
Design and Implementation of a
Distributed Versioning System

Antonio Carzaniga

October 13, 1998

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano, Italy

Technical Report n. 98-88

DVS is a simple versioning system that adopts a check-in/check-out policy
with exclusive locks much like the one implemented by RCS. In addition to the
basic functionalities of RCS, DVS provides extensions in two main directions:
distribution of artifacts and versioning of collections of artifacts.

DVS has been implemented on top of NUCM 2, a generic distributed plat-
form aimed at providing a policy-neutral programmable interface for realiz-
ing configuration management systems. NUCM provides support for storing
artifacts and collections of artifacts and their attributes in a set of distributed
servers. DVS implements the locking policy and all the related higher level ser-
vices including check-in and check-out of single artifacts as well as collections,
managing locks, change logs, and recursive check-in and check-out.

This paper describes the main design principles underlying DVS and
NUCM together with the basics issues regarding their implementation. DVS
has been used and is currently being used for collaborative authoring involv-
ing several authors distributed over five different sites on the Internet. We also
discuss this first experience and the feedback and validation for both DVS and
NUCM.



1 Introduction

DVS (pronounced devious) is a simple distributed versioning system that allows to
store and retrieve versioned artifacts as well as collections of artifacts. Changes
to artifacts or to collections are controlled with a strict locking policy. DVS is
inspired to RCS [32] in that it is meant to have the same straightforward set of
operations and the same change management policy (with locking). But at the
same time, DVS has been designed to cover two major shortcomings of RCS.

The first contribution is an extension of the data model to support the ver-
sioning of collections of artifacts. In DVS, a collection is simply a set of versions
of other artifacts, i.e., files or other collections. A collection can represent a par-
ticular view or configuration of a set of documents, for example, a program that
is composed of many source files can be represented by a collection. Each ver-
sion of the collection could correspond to a different version of the system by
referring to the appropriate set of versions of the component files. Also, since
a collection can recursively contain other collections, any kind of break-down
structure of documents can be represented. In general, collections can be used
to denote any kind of relations between artifacts. DVS has been designed so
that the basic versioning operations can be applied exactly in the same way to
collections as well as files.

The second extension provided by DVS is the ability to distribute the stor-
age of artifact over the network. Much like RCS, DVS is based on a concept
of repository (the RCSdirectory in RCS) and workspace (the current working di-
rectory). The repository is the logical storage area for all the managed artifacts
while the workspace is a per-user working area. Users that want to collabo-
rate and share data, can access the repository with the check-out and check-in
operations. As a consequence of these operations, artifacts are copied from the
repository to the user’s workspace and vice-versa. In DVS, each artifact can
be stored in a different physical repository, each one located anywhere on the
Internet. Accessing the different repositories is transparent to the user. A clear
advantage of this approach is that users don’t need to share a file system to
cooperate with DVS. Also, distant users that intend to collaborate by sharing
artifacts can set up the repositories so that artifacts are stored in a local reposi-
tory that is close to authors that access them more frequently.

DVS has been implemented on top of NUCM 2, a generic distributed plat-
form aimed at providing a policy-neutral programmable interface for realizing
configuration management (CM) systems. NUCM provides support for stor-
ing artifacts and collections and their attributes in a set of distributed servers.
DVS inherits from NUCM its data model, i.e., the artifacts and collections struc-
ture, the linear versioning schema, and the naming schema. Using these basic
building blocks, DVS implements the locking policy and all the related higher
level services including check-in and check-out of single artifacts as well as
collections, locks management, change logs, recursive check-in and check-out,
and sync. NUCM and DVS are strongly related, thus, this paper also presents
a description of the most important design and implementation features of
NUCM, in particular, a NUCM generic CM file system abstraction is presented
together with the NUCM application programming interface.

Another important motivation for designing and developing DVS has been
the need for a validation of the suitability and usability of the NUCM interface.
In the same direction of experimenting and validating, it is worth mentioning

1



that DVS has been effectively used in some real collaborative authoring ef-
forts involving several users distributed among various sites across the United
States. Both the design of DVS and its use, have provided useful comments,
usage patterns, desired features, and critiques for the NUCM infrastructure.
Here we discuss the lessons we learned in this process.

This paper is laid out as follows: Section 2 surveys a number of related sys-
tems that attack the problem of distributed configuration management, Sec-
tion 3 describes the data model and functionalities of DVS, Section 4 presents
the NUCM file system abstraction and gives an overview of the NUCM archi-
tecture and programmatic interface, Section 5 presents in short the functionali-
ties of DVS, Section 6 then evaluates and critiques DVS and NUCM providing
some guidelines for future developments, and Section 7 summarizes this work
and draws some conclusions. In Appendix A, each DVS functionality is pre-
sented in details in the form of a user manual.

2 Related Work in Distributed CM

Distribution is a relatively new feature in CM systems. In fact, many commer-
cial and research systems, such as CCC/Harvest [28], EPOS [23], JavaSafe [18],
NSE [10], Sablime [4], ShapeTools [19], SourceSafe [20], TrueChange [29], and
VOODOO [27], do not yet provide any real support for distribution. Those
systems that do, appear to suffer from one or more of the following significant
problems.

1. Distribution is grafted onto an existing, non-distributed architecture. Typi-
cally, the CM system is augmented with a simple client/server interface.
Such solutions, while straightforward to implement, often exhibit scaling
problems, such as a performance bottleneck at the server repository.

2. Users of the CM system must be aware of the distribution. In fact, users
are typically given primary responsibility for keeping artifacts consistent
across sites.

3. Coarse granularity of distributed artifacts. This means that only big pieces of
the repository can be distributed. In the extreme case of a centralized ar-
chitecture, only the repository as a whole can be distributed. This inhibits
flexibility both in how artifacts are distributed and in what CM policies
can be employed.

Below we describe the distribution aspects of several prominent and represen-
tative CM systems, illustrating these problems in more detail.

Distributed RCS Distributed RCS (DRCS) [25] is an extension of the pop-
ular RCS system [32]. All artifacts, including the individual versions of a
file, the version tree, and the descriptive file attributes, are stored in a central
repository. Distribution is achieved by establishing a client/server relationship
among remote RCS clients and the central repository. Thus, distribution can be
hidden from users, since they use the standard RCS interface; this interface is
simply re-implemented to work as a remote client that consults the repository
each time it performs a CM operation on an artifact.

2



Distributed CVS Distributed CVS (DCVS) [14] is an extension of the CVS
system [5], a variant of RCS designed to better handle configurations of whole
systems. Similar to DRCS, DCVS employs the notion of a central repository
to which remote CVS clients connect. As opposed to transporting files, DCVS
transports entire configurations to a remote user workspace. A user can then
make changes to the artifacts in the workspace. To commit the changes, the
configuration is sent back to the central repository. Once there, the modified
artifacts are merged with other changes that may have been made concurrently
in other user workspaces.

Adele Adele [9] has been enhanced for distribution through a tool called Mis-
tral [12]. Mistral helps a user manage the replication of an Adele database.
Using Mistral, an Adele user at one site assembles a database delta, which
compactly represents the changes made to artifacts at that site, and ships the
delta to users at other sites. A user that receives a delta is responsible for inte-
grating the delta into the database at their site (again using Mistral). Clearly,
transporting deltas, rather than artifacts, can significantly reduce communica-
tion overhead. But, the Adele/Mistral solution still has problems in serving
as a solution to distributed CM. First, users are responsible for assembling,
shipping, and merging database deltas to keep replicas synchronized. Without
strict procedures, this can quickly lead to inconsistent databases. Secondly, the
task of merging artifact relationships and attributes is an error-prone activity.
In Mistral, a simple heuristic is employed: add whatever does not exist. This
is not always the best choice in a CM setting, and users must be aware of this
(implicit) merging behavior.

ClearCase MultiSite The ClearCase system [2] has recently been extended
with MultiSite [1], an optional product for distributed CM. Rather than having
a single, central repository, MultiSite replicates the repository at remote sites.
The replicas are instrumented in such a way that development at each site is
performed on a different branch of a global version tree. To represent devel-
opment at other sites, each site has branches in its repository containing the
versions of the artifacts at the other sites. Periodically, updates made at one
site are propagated to the surrogate branches at the other sites. Thus, at any
given point in time, an individual site will have multiple versions of the same
artifact, but only one of the versions can be modified at that site. Therefore,
unlike DRCS and DCVS, MultiSite is not restricted to a single administrative
site, which makes it better suited for use in a wide-area setting. Nevertheless,
there is a conceptual cost to the user, which is the forced creation of extraneous
branches in the version tree to represent multiple sites. These branches, which
have more to do with project structure than configuration management, must
eventually be merged by the users themselves into a single baseline version.
This can be a serious burden, especially if the attributes and relationships on
the artifacts have changed as well.

Gradient Similar to ClearCase, Gradient [3] is a CM system that is based on
replication. But, unlike ClearCase, replication in Gradient is automatic and
continuous. Each update that is made to an artifact is broadcasted instantly as
a delta to all replicas. Because Gradient only allows incremental modifications

3



to the artifacts it manages, and furthermore assumes that modifications are in-
dependent of each other, it permits simultaneous updates to a single artifact at
multiple sites. All of the updates are added to each replicated archive, but only
one of the updates is included in the latest version of the artifact. The other
updates are simply stored as implicit branches. Unfortunately, users are not
notified about such incidents, which can cause serious problems with seem-
ingly lost updates. Distributed Source Control System (DSCS) [21] provides a
notification mechanism to alleviate this problem, but the task of manually re-
solving conflicts remains. Moreover, both Gradient and DSCS operate on single
files, and it is unclear how either one scales to handle coordinated changes to
configurations of files.

WWCM WWCM [15] is one of many CM systems that use the World Wide
Web to achieve distribution. An applet that is loaded into a Web browser im-
plements the client interface of WWCM, while a specialized server maintains
the repository with artifacts. Although platform independence, ubiquitous ac-
cess, and ease of use are certainly important benefits of this type of solution,
WWCM still does not scale to provide wide-area distribution.

Other Systems A number of other systems exist that provide distributed ca-
pabilities via mechanisms that are similar to the ones employed by the systems
listed above. Several of these systems are based on replication across sites.
In particular, Continuus has been enhanced with a feature called DCM [7, 8],
PVCS has an optional extension named SiteSync [16], and NeumaCM+ incor-
porates a feature called MultiSite [24]. All of these systems suffer from the
same drawbacks as ClearCase MultiSite. Users are responsible for maintaining
the distribution, having to explicitly synchronize repositories by merging up-
dates from several sites into a new master copy and subsequently distributing
the new master copy to all replicas. If the frequency with which repositories
are synchronized is low, merging becomes a real problem, whereas if the fre-
quency is high, the efforts of distributing new master copies and synchronizing
the repositories becomes rather large. In either case, users are closely involved
in the process of managing the distribution of artifacts among sites.

Besides WWCM, several other CM systems have adopted the World Wide
Web as their medium for distribution. In particular, MKS Source Integrity [22]
and StarTeam [31] have created Web interfaces to their respective CM systems.
In addition, PVCS [17] and NeumaCM+ [24] have created Web interfaces that
can be used as an alternative to their replicated repositories.

Two other systems deserve mention. The first, PCMS [30], leverages its
workspace synchronization routines to achieve distribution. In essence, this so-
lution is similar to the solution provided by DCVS. The only difference is that
PCMS allows for a multi-level hierarchy of distributed workspaces, whereas
DCVS allows only one level. The problems remain the same though, since
all changes eventually have to be committed to the main workspace. The sec-
ond system, Perforce [26], employs a client-server distribution mechanism sim-
ilar to DRCS. Although its communication mechanism has been optimized for
wide-area networks through the use of compression and deltas, Perforce still
suffers from the same problems as DRCS. Because a single server is used, a
dependency is created on the server site—not only on its reachability, but also

4



on its performance.

3 Data Model and Basic Functionalities

3.1 DVS/NUCM Data Model

DVS manages distributed versioned artifacts. An artifact is either an atom, or
a collection. Atoms are arbitrary blocks of data, they are black-box objects in
the sense that they have no visible structure for DVS. Typical atoms include
source files or sections of a document as well as libraries or executables. A
collection is a set of references to other atoms or collections. Each reference
points to a specific version of an artifact and has a name that is unique within
the collection. Typically, collections are used to model projects, components of
a project, entire documents or entire systems.

As suggested here, an artifact, either an atom or a collection, can have mul-
tiple versions. Within an artifact, each version is identified by a unique version
tag.

References in collections are a very flexible structuring mechanism that al-
low to express several different kinds of relations among artifacts. One partic-
ular version of an artifact can be referenced in more than one collection, possi-
bly with different names. Any two not necessarily distinct versions of the same
artifact can be referenced in the same collection, provided the two references
have two distinct names.

In general, we can use a simple graphical notation to model atoms, collec-
tions, and references. The data model is represented as a directed graph in
which references are depicted as arcs starting from the collection they belong
to and pointing to the referenced artifact. Arcs are labelled with the name of
the reference. Collections are nodes that accept both incoming and outgoing
arcs while atoms are leaf nodes, i.e., nodes that have no outgoing arcs. In this
notation, any acyclic graph represents a valid DVS data model.

1
2

dvs.hmain.c

1

1

DVS

Figure 1: Example: a very simple DVS/NUCM data model

Figure 1 and Figure 2 displays a couple of simple examples of DVS data
model. In the diagrams, collections and atoms are rectangles with round and
sharp angles respectively. In Figure 1, a collection referenced as DVScontains
two atoms referenced as main.c and dvs.h respectively. In particular, ver-
sion 1 of DVS refers to version 2 of main.c and version 1 of dvs.h . This

5



1 1

1 1

2 2

1

2

1

2

dvs.1 dvs.html

docsdvs.hmain.c

3

DVS

Figure 2: Example: a simple DVS/NUCM data model with sub-collections

data model might evolve into the one depicted in Figure 2 where version 2
of the DVScollection contains the same reference to main.c version 2 and an
updated reference to version 2 of dvs.h . In addition to these two, the collec-
tion also refers to another collection named docs containing two other atoms
named dvs.1 and dvs.html respectively.

As we have seen, references in collections form breakdown structures of ar-
tifacts in which atoms are the leaves. The starting points for these structures are
NUCM root collections that can be accessed directly by means of their location.

We also pointed out that an artifact can be referenced by more than one
collection. The examples rendered in Figure 3 show some of these situations.
In sub-figure (a), a collection, corresponding to the DVS source tree refers to
an artifact named nucm.h that is also contained in another collection corre-
sponding to the NUCM source tree. In sub-figure (b) a similar scenario shows
the documentation collections of DVS and NUCM. These collections share an
artifact that is referenced as nucm.html in DVS documentation and as in-
dex.html in NUCM documentation. Finally, sub-figure (c) shows an artifact
that is reachable from two collections under the same sub-tree.

Note that in some of the models in figures 1 and 1 there might be other
references that are not explicitly depicted. For example, the model in Figure 2,
being an evolution of the one in Figure 1, should also show the references of
version 1 of the DVScollection.

3.2 Repository and Workspace

DVS operates according to a classical client-server schema. It defines two log-
ical environments: the repository and the workspace (see Figure 4). The reposi-
tory is the storage area for artifacts while the workspace is the working area in
which artifacts can be manipulated by users. The repository is composed of a
set of NUCM physical repositories (servers), possibly distributed over the Inter-
net. Workspaces represent the client side and are usually created on a per-user

6



(a)

1 11 1

1 8

22 22

nucm.cnucm.h
nucm.hdvs.hmain.c

2 9

3 3

DVS NUCM

(b)

11 1

1 1

2
3

2 2

2

index.html
servers.htmlnucm.htmlindex.html

NUCM-HTMLDVS-HTML

(c)

1

1 1

1 1

1

22

2

2

dvs.h dvs.1
dvs.html

docsdvs.hmain.c

3

DVS

Figure 3: Example: DVS/NUCM data models that share artifacts

7



basis.

Logical Repository

WorkspaceWorkspace

DVS operations

Figure 4: DVS client-server architecture

All the DVS operations involve some interaction with the repository (e.g.,
printing the log information), with the workspace (e.g., listing the members of
an open collection), or between the workspace and the repository (e.g., locking
or checking in or checking out an artifact). The workspace is also the environ-
ment in which artifacts are used and possibly changed by other tools.

DVS, like most configuration management systems, is most often used to
store artifacts that normally reside in a file system and that are accessed by
several “external” tools that are not aware of the CM system. Therefore, rather
than exporting some kind of programmatic interface for the workspace, DVS
adopts an unobtrusive access model by making artifacts available via the na-
tive file system. The workspace is thus a directory in the file system of the user.
In the workspace, collections are materialized as directories, while atoms are
represented as files. Artifacts are materialized with their reference name, i.e.,
the name of the reference used in the collection through which they are refer-
enced. For example, Figure 5 shows a data model and its materialization in the
workspace.

As you can see in the example of Figure 5, version tags are not explicitly
reflected in the workspace. This is because in general, it is not desirable to
have different file names for different versions of an artifacts, but also because
version tags are redundant since DVS allows only one version of an artifact to
be present in the workspace at the same time.

A workspace is not necessarily restricted to contain just DVS artifacts. The
use of typesetting programs, compilers, and other tools that create auxiliary
files is facilitated by allowing these transient files to coexist in a workspace.

3.3 DVS/NUCM Distribution Model

A NUCM repository is a set of NUCM servers possibly running on different
sites over the Internet. By distribution model, we identify the mapping be-
tween artifacts in the logical data model and the artifacts as they are stored in
the physical repository.

DVS provides for distribution mechanisms at the level of one single arti-
facts. This means that every DVS artifact is stored in one of these distributed
servers. Once an artifact has been created and referenced within one or more
collections, it can be accessed transparently by any user irrespectively of the
user’s location or the physical location of the collection that refers to it. To

8



1

1

1 1

1

22

2

2

docsdvs.hmain.c

3 include.txt dvs.html

DVS/main.c
DVS/dvs.h
DVS/docs/include.txt
DVS/docs/dvs.html

Figure 5: Materialization of the data model in the workspace

this extent, collections not only maintain the names of the artifacts that they
contain, they also track their physical locations.

Access to artifacts that reside at remote repositories is transparent to a user.
All the functionality provided by DVS for local use is available in the remote
case. Whenever necessary, a NUCM repository uses these locations to automat-
ically fetch the remote artifacts in case they are requested by a client, without
that client having to be involved in managing the distribution. More details on
the processes implemented by NUCM and DVS in accessing remote artifacts
are given in Section 4.4. Currently, neither NUCM nor DVS do not implement
any caching or pre-fetching policy, thus, network delays and unreachability of
servers always remain visible to a user.

4 A Network Unified CM File System

NUCM [35] (Network Unified Configuration Management) is a distributed
repository that implements primitive services for configuration management
systems. NUCM provides a file repository especially geared towards the im-
plementation of configuration management systems. The main idea of NUCM
is to provide a distributed, versioned file system with links and attributes. With its
data model and its repository facilities, NUCM constitutes the platform that
supports DVS.

Note that, although conceptually NUCM provides a file system abstraction,
its implementation as it currently stands does not have a real operating system
(virtual file system) interface, but instead it exports a user-level API. The bulk
of this section illustrates the features of NUCM in the framework of a file sys-
tem while Section 4.6 presents the actual API functions. In the following the
NUCM/DVS workspace can be thought of as the NUCM file system.

9



4.1 Paths

A DVS artifact can be identified by means of a NUCM path. A path is an exten-
sion of usual file system paths that can also incorporate:

� a starting NUCM root collection with a NUCM server address;

� version tags for artifacts; and

� an attribute for the target artifact

If we consider the NUCM services from the viewpoint of its “file system” ab-
straction, then all its functionalities can be accessed by some form of encoding
of paths.

hpathi := [hserveri]hartifact-pathi
hserveri := // hhostnamei[: hportnumberi]/

hartifact-pathi := hartifacti(/ hartifacti)*
hartifacti := (hidi[hversioni][hattributei])+

hidi := hascii-charsi � f/ ˆ : g
hversioni := : [hidi]

hattributei := ˆ [hidi]

Table 1: Form of DVS/NUCM paths

Table 1 shows the syntax of NUCM paths (with the usual convention that
symbols enclosed in square brackets [] are optional). Table 2 instead shows
some examples. In the following sections we will comment these examples
and we will explain the process that NUCM uses to interpret a path to fetch
the appropriate resource. In doing this, we will highlight the main features of
the NUCM file system: distribution, versioning, and attributes.

1.foo.c
2.foo.c:3.1
3.inc/bar.h:1.0ˆauthor
4.inc:1.2/bar.h
5.test.c:
6.inc:4b/new.h:ˆlockedby
7.//host.xyz.edu:1234/nucm˙root
8.//machine.hjk.com/nucm˙root:4/main.tex

Table 2: Examples of DVS/NUCM paths

Paths that do not refer to a NUCM server explicitly, e.g., foo.c , correspond
to files in the local file system that are workspace images of NUCM artifacts.
In NUCM the starting point in the local file system must be explicitly included
in the access functions. DVS instead implicitly uses the current working direc-
tory. Thus, the path foo.c will refer to the file foo.c in the current working
directory and to the NUCM artifact to which that file is associated.

As we pointed out, NUCM collections are mapped onto directories in the
NUCM file system. Every directory contains a reference to itself named ‘. ’

10



similarly to usual file systems. However, unlike other file systems for which the
parent directory is univocally determines, in NUCM there is no ‘.. ’ reference
for the parent directory simply because such a unique mapping doesn’t exist.

4.2 Versioning

NUCM artifact can exist in several different versions. Each version can be se-
lected by appending a colon character followed by the version tag to the arti-
fact name. So, for example, a path of the form foo.c:3.1 refers to version
‘3.1 ’ of artifact ‘foo.c ’. It should be noted that NUCM doesn’t impose any
versioning schema, therefore version tags are generic identifiers that have no
special semantics. This implies that NUCM would by no means relate artifact
foo.c:3.1 to, say, artifact foo.c:3.2 . For the same reason, a version tag
must be explicitly provided by the user in opening new versions. Version tags
are not at all limited to numeric expressions, for example, foo.c:2.8b and
foo.c:XY are paths containing valid version tags.

If no version tag is specified for an artifact, then NUCM selects the version
that is referenced by the collection used to refer to that artifact. This collection is
either explicitly derived from the path or it is provided to NUCM as a “context”
parameter. DVS uses by default the collection corresponding to the current
working directory. So, for example, inc:1.2/bar.h refers to the version of
bar.h that is referenced in version 1.2 of collection inc .

An empty version identifier can be used to access the set of all the versions
of an artifact in the form of a directory. Thus, for example, the path bar.h:
refers to a directory containing one entry for each version of the artifact bar.h .
Note that, as a consequence of this syntax, in the NUCM file system, the path
foo.c:/3.1 is a valid path referring to version 3.1 of artifact foo.c .

4.3 Attributes

An attribute is an arbitrary block of data associated with an artifact. Attributes
have names just like artifacts and versions. The NUCM file system provides
both version attributes that are associated with specific versions of artifacts,
and artifact attributes associated to the entire artifact.1 The file system interface
grants access to an attribute in the form of a file. The path for an attribute is ob-
tained by appending a caret sign (‘ˆ ’) followed by the attribute identifier to the
artifact path. These rules for the identification of attributes are orthogonal to
the ones that determine versions, described in the previous section. In particu-
lar, if no version tag is specified, the attribute will always be a version attribute
of the “current” version. Instead, accessing an artifact attribute is equivalent
to accessing an attribute of the directory representing the whole artifact, thus,
the path foo.c:ˆdesigner refers to the a file containing the artifact attribute
designer of foo.c .

Similarly to what we do for the encoding of versions, we can use a null at-
tribute id to access a list of all the existing attributes in the form of a directory.
Every entry of this directory is a file representing an attribute and named with
the attribute id. So, for example, if the current version of foo.c has the two
attributes author , and accesslist , then foo.cˆ is a directory containing

1The current implementation of NUCM has only version attributes.

11



two files named author , and accesslist respectively. This works for ver-
sion attributes, but similarly, foo.c:ˆ denotes another directory containing
one file entry for each artifact attribute.

4.4 Distribution

The procedure used by NUCM to interpret paths is conceptually very simi-
lar to the one implemented by UNIX operating systems in interpreting usual
file system paths. Clearly, in addition to the usual directory traversal routine,
NUCM must handle versions and attributes. However, this procedure is of
special interest because it is tightly related to the way artifacts are distributed
across the network.

As we have seen, NUCM allows every artifact, either atom or collection, to
be stored at a different site. All the versions of an artifact are stored together.
Figure 6 shows a data model together with the physical location of each artifact.

1 1

1 1

1

1
2 2

1

2

2

dvs.1 dvs.html

docsdvs.hmain.c

3

DVS

ipese0.elet.polimi.it

serl.cs.colorado.edu

etoile.ics.uci.edu

Figure 6: Distribution of artifacts

Of course, the mapping can be established by the user. In fact, artifact are
initially stored at one particular site specified by the user’s default server when
they are created and they can also be moved using specific NUCM primitives.

Anyhow, in fetching an artifact, NUCM must perform a collection traversal
search that may span multiple sites. To do this, NUCM implements an internal
interface function, i.e., a function that is not directly exported to the user-level
API, that interprets a path locally as far as it can and returns either the final
destination or a pointer to the next site and the residual path that remains to be
interpreted. The client issuing the request calls this function that iterates until
the final destination is reached.

12



As an example, consider the path:
//ipese0.elet.polimi.it/DVS:2/docs/dvs.html:1
A client that wants to access that artifact starts off by connecting
to the NUCM server on ipese0.elet.polimi.it requesting path
//DVS:2/docs/dvs.html:1 . The server on ipese0 replies that it can not
fulfill the request completely and provides the physical address of the first un-
known artifact and the unresolved path. The physical address of an artifact
is composed by three pieces of information: a server address (IP address and
port number), a physical artifact id that is conceptually similar to the i-node of
a file, and its version id that is taken verbatim from the path. Thus, in this case,
the client will receive a reply containing of a partial resolution of the path:

server = serl.cs.colorado.edu:1234
artifact = 492:2

residual-path = docs/dvs.html:1

At this point the client function iterates sending a second request to the
server running on serl.cs.colorado.edu providing artifact number 492
version 2 as a starting point and docs/dvs.html:1 to be interpreted. The
server reads artifact 492 version 2, a collection, resolves the reference to artifact
docs locally and finds a non local reference corresponding to dvs.html:1 .
That reference is returned to the client in this form:

server = etoile.ics.uci.edu:1234
artifact = 239:1

residual-path = null

Finally, the client can directly access artifact 239 version 1 stored on server
etoile.ics.uci.edu .

4.5 Benefits of the file system approach

The model of a CM specific extension of a file system has the obvious advantage
of inheriting all the nice properties of file systems incorporating them in an
orthogonal and elegant manner with its CM specific features. Although we
will not go into details on how to program a NUCM-based CM system, we
will mention here a couple of examples that highlight the composition of file-
system and CM features of NUCM.

As an example, we can consider the change control policy with strict locks
on artifacts that is adopted by DVS. This policy is implemented in DVS in its
two commands: check out (for modifications) and check in. Their implementa-
tion in pseudo code looks like this:2

check out :

dvs_checkout_lock(string artifact) {
int lockby_fd, artifact_fd;
string who_locks;

lockby_fd = open(artifact + "ˆlockedby", O_CREAT | O_RDWR);
flock(lockby_fd, LOCK_EX);

2Proper error handling is omitted.

13



who_locks = readline(lockby_fd);
if (who_locks == "") {

writeline(lockby_fd, current_user());
}
else if (who_locks != current_user()) {

error(artifact + " is already locked by " + who_locks);
flock(lockby_fd, UNLOCK);
close(lockby_fd);
return ALREADY_LOCKED;

}
artifact_fd = open(artifact, O_RDWR);
/* ... */
close(artifact_fd);
flock(lockby_fd, UNLOCK);
close(lockby_fd);

}

check in :

dvs_checkin_unlock(string artifact) {
int lockby_fd, artifact_fd;
string who_locks;

lockby_fd = open(artifact + "ˆlockedby", O_CREAT | O_RDWR);
flock(lockby_fd, LOCK_EX);
who_locks = readline(lockby_fd);
if (who_locks == "") {

error("You must set a lock for "+ artifact + " first");
flock(lockby_fd, UNLOCK);
close(lockby_fd);
return NOT_LOCKED;

}
else if (who_locks != current_user()) {

error(artifact + " is locked by " + who_locks);
flock(lockby_fd, UNLOCK);
close(lockby_fd);
return ALREADY_LOCKED;

}
artifact_fd = open(artifact, O_RDWR);
/* ... copy contents ... */
close(artifact_fd);
writeline(lockby_fd, current_user());
flock(lockby_fd, UNLOCK);
close(lockby_fd);

}

Another example is the versioning schema. DVS uses a simple linear ver-
sioning schema. The code for generating a new version from a previous one
looks like this:

dvs_checkin_newversion(string artifact) {
int lockby_fd, artifact_fd;
string version_tag, artifact_id;

artifact_id = strip_version_tag(artifact);

newart_fd = dvs_create(artifact_id + ":" + dvs_new_version(artifact));
/* ... */

}

The function dvs_new_version() implements the versioning schema by
supplying a new version tag. In DVS, version tags are integer numbers and

14



this function is simply an increment. However, a new and more complex ver-
sioning schema could be plugged in simply by re-implementing that function.

4.6 NUCM interface functions

The functions described in this section constitute the application programming
interface of NUCM. As we said, these interface functions provide a set of user-
level primitives for the implementation of the NUCM file system. Most of
these functions operate together or through the real file system of the client ma-
chine. This means that, for example, nc_open implements the equivalent of
the NUCM-client open() function by creating an image of the artifact in the
local file system.

Table 3 presents these functions grouped into seven basic categories. An
important characteristic of these categories is their orthogonality; the functions
in one class are independent of the functions in the other classes. For example,
the distribution functions are the only functions concerned with the distributed
nature of a NUCM repository. The other functions are not influenced by the
fact that artifacts are stored in different locations. Their behavior is the same,
whether the artifacts are managed by a local or a remote repository.

It should be noted that the functionality offered by each individual inter-
face function is rather limited. At first, this seems contradictory to the goal
of providing a high-level interface for configuration management policy pro-
gramming. However, because of the limited functionality, each function can be
defined with precise semantics. Not only does that generalize the applicabil-
ity of the interface functions, it also allows the rapid construction of particular
CM policies through the composition of sets of interface functions. Below we
introduce, per class, the individual interface functions that constitute the pro-
grammatic interface to a NUCM distributed repository.

4.7 Access Functions

Access to a NUCM repository is attained through a workspace. In a workspace,
artifacts are materialized upon request. Once the artifacts are materialized,
other interface functions become available to manipulate them. In particular,
versioning functions can be used to store new instances of artifacts, and collec-
tion functions can be used to manipulate the membership of collections. When
a client CM system is finished processing, it closes the workspace and access
to the artifacts in the workspace is removed.

The access functions in the interface of NUCM are nc_open and
nc_close . The function nc_open provides access to a particular version of
an artifact by materializing it in a workspace. Atoms are materialized as files,
and collections as directories. Each use of the function nc_open materializes
a single artifact. A workspace, thus, has to be constructed in an incremental
fashion. This mechanism allows a client CM system to populate a workspace
with only the artifacts that it needs.

The function nc_close negates the effects of the function nc_open and is
used to remove artifacts from a workspace. The function operates in a recur-
sive manner. When a collection is closed, all the artifacts that it contains are
removed from the workspace as well.

15



Access functions
nc_open Materializes an artifact in a workspace.
nc_close Removes an artifact from a workspace.

Versioning functions
nc_initiatechange Allows an artifact in a workspace to be

modified.
nc_abortchange Returns an artifact in a workspace to the

state it was in before it was initiated.
nc_commitchange Stores a new version of an artifact in a

repository.
nc_commitchangeandreplace Overwrites the current version of an arti-

fact in a repository.
Collection functions

nc_add Adds an artifact to a collection.
nc_remove Removes an artifact from a collection.
nc_rename Renames an artifact within a collection.
nc_replaceversion Replaces the version of an artifact that is

contained in a collection.
nc_copy Copies the version history of an artifact and

adds the new artifact to a collection.
nc_list Determines the artifacts contained in a col-

lection.
Attribute functions

nc_testandsetattribute Associates an attribute and its value with
an artifact (if the attribute does not yet ex-
ist).

nc_getattributevalue Determines the value of an attribute of an
artifact.

nc_removeattribute Removes an attribute from an artifact.
Deletion functions

nc_destroyversion Physically removes a version of an artifact
from a repository.

Distribution functions
nc_setmyserver Sets the default physical repository in

which new artifacts will be stored.
nc_getlocation Determines the physical repository that

contains the version history of an artifact.
nc_move Moves an artifact and its version history

from one physical repository to another.
Query functions

nc_gettype Determines the type of an artifact.
nc_version Determines the current version of an arti-

fact.
nc_lastversion Determines the latest version of an artifact

in a repository.
nc_existsversion Determines whether a version of an artifact

exists in a repository.
nc_isinitiated Determines whether an artifact has been

initiated in a workspace.
nc_isopen Determines whether an artifact has been

materialized in a workspace.

Table 3: NUCM Interface Functions.

16



4.8 Versioning Functions

Once an artifact has been opened in a workspace, the following version-
ing functions become available to create and store new versions of the ar-
tifact: nc_initiatechange , nc_abortchange , nc_commitchange , and
nc_commitchangeandreplace .

The function nc_initiatechange informs NUCM of a client’s intention
to make a change to an atom or a collection. In response, NUCM gives the client
permission to change the artifact in the workspace. If the artifact is a collection,
it has to be altered with the collection functions of NUCM (see Section 4.9).
An atom, on the other hand, can be manipulated by any user program, since
NUCM does not interpret its contents. Note that nc_initiatechange does
not lock an artifact. Because of the orthogonality of the interface functions, the
NUCM attribute functions that are described in Section 4.10 have to be used to
properly lock an artifact if so desired.

The function nc_abortchange abandons an intended change to an arti-
fact. It reverts the materialized state of the artifact back to the state that it was in
before nc_initiatechange was invoked. An nc_abortchange performed
on a collection can only succeed if no artifacts that are part of the collection
are currently in a state that allows them to be changed. This forces the client
CM system to either commit any changes or to abandon them. In this way,
unintentional loss of changes is avoided.

The function nc_commitchange commits the changes that have been
made to an artifact, storing the new version of the artifact in a uniquely named
place in the repository and revoking the client’s permission to change the arti-
fact in the workspace. The function nc_commitchangeandreplace is sim-
ilar in behavior to the function nc_commitchange , but instead of creating a
new version of the artifact in the repository, it overwrites the contents of the
version that was opened before. Again, versioning and locking are orthogonal,
so the functions nc_commitchange and nc_commitchangeandreplace do
not release any lock that may be held on the artifact.

In designing the versioning functions, we were faced with the following
issue: does the act of creating a new version of an artifact implicitly create a
new version of the collection in which that artifact resides? Clearly, situations
arise in which the answer is yes, and situations arise in which the answer is
no. Both answers must therefore be supported. But from a pragmatic stand-
point, if versions of collections are created as often as versions of the artifacts
within them, then there would be a cumbersome proliferation of versions of
collections. Thus, as its default behavior, NUCM does not automatically create
new versions of collections. Under this default behavior, a collection remains
unchanged when a new version of one of its contained artifacts is added to the
repository. If it is desired that the collection refers to the new version of the
artifact, the versioning and collection functions have to be used to update the
collection. In particular, the function nc_initiatechange has to be used be-
fore the collection functions can be used to update the collection, and the func-
tion nc_commitchange or nc_commitchangeandreplace has to be used
to store the new contents of the collection.

17



4.9 Collection Functions

Similar to the way an editor can be used to change an atom in a workspace,
collections need to be changed via some kind of mechanism. But, because
collections have special semantics, it would be unwise to allow them to
be edited directly. Therefore, NUCM provides a number of interface func-
tions that preserve the semantics of collections while updating their con-
tents. These functions are the following: nc_add , nc_remove , nc_rename ,
nc_replaceversion , nc_copy , and nc_list .

The functions nc_add and nc_remove behave as expected, adding and re-
moving an artifact to and from a collection, respectively. The function nc_add
can add either a new or an existing artifact to a collection. The addition of a
new artifact will simply store its contents in a NUCM repository. The addition
of an existing artifact, on the other hand, will result in an artifact that is shared
by multiple collections and for which a single version history is maintained. If
it is so desired that, starting from the moment the artifact is added to the collec-
tion, a separate version history is maintained, the function nc_copy should be
used instead of nc_add . As a result of nc_copy , a new artifact will be created
in a NUCM repository. The new artifact will contain the same version history
as the artifact that was copied, but will evolve separately.

A feature that has traditionally been difficult to provide in CM systems is
the ability to rename artifacts. NUCM solves this problem by providing, di-
rectly in its repository interface, the function nc_rename , which renames an
artifact. Because an artifact is only renamed in a single collection at the time,
it is very well possible that a single artifact exists under different names in dif-
ferent collections. This is an important feature of the NUCM interface, since it
allows an artifact to evolve without compromising its naming history.

The function nc_replaceversion complements the other collection
functions because it operates in the version dimension as opposed to the nam-
ing dimension. Its behavior is simple: it changes the contained version of an
artifact in a collection to another version. In order to support undoing changes,
it is of course permissible for older versions of an artifact to replace newer ones.

The function nc_list rounds out the collection functions. It returns a list
of the names and versions of the artifacts that are contained in a NUCM collec-
tion. Obviously, this functionality is useful in building a CM system that, for
example, presents a user with the differences between two versions of a col-
lection, recursively opens a workspace, or simply allows a user to dynamically
select which artifacts to lock or check out.

The set of collection functions is complete. If we consider the artifacts that
are contained by a collection to be organized in a two-dimensional space de-
fined by name and version, all primitive functionality is provided. A name-
version pair can be added, a name-version pair can be removed, a name is
allowed to change, and a version is allowed to change. Therefore, despite the
rather simple functionality provided by each individual function, the complete
set of collection functions allows rapid construction of high-level, more pow-
erful functions. For example, a function that replaces, under the same name,
an atom with another one, can be constructed as a sequence of nc_remove ,
nc_add , and nc_rename .

18



4.10 Attribute Functions

Virtually every configuration management system attaches a certain amount
of meta-data to the artifacts that it maintains. These meta-data usually
capture such characteristics as an author, a date of creation, one or more
change request identifiers, and a short synopsis of the changes made. To
facilitate the association of meta-data with the artifacts in a NUCM repos-
itory, the programmatic interface contains a number of primitive functions
to manipulate attributes. In particular, it is possible to set the value of
an attribute with nc_testandsetattribute , to retrieve the value of an
attribute with nc_getattributevalue , and to remove an attribute with
nc_removeattribute . Although these functions are rather simple, they are
sufficient for configuration management purposes since the association of a
small set of meta-data with an artifact is often the primary usage of attributes
in this domain.

The attribute functions were designed to support primitive locking of ar-
tifacts. In particular, the function nc_testandsetattribute only sets the
value of an attribute if it does not yet exist. Therefore, it can be used to lock an
artifact by simply setting a unique attribute that represents the lock. Although
this results in a rather primitive locking facility, these functions do allow the
construction of the actual locking schemes employed in such existing lock-
based CM policies as RCS [32] and CCC/Harvest [28]. Because NUCM only
focuses on the distributed versioning problem, we do not intend to provide
more extensive locking facilities. Instead, it is our belief that if a more compli-
cated locking scheme is needed, a specialized and full-featured lock manager
(e.g., Pern [13]) should be used.

It should be noted that locks are not enforced by NUCM. Instead, a CM
system has to use the attribute functions appropriately to implement its locking
policy. Similarly, a lock on a collection will not cause a request for a lock on an
artifact contained by that collection to fail—that is, locks run one-level deep. It
is the responsibility of the client CM system to attach semantics to locks on a
collection, choosing to use it as a lock on a collection only, or as a lock on the
collection and its contents.

4.11 Deletion Function

Although it is an uncommon practice in the domain of configuration man-
agement to delete artifacts from a repository, it should still be possible
to do so in case of obsolescence or mistakes. Therefore, the function
nc_destroyversion is provided in the NUCM interface to physically delete
a particular version of an artifact from the repository in which it is stored. A
version, however, can only be deleted if it is not contained in a collection.

NUCM also provides an automatic garbage collection mechanism for arti-
facts that are no longer referenced. An artifact is referenced as long as at least
one of its versions is referenced in a collection. Root collections are always
referenced by definition.

19



4.12 Distribution Functions

Users of systems that completely hide distribution often encounter perfor-
mance difficulties related to the physical placement of data. Therefore, the
NUCM interface provides functions that allow a CM client to determine and
change the physical location of artifacts within a logical repository. In partic-
ular, the functions nc_setmyserver , nc_getlocation , and nc_move are
available to manage the physical distribution of artifacts within a logical repos-
itory.

The first function, nc_setmyserver , specifies the physical repository to
which newly created artifacts will be added. The second, nc_getlocation ,
returns the physical repository in which an artifact is actually stored. The last,
nc_move , moves an artifact and its version history from its current physical
repository to a new one. To avoid a repository-wide search for references,
NUCM does not update containing collections with the new physical location
of an artifact that has moved. Instead, it places a forwarder at the original loca-
tion of the artifact. When a request is made for the moved artifact, NUCM uses
the forwarder to update the old reference. Using a reference-counting scheme,
NUCM updates old references as they are made and then eventually removes
the forwarder.

We observe that in NUCM all versions of a single artifact are stored in a
single physical repository. We have chosen not to support the distribution of
individual versions over multiple repositories, because it would incur much
more communication across repositories than is currently needed. In partic-
ular, the reference counting mechanism used for garbage collection and the
forwarder mechanism used to locate artifacts would require the distribution of
algorithms that are currently executed within a single physical repository.

4.13 Query Functions

The NUCM programmatic interface would not be complete without the ability
to examine the state of artifacts. For example, when multiple CM clients share
the same workspace, they should be able to verify whether the version of an ar-
tifact in a workspace was changed by another CM client. Similarly, when mul-
tiple CM clients share a single NUCM repository, they should be able to check
whether new versions of an artifact have been added by other CM clients. The
NUCM query functions were designed to provide exactly this type of function-
ality. Although simple, these functions are essential in the development of CM
policies because they provide state information that a CM client does not have
to track itself. The query functions that provide information about the artifacts
in a workspace are particularly important in this respect.

Although the names of the interface functions speak for themselves, we
provide here, for completeness, a one-sentence description and typical use
case of each. The function nc_gettype returns whether an artifact is a col-
lection or an atom, and is often used to recursively open a collection and all
its containing artifacts in a workspace. To manage version trees, the function
nc_version can be used to determine the version of an artifact before and
after the function nc_commitchange has been used to store some changes.
The function nc_lastversion returns the version number of the last version
of an artifact, and is used to check for new versions of the artifact that might

20



have been added by other CM clients. If some versions of an artifact have been
deleted from a repository, the function nc_existsversion can be used to
verify whether a particular version is still available or not. Finally, the func-
tions nc_isopen and nc_isinitiated operate on artifacts in a workspace,
and are used to verify whether an artifact has been opened and whether it is
allowed to change, respectively.

5 DVS Functions

DVS is a command line tool. It provides a set of commands that give access to
its various functionalities. There are thirteen basic functionalities provided by
DVS. They are check-out, , check-in close, link, unlink, lock, unlock, list-collection,
print-version-log, set-version-log, print-locks, whatsnew, and sync. Most of these
functions operate on a list of artifacts, each one identified by a path expression
(see Section 4.1).

Check-out populates the local workspace by retrieving artifacts from the
repository while check-in can be used to register new artifacts or new versions
of existing artifacts. When checking out an artifact a lock on that artifact can
be set by the check out function, conversely, the check in function removes the
lock. These functions can be applied to both atoms and collections. In case of
collections, they can also execute recursively on the artifacts of that collection.
Close removes an artifact from the local workspace.

Link (and unlink) can be used to incorporate (or remove) existing artifacts
into (from) a collection. These commands are necessary for creating data mod-
els that share artifacts among collections like the ones displayed in Figure 3.

Lock and unlock directly manipulate locks for artifacts that have been al-
ready checked out. Locks in DVS are defined on a per-user basis. These opera-
tions are idempotent and they are each one the inverse of the other one.

List-collection, print-log, print-locks, and whatsnew are utility functions that
can be used to examine the state and the contents of collections and atoms in
the workspace or in the repository. The most interesting one is whatsnew that
lists all the artifacts that have newer versions. This function can be applied
recursively to collections.

Sync is another useful function that checks for new versions of artifacts. If
one artifact in the workspace is obsolete, i.e., if there is a newer version of that
artifact in the repository, sync checks out that version. sync too can be used
recursively on collections.

A detailed description of the DVS commands in the form of a user manual
can be found in Appendix A.

6 Experience in Using DVS and NUCM

This section refers to the experience we gained in using DVS and NUCM and
the lessons learned thereof. In particular, the experience highlights some of the
benefits of the solutions implemented by DVS and NUCM, but also uncovers
their limitations and suggests design and implementation improvements.

21



6.1 Use of NUCM

Apart from the realization of DVS, NUCM has been used as a basis for the
implementation of two other CM systems. One system is an experimental
implementation of a subset of WebDAV, an emerging standard in Web ver-
sioning [36]. The other system is SRM [34], a system that implements a dis-
tributed repository of software releases. SRM is currently in use as the release
manager of the Software Engineering Research Laboratory at the University
of Colorado at Boulder, and at the Software Engineering Institute to support
the release of software within the Evolutionary Design of Complex Systems
(EDCS) project, a project funded by DARPA involving several research groups
from both academia and industry. A more detailed evaluation of NUCM is
discussed in [33].

6.2 Experience with DVS

DVS has been used in some real scenarios as well. The most significant ones
are two collaborative authoring efforts involving each one seven authors dis-
tributed across sites in the United States including University of Colorado
at Boulder, University of California Irvine, Northrop Grumman Corporation,
Aerospace Corporation, and University of Hawaii. During these projects, more
than thirty different documents in three collections with a total of over 300 ver-
sions were created and managed by DVS.

In general, the usage experience of DVS proved a good reliability of DVS
and of the NUCM server and a discrete usability of DVS as a CM tool. Some
criticisms have also been made and some new requirements have been posed.
To improve DVS apart from some routine bug fixing, during the first project,
some counter-intuitive behaviors have been modified and also some new fea-
tures have been implemented mainly to provide utility functions that automate
common tasks that previously required combined DVS and file-system opera-
tions.

6.3 Lessons learned from DVS and improvements to DVS and
NUCM

DVS, both from its usage and in its implementation, provided useful feedback
to the design of NUCM. Here we examine a set of requirements that stem from
designing and using DVS. These requirements can be sufficiently general for
other CM systems and other policies. Here we list these requirements paying
special attention to the impact they have on the data model and/or on the
overall architecture of NUCM:

Storage policies NUCM is designed to be a policy-neutral platform, how-
ever, while the majority of the policy programming can be confined to the client
and the workspace, there are a number of policies that heavily affect the stor-
age of artifacts and thus the server side. In particular, in a CM system that
stores text files, it is desirable to have an incremental storage of consecutive
versions of artifacts. This can be achieved with NUCM by storing deltas and
relating versions with additional attributes. This would allow to assemble any

22



requested version on the client side. Unfortunately this solution has two major
shortcomings:

1. in case the artifact resides on a remote server, the network traffic gener-
ated by a simple request could be heavy because the client has to assem-
ble a succession of deltas, each one requiring a separate network access;

2. being implemented on the client side, this storage policy would under-
mine the orthogonality between versioning and access. In other words,
another client would have to implement the same change set assembly to
retrieve any version of an artifact.

This problem suggests that delta storage be implemented on the server side,
perhaps as an optional feature that can be selected on a per-artifact basis.

Server-side plug-ins In general, it would be good to have a generic mech-
anism to augment the capabilities of NUCM servers by plugging additional
modules into the server rather than programming them on the client side. A
first example is the delta storage proposed in the previous paragraph. Another
example is a compression module that could condense the data transferred
over the network between clients and servers. A similar module could add
security features to the server such as secure connections with public/private
key authentication and with data encryption.

Piggy backing on HTTP or other protocols NUCM primitives use an ad hoc
communication protocol. This protocol has been designed with two require-
ments in mind:

1. the protocol must be efficient in transferring big files, thus encoding
should be avoided or it should be minimal. Also, a protocol similar to
FTP is preferable as opposed to some sort of RPC-based protocol.3

2. the protocol should use only one port. In any case it is not appropriate
to use dynamically allocate ports on the server side. This requirements is
intended to meet the restrictions posed by firewalls.

In essence, the NUCM protocol is very simple and, thanks to its simplicity, it
proved to be reasonably efficient and open. The performances of a basic check
out operation are comparable to a plain FTP of the file. As far as openness, the
protocol has been seamlessly extended to accommodate new primitive calls.

Nevertheless, it would be desirable to have the option of piggy backing
NUCM requests on top of other standard protocols, typically HTTP. The main
reason to make this request is that many sites are closed to the rest of the net
for security reasons and the only protocols that are not blocked are HTTP and
SMTP.

We have not studied in details this requirement, but from a first analysis,
it seems that implementing NUCM requests on top of HTTP would not affect
the NUCM data and distribution models.

3An early implementation of NUCM that was based on CORBA showed that, while providing
a nice abstraction, CORBA proved to be quite heavyweight for requests that are mostly transfers
of files

23



Packing requests into batch jobs When programming CM policies with the
NUCM primitives, one single operation may very likely result in several con-
secutive and related NUCM requests. Since every request involves a separate
network message sent to a NUCM server. In case these requests are applied
to remote artifacts, the network latency could seriously affect performances of
the CM client.

To a certain extent, network delays can not be completely avoided, how-
ever there are several techniques that can be proficiently applied to improve
performances of CM clients that access distributed artifacts. One idea is to use
replication (caching) of artifacts. Another approach is to move artifacts near
their clients dynamically. Both these solutions have been studied extensively in
similar domains. Caching and dynamic relocation of objects have been imple-
mented for distributed file systems and for Web objects that, in many respects,
pose challenges similar to NUCM. However, both these solutions imply a ma-
jor re-design of the NUCM server and the client library.

As a relatively simple improvement of the NUCM protocol, we could pack
series of related requests in batch jobs. In a way, this solution corresponds
to the Keep-Alive extension of the HTTP protocol [11] that allows several sepa-
rate requests and their responses to flow through the same TCP/IP connection.
With this type of modification, we pay the price of adding a minimal encoding
to requests and we gain in performances for long series of requests.

Utility functions for the server A minimal set of utilities for the NUCM
server should be provided. It should include a dump/restore facility possi-
bly accessible remotely. NUCM already supports some utility functions: one is
similar to ping and can be used to test is a NUCM server is running correctly
and accepting requests. The other one is a remote shutdown of the server.
New administrator functions should be provided. We already mentioned a
dump/restore function, but also other functions that check the status of the
server more in details, e.g., listing the active client connections, possibly allow-
ing the administrator to kill stale connections. The same way, similar function
could allow the administrator to change server parameters on the fly.

Library for CM clients Programming CM clients based on NUCM showed
that many NUCM primitives requires low level operations that should be han-
dled by utility client libraries. Typical functions manipulate NUCM paths, in
fact, DVS implements a whole set of path manipulation utilities that extract
the base name from a path, strip the version tag, extract the server part if one
exists, etc.

Other useful functions are iterators over collections. It is a common task to
iterate through all the elements of a collection executing some specific function.
The iteration part that reads the elements of a collection could be easily set
apart as a library routine. To a certain extent, it would also be nice to have a set
of pre-programmed policies in the form of library functions.

It is desirable that these all function be available to CM system program-
mers in the form of an extended NUCM client library.

Finer access control The current implementation of the NUCM server offers
an access control list to protect the server from unwanted access. This mech-

24



anism allows to control access to a NUCM server on a per-host basis. The list
can contains expressions matching a single host ID (one IP address) as well as
ranges of IP addresses and entire subnets. Examples of entries in the access list
are:

128.138.242.69
131.175.70.100-200
131.175.21.*
128.138.240-241.*

The access list can be modified dynamically.
This access control mechanism offers a rudimentary protection. In all the

scenarios we used NUCM, this has been sufficient. However, it is known to
suffer from two major drawbacks:

� it is vulnerable to IP spoofing attacks

� it is too coarse grained

A finer and more robust access control should be provided by NUCM servers.
As an initial cut, users identifiers and per user permissions could be added,
then of course, the system could be extended in the direction of the capabil-
ities of the access control system, for example, by adding per-artifact access
lists and classes of user profiles. Another direction is the authentication sys-
tem that could be initially done in a simple UNIX-like style with user name
and password. Subsequent refinements could introduce public/private key
authentication protocols.

7 Conclusions

The field of configuration management is well established as a software engi-
neering discipline. In this phase, configuration management research results
have been consolidated and transferred to commercial products. However, the
connectivity offered by wide-area networks and the distributed nature of many
development or editing processes have introduced new challenges and oppor-
tunities for new research projects. The work described in this paper is certainly
stimulated by these new technologies and scenarios.

In particular, current CM systems lack a native support for distribution of
artifacts and in general they are either heavyweight and expensive or simplistic
in their data model and their policy. Hence, in short, our goal is to develop
lightweight CM systems that support distributed development and authoring with
flexible, easy to program, CM policies.

The approach we follow is therefore twofold:

� we realize a low-level CM repository that implements a distributed
generic data model;

� we implement different high-level policies with different CM clients on
top of the generic repository.

In this paper we presented NUCM, a low-level generic distributed CM in-
frastructure, together with DVS, a CM system that implements a strict locking

25



policy. With NUCM, we describe its CM file system abstraction and its core
functionalities. Of DVS we illustrate the data model, the distribution model,
and the detail of its CM operations.

Here we also report our experience in using NUCM for the implementa-
tion of some CM systems (DVS being the main one) and in using DVS in some
real distributed authoring efforts. Our general conclusion is that separating
a policy-neutral CM platform from the policy implementations is a good ap-
proach for supporting flexibility and distribution. This experience also high-
lights some shortcomings of our implementation that need better engineering
and optimization.

Future developments could pursue two main directions. We could work on
improving both NUCM and DVS following some of the guidelines presented
in this paper. Alternatively, we could expand the set of policies implemented
on top of NUCM. For example, a natural candidate would be a CM system
based on change sets. More experience would give us more arguments and
confidence in favor of the NUCM approach. Pushing this idea a little further
we could come up with a library of pre-packaged possibly orthogonal libraries
of CM policies.

Both DVS and NUCM are available for download free of charge. Additional
information, installation and usage instructions, and binary packages for UNIX
(Sun, DEC, HP, and Linux) and Win32 (95/98/NT) can be found on [6].

Acknowledgments

This study has been carried out together with André van der Hoek, Dennis
Heimbigner, and Alexander L. Wolf at the Department of Computer Science of
the University of Colorado at Boulder. In particular, the design and implemen-
tation of NUCM 2 is the result of a joint effort with André van der Hoek.

I wish to thank Prof. Vincenzo Piuri of Politecnico di Milano for his com-
ments and suggestions about this work and for his advises during the writing
of this paper.

References

[1] L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard, and J. Pos-
ner. ClearCase MultiSite: Supporting Geographically-Distributed Soft-
ware Development. In Software Configuration Management: ICSE SCM-4
and SCM-5 Workshops Selected Papers, number 1005 in Lecture Notes in
Computer Science, pages 194–214, New York, 1995. Springer-Verlag.

[2] Atria Software, Natick, Massachusetts. ClearCase Concepts Manual, 1992.

[3] D. Belanger, D. Korn, and H. Rao. Infrastructure for Wide-Area Software
Development. In Proceedings of the Sixth International Workshop on Software
Configuration Management, number 1167 in Lecture Notes in Computer Sci-
ence, pages 154–165, New York, 1996. Springer-Verlag.

[4] Bell Labs, Lucent Technologies, Murray Hill, New Jersey. Sablime v5.0
User’s Reference Manual, 1997.

26



[5] B. Berliner. CVS II: Parallelizing Software Development. In Proceedings of
1990 Winter USENIX Conference, Washington, D.C., 1990.

[6] A. Carzaniga. Dvs home page. Available on the WEB
at http://www.elet.polimi.it/˜carzanig/dvs and at
http://www.cs.colorado.edu/˜carzanig/dvs .

[7] Continuus Software Corporation, Irvine, California. Continuus Task Refer-
ence, 1994.

[8] Continuus Software Corporation, Irvine, California. Distributed Code Man-
agement for Team Engineering, 1998.

[9] J. Estublier and R. Casallas. The Adele Configuration Manager. In
W. Tichy, editor, Configuration Management, number 2 in Trends in Soft-
ware, pages 99–134. Wiley, London, 1994.

[10] P. Feiler and G. Downey. Transaction-Oriented Configuration Manage-
ment: A Case Study. Technical Report CMU/SEI–90–TR–23, Software
Engineering Institute, Pittsburgh, Pennsylvania, 1990.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Barnes-Lee. Hyper-
text Transfer Protocol – HTTP/1.1. Internet Request For Comments (RFC)
2068, Internet Engineering Task Force, January 1997.

[12] C. Gadonna. MISTRAL User Manual V1. LGI, May 1995. ESPRIT Project
5327, REBOOT.

[13] G. Heineman. A Transaction Manager Component for Cooperative Transac-
tion Models. PhD thesis, Columbia University, Department of Computer
Science, New York, New York, June 1996.

[14] T. Hung and P. Kunz. UNIX Code Management and Distribution. Tech-
nical Report SLAC–PUB–5923, Stanford Linear Accelerator Center, Stan-
ford, California, Sept. 1992.

[15] J. Hunt, F. Lamers, J. Reuter, and W. Tichy. Distributed Configuration
Management via Java and the World Wide Web. In Proceedings of the Sev-
enth International Workshop on Software Configuration Management, number
1235 in Lecture Notes in Computer Science, pages 161–174, New York,
1997. Springer-Verlag.

[16] INTERSOLV, Rockville, Maryland. PVCS VM SiteSync and Geographically
Distributed Development, 1998.

[17] INTERSOLV, Rockville, Maryland. Using PVCS for Enterprise Distributed
Development, 1998.

[18] JavaSoft, Inc., Palo Alto, California. JavaSafe 1.0 User’s Guide, 1998.

[19] A. Mahler and A. Lampen. An Integrated Toolset for Engineering Soft-
ware Configurations. In Proceedings of the ACM SOFSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Engineering Environments,
pages 191–200, Boston, Massachusetts, Nov. 1988.

27



[20] Microsoft Corporation, Redmond, Washington. Managing Projects with Vi-
sual SourceSafe, 1997.

[21] B. Milewski. Distributed Source Control System. In Proceedings of the
Seventh International Workshop on Software Configuration Management, num-
ber 1235 in Lecture Notes in Computer Science, pages 98–107, New York,
1997. Springer-Verlag.

[22] Mortice Kern Systems, Inc., Waterloo, Canada. MKS Source Integrity Ref-
erence Manual, 1995.

[23] B. Munch. Versioning in a Software Engineering Database — the Change Ori-
ented Way. PhD thesis, DCST, NTH, Trondheim, Norway, Aug. 1993.

[24] Neuma Technology Corporation, Ottawa, Canada. NeumaCM+ FAQ’s,
Sept. 1998.

[25] B. O’Donovan and J. Grimson. A Distributed Version Control System for
Wide Area Networks. Software Engineering Journal, Sept. 1990.

[26] Perforce Software, Alameda, California. Networked Software Development:
SCM over the Internet and Intranets, Mar. 1998.

[27] C. Reichenberger. VOODOO: A Tool for Orthogonal Version Manage-
ment. In Software Configuration Management: ICSE SCM-4 and SCM-5 Work-
shops Selected Papers, number 1005 in Lecture Notes in Computer Science,
pages 61–79, New York, 1995. Springer-Verlag.

[28] Softool Corp., Goleta, California. CCC/Manager, Managing the Software Life
Cycle across the Complete Enterprise, 1994.

[29] Software Maintenance & Development Systems, Inc, Concord, Mas-
sachusetts. Aide de Camp Product Overview, Sept. 1994.

[30] SQL Software, Vienna, Virginia. The Inside Story: Process Configuration
Management with PCMS Dimensions, 1998.

[31] Starbase Corporation, Irvine, California. StarTeam Web Connect Users’s
Guide, 1996.

[32] W. F. Tichy. RCS, A System for Version Control. Software—Practice and
Experience, 15(7):637–654, July 1985.

[33] A. van der Hoek, A. Carzaniga, D. Heimbigner, and A. L. Wolf. A
Reusable, Distributed Repository for Configuration Management Policy
Programming. Technical Report CU-CS-864-98, Department of Computer
Science, University of Colorado, September 1998.

[34] A. van der Hoek, R. Hall, D. Heimbigner, and A. Wolf. Software Release
Management. In Proceedings of the Sixth European Software Engineering Con-
ference, number 1301 in Lecture Notes in Computer Science, pages 159–
175, New York, Sept. 1997. Springer-Verlag.

28



[35] A. van der Hoek, D. Heimbigner, and A. Wolf. A Generic, Peer-to-Peer
Repository for Distributed Configuration Management. In Proceedings of
the 18th International Conference on Software Engineering, pages 308–317. As-
sociation for Computer Machinery, Mar. 1996.

[36] E. Whitehead, Jr. World Wide Web Distributed Authoring and Versioning
(WebDAV): An Introduction. StandardView, 5(1):3–8, Mar. 1997.

A DVS Manual

DVS is a command line tool. It provides a set of commands that give access
to its various functionalities. When invoked, DVS accept one command as a
first parameter. Some of the commands also accept additional parameters. The
list of parameters, if anyone exists, precedes the list of artifacts to which the
command applies. The syntax for DVS is the following:

dvs hcommandi [options] [artifacts]
This section describes the functionality of DVS by listing its commands and

their options in the form of a practical user guide.

A.1 Default Server

For all the operations that require to connect to a NUCM server, DVS uses
either the server that is specified in each path or the default server. The host name
for the default server is specified by the NUCMHOSTenvironment variable. If
NUCMHOSTis not defined, localhost is used. Similarly, the port number is
specified by the NUCMPORTvariable the default value being 1234 .

A.2 Commands

There are thirteen basic commands. They are co (check-out), ci (check-in),
close , link , unlink , lock , unlock , list (list collection), log (print ver-
sions log), setlog , printlocks , whatsnew , and sync .

co [-R ] [-l ] [-f ] [-last ] path [path . . . ]

check out artifacts. co checks out path from the NUCM repository. If
path is an atom, the corresponding file is created in the current working
directory. If path is a collection then a directory is created. If path is a
collection and the -R option is specified, then every element of path is
recursively checked-out.

If the -l option is specified, DVS tries to lock path and prepares it for
change. If -l is specified on a collection together with -R , only that col-
lection is locked while all its components are checked out read-only.

If the a version of path other than the one determined by path is already
present in the workspace, co prints a warning message and prompts for
closing it. The -f option forces DVS to close all the artifacts that conflict
with the check out operations.

29



When trying to resolve a path for check-out, DVS automatically deter-
mines the version number in case it is not already specified in the path.
The following criteria apply: if the current working directory corre-
sponds to a collection that contains path, the version referred by that collec-
tion is checked out. If the current working directory does not correspond
to any collection or if it corresponds to a collection that does not contain
path, then the last version of path is checked-out. If the -last option is
specified, the last version is checked out regardless of the content of the
current collection. If -last is specified together with -R , the -last flag
is applied recursively to all the artifacts that are checked out.

In all the check-out operations, if path can not be resolved and if it does
not contain a reference to a NUCM server, DVS automatically looks up
the default server.

ci [-R ] [-m message ] path [path. . . ]
check-in artifacts. ci checks in each path in the database.

ci has two slightly different semantics depending on the fact that path is
already linked to the current working collection or not.

If path is already referenced in the current directory, a new version is cre-
ated and checked in, provided that the current version is locked.

If path is not already linked to the current working collection, DVS creates
a new artifact in the database and adds it to the current version of the
current collection. To do so, such a collection must exist and it must be
locked. The initial version number of an artifact is 1. Only in this case, if
the -R option is specified and path is a directory, all the sub-tree of files in
path is recursively checked in.

Note that checking in the first version or a new version of an artifact
does not imply a check in of the collection (or collections) that refers to the
previous version of that artifact. Collections have to be explicitly checked
in.

Checking in a directory (i.e., a collection) causes that collection to be up-
dated with all the version that are currently present in the file system.
Checking in a collection also requires that collection to be locked.

In any case, for every artifact that is checked in, DVS prompts for a log
message to be attached to the new version. If the -m option is specified,
message is used as a log message for every check-in operations.

After a check-in is completed, the previous version is automatically un-
locked. Note that if the artifact is new, then the collection that contains it
is not automatically checked in and unlocked.

close [-f ] path [path. . . ]
closes each path. Closing a path means removing the file or the directory
and all its content from the local workspace.

close fails whenever path or an artifact contained in path has been
checked out with lock. Also, in case path is a directory, DVS checks for the
presence of other non-dvs files in that directory, and, in case, it prompts
the user for a confirmation before proceeding to remove them. In these
cases, the -f option can be used to force DVS to close path anyway.

30



Note that close has no effect on the database, i.e., it does not commit
changes to the NUCM database nor it unlocks artifacts.

link [-last ] path [path. . . ]
links each path to the current collection, i.e., it makes path a member of
the current collection. If path doesn’t refer to an artifact that exists in the
workspace or if the -last option is specified, the latest version is linked.
Otherwise, the version referred in the workspace is linked. link is an
operation that affects the current collection, thus, the current collection
must be locked. Similarly to ci , link does not implicitly check in the
current collection. path must be an existing artifact.

unlink [-f ] path [path. . . ]
removes path from the current collection. Similarly to link , unlink re-
quires the current collection to be locked. path is not actually deleted from
the database as long as there exist at least one version of a collection that
refers to any version of path.

unlink has the same effect of close on the workspace, i.e., unlink
removes path from the workspace unless some path or any artifact con-
tained in path has been checked out for change. If path is a collection,
DVS also checks that path does not contain any other non-dvs files that
would be removed together with path. In both these cases, -f forces the
execution of the command.

lock [-last ] path [path. . . ]
locks each path and prepares it for change. The locks are assigned on a
per version basis, i.e., two users can lock two different versions of the
same artifact at the same time. lock fails when path is already locked by
another user. If path does not specify a version, the version referred in
the workspace is locked. If the -last option is specified then the latest
version of path is locked, regardless of the version specified in path or the
one referred in the workspace.

After setting the lock information, path is prepared for change, i.e., it is
made user-writable. lock fails if path is not open in the workspace.

Locks are based on the identity of the user that executes DVS. By default,
the login name is used, however, if the USERADDRESSenvironment vari-
able is set (e.g., to the e-mail address), its value is used to mark locks
instead of the login name.

This variable is provided in case the login name is not adequate. For
example, when one user has different login names on different machines
or when two different users can have the same login name.

Note that DVS can not control the authenticity of USERADDRESS.

unlock [-last ] [-f ] path [path. . . ]
removes the lock from path and reverts changes restoring the version of
path that was previously in the workspace. unlock fails if path is locked
by another user or if path is not open in the workspace. Similarly to lock ,
unlock determines the version from path if it is explicitly specified or
from the current collection or it uses the latest if the -last option is
specified.

31



In restoring the previous version, DVS closes the artifact that is currently
in the workspace, thus, similarly to close , unlock fails whenever path
or an artifact contained in path has been checked out with lock. Also,
in case path is a directory, DVS checks for the existence of other non-dvs
files in that directory, and, in case, it prompts the user for a confirmation
before proceeding to remove them. In these cases, the -f option can be
used to force DVS to close path anyway.

list [-v ] [-o filter ] path [path. . . ]
lists the contents of path. list fails if path is not a collection. By default,
list produces a list of artifact names, but if -v is specified, DVS outputs
a verbose list containing version information. Here is an example of a
verbose output:

% dvs list -v .
! A.bod v.3 3 (2)

B.bod v.1 1 (1)
- figure.eps - (4)

paper.tex v.9 9 (9)
+ paper.bib v.2 2 (-)
* paper.ps - (-)

The first number on the right side is the version that is currently in the
workspace (path). The number in parentheses is the version that is refer-
enced in the collection (path).

Files marked with ‘- ’ are those that are referenced in the collection, but
are not present in the workspace; ‘+’ indicates that the artifact is in the
workspace, but it is not referenced in the collection; ‘* ’ marks non-dvs
files, and ‘! ’ says that the version in the workspace doesn’t match the
one in the collection.

By default, all these artifacts are listed, however a filter (-o flag) can be
used to list just one or more of these classes. In particular, filter is a string
of one or more of the following characters:

c (collection) artifacts that are members of path

w (workspace) artifacts managed by DVS that are in the workspace

b (both) artifacts managed by DVS that are members of the collection de-
fined by path and that have been checked out into the workspace

o (other) files that don’t correspond to artifacts managed by DVS.

log [-n num] path [path. . . ]
prints the log of the versions of path. The log reports the list of versions
for each path path. For each version, the creation date, the author, lock
information, and the log message are displayed.

DVS prints the log for all the version of path in reverse order, i.e., from
the latest version (highest version number) to the first version. -n can be
used to limit the log output to the num most recent versions.

32



setlog [-m message ] path [path. . . ]
sets the log message for each path. If the -m option is specified, message is
used as a log message for every path. Otherwise DVS prompts for a log
message for every path.

printlocks [-R ] [-v ] path [path. . . ]
prints the lock information for all the versions of path that are locked.
If path is a collection and the -R option is specified, path is recursively
checked for locks. By default, this command outputs only paths that have
at least one locked version. The -v option can be used to produce a more
verbose output with all the versions that are locked and the name of the
users that hold the locks.

whatsnew [-R ] [-v ] path [path. . . ]
prints out path if the version referenced in the workspace does not cor-
respond to the latest version checked-in in the repository. If path is a
collection and the -R option is specified, then all the components of path
are recursively scanned for new versions. The -v option causes DVS to
print out the current version and the latest version for each path.

sync [-R ] [-f ] path [path. . . ]
this command is useful to refresh the workspace with the latest ver-
sions of the artifacts. sync checks whether the version of path in the
workspace is actually the latest version of path in the repository. In case
the workspace contains an earlier version, DVS checks out the latest ver-
sion. With -R , if path is a collection/directory, DVS scans path recursively
refreshing all its components. The effect of refreshing an artifact is iden-
tical to a ‘co -last ’, thus, sync uses the -f flag to force the check-out
operation, in case it would overwrite other versions already checked out
for changes or in case it would remove other non-dvs files.

33


