
Archetype:

Addressing con�guration issues in Software Architectures

Sergio Bandinelli Antonio Carzaniga Giovanni Vigna

CEFRIEL

via Emanueli, 15 20126 Milano, Italia
e-mail: fbandinelli, carzan, vignag@mailer.cefreil.it

1 Motivation

Software Architecture is emerging as a major re-
search focus in the software engineering �eld [9, 5]. Is-
sues such as software architecture foundations, formal
languages for describing architectures, identi�cation
of architectural styles, tools supporting analysis of ar-
chitectures, etc., are currently receiving a great deal
of attention from both industry and academia [3, 6].

The concept of software architecture is not new.
Software designers have been working on architec-
tures for many years. A bunch of consolidated well-
engineered architectural solutions have already been
produced and are now being used in everyday practice.
Rather than inventing new solutions, research on soft-
ware architectures is thus concentrating on providing
a systematic organization of existing knowledge.

The increasing interest in software architectures is
also due to the fact that software developers are nowa-
days more frequently faced with the problem of as-
sembling existing \o�-the-shelf" components, instead
of programming new ones. As a consequence, over-
all feasibility and performance problems of a software
system depend primary on architectural design deci-
sions, rather than in �nding and applying intelligent,
e�cient, or \tricky" algorithms.

At the architectural level, software designers ab-
stract away from such systems aspects as functional-
ity, user-interface, etc., and concentrate on the overall
organization of the system, its components and their
relationships. At this level of description, we �nd that
con�guration aspects are of major importance in an
architectural description. In particular, an architec-
tural description should not only be concerned with
static connectivity issues, but should also include run-
time behavior modeling in terms of dynamic compo-
nent instantiations and con�guration statements.

2 Current work on architectural de-
scription languages

Recently, several new approaches to software archi-
tectures have been proposed.

The approach proposed in [7] uses the CHAM
(Chemical Abstract Machine) model, for the speci�-
cation of software architectures. The CHAM model
was originally introduced for representing concurrent
computations. Intuitively, the state of a system rep-
resented by a CHAM is given as a chemical solution
(represented by terms of an algebra) where the trans-
formation process is operationally de�ned by the ap-
plication of reactions (i.e., rules).

The CHAM approach to architecture description
takes advantage of the neutrality, naturality, and ex-
pressiveness of the CHAM model, and of the possibil-
ity to formally prove relevant properties of the mod-
eled architecture. The CHAM model is very 
exible,
but su�ers from the fact that the number of solution
molecules may grow considerably reducing the model
understandability.
Wright [1] was speci�cally designed for describing

software architectures. Wright distinguishes compo-
nent types and connector types from their instances.
Each component and connector instance corresponds
to an actual entity in the architecture. Instances may
be combined by attaching component instance ports
to connector instance roles.

Component and connector behaviors are de�ned as
interacting protocols using a simpli�ed version of CSP.
Wright introduces the concept of compatibility of a
port with a role and provides automatic support for
compatibility checking. This allows the software ar-
chitect to perform static checking on the architecture
description.

UniCon (language for Universal Connector Sup-
port) [11, 10] provides a pragmatic approach. One
of its main goals is to gain experience with the prac-



tical details of software architectures description. In
UniCon, components and connectors are de�ned by
providing an interface and an implementation.

The interface of a component includes a component
type and a list of features to characterize the com-
ponent, although they do not completely specify its
behavior. The implementation of a component may
provide directly the component's code or the descrip-
tion of the component in term of its parts. The parts
of a component are instantiations of other components
and connectors, appropriately linked to implement the
component functionality.

Conic[8] is a programming environment and a run-
time support for building, executing and managing
distributed systems. Many of its features are also suit-
able for describing software architectures. In particu-
lar, a Conic system is given as collection of intercon-
nected logical nodes. Each logical node (usually asso-
ciated with a machine) is composed of many several
modules organized in a hierarchical structure. A mod-
ule is a closed independent set of concurrent sequential
tasks. Conic provides two distinct languages: the pro-
gramming language (somehow similar to Ada) is used
to implement one single module. The con�guration

language provides primitives for creating modules and
group instances, connecting their ports to form bigger
groups and assigning groups to machines. The con�g-
uration language is used also interactively to manage
run-time con�guration, e.g., new logical nodes can be
created, they can be connected to other nodes, links
can be created and closed, etc.

Connectors in Conic are prede�ned, almost passive,
entities. Module implementation and con�guration
are separated. Any dynamic recon�guration of the
system is explicitly carried out by an external opera-
tor. Therefore it is di�cult to include the architectural
behavior (e.g., associate con�guration statements with
events) of a module within the module description.

In general, these approaches are mostly concerned
with providing a set of concepts and constructs, inte-
grated in an architectural description language. The
approach we describe in this paper, instead, empha-
sizes the con�guration aspects of architectures and fol-
lows a complementary strategy, by describing and an-
alyzing existing systems, without a particular concern
on language issues (at least in the short term).

3 Archetype approach

In Archetype, we describe architecture behavior as
a reactive system. The occurrence of an event causes

a reaction in the system architecture and the system
evolves from one state to another. From the architec-
tural point of view, the state of a system is character-
ized by the con�guration of component instances and
the existing connections among them. The behavior
of the system is thus described by the recon�guration
procedures associated with the occurrence of events.

The system architecture evolution is represented
as a series of \snapshots". Each snapshot represents
one con�guration of the system. The con�guration
changes as a consequence of an event occurrence. In
Archetype, we focus on the description of how the sys-
tem evolves from one con�guration state to another,
abstracting from the functional semantics of architec-
tural entities (which may be modeled usingWright).
We are interested in describing the dynamics of sys-
tem startup and shutdown procedures, what are the
events that may generate new component instances,
how hardware resources are allocated for the execution
of software components, etc. For example, in a dis-
tributed system, the \connection request" event may
imply that one process is forked and a new connection
channel is established with the requester.

The ultimate goal in Archetype is to gain experi-
ence and understanding of the useful primitive con-
cepts to describe the dynamic con�guration aspects of
software architectures.

The description of a software architecture requires
the use of a formal language. We require this language
to be executable and to provide some data abstraction
facilities. Since at the moment we do not want to
focus on language issues, we believe that any object-
oriented language (such as C++, Ei�el, or O2C) would
be acceptable for our purposes1.

As a result of modeling software architectures, we
obtain an executable description, which may be used
for di�erent purposes:

� Documentation. The architecture model con-
stitutes a formal documentation of the behavioral
aspects of the system. This documentation cen-
tralizes precious information about the overall or-
ganization of a system that otherwise often re-
mains hidden in the system code and fragmented
in di�erent components.

� Simulation. A clear advantage of using a pro-
gramming language is that the obtained archi-
tecture module is directly executable. Thus, it
is possible to perform simple simulations of the

1Actually, since these are sequential programming languages,

concurrent events are necessarily sequentialized by interleaving

them explicitly.



architecture behavior, gaining the complete pic-
ture of how components are connected in a run-
time dynamic scenario. The architecture may be
validated by performing what-if analysis and by
getting some understanding of non functional ar-
chitectural properties, such as performance, and
evolvability of the architecture. In other words,
the modeler is able to play with an architectural
de�nition. For example, one may introduce a de-
lay in a method execution, representing the actual
time a process takes in coming up and reason on
that basis.

� Prototyping. The architectural model can be
coded directly in the target system programming
language to obtain a prototype of the system.
This prototype may contain only the architectural
skeleton emptied from the functional parts. This
is similar to what is done for user interfaces when
a system mockup is developed, based only on the
user interface without bothering about other as-
pects of the system. The architecture skeleton
gives real feedback on feasibility and performance
issues in the early phases of development.

� Guide for implementation. The architecture
model can also serve as a guide for the imple-
menting of the whole system. Such guide could
be useful in avoiding loosing track of architectural
aspects in the code.

4 Preliminary experience and conclu-
sions

As a �rst experience we started with the model-
ing of a software-engineering environment, which in-
volves the interaction of several user, using indepen-
dent tools, allocated in di�erent machines. The mod-
eled system is SPADE[2], since we know it very well
(we have participated in its development). To code
the model, we used O2C (an object-oriented exten-
sion of C, supported by the O2 [4] data base system)
because we are used to it and because it provides some
ready-to-use display facilities.

The formalization of the architectural description
includes a data model of the architecture. For each
identi�ed architecture entity we have de�ned a class.
Objects of these classes are dynamically instantiated
and linked. In general, each public method of a class
represents one possible event involving an architecture
component of that class. When the event occurs the
action is triggered and this may involve changes in the

component state, the creation of new components or
links, the deallocation of old ones, recon�gurations,
etc.

The obtained O2C program can be executed to sim-
ulate the system. Events are read from a �le or gen-
erated interactively to drive the model evolution. The
system state can be inspected at any time during sim-
ulation. In addition, a user-con�gurable graphical rep-
resentation is provided, using the O2 built-in graphical
user interface.

To give a 
avor of the approach, we provide in Fig-
ure 1 an extremely simpli�ed version of SPADE ar-
chitecture. In state 1, only tool A is connected to
the SCI (Spade Communication Interface). The event
RunTool B causes the system to evolve into state 2.
The architectural behavior, associated with the event,
is speci�ed by the following code:

B = new Tool; /* new element creation */

P = new SCIPort;

C = new SCIConnection;

B.SCIlink = C;/* link configuration */

C.tool = B; /* among new elements */

P.Out = C;

C.SCI = P;

/* link to an existing element (SCI) */

SCI.toolports += list(P);

We assume that Tool, SCIPort, and SCIConnection

are classes that model tools, SCI ports, and connec-
tions, respectively. Moreover, SCI is an instance of the
class SCIModule representing the SCI. The elements
instances that are created with the new statements are
connected through the assignments of their attributes,
e.g., tool B is linked to the new connection (C) through
its SCIlink port by the assignment:

B.SCIlink = C;

The link is then completed by stating that B is con-
nected as a tool to C by the instruction:

C.tool = B;

The other three statements connect the channel C to
the new port P and add P to the SCI port list.

Acknowledgements

We are grateful to Francesco Tisato for clarifying
discussions and to Luigi Lavazza for his comments on
an earlier version of this paper.



A

SCI

state 1

RunTool B

Process server

A B

SCI

state 2

Process server

Figure 1: Example of architecture dynamic behavior.

References

[1] Robert Allen and David Garlan. Formalizing ar-
chitectural connection. In Proceedings of the 16th
International Conference on Software Engineer-

ing, Sorrento (Italy), May 1994.

[2] Sergio C. Bandinelli, Marco Braga, Alfonso
Fuggetta, and Luigi Lavazza. The Architecture
of the SPADE-1 Process-Centered SEE. In Third

European Workshop on Software Process Tech-

nology, Grenoble, France, February 1994.

[3] Barry Boehm. Software Architectures: Critical
Success Factors and Cost Drivers. In Proceedings

of the 16th International Conference on Software

Engineering, Sorrento (Italy), May 1994.

[4] O. Deux. The O2 System. Communications of

the ACM, 34(10), October 1991.

[5] David Garlan and Mary Shaw. An introduction
to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software En-

gineering and Knowledge Engineering, volume I.
World Scienti�c Publishing Company, 1993.

[6] David Garlan, Mary Shaw, Chris Okasaki, Curtis
Scott, and Roy Swonger. Experince with a Course
on Architectures for Software Systems. In SEI

Conference on Software Engineering Education,
October 1992.

[7] Paola Inverardi and Alexander L. Wolf. Formal
speci�cation and analysis of software architec-
tures using the chemical abstract machine model.
To appear on TSE, 1995.

[8] Je� Magee, Je� Kramer, and Morris Sloman.
Constructing Distributed System in Conic. IEEE

Transactions on Software Engineering, 6(15),
June 1989.

[9] Dewayne E. Perry and Alexander L. Wolf. Foun-
dations for the study of software architecture.
SIGSOFT Software Engineering Notes, 17(4):40{
52, October 1992.

[10] Mary Shaw. Procedure Calls are the Assembly
Language of Software Interconnection: Connec-
tors Deserve First-Class Status. In Proceedings

of the Workshop on Studies of Software Design,
May 1993.

[11] Mary Shaw, Robert DeLine, Daniel Klein,
Theodore Ross, David Young, and Gregory Ze-
lesnik. Abstractions fro Software Architec-
ture and Tools to Support Them. Unpub-
lished manuscript, Computer Science Depart-
ment, Carnegie Mellon University, February
1994.


