.1)

Our main objective will be to minimize congA. Whenever it is clear from the
context, we omit the superscript A. In order to evaluate an algorithm, we in-
tend to compare its behavior with the best possible maximum node congestion.
Let cong? be the maximum node congestion of an optimal routing solution for
the given requests R1, . . . , Rr. Consider a rectangle R with side lengths w(R)

and h(R). We define cut(R) to be the set of requests Ri, i ∈ [r] such that
{si} ∪ Ti contains at least one node inside R and at least one node outside R.
To bound the optimal congestion cong?, we introduce the following notion:

load(R) := min

{
|cut(R)|,

∣∣cut(R)
∣∣ · rI

w(R) + h(R)

}
. (4.2)

The following lemma shows that asymptotically, load(R) is a lower bound on
the best possible maximum congestion cong?.

Lemma 4.4.1. For every set of multicast requests R1, . . . , Rr and every rect-
angle R, we have cong? = Ω

(
load(R)

)
.

Proof. Consider a multicast request Ri for which {si}∪Ti contains at least one
node inside R and at least one node outside R. Further, let B be the geometric
area defined by all points within distance rI of the boundary of R. In order to
satisfy request Ri, a message has to be sent into or out of R and therefore at
least one node in B has to transmit a message.

Consider a maximal independent set S of the graph defined by the nodes
VB that lie inside B and edges {u, v} whenever u an v are at Euclidean distance

97 4.5 Geometric Multicast

at most rI . Whenever a node in B transmits a message, it causes congestion
at some node in S. Further, since nodes in S are within distance more than rI ,
the number of nodes in S is at most O

(
1 + (w(R) + h(R))/rI

)
. Hence, by the

pigeonhole principle, for every solution for the given multicast problem, some
node in S has congestion at least Ω(load(R)).

4.5 Geometric Multicast

Our algorithm consists of two components, which together allow to multicast
a message to a set of geographical destinations based on an underlying geo-
graphic routing service as discussed in Section 4.3. At the core is an oblivious
geographic point-to-point routing protocol with asymptotically optimal con-
gestion properties. A multicast request is then routed on a tree by applying
the point-to-point scheme.

We first describe the routing scheme to send a message from a node u to a
geographical destination (x, y). The point-to-point routing algorithm is based
on Valiant’s classical trick of reducing overall congestion by routing messages
through a randomly chosen intermediate node. To deal with worst-case col-
lections of routing requests and to guarantee a bounded stretch factor for the
routing paths, we choose the random intermediate point dependent on the
source and target positions of the routing request. Specifically, a message from
a node u at position (xu, yu) to location (x, y) is routed as follows.

1. If the Euclidean distance of (x, y) from (xu, yu) is at most rC/2, the node
closest to (x, y) is either u itself or a neighbor v of u. In that case, u
directly sends the message to v.

2. Otherwise, node u chooses a random intermediate position (xr, yr) as
follows. First, u chooses two uniform random angles α, β ∈ [0, π/3]. The
point (xr, yr) is then chosen such that the line segments from u to (xr, yr)

and from u to the destination position (x, y) enclose an angle of α and
the line segments from (x, y) to (xr, yr) and from (x, y) to u enclose an
angle of β. There are two points (xr, yr) for which this is true (one to the
left and one to the right of the line connecting source and destination).
Node u randomly chooses one of the two points as (xr, yr).

Using the underlying geographic routing protocol, the message is then
routed from u to the node w closest to (xr, yr) and afterward from node
w to the destination position (x, y).

98 4.5 Geometric Multicast

The choice of the random point (xr, yr) is also illustrated in Figure 4.1.
Note that (xr, yr) is chosen such that the geometric distances from (xr, yr) to
u and (x, y) are at most as large as the distance between u and (x, y).

u

(x, y)

+π
3

−π
3

+π
3

−π
3

(xr , yr)

α

β

Figure 4.1. Choice of Intermediate Node

Based on the described scheme for point-to-point communication, we can
now build the multicast routing protocol on top of it. For a given geographic
multicast request Ri = (mi, si, Ti), let (xi, yi) be the position of the source
node si and let Pi = {(xi, yi)} ∪ Ti be the set of points of the multicast re-
quest Ri. We first construct a geometric tree spanning all the points in Pi
and then use the point-to-point routing algorithm to send mi along all the
edges of the constructed spanning tree. There are different ways to choose the
geometric spanning tree of the points in Pi. In terms of total routing cost,
the best choice would be to choose a minimum Steiner tree w.r.t. Euclidean
distances. Note that the Euclidean Steiner tree problem is NP-hard. However,
there is a polynomial-time approximation scheme and thus the problem can
be approximated arbitrarily well [10]. Still, since we would like our algorithm
to be as simple as possible, and also since asymptotically it does not make
a difference, we use the Euclidean minimum spanning tree (MST) to connect
the points in Pi. Such a tree can be computed locally by the sender with an
efficient algorithm.

The message mi is sent along the edges of the Euclidean MST of Pi in
a straightforward manner. The tree is directed from the source si at (xi, yi)

towards the destinations Ti and slightly adapted in the following way. As long
as there is a directed path u, v, w such that the Euclidean distance between u
and w is at most rC/2, node w is attached directly to u instead of v. This
allows to reach close-by nodes by local broadcast where possible.

99 4.5 Geometric Multicast

For each (directed) edge
(
(x, y), (x′, y′)

)
, a message is sent from the node

closest to (x, y) to the node closest to (x′, y′) by using the point-to-point routing
scheme described above. Assume that a node w representing a node (x, y) in
the tree needs to send messages to different neighbors (x′, y′) in the MST. If
some of the neighbors (x′, y′) are at distance at most rC/2 from the position of
w, w sends one broadcast message to all neighbors to reach the nodes closest
to these tree neighbors. For all other tree neighbors, the message is sent by
using the randomized point-to-point routing scheme, i.e., the message for each
edge is routed via a random intermediate point as described above.

4.5.1 Analysis

Recall that for the analysis, we assume that for every point in the L × L-
square containing the network, there is an actual node within distance rcov.
Further when routing from a node at point (x, y) to a node at point (x′, y′), the
underlying geographic routing service generates λpad-padded, σ-sparse paths.
For the analysis, we require a technical lemma bounding the number of local
long edges of an MST in the Euclidean plane.

Lemma 4.5.1. Let T be an Euclidean MST of a set of points X ⊆ R2 and
consider a circle C ⊆ R2 of radius r. The number of edges {p, q} of T of length
at least 3r such that | {p, q} ∩ C| = 1 (i.e., edge {p, q} connects a point inside
C with a point outside C) is at most 7.

Proof. Consider two edges {p, q} and {p′, q′} of length at least 3r such that
p, p′ ∈ C, q, q′ 6∈ C. Let c be the center of the circle C and let θ be the angle
that is enclosed by the rays cq and cq′. Let dcq, dcq′ , and dqq′ be the Euclidean
distances between c and q, c and q′, as well as q and q′, respectively. By the
law of cosines, we have

cos θ =
d2cq + d2cq′ − d2qq′

2 · dcq · dcq′
. (4.3)

Our goal is to upper bound the above expression and therefore to get a lower
bound on the angle θ. Because the edges {p, q} and {p′, q′} have length at least
3r and because p and p′ lie in the circle C, it follows that

dcq ≥ 2r and dcq′ ≥ 2r. (4.4)

Since both p and p′ are inside C, their distance is at most 2r. Because {p, q}
and {p′, q′} are edges of the MST T and because we assume that their length

100 4.5 Geometric Multicast

is at least 3r, dqq′ has to be at least as large as the length of the longer of the
two edges {p, q} and {p′, q′}. W.l.o.g., assume that dcq ≥ dcq′ . We then get

dqq′ ≥ max {3r, dcq − r} . (4.5)

We obtain an upper bound on cos θ by maximizing the right-hand side of (4.3)
subject to dcq ≥ dcq′ and Inequalities (4.4) and (4.5). For fixed values of dcq
and dqq′ , the r.h.s. of (4.3) is a concave function of dcq′ and is thus maximized
either for dcq′ = 2r or for dcq′ = dcq.

• dcq′ = 2r: In that case, the r.h.s. of (4.3) is monotonically increasing in
dcq and therefore maximized for dcq = dqq′ + r. We then get

cos θ ≤ (2r)2 + 2rdqq′ + r2

4 · (rdqq′ + r2)
≤ 11

16
.

The second inequality follows from dqq′ ≥ 3r.

• dcq′ = dcq: In the second case, we get

cos θ = 1−
d2qq′

2d2cq
.

The above expression gets large if dqq′ is as small as possible and dcq is as
large as possible. It is maximized for dqq′ = dcq − r = 3r, in which case
we obtain

cos θ = 1− (3r)2

2(4r)2
=

23

32
.

Combining the two cases, we therefore get cos θ ≤ 11/16 which implies that
θ > 0.812 > 2π/8.

In the following, let Ti, 1 ≤ i ≤ r be the Euclidean MST corresponding to
multicast request Ri and let Ei be the directed edges of Ti, where each edge is
directed away from the source si of Ri (i.e., in the direction in which a message
has to be sent). Let EMST =

⋃r
i=1Ei be the set of all directed MST edges.

For a region A ⊆ R2 in the plane, let E↗MST(A) be the set of directed edges
(p, q) ∈ EMST for which p ∈ A and let E↙MST(A) be the set of directed edges
(p, q) ∈ EMST for which q ∈ A. For each long enough edge (p, q) ∈ EMST,
two messages are sent by using the underlying geographic routing service, one
message from p to a random intermediate destination and one message from
the intermediate destination to q. Let Mout(A) be the set of messages sent
from p to the random intermediate destination for an edge (p, q) ∈ E↗MST(A).
Further, letMin(A) be the set of messages sent from the random intermediate
node to q for an edge (p, q) ∈ E↙MST(A).

101 4.5 Geometric Multicast

Lemma 4.5.2. Consider a square S with side length s and let v be a node at
distance at least d ≥ 3s + 2rcov + (λpad + 1)rI from S. The expected con-
gestion at node v caused by messages in Min(S) and Mout(S) is at most
O ((λpad + 1) · σ · ρ2 · load(S)) .

Proof. Let us first consider a message m ∈ Mout(S) corresponding to some
edge (p, q) ∈ E↗MST(S). The message m is sent from the node u closest to p
to a random intermediate point (xr, yr). Assume that the coordinates of u are
(xu, yu). Because p ∈ S, (xu, yu) is at distance at most rcov from S. Further,
by the way the random point (xr, yr) is chosen, the distance from u to (xr, yr)

is upper bounded by the distance from u to q.
Message m only causes congestion at node v if the underlying geographic

routing service sends the message through a node within distance rI from v.
Because we assume that the geographic routing paths are λpad-padded, this can
be the case if v is within distance rI(1+λpad) from the line segment connecting
(xu, yu) and (xr, yr). Consequently, because the distance from v to S is at least
3s+ 2rcov + (λpad + 1)rI , the distance between u and (xr, yr) and therefore also
the distance between u and q needs to be at least 3s + rcov. Because u is at
distance at most rcov from S, this implies that the edge (p, q) has length at
least 3s.

Further, recall that the line from u to (xr, yr) is at a random angle α ∈
[−π/3, π/3] from the line uq. Message m causes interference at node v only
when α is such that the line connecting u and (xr, yr) passes within distance
(λpad +1)rI from v. Let β be the angle between line uv and the line connecting
u with (xr, yr). The angle β is also a uniform random angle from some interval
[β0, β1] of length 2π/3. Message m can cause interference at v if |β| ≤ π/2 and
` · sin β ≤ (λpad + 1)rI , where ` ≥ 3s is the distance between u and v. Using
| sin β| ≤ |β|, we get

|β| ≤ (λpad + 1)rI
`

≤ (λpad + 1)rI
3s

.

Let Cm,v be the event that message m causes congestion at v. The probability
for this to happen is at most

P(Cm,v) ≤
2(λpad + 1)rI)

3s
· 1

2π/3
=

(λpad + 1)rI
π · s . (4.6)

We define Xm,v to be the random variable that counts the amount of congestion
caused by m at v. Hence, Xm,v is the number of nodes in the rI-neighborhood
of v that transmit a message while sending m from u to (xr, yr). Clearly Xm,v

102 4.5 Geometric Multicast

can only be positive if the event Cm,v occurs. In this case, the value of Xm,v is
at most O(σρ2) because we assume that the paths created by the geographic
routing service are σ-sparse and a disk of radius rI can be covered with O(ρ2)

disks of diameter rC . Let X =
∑

m∈Mout(S)
Xm,v be the congestion at v caused

by messages inMout(S). By linearity of expectation, we have

E[X] = O

(
(λpad + 1)rI

s
· σρ2 · |Mout(S)|

)
.

To bound E[X], it therefore remains to bound the number of messages in
Mout(S). We have seen that each message m ∈ Mout(S) corresponds to some
MST edge (p, q) of length at least 3s. Consider the circle C of radius s/

√
2

that encloses the square S. Since p ∈ S and q is at distance at least 3s, we
have p ∈ C and q 6∈ C. Hence, by Lemma 4.5.1, for each MST, there are at
most 7 such edges of length at least 3s/

√
2 < 3s. Only multicast requests that

contribute to load(S) can have MST edges with one node inside S and one
node outside S. Further, for every such multicast request there are at most 7

edges inMout(S). The expected congestion at v created by nodes inMout(S)

can therefore be upper bounded as

E[X] = O
(
(λpad + 1) · σ · ρ2 · load(S)

)
. (4.7)

The situation for the messages inMin(S) is almost symmetric. The messages
are sent from the random intermediate destination (xr, yr) to a position inside
S. However, the actual node sending the message might be at distance rcov
from (xr, yr), therefore we must accordingly adjust the angles for which there
is congestion at node v. Instead of the value obtained in (4.6), the probability
of Cm,v can now be upper bounded by P(Cm,v) ≤ rcov+(λpad+1)rI

π·s . Because
rcov ≤ λpadrI , this does not change anything asymptotically, and the congestion
from messages inMin(S) can also be upper bounded by the value given in (4.7).
The claim of the lemma therefore follows Lemma 4.4.1.

We are now ready to prove the main theorem of this section, showing that
the expected maximal congestion induced by our geographic multicast algo-
rithm is within a logarithmic factor of the optimal and therefore asymptotically
best achievable for any oblivious algorithm [14, 57].

Theorem 4.5.3. When using the described geographic multicast algorithm to
route a given set of geometric multicast requests, the expected congestion at any
node v is at most

O
((

(λpad + 1) · log n+ λ2pad
)
· σρ2 · cong?

)
.

103 4.5 Geometric Multicast

Proof. The multicast algorithm described at the beginning of Section 4.5 sends
two kinds of messages. Most messages are messages sent through the underlying
geographic routing layer. In addition, messages to local neighbors are sent by
direct local broadcast. Node v can be affected by local broadcast messages
only if they are sent by nodes within distance rI from v. By adapting the MST
structure and contracting paths of total length at most rC/2, it is guaranteed
that for each multicast request the number of local broadcast messages in each
rC-neighborhood is O(1). Such messages must be sent by a node within range
rC . Hence, the total congestion at nodes within distance rI + rC of v has to be
within a constant factor of the congestion caused by local broadcast messages
at v. Hence, for every multicast solution, there must be some node w close
to v with congestion at least a constant times the congestion caused by local
broadcast messages at v.

Let us therefore consider the congestion caused by messages that are sent
through the underlying geographic routing layer. Note that all these messages
correspond to an MST edge of length at least rC/2 and they all either go
from an MST node to a random intermediate destination or from a random
intermediate destination to an MST node. We partition the L × L-square
containing the network into two parts, an area containing nodes close to v and
an area with nodes far away from v. Specifically, we consider a square Q of
side length 6rcov + 3(λpad + 1)rI = O

(
(λpad + 1)rI

)
and the area Q outside Q.

The area Q can be covered with O
(

logL/((λpad + 1)rI)
)

= O(logL/rI)

squares Si of side length si such that the distance of square Si to v is at least
3s+2rcov+(λpad+1)rI as follows. The area right around Q is covered with O(1)

squares of side length at most
(
2rcov+(λpad+1)rI

)
/3 such that Q together with

these squares cover a larger square around v. The additional squares can be
iteratively placed in the same way around the growing center square such that
side length of the squares grows exponentially with the number of layers. By
Lemma 4.5.2, for each of the squares Si covering Q, the expected congestion
from messages in Mout(Si) and Min(Si) is at most O

(
(λpad + 1)σρ2cong?

)
.

Hence, the expected congestion from messages sent from a node in Q to a
random intermediate destination and from messages sent from a random inter-
mediate destination to a node in Q is at most

O
(
(λpad + 1) · σρ2 · log n

)
· cong?. (4.8)

Recall that we assume rcov is small enough and thus the node density is large
enough such that n is at least polynomial in L/rI and thus log(L/rI) =

O(log n).

104 4.5 Geometric Multicast

To prove the lemma, it remains to bound the congestion from messages
sent from a node in Q to a random intermediate destination or from a random
intermediate destination to a node in Q. Let M be the set of such messages.
Because we assume that the geographic routing service produces σ-sparse paths
and because the rI-neighborhood of v can be covered by O(ρ2) disks of diameter
rC , the congestion from each message in M is at most O(σρ2). Hence, the
congestion at v from messages in M is at most O(|M |σρ2).

Every message inM corresponds to an MST edge of length more than rC/2
and there are at most 2 messages in M for each such MST edge. Further, for
a particular multicast request, the number of MST edges of length more than
rC/2 with one node in Q is linear in the number of nodes in Q and at pairwise
distance more than rC/2. Hence, to serve all destinations in Q, in an optimal
multicast protocol, nodes in Q or within distance rC of Q need to transmit
at least Ω(|M |) times. The square Q and its rC-neighborhood can be covered
with O ((λpad + 1)2) disks of diameter rI . Each message that is transmitted
by a node inside this area causes congestion at all nodes in at least one of
these diameter rI disks. Hence, by the pigeonhole principle, some node in Q
or its rI-neighborhood has congestion at least Ω

(
|M |/(λpad + 1)2

)
. Thus, the

congestion at v caused by messages in M can be upper bounded by

O
((
λ2pad + 1

)
· σ · ρ2 · cong?

)
. (4.9)

Since the congestion caused by local broadcast messages is within a constant
factor of the optimal congestion, (4.8) and (4.9) together imply the claim of
the theorem.

Remarks: If the ratio ρ = rI/rC and the parameters λpad and σ specifying
the quality of the underlying geographic routing service are constants indepen-
dent of n, the statement of the theorem simplifies. The theorem shows that in
this case, the maximal expected node congestion of our multicast algorithm is
within a factor O(log n) of the optimal maximum node congestion. Note that
it is well known that this is the best achievable bound for oblivious routing.
Further, since congestion contributions from different multicast requests are
independent, a standard Chernoff argument shows that the bound of Theo-
rem 4.5.3 does not only hold in expectation, but also with high probability.
Finally, we would like to point out that within the quality guaranteed by the
underlying routing layer, our multicast protocol produces routing paths and
trees that are within a constant factor of the optimal.

105 4.6 Name-Based Multicast

4.6 Name-Based Multicast

The multicast protocol discussed in Section 4.5 allows to efficiently (in terms
of congestion and stretch) multicast messages if the source node of a multicast
request knows the positions of all the destinations. In many cases, information
about the positions of destinations is not available to the node disseminat-
ing some information. In this case, a geographic routing service can be used
in conjunction with a location service that allows to query the positions of
nodes [2, 29, 55]. In the following, we sketch how to apply the LLS location
service ([2]) to our context, and we show that, if for each multicast request
the destination positions can be obtained with a small number of queries to
the location service, then the expected maximal congestion of looking up the
destination coordinates is within a constant factor of the expected maximal
congestion incurred by multicasting the messages.

Let us first briefly discuss how LLS works. We describe the most basic
variant of the scheme. (The authors also present a more involved scheme that
takes into account update costs when nodes are moving [2].) LLS is essentially
a geometric, distributed hash table. Assume that we want to store the location
information for node v with identifier idv. We assume that there is a hash
function h that assigns a coordinate h(idv) =

(
hx(idv), hy(idv)

)
in the L × L-

square to each node v. Using the position h(idv), we define a hierarchical
tiling of the plane into squares of exponentially decreasing sizes. The corners
of the squares of level ` = 0, 1, 2, . . . of the tiling are at positions

(
hx(idv) +

i · L/2`, hy(idv) + j · L/2`
)
for integers i, j ∈ Z. On every level `, the position

information of v is stored at the four corners of the tile that contains v. Starting
from the position of v in order of decreasing levels, v’s information is stored in
a spiral-like fashion.

To look up the coordinate information for some node v with identifier idv,
the protocol searches in the same spiral-like fashion. Assume that node u
searches for v’s position information. For each level `, node u queries the four
corners of the tile containing u in the tiling defined by h(idv). The search is
done in the order of decreasing `, i.e., by going from small tiles to large tiles,
which forms a spiral that is shown to hit a node that stores the information
about v with asymptotically optimal cost [2]. The following is a list of the most
important properties of the scheme for our purposes:

1. If a node u looks up the information of some node v, the distance that has
to be traversed for the search is proportional to the Euclidean distance
of u and v.

106 4.6 Name-Based Multicast

2. A search for node v starting at node u follows an exponentially grow-
ing spiral. The exact paths visited during the search are determined by
the position h(idv). Assuming that the hash function h(idv) leads to
a uniformly distributed position for the origin of the coordinate system
defining the tiling, it can be shown that a search from node u causes
interference at a node at distance d with probability proportional to
(λpad+1)rI/d. Here, we assume that the search messages are sent through
the geographic routing layer described in Section 4.3.

3. Assuming that the distribution of nodes is sufficiently dense, the scheme
is compact. Each node only needs to store the position information of a
logarithmic number of other nodes.

The next theorem shows that if at most κ look-ups are necessary for each
multicast request, the expected look-up cost is asymptotically upper bounded
by the expected cost for multicasting all message using our algorithm using the
geometric protocol of Section 4.5. For the theorem, we assume that the hash
function h leads to uniformly distributed positions h(idv) that are independent
of the given multicast requests. Due to lack of space, we only give a very rough
sketch of the proof of the theorem.

Theorem 4.6.1. If each multicast request requires to look up at most κ po-
sitions, at every node v, the expected congestion caused by all look-ups is at
most

O
(
κ ·
(
(λpad + 1) · log n+ λ2pad

)
· σρ2 · cong?

)
.

Sketch. The proof follows a similar reasoning to the one in Lemma 4.5.2 and
Theorem 4.5.3, where the congestion of the geometric multicast algorithm is
analyzed. According to the first property of LLS listed above, a search from
a node u for a node v stays within distance O(d(u, v)) of u, where d(u, v) is
the Euclidean distance between u and v. Let us therefore assume that all the
κ searches of the source si of some multicast request Ri stay within distance
c · d(si, ti), where ti is the destination of request Ri that is farthest away from
si.

Let us first consider the congestion at v caused by multicast requests with
a source node that is relatively far away from v. Consider a square Q of side
length d that is at distance at least 2c · d + (λpad + 1)rI from v. Assume
that the source node si of multicast request Ri is inside Q. For a search of
si to contribute to the congestion at node v, the farthest destination of Ri

needs to be at least at distance 2d from si. Hence, Ri is a multicast request

107 4.7 Simulation Analysis

that has the source node in Q and at least one destination node outside Q
and Ri therefore contributes to load(Q) of Q. By the second property of LLS
described above, the probability that a search of si causes congestion at v is at
most O((λpad + 1)rI/d) and therefore by a similar argument as in the proof of
Lemma 4.5.2, the expected total congestion at v from searches of source nodes
in Q can be upper bounded by

O
(
κ · (λpad + 1) · σ · ρ2 · load(Q)

)
.

By Lemma 4.4.1, this is within a factor O
(
κ(λpad + 1)σρ2

)
of the optimal

maximal node congestion. As in the proof of Theorem 4.5.3, the congestion
caused by source nodes at distance at least 3(λpad+1)rI from v can be bounded
by O(log n) times the above value because that part of the network can be
covered with O(log n) squares to which the above argument can be applied.
Also for the congestion from searches of sources within distance 3(λpad + 1)rI
from v, a similar argument to the one in the proof of Theorem 4.5.3 can be
applied. Together, the bounds imply the statement of the theorem.

4.7 Simulation Analysis

We now evaluate our routing scheme through simulation. This experimental
analysis is intended to assess the performance of the scheme in practice, and
also to characterize the effects of specific variants and parameters of the scheme
itself as well as of the underlying geographical routing service. We consider
three high-level research questions: (1) How does the scheme perform with
various underlying routing algorithms? (2) How does the scheme perform with
various selections of the random intermediate point? (3) How does the scheme
perform in general under various workloads?

We first describe the implementation of the scheme and the underlying
routing, and then present the simulation analysis.

4.7.1 Variants of the Routing Algorithms

We implemented two variants of the selection of the random intermediate point.
The first variant corresponds exactly to the algorithm we describe and analyze
formally in Section 4.5 and that is illustrated in Figure 4.1. This variant is
parameterized by the range from which the source chooses the two random an-
gles α and β that determine the intermediate point (xr, yr). In particular, we
analyze the scheme when α and β are chosen uniformly in the ranges [0, π/3],

108 4.7 Simulation Analysis

[0, π/4], and [0, π/6]. Intuitively, wider angles would disperse traffic and there-
fore reduce congestion, at the expense of slightly longer paths and therefore
worse total traffic.

u

(x, y)

d

(xr , yr)

γd

α

α ∈ [−π
2 ,

π
2]

Figure 4.2. Alternative Selection of Intermediate Node

The second variant, illustrated in Figure 4.2, is a bit different: u selects
an intermediate point (xr, yr) uniformly on a circular arc with center in u and
radius γ · d(u, (x, y)), where γ is a parameter of this method, and is between 0

and 2.
We also test our scheme with various underlying routing algorithms. Recall

that the geographical routing layer sends a message from a source node u to
the node closest to the destination (x, y). The algorithms we consider are:

Grd Greedy routing. Each node v forwards the message to the next-hop neigh-
bor w that is the closest to the destination (x, y).

GSP Geometric shortest path. The path between u and (x, y) is minimal in
terms of geometric length.

DSP Hop-count (or “Dijkstra”) shortest path. The path between u and (x, y)

is minimal in terms of number of hops.

GrdRnd1 A randomized variant of greedy routing. In this case a node v
forwards a message to a next-hop neighbor w chosen uniformly among
the ones that advance towards the destination by at least half of the
communication radius rC .

GrdRnd2 Another randomized variant of greedy routing. A node v forwards
a message to a next-hop neighbor w chosen uniformly among the ones
that are within half of the communication radius rC from neighbor w,
which is the closest to the destination.

109 4.7 Simulation Analysis

4.7.2 Experimental Setup and Parameters

We simulate a network of 80000 nodes spread uniformly over a square area
of 100 × 100 units of length. (We also experimented with lower densities,
obtaining consistent results that we do not report here for lack of space.) We
set the communication radius to be equal to the interference radius (rC = rI)
and we run simulations with rC = 1 and rC = 2 units of length. These settings
correspond to a network that is dense enough to guarantee connectivity and
to satisfy the more specific requirements of the underlying geographic routing,
namely that it guarantees λpad-padded paths for a small constant λpad.

rC GSP DSP Grd GrdRnd1 GrdRnd2
1 3.677 10.395 6.169 12.589 8.213
2 0.537 3.859 2.913 4.889 3.920

Table 4.1. λpad in Practice

Table 4.1 shows the actual values for λpad for all five geographical routing
algorithms. These values were computed over 10000 randomly selected paths.
Notice that these are maximum values (as per the definition of λpad-padded
path) but at the chosen density the average distance between a routing path
and a straight line between source and destination is much smaller. For the
sake of brevity, in the rest of the of this chapter we discuss only the simulation
with rC = 1.

Workloads

We consider two classes of scenarios for multicast requests. One, which we
denote as uniform in which requests involve sources and destinations chosen
uniformly over the whole network, and one, which we denote as in-line, in
which sources and destinations are chosen on a line, or more specifically on
a narrow band in the middle of the network. The first class is intended to
represent a generic traffic load. The second class is intended to represent a
worst-case scenario for congestion. We also experimented with absolute worst-
case workloads in which all requests are between the same source and the same
destination. We initially show some results for all three cases for illustrative
purposes, but then we focus on the uniform and in-line only because the third
class is not very informative, since it incurs unavoidable congestion around the
source and destination nodes.

110 4.7 Simulation Analysis

Analysis

Figure 4.3 shows three “heat-map” graphs representing one simulation run for
each of the three classes of workloads, respectively. The graphs represent the
square region covering the simulated network. Each point in the graph repre-
sents a node in the network whose color represents the total traffic (number
of wireless transmissions) affecting that node, which corresponds to load or
congestion of that node.

In our analysis, we refer to a fixed set of all independent simulation pa-
rameters as a scenario. Thus, in a scenario we simulate all nodes running the
same configuration of the geographic routing and the same configuration of our
multicast routing scheme. We then simulate 1000 multicast requests, each with
a fixed number of destinations chosen according to one of the scenario classes
(uniform or in-line).

For each scenario we run 50 simulations to account for the variability that
is due to the randomized nature of our scheme and possibly of the underlying
routing. Then, for each node we compute the average load over the 50 runs,
obtaining an approximation of the expected load of that node for that particular
scenario. We then compute the network congestion as the maximum over all
nodes of the per-node expected load. This is the primary metric of interest in
this simulation analysis.

In summary, to answer our evaluation questions, we explore scenarios cov-
ering all combinations of the following parameters:

Intermediate point selection: type of algorithm and parameters used to
select the intermediate point. We use the angle-based selection with
bounds π/3, π/4, and π/6 denoted with T60, T45, and T30, respec-
tively. We then use the circular-arc selection with distance multiplier
γ = 0, 0.5, 1, 1.5, 2, which we denote as C0, C0.5, C1, C1.5, and C2. No-
tice that C0 corresponds to using a deterministic straight-line routing
scheme. This degenerate case is useful for comparison.

Geographical routing: type of algorithm used in the underlying routing
layer. We use the algorithms described in Section 4.7.1, denoted as GSP,
DSP, Grd, GrdRnd1, GrdRnd2.

Multicast size: size of multicast requests (incl. source node). We use 2 (uni-
cast), as well as 4, 8, and 16 (true multicast requests), which we denote
as M2, M4, M8, and M16, respectively.

111 4.7 Simulation Analysis

Uniform, M8, T60, Grd

 0

 200

 400

 600

 800

 1000

In-Line, M8, T60, Grd

 0

 200

 400

 600

 800

 1000

Single-Source Single-Destination, T60, Grd

 0

 200

 400

 600

 800

 1000

Figure 4.3. Examples of the Three Classes of Workloads

112 4.7 Simulation Analysis

Workload class: location of sources and targets in multicast requests, chosen
according to the uniform and in-line model.

4.7.3 Results

We now report the most important results of the simulation analysis. We
first focus on the performance of the underlying geographic routing layer. We
found that in all our experiments, the greedy algorithm yields the best results
in terms of congestion. As an example, Figure 4.4 shows the network conges-

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

T30 T45 T60 C0.0 C0.5 C1.0 C1.5 C2.0

n
et

w
o
rk

 c
o

n
g
es

ti
o
n

Uniform, M8

GSP
DSP
Grd

GrdRND1
GrdRND2

Figure 4.4. Comparison of Geographic Routing Algorithms

tion incurred by the various geographic routing primitives under a workload
of uniform multicast requests of size 8, in combination with every variant of
our scheme. In these scenarios, the greedy algorithm (Grd) is always the one
that causes the lowest congestion, and as it turns out, all other scenarios show
similar results. This result is particularly interesting and positive because Grd
is also the simplest geographic algorithm available. Therefore, we dismiss all
other underlying routing algorithms for the rest of our analysis.

The next question we consider is how the network congestion is affected by
the selection of the intermediate point. The histogram of Figure 4.4 already
indicates that the angle-based selection methods T30, T45, and T60 work
better than the method based on the circular arc for distance factor γ > 1.

Figure 4.5 confirms this result. The two graphs show the network conges-
tion incurred by the various selection methods as a function of the size of the

113 4.7 Simulation Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14 16

n
et

w
o
rk

 c
o
n
g
es

ti
o
n

size of the multicast requests

uniform, Grd

C0.0
C0.5
C1.0
C1.5
C2.0
T60
T45
T30

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14 16

n
et

w
o
rk

 c
o
n
g
es

ti
o
n

size of the multicast requests

in-line, Grd

C0.0
C0.4
C1.0
C1.4
C2.0
T60
T45
T30

Figure 4.5. Comparison of Intermediate Point Selection Methods

114 4.7 Simulation Analysis

multicast requests, for uniform and in-line workloads, respectively. The con-
clusion we can draw from these experiments is that the angle-based schemes
achieve the best results, only slightly better than the circular-arc method with
radius less than the distance (γ < 1), and that the circular-arc method shows
definitely worse performance with higher radii (γ > 1) with proportionally
worse outcomes in the case of uniform workloads. Also note that for the in-
line model, the deterministic C0 algorithm is the worst one for small multicast
requests and it becomes the best algorithm for large multicast requests. For
small requests, when routing deterministically, in the in-line scenario many
routing paths overlap and by routing around, the congestion can be reduced.
For large requests with all destinations on a line, the message has to be sent
along the whole line anyway, so that sending it directly along the line becomes
cheaper.

The graphs of Figure 4.5 also demonstrate that our multicast routing scheme
performs well in an absolute sense and in particular they seem to indicate that
the scheme scales gracefully with a sublinear relation between the size of the
multicast requests and congestion. Recall that all workloads consist of 1000
requests, so, for example, in the case of requests of size 16, that means that
each of the 1000 messages must be delivered to 15 destinations. Consider this
scenario in the extreme case of requests in which all destinations lay on a line
(or a narrow band) in the network, which corresponds to the case of the in-line
workloads. It is interesting to notice that in this case, the scheme is capable
of routing all requests in such a way that the maximally-loaded node sees the
equivalent of a worst-case set of unicast requests.

Chapter 5

Conclusion and Future Work

The Internet for sure has come a long way from its early inception. The Inter-
net of Things World Forum (IoTWF) in May 2017 predicts that the worldwide
installed base of Internet of Things (IoT) endpoints will grow from 14.9 bil-
lion at the end of 2016 to more than 82 billion in 2025.1 In addition to this
staggering growth, the way we use the Internet has also changed drastically.
The Internet was designed to connect and access hosts. In today’s Internet,
communication is centered on information, which is almost completely decou-
pled from physical nodes. In other words, consumers are no longer interested
in connecting to a particular host, and instead are interested in accessing the
data, which must simply be available and authentic.

Information-centric networking (ICN) is a novel, general network architec-
ture intended to better support the more modern information-centric usage of
the Internet. The now substantial scholarly literature and the numerous re-
search and engineering projects in ICN cover a variety of different aspects of
ICN, ranging from security to in-network caching. And yet, the problem of
routing based on true information-centric addresses has remained mostly un-
touched. In this thesis we proposed a new architecture for ICN, one based on
true information-centric addresses, and we developed routing and forwarding
algorithm for this architecture.

In particular, we proposed a multi-tree routing scheme with a new tag-
based addressing model to describe content. We evaluated this routing scheme
for both intra and inter-AS topologies using a realistic application workload.
After studying the efficiency of this routing scheme, we presented the design
and implementation of TagMatch, an efficient subset matching engine that

1IDC Worldwide Internet of Things Installed Base by Connectivity Forecast, March 2017.
Link:https://www.idc.com/getdoc.jsp?containerId=US42331917

115

https://www.idc.com/getdoc.jsp?containerId=US42331917

116

exploits a hybrid system of CPUs and GPUs. We used TagMatch as the fast
forwarding engine for our proposed ICN model. We designed TagMatch as a
general subset matching engine and studied its usage in other context such as
an advanced, Twitter-like application (with a richer subscription model than
the basic “follower” system of Twitter). TagMatch targets applications that
perform subset matching between a high-rate stream of queries, each consisting
of a relatively small set of tags, with a large database of hundreds of millions
of tag sets.

We presented an extensive evaluation of TagMatch in which we test its abso-
lute performance with various workloads and we compare it with the MongoDB
database system, with a message forwarding system, and with a system based
on a prefix tree that is representative of the most efficient solutions for subset
matching we know of. TagMatch outperforms these systems, in most cases with
at least an order of magnitude higher throughput. Remarkably, TagMatch can
process about five times the average message traffic of Twitter on a single com-
modity machine, while offering a refined service that dispatches tweets based
on the interests of the users rather than only on the publisher of the tweets.

From the technical view point, and also more generally, TagMatch demon-
strates the synergistic use of two different hardware architectures, each with its
own advantages and drawbacks, to achieve high-throughput information clas-
sification. In particular, we designed TagMatch as a pipeline capable of fully
exploiting both CPUs and GPUs.

One possible direction for future work can be to include the integration
of TagMatch within a full fledged data processing or messaging systems, to
measure the benefits that it can bring to such application domains. Another
possible future work would be to design another CPU-GPU pipeline for the
consolidate function. This can improve the performance of partitioning al-
gorithm even more. Such improvement in the speed of consolidate function
would be beneficial in applications in which the database of sets changes more
frequently. Moreover, in studying the effects of GPU pre-filtering, we showed
that the performance of TagMatch is blocked by the key lookup stage on the
CPU side of the pipeline. One possible direction for improvement would be to
investigate how we can do this stage more efficiently. Doing so would enable
TagMatch to achieve even higher throughput.

In the same area of forwarding, but in a completely different direction,
we could investigate other mixed-hardware architectures, where the task of
matching and filtering data packets is split over a set of different parts and
layers, each with specific hardware characteristics and flow intensities. For
example, we imagine that the matching and filtering of information that is

117

ultimately necessary and useful to applications could be effectively performed
in stages. Some stages could be assigned to computational components inside
the network, from the core to the edge, or in a data center from the global
interconnect to the top-of-rack switch. Other stages could be assigned to the
operating system and then ultimately to the application itself.

A promising technology that would support this kind of flexible division of
labor between network and application is programmable data-plane, as repre-
sented primarily by the P4 language. The design of P4 implies parallel process-
ing over different packets, coupled with pipe-line processing for each packet.
This is in contrast with the data parallelism of GPUs that we exploit in our hy-
brid system of CPUs and GPUs. Still, the high-level architecture of TagMatch
is a classic multi-stage pipeline that could be adapted to other mixed-hardware
systems including networks with a programmable data plane.

118

Bibliography

[1] I. Abraham, I. Abraham, C. Gavoille, C. Gavoille, D. Malkhi, and
D. Malkhi. Routing with improved communication-space trade-off. In In
18 th International Symposium on Distributed Computing (DISC, pages
305–319. Springer, 2004.

[2] I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality aware location
service for mobile ad hoc networks. In Proc. 2nd Workshop on Foundations
of Mobile Comp. (DIALM-POMC), pages 75–84, 2004.

[3] I. Abraham, C. Gavoille, and D. Malkhi. On space-stretch trade-offs:
lower bounds. In Proceedings of the eighteenth annual ACM symposium
on Parallelism in algorithms and architectures, SPAA ’06, pages 207–216,
New York, NY, USA, 2006. ACM.

[4] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Com-
pact name-independent routing with minimum stretch. In Proceedings of
the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures, SPAA ’04, pages 20–24, New York, NY, USA, 2004. ACM.

[5] I. Abraham, C. Gavoille, and D. Ratajczak. Compact multicast routing.
In Proc. of 23rd Symp. on Distributed Computing (DISC), pages 364–378,
2009.

[6] I. Abraham, D. Malkhi, and D. Ratajczak. Compact multicast routing. In
DISC’09: Proceedings of the 23rd international conference on Distributed
computing, pages 364–378, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A
survey of information-centric networking. IEEE Communications Maga-
zine, 50(7):26–36, 2012.

[8] P. S. Almeida, C. Baquero, and A. Cunha. Fast distributed computation
of distances in networks. In CDC, 2012.

119

120 BIBLIOGRAPHY

[9] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka. Com-
pact routing with name independence. In Proceedings of the fifteenth an-
nual ACM symposium on Parallel algorithms and architectures, SPAA ’03,
pages 184–192, New York, NY, USA, 2003. ACM.

[10] S. Arora. Polynomial time approximation scheme for Euclidean TSP and
other geometric problems. In Proc. 37th Symp. on Found. of Comp. Sc.
(FOCS), pages 2–11, 1996.

[11] B. Awerbuch, A. B. Noy, N. Linial, and D. Peleg. Improved routing strate-
gies with succinct tables. J. Algorithms, 11:307–341, September 1990.

[12] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st
Annual Symposium on Foundations of Computer Science, pages 503–513
vol.2, Washington, DC, USA, 1990. IEEE Computer Society.

[13] L. Barrière, P. Fraigniaud, L. Narayanan, and J. Opatrny. Robust position-
based routing in wireless ad hoc networks with irregular transmission
ranges. Wireless Communication and Mobile Computing, 3:141–153, 2003.

[14] Y. Bartal and S. Leonardi. On-line routing in all-optical networks. Theor.
Comp. Sc., 221(1-2):19–39, 1999.

[15] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimen-
sional nearest neighbor search and related problems. In Proceedings of
the Thirty-first Annual ACM Symposium on Theory of Computing, STOC
’99, pages 312–321, New York, NY, USA, 1999. ACM.

[16] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. In Proc. Discrete Algorithms and
Methods for Mobility (DIALM), pages 48–55, 1999.

[17] P. Bouros, N. Mamoulis, S. Ge, and M. Terrovitis. Set containment join
revisited. Knowledge and Information Systems, pages 1–28, 2015.

[18] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J.Jetcheva. A performance
comparison of multi-hop wireless ad hoc network routing protocols. In
Mobile Computing and Networking, pages 85–97, 1998.

[19] C. Busch, M. Magdon-Ismail, and J. Xi. Oblivious routing on geometric
networks. In Proc. 17th Symp. on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 316–324, 2005.

121 BIBLIOGRAPHY

[20] C. Busch, M. Magdon-Ismail, and J. Xi. Optimal oblivious path selection
on the mesh. In Proc. 19th Int. Parallel and Distributed Processing Symp.
(IPDPS), 2005.

[21] A. Carzaniga, K. Khazaei, and F. Kuhn. Oblivious low-congestion mul-
ticast routing in wireless networks. In Proceedings of the thirteenth ACM
international symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc ’12, pages 155–164, New York, NY, USA, 2012. ACM.

[22] A. Carzaniga, K. Khazaei, M. Papalini, and A. L. Wolf. Is information-
centric multi-tree routing feasible? In Proceedings of the 3rd ACM SIG-
COMM workshop on Information-centric networking, ICN ’13, pages 3–8,
Aug. 2013.

[23] A. Carzaniga, M. Papalini, and A. L. Wolf. Content-based publish/sub-
scribe networking and information-centric networking. In Proceedings of
the ACM SIGCOMM Workshop on Information-Centric Networking, Aug.
2011.

[24] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for
content-based networking. In Proceedings of IEEE INFOCOM 2004, Hong
Kong, China, Mar. 2004.

[25] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network.
In A. Feldmann, M. Zitterbart, J. Crowcroft, and D. Wetherall, editors,
Proceedings of the ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication,
August 25-29, 2003, Karlsruhe, Germany, pages 163–174. ACM, 2003.

[26] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.
In Proceedings of the International Conference on Management of Data,
SIGMOD ’98, pages 355–366. ACM, 1998.

[27] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching, and related problems. In Pro-
ceedings of the 29th International Colloquium on Automata, Languages,
and Programming (ICALP 2002), 2002.

[28] L. J. Cowen. Compact routing with minimum stretch. In Proceedings of
the tenth annual ACM-SIAM symposium on Discrete algorithms, SODA
’99, pages 255–260, Philadelphia, PA, USA, 1999. Society for Industrial
and Applied Mathematics.

122 BIBLIOGRAPHY

[29] R. Flury and R. Wattenhofer. MLS: An efficient location service for mobile
ad hoc networks. In Proc. 7th Symp. on Mobile Ad Hoc Networking and
Computing (MOBIHOC), pages 226–237, 2006.

[30] P. Fraigniaud and C. Gavoille. Routing in trees. In Proceedings of the
28th International Colloquium on Automata, Languages and Program-
ming,, ICALP ’01, pages 757–772, London, UK, 2001. Springer-Verlag.

[31] J. Gao and L. Zhang. Trade-offs between stretch factor and load-balancing
ratio in routing on growth-restricted graphs. IEEE Trans. on Parallel and
Distributed Systems, 20(2):171–179, 2009.

[32] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox. Information-centric networking: Seeing the forest for the trees.
In Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
Nov. 2011.

[33] M. Gitter and D. R. Cheriton. An architecture for content routing support
in the Internet. In 3rd USENIX Symposium on Internet Technologies and
Systems, Mar. 2001.

[34] A. Goel and P. Gupta. Small subset queries and bloom filters using ternary
associative memories, with applications. SIGMETRICS Perform. Eval.
Rev., 38(1):143–154, June 2010.

[35] R. Goldman and J. Widom. Wsq/dsq: A practical approach for combined
querying of databases and the web. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’00, pages 285–296, New York, NY, USA, 2000. ACM.

[36] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Communications
of the ACM, 42(2):39–41, Feb. 1999.

[37] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms
for joins with set comparison join predicates. In Proceedings of the Inter-
national Conference on Very Large Data Bases, VLDB ’97, pages 386–395.
Morgan Kaufmann Publishers Inc., 1997.

[38] S. Helmer and G. Moerkotte. A performance study of four index structures
for set-valued attributes of low cardinality. The VLDB Journal, 12(3):244–
261, Oct. 2003.

123 BIBLIOGRAPHY

[39] L. Hong, G. Convertino, and E. H. Chi. Language matters in twitter: A
large scale study. In ICWSM, 2011.

[40] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and
L. Wang. NLSR: Named-data link state routing protocol. In Proceedings
of the 3rd ACM SIGCOMM Workshop on Information-centric Networking,
Aug. 2013.

[41] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2009.

[42] R. Jampani and V. Pudi. Using prefix-trees for efficiently computing set
joins. In Proceedings of theInternational Conference on Database Systems
for Advanced Applications, DASFAA ’05, pages 761–772. Springer-Verlag,
2005.

[43] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wire-
less networks. In Mobile Computing, pages 153–181. Kluwer Academic
Publishers, 1996.

[44] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikan-
der. LIPSIN: Line speed publish/subscribe inter-networking. In Proceed-
ings of the ACM SIGCOMM Conference on Data Communication, Aug.
2009.

[45] B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In Proc. 6th Int. Conf. on Mobile Computing and Net-
working (MOBICOM), pages 243–254, 2000.

[46] P. Kolman and C. Scheideler. Improved bounds for the unsplittable flow
problem. J. of Algorithms, 61(1):20–44, 2006.

[47] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network archi-
tecture. SIGCOMM Computer Communications Review, 37(4):181–192,
Aug. 2007.

[48] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric net-
works. In Proc. 11th Canadian Conference on Computational Geometry,
pages 51–54, 1999.

124 BIBLIOGRAPHY

[49] D. Krioukov, k. c. claffy, K. Fall, and A. Brady. On compact routing for
the internet. SIGCOMM Comput. Commun. Rev., 37(3):41–52, July 2007.

[50] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit
disk graphs. Wireless Networks, 14(5):715–729, 2008.

[51] F. Kuhn, R. Wattenhofer, and A. Zollinger. An algorithmic approach to
geographic routing in ad hoc and sensor networks. IEEE/ACM Transac-
tions on Networking, 16:51–62, 2008.

[52] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network
or a news media? In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 591–600, 2010.

[53] K. A. Laing. Name-independent compact routing in trees. Inf. Process.
Lett., 103:57–60, July 2007.

[54] F. Li and Y. Wang. Circular sailing routing for wireless networks. In
Proc. 27th Int. Conf. on Computer Communications (INFOCOM), pages
1346–1354, 2008.

[55] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable
location service for geographic ad-hoc routing. In Proc. 6th Int. Conf. on
Mobile Comp. and Networking (MOBICOM), pages 120–130, 2000.

[56] Y. Luo, G. H. L. Fletcher, J. Hidders, and P. D. Bra. Efficient and scal-
able trie-based algorithms for computing set containment relations. In
Proceedings of the International Conference on Data Engineering, ICDE
’15, pages 303–314. IEEE, 2015.

[57] B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westermann.
Exploiting locality for networks of limited bandwidth. In Proc. 38th Symp.
on Foundations of Comp. Science (FOCS), pages 284–293, 1997.

[58] C. Maihofer. A survey of geocast routing protocols. Communications
Surveys & Tutorials, 6(2):32–42, 2004.

[59] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’03, pages 157–168, June 2003.

125 BIBLIOGRAPHY

[60] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–
258, 1997.

[61] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment
joins. ACM Transactions on Database Systems, 28(1):56–99, 2003.

[62] T. Morzy and M. Zakrzewicz. Group bitmap index: A structure for asso-
ciation rules retrieval. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, KDD ’98, pages 284–288, 1998.

[63] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat. Greedy for-
warding in dynamic scale-free networks embedded in hyperbolic metric
spaces. In Proceedings of the IEEE Conference on Computer Communi-
cations (INFOCOM), Mar. 2010.

[64] M. Papalini. TagNet: A Scalable Tag-Based Information-Centric Network.
PhD thesis, Università della Svizzera italiana, Oct. 2015.

[65] M. Papalini, A. Carzaniga, K. Khazaei, and A. L. Wolf. Scalable routing
for tag-based information-centric networking. In Proceedings of the 1st In-
ternational Conference on Information-centric Networking, ICN’14, pages
17–26, Sept. 2014.

[66] M. Papalini, K. Khazaei, A. Carzaniga, and D. Rogora. High throughput
forwarding for icn with descriptors and locators. In Proceedings of the
2016 Symposium on Architectures for Networking and Communications
Systems, ANCS ’16, pages 43–54, New York, NY, USA, 2016. ACM.

[67] M. Papalini, K. Khazaei, A. Carzaniga, and A. L. Wolf. Scalable routing
for tag-based information-centric networking. Technical Report 2014/01,
University of Lugano, Feb. 2014.

[68] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector rout-
ing. In Proc. of 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, 1999.

[69] L. Popa, A. Rostamizadeh, R. M. Karp, C. H. Papadimitriou, and I. Sto-
ica. Balancing traffic load in wireless networks with curveball routing. In
Proc. 8th Symp. on Mobile Ad Hoc Networking and Computing (MOBI-
HOC), pages 170–179, 2007.

126 BIBLIOGRAPHY

[70] H. Räcke. Optimal hierarchical decompositions for congestion minimiza-
tion in networks. In Proc. 40th Symp. on Theory of Computing (STOC),
pages 255–263, 2008.

[71] H. Räcke. Survey on oblivious routing strategies. In Proc. 5th Conf. on
Computability in Europe (CiE), pages 419–429, 2009.

[72] R. Rantzau. Processing frequent itemset discovery queries by division and
set containment join operators. In Proceedings of the SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, DMKD ’03,
pages 20–27. ACM, 2003.

[73] R. L. Rivest. Partial-match retrieval algorithms. SIAM Journal on Com-
puting, 5(1):19–50, 1976.

[74] E. Royer and C. Toh. A review of current routing protocols for ad-hoc
mobile wireless networks. In IEEE Personal Communications, volume 6,
April 1999.

[75] E. M. Royer and C. E. Perkins. Multicast operation of the ad hoc on-
demand distance vector routing protocol. In Proc. 5th Int. Conf. on Mobile
Comp. and Networking (MOBICOM), pages 207–218, 1999.

[76] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with Rocketfuel. IEEE/ACM Transactions on Networking,
12(1), Feb. 2004.

[77] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly
distributed packet radio terminals. IEEE Transactions on Communica-
tions, 32(3):246–257, 1984.

[78] M. Terrovitis, P. Bouros, P. Vassiliadis, T. Sellis, and N. Mamoulis. Effi-
cient answering of set containment queries for skewed item distributions.
In Proceedings of the 14th International Conference on Extending Database
Technology, EDBT/ICDT ’11, pages 225–236, New York, NY, USA, 2011.
ACM.

[79] M. Thorup and U. Zwick. Compact routing schemes. In Proc. of the thir-
teenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’01, 2001.

127 BIBLIOGRAPHY

[80] L. G. Valiant and G. J. Brebner. Universal schemes for parallel commu-
nication. In Proc. of 13th Symp. on Theory of computing (STOC), pages
263–277, 1981.

[81] U. Varshney. Multicast over wireless networks. Communications of the
ACM, 45(12):31–37, 2002.

[82] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social book-
marking systems: A del.icio.us cookbook. In Mining Social Data (MSoDa)
Workshop Proceedings, pages 26–30. ECAI 2008, July 2008.

[83] J. Xie, R. R. Talpade, A. Mcauley, and M. Liu. Amroute: ad hoc multicast
routing protocol. Mob. Netw. Appl., 7(6):429–439, Dec. 2002.

[84] F. Yu and R. H. Katz. Efficient multi-match packet classification with
tcam. In Proceedings of the High Performance Interconnects, 2004. On
Proceedings. 12th Annual IEEE Symposium, HOTI ’04, pages 28–34,
Washington, DC, USA, 2004. IEEE Computer Society.

[85] X. Yu, X. Ban, W. Zeng, R. Sarkar, X. Gu, and J. Gao. Spherical rep-
resentation and polyhedron routing for load balancing in wireless sensor
networks. In Proc. 30th Int. Conf. on Computer Communications (INFO-
COM), pages 621–625, 2011.

128 BIBLIOGRAPHY

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Importance of Scalability
	The Importance of the Naming Scheme
	Contributions of This Thesis
	Preliminaries
	Communication Models
	Network Models
	Characteristics of Routing Algorithms
	Compact Routing: Memory Vs. Congestion

	Structure of the Document

	Scalable Routing forTag-Based Information-Centric Networking
	A New Perspective on Routing in ICN
	Network Architecture
	Content Descriptors

	Routing Scheme
	ICN Routing on One Tree
	Unicast Routing on Trees
	Locators and the Request/Reply Service
	Using Multiple Trees
	Hierarchical Multi-Tree Routing
	RIB Representation
	Locator-Based Matching Algorithm

	Evaluation
	Speed of Unicast Forwarding Using TZ-labels
	Effectiveness with k Trees
	Application Workloads
	Memory Requirements

	Related Work
	Summary

	TagMatch: A Fast Matching Algorithm for Tag-Based Information-Centric Networking
	Subset Matching
	Definitions
	Existing Solutions and Related Work

	Proposed Solution
	System Model
	System Implementation
	Off-Line Partitioning
	Pre-Process
	Subset Match
	Key Lookup/Reduce and Merge
	TagMatch Adaptation as an ICN Message Forwarder

	Evaluation
	Subjects and Experimental Setup
	Workloads
	Performance and Scalability
	Comparison with MongoDB
	Experience with an Alternative Design

	An Ideal Routing Scheme for a Wireless Network Model
	Problem Setting
	Related Work
	Model and Definitions
	Problem Statement
	Geometric Multicast
	Analysis

	Name-Based Multicast
	Simulation Analysis
	Variants of the Routing Algorithms
	Experimental Setup and Parameters
	Results

	Conclusion and Future Work

