
Issues in Supporting Event-based Architectural Styles
Antonio Carzaniga

Univ. of Colorado at Boulder
Dept. of Computer Science

Campus Box 430
Boulder, CO 80309-0430

carzanig@cs.colorado.edu

Elisabetta Di Nitto
CEFRIEL and UCI

CEFRIEL
Via Fucini, 2

20133 Milano, Italy
dinitto@elet.polimi.it

David S. Rosenblum
Univ. of California, Irvine
Dept. of Inf. and Comp.

Science ICS2 209
Irvine, CA 92697-3425

dsr@ics.uci.edu

Alexander L. Wolf
Univ. of Colorado at Boulder
Dept. of Computer Science

Campus Box 430
Boulder, CO 80309-0430

alw@cs.colorado.edu

1. INTRODUCTION
The development of complex software systems is
demanding well established approaches that guarantee
robustness of products, economy of the development
process, and rapid time to market. This need is becoming
more and more relevant as the requirements of customers
and the potential of computer telecommunication networks
grow.

To address this issue, researchers in the field of software
architecture are defining a number of languages and tools
that support the definition and validation of the architecture
of systems. Also, a number of architectural styles are being
formalized. Each of them defines “a set of design rules that
identify the kinds of components and connectors that may
be used to compose a system or a subsystem, together with
local or global constraints on the way the composition is
done” [5]. The formalization of styles helps the
understanding and categorization of existing architectures
and supports developers in the definition of the structure of
new systems.

A style that is very prevalent for large-scale distributed
applications is the event-based style. In an event-based
style, components communicate by generating and
receiving event notifications. A component usually
generates an event notification when it wants to let the
“external world” know that some relevant event occurred
either in its internal state or in the state of other components
with which it interacts. When an event notification is
generated, it is propagated to any component that has
declared interest in receiving it. The generation of the event
notification and its propagation are performed
asynchronously. Usually, a connector called an event
service (or an event dispatcher or bus) is in charge of
managing the propagation of the event notifications. This
propagation is completely hidden to the component that

generated the event. Thus, the event service implements a
multicasting mechanism that fully decouples event
generators from event receivers. This provides two
important effects:

• A component can operate in the system without being
aware of the existence of other components. All it has
to know is the structure of the event notifications that
are interesting to it.

• It is always possible to plug a component in and out of
the architecture without affecting the other components
directly.

These two effects guarantee a high compositionality and
reconfigurability of a software architecture.

In the last few years, interest in the event-based style among
practitioners has resulted in the development of a number of
event-based middleware infrastructures (see for instance
[3], [7], and [6]). These infrastructures implicitly support
the event-based style; that is, they provide APIs and
frameworks for defining applications structured according
to this style.

We started investigating the event-based style two years ago
in two separate research efforts where we participated in the
definition of a general model for event-based architectures
[4] and in the development an event-based infrastructure
called JEDI [1]. By using JEDI and by comparing it with
other systems and infrastructures, we recognized a number
of different variations of the event-based style. These
variations have different impact on the structure, the
behavior, and the performance (in other words, on the
architecture) of applications. Therefore, these variations
need to be carefully analyzed and explicitly defined as part
or specialization of the event-based style, in order to be
exploited whenever the architecture of a system is defined.

In this paper we identify the event-based style variations
introduced by a number of event-based middleware
infrastructures and point out the advantages and drawbacks
of the different approaches as well as the open issues.

2. EVENT-BASED STYLE AND
MIDDLEWARE INFRASTRUCTURES
Figure 1 shows an operational and pragmatic description of
the event-based style. An architecture that realizes this style
is characterized by a connector called an event service. It is
in charge of dispatching event notifications. The

components can be classified into two categories: recipients
and objects of interest. Recipients declare their interest in
receiving event notifications by issuing a subscribe
operation offered by the event service. Objects of interests
notify the occurrence of an event by sending a publish
request to the event service. Alternatively, the event service
itself can poll objects of interests to know if some event has
been produced. A component can behave both as an object
of interest and a recipient of events. The event service
reacts to a publish request by forwarding the corresponding
event notification to all the recipients that have subscribed
to it. This high-level architectural style is being exploited
by most of the event-based infrastructures that have been
currently implemented. In the following we mention a few
of these that provide significant variations of the style.

CORBA defines the concept of channel, which is a
simplified version of an event service [3]. All the recipients
that are connected to a channel receive all the notifications
that are published by object of interests on that channel.

Smartsockets [7] proposes a more powerful approach in
which the event service can accept subscriptions for a
number of different subjects. Each notification is
characterized by its subject and a data part. A component
receives all the event notifications that belong to the
subjects to which it has subscribed. Therefore, the subject
defines a kind of virtual connector between objects of
interest and recipients. The same approach based on the
subject has been adopted by TIBCO for the development of
TIB/Rendezvous [8].

Event
notification

Component A
(recipient)

Component B

Component C
(object of interest)

Component E Component F
(recipient)

Event Service

Figure 1. Architecture of an event-based system.

Event channels and subjects are simple mechanisms for
connecting event receivers and objects of interest.
However, they are not very flexible. If, for instance, an
object of interest is interested in producing an event
notification on a number of subjects or channels, it has to
explicitly publish the notification on all of them.

An alternative approach is the one adopted by Elvin [[6]].
In Elvin, notifications are sets of named and typed data

elements. A subscription is a declarative boolean
expression over the components of event notifications. By
issuing a subscription, a component can declare its interest
in a number of notifications characterized by some common
property. Notice that this property is established by the
subscriber, and it is not hard-coded in any element of the
notification (as in Smatsockets) or in a channel (as in the
CORBA event service).

JEDI [1] provides a mechanism for event subscription
having a similar expressive power. In JEDI a notification is
defined by a name and by a number of parameters. For
instance, Alarm(PC1, HALTED) is a notification whose
name is Alarm and has two parameters whose values are
PC1 and HALTED. In JEDI, event receivers subscribe for
event patterns, which are expressions over the name and
parameters of a notification. So, for example, Alarm*(_,
_) would match all the notifications whose name starts
with Alarm and that have two parameters.

Yeast [2] is an event-action system. It observes event
sequences and reacts to their occurrence according to some
action specification. It is not an event-based infrastructure
per se, since its event service triggers actions relevant to
human beings rather than delivering notifications to other
software components. However, it encapsulates interesting
mechanisms for observing events. Differently from JEDI, in
Yeast an event pattern can be composed of a number of
event descriptors combined together using some logical and
temporal operators. For instance, the event pattern “file
foo mtime changed then in 10 minutes” is
matched 10 minutes after a change to file foo.

3. THE IMPACT OF MIDDLEWARE
INFRASTRUCTURES ON APPLICATION
ARCHITECTURES
We argue that the assumptions introduced at the
implementation level by event-based infrastructures have an
impact on the structure of the architectures implemented on
top of them, and therefore define new event-based
architectural sub-styles. In this section we briefly discuss
about the architectural implications of three important
aspects of middleware infrastructures:

• The mechanism that supports the selection of the
recipients to be notified of the occurrence of an event
(the subscription mechanism).

• The structure of notifications managed by the
middleware infrastructure.

• The scalability properties of the middleware
infrastructure.

3.1 Subscription mechanisms
The subscription mechanism influences the configuration of
architectures and the interaction among components. As an
example, suppose that we are building an application
composed of three classes of components, A, B, and C.

Also, suppose that they interact through an event-based
style and, in particular, that components of type A send two
types of events, one that is supposed to be received by
components of type B and the other that is received by
components of type C.

In this case, if we use the CORBA event-based approach,
the architecture of the system will reasonably contain two
event channels, one connecting components of type A with
components of type B, and the other connecting
components of type A with components of type C. Since
components of type B and components of type C will be
connected to different connectors, they will receive separate
sets of events. Components of type A will be in charge of
selecting the proper event channel depending on the type of
event it generates.

Conversely, by using Smartsockets, all the components will
be connected to the same connector, the RT Server, and the
dispatching of the events will not depend on the
configuration of the architecture, but on the content of
subscriptions.

3.2 Structure of notifications
The structure of notifications that are produced and
consumed by components has an impact on the
communication protocol established among them. For
instance, if notifications contain minimal information
related to an event, a recipient of an event would need to
engage in a complex interaction with the object of interest
in order to get additional information about the
circumstances in which the event occurred. As an example,
let us consider the case of a system for software deployment
in which one component, A, is in charge of notifying the
release of a new software product. Other components can
subscribe to this event notification and, upon receiving it,
can deploy the new software on the nodes where they are
running.

In the case where we adopt a flat structure for notifications,
the event notified by A can have the following appearance:

"Product A released on April 4th"

The components that receive this notification must parse it,
extract the information about the software being released,
and then engage some kind of communication with
component A to know how to download and install the
software.

The exploitation of an object-oriented notification structure
provides more support to event recipients in the
interpretation of the event semantics. In fact, if we adopt an
object-oriented model, A can generate a notification
containing the information on the released product plus a
method to download and install the product. Upon receiving
the notification, recipients can invoke this method to get the
product installed without being aware of the location of the
code or of the downloading and installation procedure.

3.3 Scalability properties
The internal architecture of the event service significantly
influences the performance of the architectures built on top
of it. Intuitively, it has to scale to accommodate a growing
number and distribution of components. If we assume that
the event service is implemented as a centralized element, it
can rapidly become a critical bottleneck as the number of
components it has to serve grows. This scenario becomes
even worse when components are distributed over a wide-
area network.

To solve this problem, in JEDI the event service itself is
built as a set of distributed components, the event servers,
organized in a hierarchy. Each event server manages the
communication among a set of components geographically
located in the same "neighborhood" and also connects them
to other remote components by forwarding messages to and
from other servers. In particular, subscriptions are stored
and forwarded upward in the hierarchy until they reach the
root server while notifications are sent to all the local
subscribers, to all the lower-level servers that have
forwarded a corresponding subscription, and then upward
in the hierarchy.

In JEDI the distribution of the event service is hidden to
components and does not have an impact on the functional
behavior of the system. In particular, the notification
delivery functionality of the event service is guaranteed
regardless of whether the objects of interest and recipients
are located closely to each other. This requires a consistent
amount of information to be exchanged among event
servers.

In the case in which recipients and objects of interest of the
same event are confined to the neighborhood managed by a
single event server, the performance of the whole system
could be even worse than in the centralized approach, since
messages would be unnecessarily propagated to the top of
the hierarchy. Thus, other propagation mechanisms for
subscriptions and publishing of notifications need to be
identified and evaluated. Also, the assumption that the
event servers are organized hierarchically should be
assessed against other alternative topologies.

4. CONCLUSION
We argue that the event-based style presents interesting
characteristics for the development of distributed, highly-
decoupled systems. Several infrastructures that support the
development of event-based applications have been
developed. Each of them makes specific assumptions on the
structure of notifications, on the mechanism that allows
components to declare their interest in some event, and on
the way scalability of architectures is supported. All these
assumptions have an impact on the final architecture of the
applications that are developed on top of these
infrastructures. Conversely, considerations concerning the
architectural structure of applications influence the choice
of the underlying event-based infrastructure. In this paper

we have briefly discussed these issues, pointing out the
advantages and drawbacks of each approach.

The evaluation we are currently carrying out results in a
more general consideration that we have begun to analyze
in more detail: middleware infrastructures (not necessarily
event-based) implicitly define architectural (sub)styles. The
knowledge of these styles can be profitably used when the
architecture of an application is defined. It is therefore
desirable to explicitly define them in terms of architectural
elements, so that they can provide guidelines to application
developers and can support the transition of an architecture
into an implementation on top of a selected infrastructure.

5. ACKNOWLEDGEMENTS
We thank Gianpaolo Cugola and Alfonso Fuggetta from
Politecnico di Milano for their important contribution to the
accomplishment of the work described in this paper.

This material is based upon work supported by the National
Science Foundation under Grant No. CCR-9701973. This
effort was also sponsored by the Air Force Office of
Scientific Research, Air Force Material Command, USAF,
under grant number F49620-98-1-0061. This work was also
supported in part by the Air Force Material Command,
Rome Laboratory, and the Advanced Research Projects
Agency under Contract Number F30602-94-C-0253. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the
Advanced Research Projects Agency, Rome Laboratory, the
Air Force Office of Scientific Research or the U.S.
Government.

REFERENCES

[1] G. Cugola, E. Di Nitto, and A. Fuggetta, “Exploiting an
Event-based Infrastructure to Develop Complex
Distributed Systems”, In Proceedings of the 20th
International Conference on Software Engineering,
Kyoto, Japan, April 1998.

[2] B. Krishnamurthy and D. S. Rosenblum, “Yeast: A
General Purpose Event-Action System”, IEEE
Transactions on Software Engineering, Vol. 21, No.
10, October 1995.

[3] Object Management Group, “CORBAservices:
Common Object Services Specification”, December
1997.

[4] D.S. Rosenblum and A.L. Wolf, “A Design Framework
for Internet-Scale Event Observation and Notification”,
In Proceedings of the 6th European Software
Engineering Conference (Joint with SIGSOFT '97,
Foundations of Software Engineering), Zurich,
Switzerland, September 1997.

[5] M. Shaw and P. Clements, “Toward Boxology:
Preliminary Classification of Architectural Styles”, In
Proceedings of the Second International Software
Architecture Workshop (ISAW-2), San Francisco (CA),
USA, October 1996.

[6] B. Segall and D. Arnold, “Elvin has left the building: A
publish/subscribe notification service with quencing”,
In Proceedings of AUUG97, September 1997.

[7] Talarian Corporation, “Mission Critical Interprocess
Communications - an Introduction to Smartsockets”,
white paper.

[8] TIBCO Corporation, “TIB/Rendezvous”, white paper.
http://www.rv.tibco.com/rvwhitepaper.html.

