
CROSSTALK The Journal of Defense Software Engineering 9February 1998

Release
The release process is the interface
between the development process and
the deployment process. It encompasses
all activities needed to prepare and
advertise a system so that it can be
assembled correctly at another site. The
result of this activity is a package that
contains the system components, the
systems dependencies and constraints,
and information needed for the other
deployment steps. In addition, this
package is advertised.

Install
The installation activity covers the initial
insertion of a system onto a site. It is
usually the most complex of the deploy-
ment activities because all the necessary
resources must be found and assembled.
In the installation process, the package
created in the release process is used,
then the encoded knowledge is inter-
preted and the target site examined to
determine how to properly configure the
software system.

The management of software
systems after they have been
deployed is an emerging prob-

lem that manifests itself in numerous
places. Software on the Mars Pathfinder
rover Sojourner was regularly changed
by mission control to give it new behav-
ior in the exploration of Mars. During
the Persian Gulf war, software on Patriot
missiles stationed in Israel and Saudi
Arabia was updated with U.S.-imple-
mented patches to increase their ability
to intercept hostile Iraqi missiles. Also,
software for on-board military aircraft
computers is continually adapted to
compensate for the various missiles car-
ried on each mission.

All these activities are part of the
software deployment process, which is
defined as

The delivery, assembly, and mainte-
nance of a particular version of a
software system at a site.

The elements of the above definition
can be illustrated in more detail using
the Mars Pathfinder as an example. The
site in this case is the rover, whereas the
software system is the software that con-
trols the movement of the rover over the

planet as well as the operation of its
measuring instruments. The delivery is
the transmission from Earth of new code
or new data to the Pathfinder, whereas
the assembly process ensures consistency
in the inclusion of new code or data in
the system already present at the rover.
This results in multiple versions of the
software system to be present at the
rover, which need to be maintained by
ground control.

At first sight, the software deploy-
ment processes for the Mars Pathfinder,
Patriot missiles, and military aircraft
seem vastly different. However, a signifi-
cant amount of commonality exists
among these and many other deploy-
ment processes. This article examines
this commonality. We first define the
software deployment lifecycle, which
consists of the series of activities nor-
mally carried out during the deployment
of a software system. We then examine
some existing solutions and demonstrate
why these solutions are not sufficient to
solve all deployment problems. We con-
clude with a brief look at two research
prototypes we have been constructing
that provide a radically different ap-
proach to software deployment.

Software Deployment Lifecycle
A software system’s general deployment
process is composed of a variety of
subprocesses or activities. Figure 1 lists
these activities and organizes them into
an overall deployment lifecycle. Follow-
ing is a more detailed discussion of each
activity.

Software Deployment
Extending Configuration Management Support into the Field

André vAndré vAndré vAndré vAndré van der Han der Han der Han der Han der Hoek, Richaroek, Richaroek, Richaroek, Richaroek, Richard S. Hd S. Hd S. Hd S. Hd S. Hall, Antonio Carall, Antonio Carall, Antonio Carall, Antonio Carall, Antonio Carzaniga,zaniga,zaniga,zaniga,zaniga,
 D D D D Dennis Hennis Hennis Hennis Hennis Heimbignereimbignereimbignereimbignereimbigner, and Alexander L. , and Alexander L. , and Alexander L. , and Alexander L. , and Alexander L. WWWWWolfolfolfolfolf

UUUUUnivnivnivnivniversity of Colorersity of Colorersity of Colorersity of Colorersity of Coloradoadoadoadoado

Traditionally, configuration management has only addressed the needs of the software development process.
Once a software system leaves the development environment and enters the field, however, there still is a signifi-
cant role for configuration management. Activities such as release, installation, activation, update, adaptation,
deactivation, and de-release constitute the “deployment lifecycle”; these activities need careful coordination and
planning in their own right. This article discusses the dimensions of software deployment, argues why current
solutions are not sufficient, and presents two research systems that specifically address software deployment.

Figure 1. Software deployment lifecycle.

This work was supported in part by the Air Force
Materiel Command, Rome Laboratory, and De-
fense Advanced Research Projects Agency (DARPA)
under contract number F30602-94-C-0253, and
in part by DARPA and the Office of Naval Re-
search (ONR) under ONR contract number
N66001-95-D-8656, delivery order 0001. The
content of the information does not necessarily re-
flect the position or the policy of the U.S. govern-
ment and no official endorsement should be inferred.



10 CROSSTALK The Journal of Defense Software Engineering February 1998

Activate
Activation refers to starting up those
components of a system that must ex-
ecute for the system to be usable. For
large systems in particular, activation can
be especially complex because it involves
the start-up of servers, clients, database
systems, etc.

Deactivate
Deactivation is the inverse of activation,
and refers to shutting down any execut-
ing components of a system. Deactiva-
tion is often required to perform other
deployment activities, e.g., a software
system may need to be deactivated be-
fore an update can be performed.

Update
The update process involves modifying a
software system that has been previously
installed on a site. An update is a new
version of a software system that fixes a
bug or adds new functionality. Updates
are normally less complex than installa-
tions because many of the needed re-
sources have already been obtained dur-
ing the installation process. Although a
system is usually deactivated before an
update, this is not always the case. For
some systems there is a stringent require-

ment that they continue to operate while
being updated. In such cases, the update
process can be quite complex.

Adapt
The adapt process involves modifying a
software system that has been previously
installed at a site. Adapt differs from
update in that updates are instigated by
remote events, whereas adaptations are
instigated by local events. For example, if
the configuration of a site changes in a
way that affects the deployed system, it
may be necessary for the deployed soft-
ware system to take corrective action.

De-install
At some point, a system as a whole is no
longer required at a site and can be de-
installed. De-installation is not necessar-
ily a trivial process. Special attention has
to be paid to shared resources such as
data files and libraries to prevent dan-
gling references.

De-release
Ultimately, a system may be marked
obsolete, and support by its producer is
withdrawn. De-release is distinct from
de-installation in the sense that the soft-
ware system becomes unavailable for

further installation at sites, but it is not
removed from sites that are using the
software.

Classification
The recent emergence of Internet-based
deployment systems has created a re-
newed interest in software deployment.
However, solutions for software deploy-
ment problems have been around for
decades, and many deployment systems
exist that support one or more activities
of the deployment lifecycle. These exist-
ing systems can be categorized into some
combination of the four classes discussed
below.

Content Delivery
In this class of systems and technologies,
the information being deployed is
merely transferred from one or more
sources to a number of receiving sites.
No customization is carried out once
this information has been placed at a
site. In essence, content delivery systems
provide a replication mechanism be-
tween source and target sites.

System Install and Update
These systems deal with the localization
of a software system to the environment

Configuration Management

Table 1. Evaluation of software deployment lifecycle support coverage. The release, install, and update activities have been split into two subactivities to
better highlight system features. “o” indicates some support, “•” is better-than-average support.

Co
nt

en
t d

eli
ve

ry
In

sta
ll 

an
d u

pd
at

e
St

an
da

rd
s

Ne
tw

or
k m

gt
.

Release Install Activate

Package

Update Adapt Deactivate De-install De-release

Advertise

Transfer

Configure

Transfer

Reconfigure

Castanet o • •
PointCast • •
Rsync • •
Rdist •
NetInstall o o o •
NetDeploy o o o o o •
InstallShield o • •
RPM • o • o • o •
HP-UX SD • • • o •
MIF
AMS
Autoconf o o
TME-10 • • • • • o • •
Platinum • • • • • o • •
Nebula • • • • • • •
Novadigm • • • • •



CROSSTALK The Journal of Defense Software Engineering 11February 1998

In
sta

ll 
an

d U
pd

at
e

St
an

da
rd

s
Ne

tw
or

k m
gt

.

Castanet
PointCast
Rsync
Rdist
NetInstall o
NetDeploy o
InstallShield o
RPM o • o
HP-UX SD o • o
MIF • o
AMS • •
Autoconf o
TME-10 • • •
Platinum • •
Nebula • • •
Novadigm • • •

provided by a site. Both an initial localization and incremen-
tal updates are supported. Most deployment systems fall into
this class.

Standardization
Because of the large amount of information that needs to be
managed during deployment of a software system, it is not
surprising that some efforts for standardization have taken
place. Standards generally focus on creating a standard tem-
plate to describe software systems and deployment sites. These
templates are used by deployment systems to manage the de-
ployment process.

Network Management
In the past, these systems have dealt with managing hardware
systems in a heterogeneous network. Over time, they have
grown to include some deployment activities, such as installa-
tion, update, and de-installation. The systems in this class
often operate in a centralized notion; they assume “dumb”
target sites.

Current Solutions
We have examined a representative set of systems from each of
the above classes with respect to coverage of the deployment
lifecycle. The results of this evaluation can be found in Table 1.
However, such a simple examination is not sufficient to fully
characterize deployment systems. We also have to look at sev-
eral other characteristics of deployment systems.

We strongly emphasize the importance of the changeability
and parameterization of the deployment process embodied in
deployment systems. This requires deployment systems to
operate at a certain level of abstraction. The primary abstrac-
tions are the target site, the system to be deployed, and the
process. As more powerful modeling capabilities for these
abstractions are included in a deployment system, two benefits
arise. First, simple systems can be deployed using generic pro-
cesses. Second, more complex software systems can be success-
fully deployed. For example, content delivery systems often do
not model the software system to be deployed, whereas system
installers have knowledge about the composition of a software
system. Therefore, updates done by content delivery systems
are often based on an algorithmic difference, but updates done
by systems installers are mostly based on a firsthand under-
standing of the components that need to be changed.

Another important aspect to examine is support for the
coordination of distributed, cooperating software systems.
These systems contribute to the growing complexity of soft-
ware deployment because their architectures have inherently
complex, unreliable relationships and dependencies. Such
architectures require special support to deploy successfully
because coordination among servers, peers, and clients may be
necessary. These coordination issues complicate the activities of
the software deployment lifecycle.

Table 2 presents the results of the second part of our exami-
nation. The table reflects the ability of each examined deploy-
ment system to model, change, and parameterize the target

site, the system to be deployed, and its embodied process. It
also presents each system’s ability to support the deployment of
distributed, coordinated systems.

University of Colorado Approach
As Tables 1 and 2 show, none of the existing deployment sys-
tems support the entire the software deployment lifecycle.
More important, support for appropriate abstraction and coor-
dination is lacking in most systems. What is needed is an all-
encompassing, highly parameterized, unifying approach to
software deployment. Because it is unlikely that ad-hoc combi-
nations of existing systems would yield the desired result, the
Software Engineering Research Laboratory (SERL) at the Uni-
versity of Colorado at Boulder, funded by the Defense Ad-
vanced Research Projects Agency (DARPA)-sponsored Evolu-
tionary Design of Complex Software (EDCS) program is
researching software deployment systems. Two prototype sys-
tems have been created, each of which is briefly described
below.

SRM – A Software Release Manager
Software Release Manager (SRM) focuses on the release activ-
ity of the deployment process. It supports the release of systems
of systems from multiple, geographically distributed organiza-
tions. In particular, SRM tracks dependency information to
automate and optimize the retrieval of components. Both
developers and users of software systems are supported by
SRM. Developers are supported by a simple release process
that hides distribution. Users are supported by a simple re-
trieval process that allows the retrieval, via the Web, of a system
of systems in a single step as a single package.

Software Deployment: Extending Configuration Management Support into the Field

Co
nt

en
t D

eli
ve

ry

Site Abstraction

Process Abstraction
Coordination

System Abstraction

Table 2. Evaluation of abstraction and coordination capabilities.“o”
indicates some support, “•” is better-than-average support.



12 CROSSTALK The Journal of Defense Software Engineering February 1998

SRM is freely available and supported on most Unix plat-
forms. It has been used extensively by our research laboratory
to release our software and is currently being deployed to the
approximately 50 participants in the EDCS program. This will
provide the EDCS program with a single location from which
all technology created by EDCS can be browsed and retrieved,
despite the fact that the technology is created by organizations
spread over the United States.

Software Dock – A Software Deployment Architecture
Extending the ideas of SRM, the Software Dock constructs an
architecture that supports all of the activities in the software
deployment process. The Software Dock relies not only on a
standard available release dock at a producer site (similar to
SRM), but also on a standard available field dock at a target site
(see Figure 2). Between these docks, agents accompany software
systems as they are being deployed. The agents represent the
various deployment activities and operate on the semantic data
(available in the registries of the release and field docks) to
properly deploy a software system. Standard agents are avail-
able that model most common deployment activities. These
agents can be parameterized to carry out more specific deploy-
ment activities as required.

Central to the Software Dock approach is that all dimen-
sions are customizable. In particular, the release dock is the
abstraction for a software system to be deployed, the field dock
is the abstraction for the target site, and the agents are the
abstraction for the deployment process activities.

A prototype of the Software Dock is currently being imple-
mented. Previous incarnations have been created, evaluated,
and constructed based on a collaboration with Lockheed Mar-
tin, wherein an existing 6,000-line Perl-based installation script
was reduced to a small installation agent derived from a ge-
neric installation template.

Conclusion
Although software deployment is an ever-present activity as
software systems are being developed, structured support for
the deployment process has been remarkably lacking until now.
Various deployment systems have been created, but no system
comes close to providing a single solution that can “do it all.”
Based on a well-defined deployment lifecycle, we have high-
lighted some of the complex issues, partial solutions, and re-
search to define and build the software deployment systems of
tomorrow. u

Further Reading
Space limitations do not allow us to treat all issues in as much
depth as they deserve. Please visit the following Web sites for
further information on deployment issues, existing deployment
solutions, and the prototypes discussed in this article.
• SRM http://www.cs.colorado.edu/serl/cm/SRM.html
• Software Dock http://www.cs.colorado.edu/serl/cm/

dock.html
• The Configuration Management Yellow Pages http://

www.cs.colorado.edu/users/andre/
configuration_management.html

• The Software Deployment Information Clearinghouse
http://www.cs.colorado.edu/users/rickhall/deployment/

• SERL http://www.cs.colorado.edu/serl

About the Authors
André vAndré vAndré vAndré vAndré van der Han der Han der Han der Han der Hoekoekoekoekoek is a computer science doctoral candidate at
the University of Colorado at Boulder. He has a bachelor’s degree
and master’s degree in business-oriented computer science from

Figure 2. Software Dock architecture.

Configuration Management

The Software Engineering Research Laboratory at
the University of Colorado at Boulder invites you to
subscribe to a new, noncommercial mailing list for the
software engineering community:
SEWORLD@cs.colorado.edu.

SEWORLD will serve as a central place for relevant
announcements of software engineering conferences,
workshops, symposiums, special journal issues, calls for
papers, research and educational systems, etc.

The list is moderated to avoid junk E-mail, duplica-
tion, and other misuses. In addition, all E-mail addresses
are registered privately to the list, are not published, and
will not be given to anyone requesting them.

Simple instructions on how to subscribe or contribute
to SEWORLD are on the SEWORLD Web site at

http://www.cs.colorado.edu/serl/seworld

New Software Engineering Mailing List



CROSSTALK The Journal of Defense Software Engineering 13February 1998

the Erasmus University
Rotterdam, the Nether-
lands. His research inter-
ests include configura-
tion management,
software architecture,
and distributed systems.

He is a member of the program committee
of the Eighth International Symposium on
System Configuration Management.

RicharRicharRicharRicharRichard Hd Hd Hd Hd Hallallallallall is a computer science doc-
toral candidate at the University of Colo-
rado at Boulder. He has a bachelor’s degree
in computer engineering from the Univer-
sity of Michigan and a master’s degree in
computer engineering from the University
of Colorado at Boulder. His research inter-
ests include software deployment and
distributed systems. He currently works on
a distributed, agent-based framework to
support software deployment.

Antonio CarAntonio CarAntonio CarAntonio CarAntonio Carzanigazanigazanigazanigazaniga has a laurea degree in
electronic engineering from Politecnico di
Milano and a master’s degree in informa-
tion technology from CEFRIEL, Milano,
Italy. He was a junior researcher with

CEFRIEL before enter-
ing the doctorate pro-
gram in software engi-
neering at Politecnico
di Milano. Currently,
he is a visiting research
assistant in the com-

puter science department of the University
of Colorado at Boulder. His interests
include software process as well as generic
distributed systems technology. His cur-
rent research concerns scalable event ob-
servation and notification mechanisms.

DDDDDennis Hennis Hennis Hennis Hennis Heimbignereimbignereimbignereimbignereimbigner
has a bachelor’s degree in
mathematics from the
California Institute of
Technology and a
master’s degree and a
doctorate in computer

science from the University of Southern
California. He is a former member of the
technical staff for TRW Defense and Space
System Group in Los Angeles, Calif. He is
currently a research associate and assistant
professor in the computer science depart-

ment of the University of Colorado at
Boulder.

Alexander Alexander Alexander Alexander Alexander WWWWWolfolfolfolfolf is a
faculty member in the
computer science de-
partment of the Univer-
sity of Colorado at Boul-
der. Previously, he was
employed at AT&T Bell

Laboratories. His research interest is the
discovery of principles and development of
technologies to support the engineering of
large, complex software systems. He has
published papers on software engineering
environments and tools, software process,
software architecture, and configuration
management. He is vice chairman of the
Association for Computing Machinery
Special Interest Group on Software Engi-
neering.

Software Engineering Research Laboratory
Department of Computer Science
University of Colorado
Boulder, CO 80309
Voice: 303-492-5263
Fax: 303-492-2844
E-mail: {andre, rickhall, carzanig, dennis,
alw}@cs.colorado.edu

Software Deployment: Extending Configuration Management Support into the Field

Coming Events

Second Workshop on Software Architectures in
Product Line Acquisitions

DDDDDates:ates:ates:ates:ates: June 8-10, 1998
Location:Location:Location:Location:Location: Salem, Mass., Hawthorne Hotel
SSSSSubject:ubject:ubject:ubject:ubject: Adoption of an architecture-driven approach

to acquiring a line of software-intensive products.
Call for PCall for PCall for PCall for PCall for Position Position Position Position Position Papers: apers: apers: apers: apers: Submissions due: March 6,

l998. Notification of acceptance: April 1, 1998.
For submission guidelines, visit the Production
Line Issues Action Team Website.

SSSSSponsor:ponsor:ponsor:ponsor:ponsor: Product Line Issues Action Team.
Contact: Contact: Contact: Contact: Contact: Edward Addy, NASA/WVU Software Re-

search Laboratory
VVVVVoice:oice:oice:oice:oice: 304-367-8353
FFFFFax:ax:ax:ax:ax: 304-367-8211
E-mail:E-mail:E-mail:E-mail:E-mail: eaddy@wvu.edu
IIIIInternet:nternet:nternet:nternet:nternet: http://columbia.ivv.nasa.gov:6600/pliat

Relationship of DoD Architecture-Driven
Standards to Product Line Acquisition Business
Model

DDDDDates: ates: ates: ates: ates: March 17-18,1998
Location: Location: Location: Location: Location: Burlington, Mass.

SSSSSponsor:ponsor:ponsor:ponsor:ponsor: System Resources Corporation
SSSSSubject: ubject: ubject: ubject: ubject: Meeting participants will discuss the applica-

bility of Department of Defense (DoD) architecture
initiatives to software architecture-based acquisitions
of a product line and produce a short point paper
discussing how product line acquisition organiza-
tions could effectively apply DoD standards in the
acquisition of a family of software-intensive systems.

Contact:Contact:Contact:Contact:Contact: Harry Joiner
E-mail:E-mail:E-mail:E-mail:E-mail: hjoiner@world.std.com

International Information Technology Quality
Conference

DDDDDates: ates: ates: ates: ates: April 13-17, 1998
Location: Location: Location: Location: Location: Orlando, Fla.
Theme: Theme: Theme: Theme: Theme: “Providing Proven Solutions for the New

Millenium”
KKKKKeynote Seynote Seynote Seynote Seynote Speakers:peakers:peakers:peakers:peakers: Phillip Crosby, Tom DeMarco,

William Perry, Howard Rubin
SSSSSponsor:ponsor:ponsor:ponsor:ponsor: Quality Assurance Institute
Contact:Contact:Contact:Contact:Contact: 407-363-1111
FFFFFax:ax:ax:ax:ax: 407-363-1112
IIIIInternetnternetnternetnternetnternet::::: http://www.qaiusa.com


