
[BOS91] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone

Object Database Management System. Communications of the

ACM, 34(10), October 1991.

[Deu91] O. Deux. The O2 System. Communications of the ACM, 34(10),

October 1991.

[O293] O2Technology. The O2 User Manual. O2Technology, 1993. Re-

lease 4.3.

[OIC+93] O2Technology, Inria, Cefriel, University of Frankfurt, and Univer-

sity of Grenoble. Architecture and functionalities of the goodstep

repository as implemented in the �rst prototype. Technical re-

port, O2Technology, 1993. Esprit Project 6115 (GOODSTEP)

deliverable.

[PV93] Gian Pietro Picco and Giovanni Vigna. The SPADE Way to

Inter-Client Communication in O2. Technical report, CEFRIEL,

1993. Technical Report N.99401.

16



posing it. We are currently using ICCM in the development of our PSEE,

both testing and enhancing its features.

Future work will include:

� the developing of a sound technique to allow generic messages (includ-

ing any value or object) to be passed through mailboxes;

� mailboxes allowing 1 : n communication;

� the investigation of other methods for Inter-Client Communication

in O2, based on new O2 features, provided by future releases. In

particular, O2Technology plans to introduce active database issues,

as described in [OIC+93]. This feature will be based on the trigger

concept, which should allow to achieve asynchronous message passing.

Acknowledgments

The authors wish to thank Ing. Luigi Lavazza, Dr. Sergio Bandinelli, and

Prof. Alfonso Fuggetta for their comments and insights, which have been

helpful both in developing ICCM, and in writing and re�nining this paper.

References

[BBFL93] Sergio Bandinelli, Luciano Baresi, Alfonso Fuggetta, and Luigi

Lavazza. Requirements and Early Experiences in the Implemen-

tation of the SPADE Repository using Object-Oriented Technol-

ogy. In Proceedings of the International Symposium on Object

Technologies for Advanced Software, Kanazawa, Japan, Novem-

ber 1993.

15



in it (instead of the msgClientConnection that would be posted in a newly

created mailbox). After receiving the message, Tool executes again the

method O2ClientMgr->seekForMailbox, thus establishing a new connec-

tion.

Then, Client2 decides that Tool is no longer needed, neither by Client2

nor by the other \master" clients. Thus, Client2 terminates the execution

of Tool. This is accomplished by sending a kill message to the Tool, namely

msgClientKill. The Tool, upon receipt of the signal, performs the correct

clean-up operations, then it broadcasts a msgClientKillAck to all clients

connected with it, to warn them that it is going to terminate. Among the

clients receiving this message, there is also Client2, the client which started

the termination process, that is now ready to remove the Tool mailbox from

O2ClientMgr list.

Note that all message processing is made synchronously, by polling the

mailboxes connected to clients. In this respect, ICCM resembles somehow

programming with plain X, in an event-driven programming paradigm. In

fact, the main polling loop has to contain conditional tests in order to rec-

ognize the received messages and execute the corresponding \callback".

6 Conclusions and future work

We presented here an Inter-Client Communication Mechanism for the O2

OODBMS. The need for such a mechanism stemmed from some issues arosen

in developing a process-centered software engineering environment. Never-

theless, the �ndings and the outcomes of our experience might be generalized

to a wider range of applications which use an object-oriented repository, pos-

sibly even di�erent from O2. We described here both the idea underlying

our mechanism, and an overview of the data structures and services com-

14



Client
"Tool"

O2ClientMgr->mailBoxes

msgClientKill

msg2

msgClientConnect

msgClientConnectReq

msgClientConnect

msg1

msgClientConnectAck

msgClientKillAck

msgClientConnectAck

msgClientKillAck

Client2

Client1

Figure 3: An example.

taining the message msgClientConnect. As soon as Tool is running, it takes

its own identi�er and the caller identi�er from the command-line parameters,

and executes method O2ClientMgr->seekForMailbox(callerId,calleeId),

which searches the centralized mailbox list for a mailbox carrying the cor-

responding identi�er pair. When this is found, a connection acknowledge is

sent back to the caller.

After the connection is succesfully setup, Client1 posts a user mes-

sage (msg1 in the �gure) to the Tool. Meanwhile, Client2 requests a con-

nection, too. Since the Tool is already up3, Client2 has to execute the

method connectToO2Client instead of setupO2Client. This method im-

plicitly (i.e., transparently to the user) searches the O2ClientMgr mailbox

list for a mailbox already connected to Tool, and posts a msgClientConnReq

3We assume that Client1 and Client2 are client of the same application, thus they

are aware of what clients have already been launched

13



running client.

� Search for the mailbox to connect with. As we mentioned in Section 3,

as soon as the callee is either invoked or requested for a new connec-

tion, it has to scan the mailbox list in O2ClientMgr searching for the

mailbox created by the caller and that ought to be used in order to

communicate.

� Remove a mailbox from the list. Actually discards a communication

channel between two clients. We suggest that the client that is in

charge of performing the removal should be the caller, after the callee

has communicated that all clean-up operations have been correctly

performed.

5 An Example

In this section we describe a \toy" example, whose purpose is to show how

mechanisms described in previous sections can be used within actual O2C

or C++ programs. We will refer to Figure 3. Three clients are involved:

� Client1 and Client2 play the role of \master" O2 clients, e.g., they

could be applications performing some kind of independent computa-

tion.

� Tool represent a \slave" service provider, receiving both connection

and service requests from \master" clients and returning outputs to

them.

Figure 3 represents the following situation. Client1 invokes O2ClientMgr-

->setupO2Client, in order to actually invoke the Tool. Hence, the invoca-

tion of this method determines the creation of a new mailbox already con-

12



The Object type is the root of the O2 object hierarchy; consequently, due

to polymorphism and late binding, every O2 object �ts in the data �eld,

no matter what its type is: it is the receiver job to correctly handle such

objects.

Note that the current solution has both advantages and disadvantages:

polymorphism allows to pass any kind of object (no matter what is its

complexity and structure), but if you need to transmit bare values, you

need to envelope them into ad hoc classes. We are investigating solutions to

allow a \smart" inclusion of values into ICCM messages, in order to allow

generic data to be exchanged.

4.3 ICCM manager

The ICCM manager provides all the data structures and services needed to

establish and manage a communication between clients.

It is a named persistent object of type O2ClientMgrObj. The data struc-

ture is made of a list of mailbox objects representing all the communication

channels connecting client pairs during ICCM execution. This structure

is centralized, constituting the only bottleneck to communication manage-

ment, because the access to data structure have to be serialized. Anyway,

since such access is needed only at connection setup, the additional overhead

is little, and generally negligible if compared with the longer time needed

for client actual invocation.

The most important services provided by the ICCM manager are:

� Create a new connection. O2ClientMgr provides two distinct methods

to get the job done: setupO2Client, which performs both the invoca-

tion of the callee and its connection to the caller, and connectToO2Cl-

ient, which establishes a connection between the caller and an already

11



communication link. ICCM mailboxes allow 1 : 1 connections only, for per-

formance reasons. In fact, since mailboxes are persistent, write operations

have to be performed during a transaction; if 1 : n connections were possi-

ble, any of the several clients, accessing a queue during a write operation,

should synchronize with the others. Implementing n : n connections could

only worsen the problem.

ICCM mailboxes can be generally used to manage queues of data within

an application. Nevertheless, as we mentioned in Section 3, they are used

mainly within ICCM as the communication channels linking two clients.

4.2 Messages

Mailboxes can contain only O2 messages, which can be logically divided into

two classes:

� User-de�ned messages. Client communication is not established for

its own sake, but to allow service invocation and data exchange. Con-

sequently, user-de�ned messages can be used both to control clients

behavior and to carry data.

� Built-in messages. They are used for \system" operations, like set-

ting up or removing a connection, terminating a client execution and

so on. They are used within O2ClientMgr methods, and they are also

available to the user.

What follows is the ICCM class de�nition for an O2 message:

class O2Message public type

tuple(msgName: string)

data: list(Object))

end;

10



4 ICCM features and services

ICCM is actually an O2 schema (i.e. class de�nitions together with per-

sistent objects name de�nitions) providing communication services. ICCM

has to be imported into the user application schemas that intends to use

inter-client communication facilities. In the following subsections we de-

scribe the basic components of our mechanism: mailboxes, messages, and

the communication service manager.

4.1 Mailboxes

ICCM mailboxes are not just like the well-known mailboxes. Usually mail-

boxes are associated with recipients. Whenever a message has to be de-

livered, the message queue, representing the mailbox, is reached using a

reference to the recipient, e.g. to send a message to RcptObj we would use

RcptObj->mailbox->putmsg(msg).

We could not a�ord this solution because write operations must be per-

formed during a transaction, in order to make changes in the recipient mes-

sage queue visible to the recipient itself; hence, accessing the recipient mail-

box would lock the recipient object altogheter.

We decided to cluster the queues, acting as mailboxes between two ob-

jects, in a unique data structure, in order to avoid the recipient object

locking. References to proper queues, during read/write operations, is ac-

complished using a couple of unique identi�ers associated to the communi-

cating objects. Adopting this solution, accessing the mailbox queues does

not involve any of the communicating objects, allowing a greater level of

parallelism and better performance.

By the way, ICCM mailboxes own methods to insert and retrieve mes-

sages, and to test emptiness, this way implementing an easy-to-use two-way

9



Otherwise, the newly created client is informed by the creation mecha-

nism about the identity of its creator. In both cases, the callee will:

1. Search the O2ClientMgr mailbox list for an existing mailbox whose

identi�ers match both caller and callee identi�ers.

2. Read the message on the mailbox, checking if it is the right connection

message.

3. Send an acknowledge back to the caller, through the same mailbox.

Since mailboxes are attached to O2ClientMgr, which is a persistent object,

every mailbox is persistent too. Nevertheless, after the �rst scanning of

O2ClientMgr mailbox list, performed at communication setup time, the

callee client creates a local direct reference to the mailbox, thus allowing

fast access.

Since every read/write operation on a persistent object has to be per-

formed within a transaction, the situation described above has an important

consequence: once we have retrieved the correct mailbox M from the global

data mailbox list, we can lock M exclusively without locking the whole per-

sistent structure.

In other words, we use the O2ClientMgr mailbox list only to ensure

persistency and visibility of mailboxes to all the clients, but we can lock just

one mailbox at a time (except for the relatively unfrequent communication

setup phases), thus maximizing parallelism2 .

In the next section ICCM features and services are discussed in greater

detail.

2This will have an even greater impact when O2 will support object locks, as pointed

out in Section 2.

8



manage these mailboxes when establishing a connection between clients.

Communication within ICCM is split in three phases: i) connection, ii)

message exchange, iii) disconnection. We will describe here only the �rst

phase, since it is the most important. A detailed description can be found

in [PV93].

The connection phase follows a de�ned sequence of steps, which are

coded into O2ClientMgr services. For the caller, the sequence is:

1. Create a new mailbox object.

2. Post a connection message on the newly created mailbox.

3. The connection may involve a client already active in ICCM, or a client

that has to be invoked, and then connected.

(a) In the former case, the caller client searches the O2ClientMgr

mailbox list for an existing mailbox already bound to the callee,

and posts a message of connection request, containing its own

identi�er. In other words, it \hires" a mailbox currently used by

the callee to communicate with another client.

(b) If the connection involves a client that does not yet exist, the O2

client is created by execution of a speci�c program, no matter if

it is a C or C++ application interfaced with O2 or a straight O2

client. During the client start-up phase, the new client is given

its own identi�er, and is also informed about the identity of the

client that invoked it.

4. Wait for the acknowledgement, which must be sent by the callee through

the mailbox created in 1.

If the callee already exists, it will simply �nd in one of its mailboxes the

connection request, containing the identi�er of the caller.

7



O2ClientMgr->mailBoxes

Client1 Client2

identifiers

mailbox

Figure 2: Two clients communicating through the ICCM.

We could improve parallelism increasing the number of named variables

through which the information is exchanged. However, this solution implies

that the number of statically de�ned names grows quadratically with the

number of clients.

On the contrary, a highly parallel and dynamic mechanism is desirable,

in order to limit the overhead imposed at run-time on the environment, and

to provide a highly 
exible communication mechanism. Figure 2 shows the

Inter-Client Communication Mechanism (ICCM), an enhancement of the

basic mechanism described above, that we designed to improve the commu-

nications among O2 clients [PV93]. Once again, there is an object, called

O2ClientMgr, that is given a name in the clients schema, and is therefore

visible within both clients scopes, provided that they import the ICCM

schema. O2ClientMgr, the ICCM manager, is not an information container

itself, instead it owns a list of mailboxes.

The mailbox objects are the communication channels through which in-

formation 
ows from a client to another. Each mailbox contains two message

queues, which at communication time contain the messages exchanged by

the communicating clients in both directions.

O2ClientMgr provides services (i.e. methods) to correctly create and

6



Schema name instance Client2Client1

Figure 1: Using a persistent object to communicate two clients.

since it would be very ine�cient and, in any case, it would produce a copy of

the original object. In addition, it is not possible to simply pass to another

client the pointer to a shared object, because this pointer (i.e., the object

identi�er) is unknown (it exists in the O2 engine, but is not accessible by

the user environment) and, moreover, the address spaces of the two clients

are di�erent.

Intuitively, since we can use neither UNIX mechanisms, nor dedicated O2

primitives, the only feature currently available to establish a communication

is the database itself or, in other words, persistent objects which can be

accessed by both clients, as explained in Section 2.

The raw solution using this concept implements the mechanism illus-

trated in Figure 1: the message sender puts the O2 object into a named (i.e.

persistent) variable, whose name is known by both the sender and the recip-

ient. The recipient can read the contents of the persistent named variable

and operate on it.

This initial solution su�ers of some drawbacks, if applied as it is within

a concurrent multi-client perspective:

� The shared object name must be hard-wired within clients code.

� No parallelism is allowed, since after a communication session is started

by the message sender by �lling the named variable, no other client

can update this variable (without causing data loss) until the recipient

has actually read the variable.

5



Every named object in the database is persistent, and every component of

a persistent object is persistent. No other objects are persistent. The same

rule applies to values.

Thus, named objects and named values are the roots of persistence. That

is, they are used as handles from which every persistent object or value can

be reached.

Every update to persistent data must be performed within a transaction.

If two clients access the same object or value in transaction mode, the locks

obtained by the �rst client force the second to wait. Thus, critical sections

corresponding to updates should be limited in time, and should not involve

several objects, in order to improve performance and avoid deadlocks1.

Objects and values not bound to a persistency root are automatically

garbage-collected at the end of a transaction.

3 The underlying idea

Common UNIX inter-process communication mechanisms like pipes and

sockets cannot be used for establishing a communication among O2 clients,

since these mechanisms are suitable only to transfer non-structured data,

like integers or strings.

Our goal, on the contrary, is to exchange trueO2 objects. O2 objects may

have any internal structure, consequently, in order to transfer an object, e.g.

via a socket, it would be necessary to transform it in a sequence of atomic

values and then reassemble it again upon receipt. This solution is not feasible

1In the current implementation of O2, locks are associated with pages rather than

with objects. This may lead to the odd situation in which clients working on completely

di�erent objects within the same base can experience deadlocks. O2Technology is steering

towards replacing page locking with object locking.

4



2 The O2 OODMBS

O2 [O293], [Deu91] is a distributed Object-Oriented Database Management

System, based on a client-server architecture.

The logical structure of an O2 data base is bound to a schema, i.e. a

collection of names and de�nitions of classes, types, applications, objects

and values. There may exist any number of logically separate schemas at

one time.

A base is a collection of data whose structure conforms to the structural

de�nition in a schema. Several di�erent bases might be associated with each

schema.

Data manipulation is achieved using the O2C language, an extension of

ANSI-standard C, as well as the O2SQL, an ad hoc database object-oriented

query language, whose syntax is styled on IBM SQL standard, and which

is likely to become the SQL standard for OODBMS. O2 also provides an

interface towards standard programming languages, namely C and C++.

Data are represented by values and objects. A value is an instance of a

given type. A type is a generic description of a data structure in terms of

atomic types (integers, characters, and so on) and structured types (tuples,

sets, and lists). An object is an instance of a given class and incapsulates a

value and the behaviour of that value. The behaviour of an object is fully

described by the set of methods attached to it.

An object or a value may be given an identi�er, i.e. a name, by which

O2 commands, methods, and application programs may refer to it quickly

and speci�cally. Such name is global within the schema.

Objects and values in the system can be either persistent or not. An

object is persistent if it remains in the database after the successful termi-

nation of the transaction which created it. Persistence is granted as follows:

3



Nearly all OODBMS currently available are based on a client/server

architecture. In particular, we are using O2 [Deu91] which is based on a

client-oriented concept that gives computational power to each client; others

(like GemStone [BOS91]) prefer to have methods executed by the server

according to a more centralized schema.

Our experience in building a process-centered software engineering en-

vironment (PSEE) has pointed out the importance of distribution of data

and computations among clients [BBFL93]. The management of such a dis-

tributed model requires complex data sharing and communication, in order

to address both architectural and tool integration issues.

An ad hoc communication system other than the standard UNIX ones

is necessary if we want to exchange complex data among clients. Thus, we

isolated the problem of communication from the context of our application,

and developed a stand-alone, general-purpose O2 module, called ICCM (In-

ter Client Communication Mechanism), intended to be an extension of the

services provided by the OODBMS.

These services do not depend upon the particular application. They may

be of any use, possibly after slight changes, whenever complex data have to

be passed between user applications allocated to di�erent clients.

In this paper we present the idea behind our ICCM, together with an

overview of the provided services. Since it is based on the O2 OODBMS,

in Section 2 we provide a short description of this system. In Section 3 the

underlying ideas and concepts are described, while Section 4 explains the

data structures and services provided by the ICCM. Section 5 gives some

insights on how ICCM can be used in a real user application and how such

an application has to be structured in order to interact with ICCM. Finally,

Section 6 draws some conclusion and highlights some issues about our future

work involving the ICCM.

2



Designing and Implementing Inter-Client

Communication in the O2 Object-Oriented

Database Management System

Antonio Carzaniga, Gian Pietro Picco
and Giovanni Vigna

CEFRIEL,
via Emanueli 15, 20126 Milano (Italy),

Tel. +39-2-66100083, Fax +39-2-66100448,
E-mail:picco@mailer.cefriel.it

Abstract

One of the requirements for an object-oriented database to support ad-
vanced applications is a communication mechanism. The Inter-Client
Communication Mechanism (ICCM) is a set of data structures and
functions developed for the O2 database, which provides this kind of
service. Communication is achieved through shared persistent objects,
implementing the basic idea of mailbox. One to one connections are es-
tablished between di�erent processes accessing the database; methods
and data structure de�ned in the ICCM support connection setup, dis-
connection, and all the basic data transfer facilities. In this paper, we
describe the concepts of ICCM and an overview of its implementation.
Keywords and phrases: object oriented database, client/server ar-
chitecture, communication.

1 Introduction

Object-oriented databases are widely used in many engineering �elds requir-

ing a sophisticated data modeling system, like software engineering environ-

ments and CAD applications. In such environments complex data are shared

by many persons; cooperation among developers and interaction with tools

is a critical issue.

1


