
USING THE STRUCTURE OF XML
TO GENERATE NOTIFICATIONS
AND SUBSCRIPTIONS IN SIENA

by

Chris Corliss

A thesis submitted in partial fulfillment of
the requirements for the degree of

Masters of Science in Computer Science

University of Colorado, Boulder

2001

This thesis entitled:
Using the structure of XML to generate notifications and subscriptions in SIENA

written by Christopher Ray Corliss has been approved for the
Department of Computer Science

Approved by ___

Chairperson of Supervisory Committee

__

Date __

University of Colorado, Boulder

Abstract

USING THE STRUCTURE OF XML
TO GENERATE NOTIFICATIONS
AND SUBSCRIPTIONS IN SIENA

by Christopher Ray Corliss

Chairperson of the Supervisory Committee: Professor Alex Wolf
 Department of Computer Science

This thesis focuses on how to allow XML clients to interface with SIENA, an

event notification architecture. There are two challenges to make this happen.

The first one is how to take a client’s XML notification and translate it into a

SIENA notification, which has a different data model from XML. The other

challenge is translating an XPath expression into a SIENA subscription. The

approach taken to overcome these challenges is to use the structure of the XML

notification as a way to guide the translation process. The structure of the XML

notification is specified in a file using the XSchema language. A set of generic

rules has been developed, which can then be applied to any XSchema that will

result in the creation of a map mapping the XML notification tags into SIENA

notification attribute names. This same mapping is also used to translate an

XPath expression into a set of constraints used in the creation of the SIENA

subscription.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS ... IV

LIST OF FIGURES ..VI

ACKNOWLEDGMENTS...VIII

GLOSSARY... IX

CHAPTER 1 ...1
INTRODUCTION..1

Overview of Siena ..1
XML Overview ...4

CHAPTER 2 ...9
CHALLENGES ..9

Differences in Structure ...9
Subscription Language ..11

CHAPTER 3 ...12
XML INTERFACE ARCHITECTURE..12

Overview ..12
XML Notifications..14
An Introduction: the Rules Language. ..14
Applying the Map...17
XML Subscription ..24
Rules ...31

CHAPTER 4 ...40
IMPLEMENTATION ...40

Core Package...40
Rules Subpackage ..55
XPath Sub-package..62
Testing plan..66

CHAPTER 5 ...68
EVALUATION...68

CHAPTER 6 ...73

 v

CONCLUSSIONS ...73

CHAPTER 7 ...75
FUTURE WORK..75

BIBLIOGRAPHY..77

APPENDIX A ...78

Lexer grammar...78
Rules grammar...80

APPENDIX B..83
RULES ...83

Creating a Rule ..83
Tag Specifiers ..83
Conditions ..84
Actions ...86

Submitting Rules to the Program ..90
Rule Conflicts ...90

APPENDIX C ...92
SIENA’S XML INTERFACE ..92

Introduction..92
Using the XMLClient Class ...92
Using the XMLProcessor and XMLSubscriptionHandler Classes94

 vi

LIST OF FIGURES

FIGURE 1: EXAMPLE OF A NOTIFICATION FOR A STOCK3
FIGURE 2: EXAMPLE OF A SUBSCRIPTION ...3
FIGURE 3: EXAMPLE OF AN XML DOCUMENT..5
FIGURE 4: EXAMPLE XSCHEMA DOCUMENT ..6
FIGURE 5: EXAMPLE OF SOME OF THE USELESS INFORMATION IN THE

NOTIFICATION ...10
FIGURE 6: HIGH LEVEL ARCHITECTURE...13
FIGURE 7: EXAMPLE STRUCTURE OF A DOM TREE ..18
FIGURE 8: PURCHASE ORDER NOTIFICATION WITH TAGS THAT HAVE THE SAME

NAME...21
FIGURE 9: SIENA NOTIFICATION...24
FIGURE 10: THE DIFFERENT PARTS OF AN XPATH ..25
FIGURE 11: SIENA SUBSCRIPTION ...31
FIGURE 12: THE DEFINITION OF GENERIC RULES TO BE USED TO PROCESS ANY

XSCHEMA ...35
FIGURE 13: EXAMPLE OF POSSIBLE RULES THAT A USER OF THE CLIENT COULD

SUBMIT..36
FIGURE 14: XML TO SEINA MAP GENERATED BY AN XSCHEMA AND GENERIC

RULES..39
FIGURE 15: CLASS DIAGRAM OF THE CLASSES IN THE BASE PACKAGE.41
FIGURE 16: SEQUENCE DIAGRAM FOR THE TRANSLATE METHOD.......................43
FIGURE 17: SEQUENCE DIAGRAM FOR THE BUILDFILTER METHOD.....................46
FIGURE 18: ADDCONSTRAINT SEQUENCE DIAGRAM ...49
FIGURE 19: CLASS DIAGRAM FOR THE RULES SUB-PACKAGE.57
FIGURE 20: SEQUENCE DIAGRAM FOR THE DOESRULEAPPLYTONODE METHOD

..59
FIGURE 21: CLASS DIAGRAM FOR THE XPATH SUB-PACKAGE.63
FIGURE 22: GRAPH OF TOTAL TIME TO PROCESS THE XML NOTIFICATION......68
FIGURE 23: GRAPH SHOWING THE TOTAL AMOUNT OF TIME SPEND IN THE

APPLYRULES METHOD ..69
FIGURE 24: GRAPH SHOWING THE NUMBER OF CALLS TO THE APPLYMETHOD..70
FIGURE 25: GRAPH SHOWING THE AVERAGE TIME SPENT IN THE APPLYRULES

METHOD ..71
FIGURE 26: EXAMPLE OF RULES USING THE BOOLEAN OPERATORS.86
FIGURE 27: XML EXAMPLE AND IGNORE ACTION ...87
FIGURE 28: PATH PROCESSING INSTRUCTION EXAMPLE......................................88
FIGURE 29: UNIQUE PROCESSING INSTRUCTION EXAMPLE..................................89

 vii

FIGURE 30: EXTRACTING A XML NOTIFICATION ..96

 viii

ACKNOWLEDGMENTS

The author wishes to thank Professor Alex Wolf and Antonio Carzaniga for their

patience and my wife whose love and support has given me the strength to write

this thesis.

 ix

GLOSSARY

SIENA. Scalable Intranet Event Notification Architecture: architecture of an
event notification system that can span heterogeneous networks and uses a
publisher/subscriber protocol.

XML. Extensible Mark-up Language.

Notification. A data structure used by SIENA to transmit events to its clients.

Subscription. A set of filters that are used by a SIENA server to determine if a
notification should be sent to a client.

XPath. A way of expressing a path through an XML documents using tree axes
specifier, note tests, and predicate tests.

XSchema. A language used to describe the structure of an XML document by
describing the elements, types, and ordering of the XML document.

C h a p t e r 1

INTRODUCTION

Overview of Siena

SIENA is a software architecture for an event notification that has been

developed at the University of Colorado. What makes it stand out is its ability to

span different types of networks and its context sensitive routing of information.

This last part allows the system to be more flexible compared to the standard

network multicast or broadcast means of sending information to multiple clients

because it allows individual clients to filter out information they do not want on

the servers. The purpose behind the architecture is to have "an event notification

service that we have designed to maximize both expressiveness and scalability."

[1]. This is accomplished in several ways: By using an extension of the

publisher/subscriber protocol; the ability to configure SIENA servers in a way

that allows them to work the most effectively for the underlying network

topology; and the use of a subscription language that is expressive. Only a brief

overview of the publisher/subscriber protocol is given here followed by a

description of the software elements that make up the SIENA architecture and its

subscription language.

The publisher/subscriber protocol is a way of routing information only to the

clients that are interested in the information and not to all clients that are

connected to a server. The clients simply “subscribe” to information that the

server is “publishing”. In SIENA this idea is extended in that the servers are not

the computers publishing information but rather other clients connected to the

servers. Clients are therefore able to both publish an event to a server and

subscribe to different events. The task of the servers is to figure out a path from

 2

a client that is publishing the information to a client that has subscribed to it

independent of where the clients are located. This is the context sensitive routing

in which, based on content, the event is routed to different servers, which then

send to other servers in the SIENA network or to the clients that are connected

to it if they have subscribed to the information. This is different than a multicast

socket or listserv in that there is a selection mechanism, a subscription, which

allows the events to be filtered unlike a multicast socket or listserv environment

where there is no ability to filter on the client side. This way, only the clients that

want the particular event receive it while other clients do not even know of its

existence. A key to making this work is the subscription language that will be

examined after first looking at the data model used by SIENA.

The notification is the container for an event in SIENA. It is a type-less data

structure containing attributes that contain the information of the event. Type-

less means that the notification itself has no specific type but that attributes inside

of the notification do have types associated with them. An attribute consists of a

name, type, and value. The name of an attribute is represented as a string and has

to be unique in the notification that contains it. The type of an attribute is

chosen from a predefined set of types that are common to programming

languages. These types also have a defined set of operations that can be used on

them. The value is the part that holds the data for the attribute. The only

constraint for the value is that it must be of the same type designated by the

attribute. There is no limit to the number of attributes that can appear in a

notification. The notification is referred to as being "flat" because there is no

relational information between the attributes contained or structure in the

notification. This will become a problem when dealing with translating a XML

notification into a SIENA notification. These attributes are what the

subscriptions for SIENA are based on.

 3

The subscription submitted to a server contains a set of filters that are used to

determine if a notification is "covered" by a subscription. When a subscription

covers a notification it means that the attributes in the notification satisfy the

requirements of all the filters in the subscription. A filter consists of four basic

parts: The name of the attribute to evaluate; the type of the attribute; the

operation to be applied to its value; and the target value for the operation. In

order for an attribute to pass a filter it must meet the first two parts of the filter,

name and type, and have the result after the operation is applied to its value to

satisfy the requirement of the target value. In cases of equality this means the

attribute value must be equal or the same as the target value. For inequalities, the

value must be less than or greater than the target value based on the type of

inequality used. Two filters for the same attribute is allowed. In this case the

attribute has to satisfy both filters in order for the subscription to cover it. The

following is an example of a notification and a subscription.

Attribute Type Attribute Name Value

String class = /finance/exchantes/stock
Time date = Mar 4 11:43:37/MST 1998
String exchange = NYSE
String symbol = DIS
Float prior = 105.25
Float change = -4
Float earn = 2.04

Figure 1: Example of a Notification for a stock

String class >* /finance/exchantes
String exchange = NYSE
String symbol = DIS
Float change > 0
Float earn = 2.04

Figure 2: Example of a Subscription

 4

If a client used the example subscription in SIENA and another client published

the notification then, in this case, a server would reject the notification because

the subscription did not cover the notification since the attribute named

“change” was a value that was not greater than zero.

This concludes the background information about the SIENA architecture. The

next brief overview describes XML and its structure. The sections that follow

will then discuss the problems and solutions to building a XML client for

SIENA.

XML Overview

XML "is a method for putting structured data into a text file." [2]. XML is a text

based markup language with the tags being used to delimit data. The basic

element of an XML document is a tag composed of four parts: A name; optional

attributes in the tag; optional value for the tag; and other tags contained with in it.

The only required part of a tag is the tag name. There is no information about

the interpretation of the tag parts within XML, such as the meaning of the tag

name or the meaning of the value. The interpretation is left to the application

that is reading the XML document.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild!</comment>
 <items>

 5

 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

Figure 3: Example of an XML document

The data model in XML is hierarchical in nature. Tags are arranged in such a way

that a tag can have one enclosing tag but that may itself enclose multiple tags.

This is basically a tree relationship of one parent/many children. A specification

has been written that explains a structure that can be used to view the XML

document in this tree form explicitly. The structure is the DOM, Document

Object Model. The DOM is represented as a tree of nodes where each node

specifies a particular part of the XML document such as a tag, an attribute, and

their respective values. Because of this data model, tags in a XML document can

have tags with the same name without any conflicts because the tags can be

differentiated by their position in the tree. Besides the specification for the

DOM, other specifications have been written to help in the processing of an

XML document. The program heavily uses two of them: XSchema [4] and

XPath.

XSchema is a specification that has been developed to define the structure of the

DOM, and thus, the structure of a XML document. XSchema defines the

structure of the DOM by specifying the valid tags that can be used in the XML

document, the positions of the tags in the document, the type of values the tags

can contain, any type of attributes that the tags support, the number of

occurrences of a tag, and other structural elements.

 6

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

 Figure 4: Example XSchema document

As can be seen in the example shown in Figure 4 the XSchema does not directly

specify the XML tags but rather uses a notation that defines the valid tags and the

possible order in which they can be in. This XSchema describes the XML

document in figure 3. All this information is stored as a XML document itself,

with an .xsd extension, in a separate file from the XML document it describes.

The XML document has a reference to the file that contains the XSchema it

adheres to. A XML document that conforms to the XSchema specified is said to

be a valid document.

The XPath [3] specification explains the format and rules of a path expression

that can be used to navigate through a XML document. It describes that a path is

 7

composed of steps with each step specifying a set of constraints to be applied to

the current context node. The basic structure of a step can be broken down into

three parts: What axis of the DOM tree to look at; the name of the nodes to

filter out; and then predicates to execute against these nodes for further filtering.

The tree axis specifier simply states in what direction along the tree that the node

test should be applied. These are specifically defined in the specification to cover

different parts of the XML document. Some examples are:

• parent: This tells the XPath processor to test the parent of the

context node.

• child: This tells the XPath processor to test the children of the

context node.

• ancestor: This tells the XPath processor to test any of the ancestors

of this node. An ancestor is simply a node that can be reached by

walking up the tree using only the parent nodes.

• following-sibling: This tells the XPath processor to test the siblings

of the context node that follow it.

• preceding: This tells the XPath processor to test all of the nodes that

precede the context node in reverse document order.

At the end of each evaluation of a step a set of nodes is returned back to the

XPath processing task, which then uses them in the next step as the context

nodes. If a step does not return any nodes then the XPath fails. By the end of

the evaluation of a path, a set of nodes is returned containing the final tree nodes

that satisfy the XPath. The set of nodes can be empty, contain only a single

node, or contain multiple nodes. These are all valid in XPath.

 8

This concludes the overview of XML. The next chapter looks at the problems of

integrating an XML client into the SIENA architecture followed by a description

of the architecture of the client itself. For further information about SIENA or

XML the following web sites are recommended:

• SIENA: http://www.cs.colorado.edu/~carzanig/siena/

• XML: http://www.w3c.org/xml

 9

C h a p t e r 2

CHALLENGES

Differences in Structure

One of the challenges faced in creating a XML client for SIENA was resolving

the differences in the two data models. Because only the clients are able to see

and handle the XML notification and not the servers of SIENA, the XML

notification has to be "flattened" into a SIENA notification. Flattening an XML

notification is the process of removing the relational information, or in essence,

removing the DOM from the document. This would not be a problem if it were

not for the fact that XML tags can have the same name in an XML document but

SIENA attributes have to have unique names. After removing the DOM from

the document, these tags can no longer be distinguished. This could result in a

situation where data is lost if a simple scheme of using the name of the XML tag

as the name of the notification attribute is used to translate the XML notification

into a SIENA notification. For some XML tags this is not a problem if the type

of data in the tag was a string. These tags could be grouped together into one

attribute with the name of the tag being the name of the notification attribute.

Then the string operators of SIENA could be used to test to see if there are

instances of particular strings in the attribute. However, for tags that contained

integer values this was not an option since subscription filters can perform

inequality on the values. Some method would be needed to differentiate these

tags from each other in the notification.

Flattening introduced another problem: How much information should there be

in the SIENA notification about the structure of the XML notification. The first

try at a flattening scheme simply did the translation by brute force and included

 10

unnecessary information in the notification. Figure 5 shows an example of some

of the unnecessary information generated.

String purchaseOrder: billTo sendTo items
String sendTo: name street city state zip
…
Items: Item Item

Figure 5: Example of some of the useless
information in the notification

The information was unnecessary because it only gave information about the

structure of the XML notification that the clients already know from the

XSchema. The clients know that the purchaseOrder tag will contain a “billTo”,

“sendTo” and “items” tags. Therefore, the information does not need to be

included in the notification. Having this useless information is not desirable as

the clients subscribing to the notification would have to deal with this

unnecessary information, while trying to pull the real information about the event

they want. Going to the other side of the spectrum, by not including any

information about the structure of the XML notification would not work either.

Some information about the structure of the XML needs to be included when

dealing with a XML notification that has tags with the same name. This

information can be used to distinguish between tags that have the same name but

are in different places in the DOM. The problem then is how much structural

information should be put in the notification and when. A related problem to

this was how to use the information in the XSchema to guide the process of

flattening the XML notification. It was not clear on how the knowledge of the

structure of the XML notification could be leveraged to help in making the

decisions of what tags to include or how to differentiate tags with the same name

in the SIENA notification.

 11

Subscription Language

Another problem faced was how to handle the subscriptions from an XML

client. One basic question that needed to be answered was how to represent a

subscription in XML. XQuery [5] was looked at and deemed too difficult to

implement as a subscription language for the first release of the software. The

main reason for this was that XQuery was too powerful and allowed the existence

of queries that would be too difficult, if not impossible, to translate into a SIENA

subscription. An example of this would be a query that relied on the value of one

attribute to determine the name or value of another attribute; i.e. attribute x has

value y, which is then used to determine the name of another attribute, which

contains the information to be queried. The other option was to use XPath.

One of the problems encountered using XPath was that it used the DOM tree to

navigate an XML document that no longer existed for the XML notification

because it was flattened. This makes the translation of an XPath statement into a

SIENA subscription not as straightforward as hoped for and in fact it may be

necessary to represent the XPath statement as more than one SIENA

subscriptions.

Now that the problems have been identified the next two chapters cover the

architecture and implementation of a XML Client interface to SIENA that

contains solutions to these problems.

 12

C h a p t e r 3

XML INTERFACE ARCHITECTURE

Overview

One of the driving ideas behind the architecture is to not limit what the XML

clients are able to do. It would have been very easy to place requirements on the

XML notification structure by providing an XSchema that their notifications

would have to adhere to, or other constraints that would limit the power of the

client and in some ways limit the power of XML itself. Instead, the only

requirement of the architecture is placed on the publisher of the XML

notification. The XSchema for the notification has to be made available to both

the publishing and subscribing parts of the architecture. Besides this the clients

are free to do what they want with the XML notification.

The high level architecture is shown in figure 6. Two main sections are shown in

the diagram. To the left is the part of the architecture that deals with publishing

the XML notifications and on to the right is the other part that handles the

subscriptions to the XML notifications. The SIENA network of servers ties the

two sections together. The dashed lines show data flow in the architecture while

solid lines show control flow. The XML Client is on both sides of the

architecture because it is a generic interface to the internal components that do

the publishing and subscribing of XML notifications. There are also three boxes

that do not lie within either section of the architecture. These boxes represent

data sources that both sections need access to in order to handle the XML

notification and XPath subscription correctly. Not shown is a common

component that is used by both sections to generate the XML to SIENA map.

 13

 14

This component takes the generic rules and XSchema and produces the map that

is then used by both sections to translate either the XML or XPath into a set of

SIENA attributes. This component will be described in more depth later on.

The user rules for either section are directly applied during the translation process

with no preprocessing involved. It is not mandatory that the subscription section

have access to the user rules, however, it is highly suggested that the user rules

should be given to the subscription section so that it can correctly translate the

XPath steps into the appropriate SIENA notification attributes.

XML Notifications

The focus of this next section is on the part of the architecture that translates a

given XML notification into a SIENA notification. The architecture diagram

shows that the XML Client transfers control to the XML Notification processor.

When doing so it also sends the XML Notification to it. The processor will then

take the notification and use the XML to SIENA map and user rules if they have

been specified, to generate a SIENA notification. An optional step is to include

the user rules in the translation process if they have been specified. Once the

SIENA notification has been created it then simply gets published like any other

notification. There are basically two steps in the translation process: Applying

the map to the notification and applying the user rules to the notification. After

these two steps have been taken, a SIENA notification is ready to be published.

Before a more in-depth explanation of the two steps is given a description of the

language that is used to specify the rules in is given.

An Introduction: the Rules Language.

The fundamental idea behind the language is to have a language that gives

someone the ability to specify a set of parameters or conditions to select XML

tags. Once a tag has been selected then a particular action is associated with the

 15

node that indicates how it should be treated when translating it into a SIENA

attribute. These two parts, the condition and action, along with a tag specifier

make up a rule in the language.

Every rule in the language begins with the word “rule” followed by a colon. This

is an indication to the parser that a rule is about to begin. Following this is a tag

specifier that indicates the XML tag, which the rule should be applied to. This is

the first part of the filtering process. The rule will only be considered when the

current XML tag being looked at matches the tag specifier in the rule. The tag

specifier can be any valid identifier followed by an optional attribute identifier.

An identifier is defined as starting with a letter or underscore, followed by more

letters, numbers or underscores. There is no limit to the length of the tag

specifier. Spaces and any other symbol besides the underscore cannot be used in

the specifier. The optional attribute identifier is a ‘@’ followed by another

identifier. The attribute identifier allows the rule to be applied to an attribute of

an XML tag instead of the actual XML tag. There is a special key word, which

can be used for the tag specifier. The “any” keyword indicates that any XML tag

or any attribute is the target of the rule.

Once the specifier has been given then the condition is expressed. The condition

is a test that the XML tag must pass before the action is applied to the tag. The

condition can specify if the XML tag or attribute is present or compare the tag’s

value to some other value. Some conditions have a special comparison value. A

tree axis specifier can be used followed by a tag specifier. The tree axis specifier

can be only one of two words: Parent or sibling. The tag specifier follows the

same rules that the tag specifier used at the beginning of the rule definition. What

this allows is the value in the XML tag or attribute to be compared to either its

parent’s value or all of its sibling’s value. If the two values are equal then the rule

is applied to the XML tag. An example is in the default rules:

 16

rule: any@type = sibling any@type PATH

The tag specifier uses the special “any” keyword for the XML tag. This means

that any XML tag will work. It also includes the attribute specifier that is

“@type”. So this rule specifies that the target XML tag is any tag that has an

attribute whose name is “type”. The condition is an equality condition with the

tree axis specifying sibling. When the rule is being checked against an XML tag

that has a type attribute the program will search through its siblings. The next

part indicates the tag the program should look for in the current XML tag’s

siblings. This rule indicates any XML tag is valid if it also has the “type” attribute.

If a XML tag is found that does, then the value of its type attribute is compared

to the value in the current XML tags “type” attribute. Only if they are equal will

the program then apply the action to the current XML tag. If “any” was not

specified but some other tag name was given then the program would select only

the siblings that had the XML tag specified.

The last part of the rule definition is the action that is to be taken. The action can

simply be the name of the SIENA attribute in which to store the value of the

XML tag or attribute into. If multiple tags have the same action then the values

will be separated in the notification by comas.

The program comes with a set of default rules that are used to process a

XSchema. After the XSchema has been processed a map is generated that maps

a XML tag into a name of a SIENA attribute. This is the XML to SIENA map

shown in the architecture. More detailed information on the rules language is

given in a later section in this chapter and also in Appendix A and B. The next

section covers the use of the generated map.

 17

Applying the Map

The applying of the map is rather a straightforward task. The XML Notification

Processor (processor) first parses the XML notification and creates the DOM for

it. The Xerces XML parser is used to do the parsing, which returns a Document

node that is the root of the DOM for the XML. Then using recursion, the

processor walks through the DOM depth first checking to see if the current node

it is on matches a user rule or has an entry in the map.

The processor checks to see if any of the user rules can be applied to the XML

tag that is represented by the DOM node first. This allows a user to override any

of the generic rules if they desired to do so. If there is a rule that should be

applied then the processor will ask the user rule to apply itself to the node. The

rule will then return a string that will be the name of the notification attribute that

the value of this node should be placed in. If there are no user rules to be applied

then the map is consulted.

The map maps either the name of a XML tag or the name of an attribute in a tag

to the name of the SIENA notification attribute. The map’s keys are the names

of the XML tags and attributes without the namespace prefix. In the Xerces

implementation of the DOM each node has a set of methods to get information

about the node. One of the methods is called “getLocalName”. This method

returns the name of the XML tag that the node represents without the namespace

prefix. This is what is used as a key into the map. If there is an entry in the map

then the value returned is the name of the attribute of the notification that the

value of this node should be placed in.

If neither the user rules or a mapping can be used to generate a name for a

notification attribute then the processor will do nothing for the node and

continue its transversal of the DOM tree.

 18

One of the problems encountered when retrieving the value for an XML tag is

that the DOM does not store the value of the tag in the node. Instead, the first

child node of the current node is a text node that contains the value of the XML

tag. Figure 7 shows the structure of a DOM based on some XML tags to express

the problem in a pictorial way.

Figure 7: Example structure of a DOM tree

What was done to fix this problem was to process the child text node as if it was

a regular node. This node has the unique property that it will not have a local

name. So calling the getLocalName method will result in a null being returned.

When this condition is encountered the parent node is retrieved and whatever the

map returns for the parent would be applied to current text node.

 19

The DOM’s structure handles attributes of a XML tag differently from actual

XML tags that are children tags. The attributes are stored as separate children

from the actual XML children tags. Therefore, when walking down the tree, a

check is made to see if there are any attribute nodes associated with the current

node. If this check returns true then the attribute “children” are processed first

before the real children of the node. Once all of the nodes have been processed

a list of attributes and values has been generated. A Siena Notification object is

then created populated with the information found in the list. The notification is

then published.

There are times where the map will not return a name of an attribute but rather

some special processing instruction. The processor checks for these cases each

time it gets a value from the map for a node. There are three different types of

processing instructions that are handled: “ignore”, path and unique.

The “ignore” processing instruction simply informs the processor that this node

and all of its children should be ignored by the processor. This is indicated by the

value having the following string “IGNORE”. The processor will simply skip

over the node and its children and return back to the parent node to continue

processing. This way a publisher can tell the processor that certain tags in the

XML notification can be ignored and not put into the SIENA notification. This

does not mean the subscription client would not receive these ignored tags, only

that they are not included in the SIENA notification.

The path processing instruction is used to indicate the number of ancestor tag

names that should be included in the attribute name. The value for this

processing instruction is “PATH”. The way this works is that the instruction

indicates to the current node that it should append its name to the path

expression. The time that the path expression is used is when the notification

attribute name and its value are about to be stored in the list. The processor first

 20

appends the attribute name to the path to generate the correct notification

attribute. This removes the task of finding out the names of a node’s ancestors

from the node itself and automatically generates the path for the children who

need it.

The last processing instruction is the unique instruction. This instruction is

executed whenever the attribute name returned from the map contains a dollar

sign in it. If a dollar sign is found then the attribute name is broken into two

parts: The part before the dollar sign, which is a name of a SIENA notification

attribute; and the part after the dollar sign that is either another tag or, most

likely, an attribute of the current tag, which is used to uniquely identify the tag.

This processing instruction is used in the instances where there is more than one

tag with the same name. This is one of the problems stated in chapter two. The

problem is that the processor has to deal with the XML notification that has

multiple tags with the same name in it in a way that no data is lost. What the

processor does is append the first part with a slash followed by the value in the

tag or attribute specified in the second part. This results in way to uniquely

identify a tag in the XML notification from others that have the same name. An

example of this occurring is shown.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild!</comment>
 <items>

 21

 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

Figure 8: Purchase Order Notification with tags
that have the same name.

The purchase order notification has two items that are being sent. Since the

items have to be uniquely specified they will have the unique processing rule as

the attribute name in the XML to SIENA map. In this case the attribute values

look like this: item$partNum. The generation of this instruction will be covered

later when the generic rules are being described. For now assume that somehow

it was determined that the partNum attribute of the item tag works well for

uniquely identifying the item. The processor would then extract the first part

from the name, item, and the second part, partNum. To generate the name of

the SIENA attribute the processor would concatenate the first part with a slash

followed by the actual value contained in the partNum attribute of the tag. The

end result would be for the first item: item/872-AA. The second one looks

similar: item/926-AA. An examination of the purchase order would indicate

that there are other tags with the same name yet they will not be treated the same

and there are some cases where it does not matter that the XML tags have the

same name. A more in-depth discussion of this will be given while describing the

generic rules and how they work.

There is some special manipulation that the processor does when translating the

XML notification. When a unique processing instruction is encountered the

processor will create a notification attribute that contains the number of tags that

 22

have the same name for the particular instance it is working on. Using the

previous example the processor would count the number of item tags that are in

the notification under the same parent tag and store this value in an attribute.

The name of the attribute is simply the name of the tag, in this case “item”,

appended with a dollar sign and the half word “quant”: item$quant. The

subscription handler when converting an XPath position predicate into a SIENA

subscription uses this attribute as a test to see if the notification meets a

minimum requirement of having at least x amount of tags, where x is the position

specified in the predicate. This attribute will always be generated when the

processor encounters a unique processing instruction, even if there is only one

tag and not multiple tags in the XML notification that have the same name.

Another type of special processing that is done is when some type of numerical

data is found. The processor keeps track of the maximum and minimum values

for any XML tag that contains numerical data according to the XSchema. Again,

using the previous example, the processor would keep the minimum and

maximum values for the tags: zip, USPrice and quantity. The reason this is done

is to allow XPath subscriptions that look for general information about a

particular tag. For example, the XPath might request for all notifications that

have items that are less than a hundred dollars in price to be returned. If the

special processing was not done this type of XPath could not work, since in this

example, the only way to see the USPrice of an item is to know its partNum.

Then multiple constraints for the USPrice attribute would be generated for the

subscription, one for each possible item. This would not work since all of the

items would then have to have the USPrice under one hundred dollars instead of

just one. With the special processing, a subscription can be generated that tests

the USPrice$min attribute to see if it is less than 100.00. Item partNum is no

longer needed and only one constraint is needed instead of multiple ones to

handle this case.

 23

The processor adds one last attribute to the notification that is not contained in

the XML Notification itself. The name of the attribute is “_xml” and it contains

the zipped text of the XML notification. This is used as a means to transmit the

original XML notification to the clients subscribing to the event. Instead of

forcing the subscription client to reconstruct the XML notification from the

SIENA notification it was deemed easier and faster to simply gzip the XML text

and store it in an attribute in the notification. Then when a subscription covers

the notification the client can simply unzip this attribute and have the original

XML notification in hand. It is because of this attribute that when a publisher

indicates that a XML tag should be ignored that the tag is ignored only for the

SIENA notification but the subscriber still gets the full, original, XML

notification. Figure 9 contains a SIENA notification that was generated from the

XML notification in figure 8.

USPrice$max=148.95
USPrice$min=39.98
_xml= … (the value is not displayed for sake of space)
billTo/city="Old Town"
billTo/name="Robert Smith"
billTo/state="PA"
billTo/street="8 Oak Avenue"
billTo/zip=95819
comment="Hurry, my lawn is going wild!, Confirm this is
electric"
item$quant=2
item/872.AA/USPrice=148.95
item/872.AA/productName="Lawnmower"
item/872.AA/quantity=1
item/962.AA/USPrice=39.98
item/962.AA/productName="Baby Monitor"
item/962.AA/quantity=1
item/962.AA/shipDate="1999-05-21"
orderDate="1999-10-20"
partNum="872-AA, 962-AA"
quantity$max=1
quantity$min=1
shipTo/city="Mill Valley"
shipTo/name="Alice Smith"
shipTo/state="CA"
shipTo/street="123 Maple Street"
shipTo/zip=90952
zip$max=95819

 24

zip$min=90952}
Figure 9: SIENA Notification

XML Subscription

This section focuses on the right hand side of the architecture diagram. The

diagram shows a XML Client submitting to a XML Subscription Handler

(subscription handler) an XPath to use for a subscription to XML notifications.

The subscription handler translates the XPath into one or more SIENA

constraints using the XML to SIENA map in the process. If the user rules that

the XML Notification processor used is available to the subscription client they

are also applied to the XPath at this point. The subscription handler then issues a

subscription that contains the constraints generated by the XPath to the SIENA

servers. When a notification is covered by a subscription a SIENA notification is

received by the subscription handler, which then extracts the original XML

notification from it. The XPath submitted by the client is then executed against

the notification to make sure that there is a true match. If the XPath processor

returns at least one node then the XML notification is returned to the client,

otherwise it is discarded. These processes will now be discussed in more depth.

When the subscription handler receives the XPath expression from the client it

decomposes it into its individual steps. Each step of the path is then evaluated

separately to determine if there is a need to generate an attribute constraint for

that particular step. There may be a concern that by evaluating the steps

individually information about the needed structure of the XML notification is

lost. It is correct that the structure information is lost but it is not needed nor can

it really be used in the creation of a SIENA subscription. The reason is that the

SIENA subscription does not include any information about the structure of the

XML notification except for the cases when multiple tags have the same name or

when a “tag path” has been appended to an attribute name. And in these cases it

is the XSchema that provides the needed information about the structure of the

 25

XML notification and not the XPath statement. This allows each step to be

handled on an individual level and not as a collective whole.

Figure 10: The different parts of an XPath

Each step is further divided into its separate parts: The tree axis specifier, the

node test, and any predicates. The tree axis contains information about the

structure of the XML notification that is not in the SIENA notification.

Therefore, the subscription handler ignores this part completely. If the node test

is not a function, such as text(), it will be the name of the XML tag. This name is

used as a key to the XML to SIENA map. If a value exists for the key, the value

returned would contain the name of the SIENA notification attribute that the

value of the XML tag was stored in. This is the name that the attribute constraint

will be constructed for. If there is not a predicate then no attribute constraint will

be generated and the step ignored. Otherwise, the predicate will be used to

determine the type of attribute constraint needed to satisfy the predicates. It is

also at this stage that any rules that have been specified by the user are taken into

account. If there are user rules, the subscription handler will check to see if a

 26

XML tag has a rule there first before using the XML to SIENA map. Because

the user rules are in a rules format some processing must be done to the rule

before it can be used to create the notification attribute name. The result of the

processing is a map between the current XML tag and the SIENA attribute. This

is then treated as if the map was taken from the original XML to SIENA map.

Processing instructions must also be handled since they are stored in the values

that are returned by the map. They are the same ones that the XML Notification

Processor must deal with so only a brief description will be given here followed

by the actions taken by the subscription handler.

The “ignore” processing instruction simply informs the subscription handler that

this XML tag and all of its children should be ignored. This is indicated by the

value having the following string “IGNORE” as its value. The subscription

handler will simply move on to the next step and resume processing. The

subscription handler cannot stop processing here as the next tree axis in the

following step may refer to tags around this one, and not merely its children, that

are not ignored. An example: If one of the generic rules stated that any comment

tags should be ignored then the following XPath would result in the subscription

handler having to deal with the ignore processing instruction.

/purhcaseOrder/comment/following-sibling::items/item

When the word “comment” is used as a key into the XML to SIENA map the

value returned would be “IGNORE”. The subscription handler would then skip

over everything else in the step. If processing terminated here, then an error

would be generated since according to the subscription handler there was not

enough information in the XPath to create a subscription. This is not the case in

this example since the steps that follow do have enough information to generate a

subscription. The reason is that the next step uses the tree axis “following-

sibling” to shift the focus of the XPath to tags that are not ignored. This is the

 27

reason that when an “ignore” processing instruction is encountered, the

subscription handler evaluates the next step instead of terminating processing of

the XPath.

 The path processing instruction, indicated by the word “PATH” appearing in the

value returned by the map, is used to indicate the number of ancestor tag names

that should be included in the attribute name. When the subscription handler

sees this instruction, it appends its name to the prefix string that is used to

generate the notification attribute names. At the beginning of each step, if a tree

axis is specified and its value is not child, then the last added name to the prefix

must be removed, as the PATH instruction only effects the children tags of the

current tag and no others.

The last processing instruction is the unique instruction. This instruction is

executed whenever the attribute name returned from the map contains a dollar

sign in it. When found, the attribute name is broken into two parts: The part

before the dollar sign, which is a name of a SIENA notification attribute; and the

part after the dollar sign that is either another tag or, most likely, an attribute of

the current tag, which is used to uniquely identify the tag. What the subscription

handler does is search the predicates in this step to see if the specified tag or

attribute in the processing instruction exists as an operand in an equality

expression. If so, then the name of the attribute is created by taking the tag name

from the first part and concatenating it with a slash and the other operand in the

equality expression. If the equality operation is not found then processing will

resume on this step only if the other predicates deal with the position of the tag.

Otherwise, the next step is processed in the XPath statement. Next is a discussion

of predicates and how they are handled.

 28

There are many different types of predicates that can be used in an XPath step.

The predicates have been grouped together for ease of processing into the

following categories:

• Function: This group of predicates use functions to generate results.

A list of valid functions can be found in the XPath specification [5].

• Equality: These predicates test to see if two operands are equal in

value. An operand can be a child node, an attribute, a String literal, or

a variety of other types.

• Position: This group of predicates returns the XML node in the

indicated. The position refers to the position the tag is in the set of

children nodes of its parent.

• Comparison: These predicates uses some type of inequality

expression, such as the less than or greater than operators, as a test.

• Compound: These predicates are made up of two or more other

predicates that are combined together through the Boolean operators

“and” and “or”.

The subscription handler first determines the group that the predicate specified in

the step falls into. Then based on the group it creates the attribute constraint for

the subscription.

When a predicate in the function group is processed the subscription handler first

determines if the function can produce an attribute constraint. It does this by

consulting a list containing the name of the functions that cannot be used to

generate a constraint. If the function is not one of these then the arguments of

the function are processed to determine what attribute or child tag is being used.

If none can be found in the arguments then the function is ignored, as it does not

contain any useful information that would help in constructing the subscription.

Once the child or attribute name has been determined an attribute constraint

 29

based on the substring operator is created. The attribute name to be used for the

constraint is the name found in the predicate appended to the prefix that was

generated during the evaluation of the node test. The value to be used in the

constraint is the other argument to the function. Currently only a subset of the

string functions specified in the XPath specification are supported.

For the equality predicate the subscription handler determines if one of the

operands is a XML tag name or an attribute name. If one of the operands is a tag

or attribute the subscription handler uses the operand as the name of the SIENA

attribute to apply the constraint to, after appending it to the prefix generated in

the examination of the node test in the step. A constraint is created using the

equals operation and the value of the other operand in the equality expression. If

neither of the operands are tags or attributes then the predicate is ignored and

processing continues.

There are three different ways that a position predicate can be created. The first

two are by methods, the “last” method and the “position” method. The “last”

method simply wants the last tag specified in the node test in the set of children

of the previous tag specified in the last step. For example the XPath

/purchasOrder/items/item[last()} requests that the last item in the items list

should be returned. The “position” method returns the current position of the

tag. It is usually combined with an equality to select a particular tag at a particular

position. To get the second item in the items list an XPath would look

something like this: /purchaseOrder/items/item[position() = 2]. The third

method of specifying a position predicate is actually a short hand of the position

method call. A simple number is used to indicate the desired position of the tag.

Using the previous XPath example, the shorthand version of it would be:

/purchaseOrder/items/item[2]. When the subscription handler encounters a

position predicate created by the last two methods it determines the desired

location for the tag first. Then the attribute name it creates for the attribute

 30

constraint is simply the tag name, as specified in the node test, append with a dot

and the word “quant”. The constraint is then built using the “<=” operand with

the value being the position specified in the predicate. If the predicate happens

to be the method “last” then the value for the constraint is –1. The reason for

this is that if predicate is applied to a XML document that contains only one tag

then the “last” method should return this tag. By setting the constraint to –1 this

insures that even if the XML notification contained only one of the desired tags

the filter would work since the value of the “$quant” attribute would be one and

hence greater than the -1.

A comparison predicate is handled in the same way as the equality predicates.

The only difference is that the attribute constraint operation is not always

constant but rather changes based on the predicate. This is simply handled by

passing in the actual text that is in the predicate for the operator to the attribute

constraint and allowing it to parse the text and determine the operation for its

self. Besides this, the comparison predicate is handled the same way.

The compound predicate is found when either one of the compound statements,

“and” or “or”, are found in the text of the predicate. The subscription handler

handles this predicate by simply examining the joined predicates individually,

generating constraints for each one. However, this only works when the

compound statement is “and”. For “or” a different tactic must be taken since

only one of a possible combinations need to be true. In this case the constraints

that are built use the “any” operation. What this does is simply test for the

existence of the attributes in the notification and not their values. When the

XPath is executed against the original XML notification then the actual predicates

are used to insure that the XML notification does match the subscription.

After each step the generated attribute constraints are stored in a filter. At the

end of processing the complete XPath the filter is then used as a subscription by

 31

submitting the filter to a SIENA servers. If the filter is empty though, i.e. no

constraints were created based on the XPath submitted, the subscription handler

will return an exception to the client stating that it did not have enough

information to generate a subscription based on the XPath it was given. Figure 11

contains the subscription that would be generated from the XPath shown in

Figure 10 to show the different processing strategies at work.

filter{ billTo/name *"Rob" zip any}

Figure 11: SIENA subscription

When a SIENA notification is received by the subscription handler it cannot

assume that the XML notification contained within the SIENA notification is a

match to the XPath specified by the client. The reason is that not all of the

information in an XPath expression, such as tag position or tree axis information,

was used directly in the subscription. As explained previously there were things

done to try and filter on some of these elements but others just could not be

used. The subscription handler first retrieves the XML notification from the

SIENA notification by getting the value of the _xml attribute and unzipping it.

The result is the original XML notification that the publisher sent. The XPath is

then evaluated using the XML notification. If the evaluation returns at least one

node then the notification matches the XPath and should be returned to the

client, otherwise it is not a match and will be discarded by the subscription

handler. Now that the two main architectural sections have been discussed the

next section deals with the common component between the two, the generic

and user rules.

Rules

A special language has been developed to specify rules that are to be applied to

XSchemas or XML notifications. This part will discuss the language in-depth

 32

and the different components used to process and apply the rules to schemas and

notifications.

In the language a rule is defined as having four parts: The string literal “rule:”,

the target, the condition, and the action. The target simply states what XML tag

the rule applies to. The value for the target can be anything that is also a valid

XML tag according to the XML specification. The target can also have an

additional part of a ‘@’ sign followed by a name appended to the XML tag name.

This indicates that the target of the rule is an attribute of the XML tag and not

the tag itself. There is also a special value “any” that specifies that any XML tag

or attribute is the target of the rule. Following are some examples of the possible

valid targets for a rule:

• Annotation : Matches only annotation XML tags.

• item@partNum : Matches item XML tags that have an attribute

named partNum. If an item XML tag exists that does not have this

attribute the rule would not be applied to it since it is not the target of

the rule.

• any : Matches any tag.

• any@type : Matches any XML tag that has an attribute named type.

• any@any : Matches any attribute in any tag.

The condition specifies constraints that the XML tag needs to meet in order for

the rule to be applied to it. The condition is composed of an operator and a

possible value to be used in the operation. The valid operations are:

• [‘<=’ | ‘>=’ | ‘<’ | ’>’] | ‘=’] value: These conditions check to see if

the value of the XML tag or attribute return true when the specified

operator is applied to them using the value as the other operand in

the expression.

 33

• present:: This condition simply checks to see if the XML tag or

attribute is present in the XML document.

• notpresent: This condition checks to see if the XML tag or attribute

is not present in the XML document.

The values for the comparison operators need to be numerical. However, the

“=” and the “!=” operators can have a strings as the value as well as a name of

another XML tag or attribute that have a value associated with them. When

specifying another tag a tree axis should be used to indicate where the tag is

located in the XML document. The valid tree axes are:

• parent: The parent tag of the current XML tag.

• sibling: Any sibling of the current XML tag.

• child: Any of the children of the current XML tag.

The condition also allows the Boolean operators “and” and “or”. By using these

operators a rule can specify multiple attribute constraints that the XML tag needs

to meet. When using the Boolean operators only attributes can be specified and

not other tags for the conditions. This prevents a constraint that tests the value

of the XML tag and the value of one of its attributes. The “and” operator is used

when all of the attribute constraints need to be met before the rule can be applied

to the XML tag. The “or” operator specifies that one or more of the constraints

need to be true in order for the rule to be applied to the XML tag. Examples of

valid conditions are listed below:

• comment present: The condition is for the comment XML tag to be

present.

• any@type = “xsd:string” : The condition is an equality that checks to

see if the type attribute in any XML tag has the value “xsd:string”.

 34

• any@type = sibling any@type : This condition checks to see if the

type attribute in any XML tag is equal to the type attribute of any of

the current XML tag’s siblings. In essence, do two XML tags with

the same parent have the same type?

• any and { @maxOccurs = 1 @minOccurs = 1 @fixed notpresent

@use = “required”} : This condition checks multiple attributes on

any XML tag. All of the conditions inside have to be true before the

rule will be applied to the XML tag being processed. In this case the

attributes “minOccurs” and “maxOccurs” must equal one, the

attribute “fixed” should not be present and the attribute “use” should

have the value required.

The action states what should be done to the XML tag. The following actions

are currently valid:

• ignore Ignore the tag and not include it in the notification.

• group:name This states that multiple instances of this tag should be

grouped together under the attribute with the name name. Note: this is

exactly what the name action does. This is included to help human

readers understand the rule.

• path This action indicates that the XML tag should have its named

added to a prefix that is used to generate the names of the SIENA

attributes.

• unique:target This specifies that the current XML tag or attribute

can be used to uniquely identify the tag specified by target.

• name This is the name of the notification attribute that the value of

this tag should be stored in. This is generally the action most rules

will have. For example, this rule states that the value of the XML tag

should be stored in a notification attribute called names:

 35

rule: name present names.

There is another special key word that can be used in actions: currentTag. This

keyword informs the action that what ever the current XML tag is when the rules

is invoked should have its name substituted for currentTag when processing the

action. This allows the delaying of the naming of a notification attribute for an

XML tag to the time that an actual XML notification is being processed and not

during the earlier time when the XSchema is being processed. Generally the

“any” rules, rules that have the “any” keyword as the rule target, use this keyword

and not the other rules since the XML tag is already know when the other rules

are being executed.

Figure 9 shows the generic rules that are applied to any XSchema that is given to

the XML Client interface. Most of the rules make heavy use of the “any” target

because the exact structure and tag names are unknown to these rules when they

are applied to an XSchema. Figure 10 shows some rules that a user could submit

to the XML Client to prevent any XML comment tags being placed in the

SIENA notification or to specify where to store the value of an attribute.

rule: any@type = "xsd:string" group:currentTag
rule: any@type = "xsd:date" group:currentTag
rule: any@type = sibling any@type path:1
rule: any@fixed present ignore
rule: any present group:currentTag
rule: annotation present ignore
rule: attribute and {
 @maxOccurs = 1,
 @minOccurs = 1,
 @fixed notpresent,
 @use = "required"
} unique:currentTag
rule: attribute and {
 @maxOccurs notpresent,
 @minOccurs notpresent,
 @fixed notpresent,
 @use = "required"
} unique:currentTag

Figure 12: The definition of generic rules to be
used to process any XSchema

 36

rule:productName present group:productName
rule:comment present ignore

Figure 13: Example of possible rules that a user of
the client could submit

Appendix A contains the grammar for the rules language and also the valid

tokens for the language. The descriptions are written in EBNF. Appendix B is a

short guide on how to write rule definitions.

Once the rules have been defined the next task is to generate the XML to SIENA

map. A component called the XSchema Processor is responsible for this task.

This component is located on both sides of the architecture. When built, the

XSchema Processor (processor) tries to load the rules from a file. The file name

is a static property of the processor and is currently set to “default.rules”. To

load the rules a parser built from the rules grammar is created to read in the

contents of the file and return a hash map that contains a mapping of a target

name to one or more rules that have the same target. The key does not include

the name of the attribute, only the name of the XML tag. It is left up to the rule

to check for the optional attribute target. Once loaded the hash map is returned

to the processor, which then waits for an XSchema file to be submitted.

The “default.rules” file contains rules that are to be used as basic guidelines in

generating the XML to SIENA map. Basically, the rules specified check for the

following:

1) If a tag has a type of string or date, then multiple instances of this tag can be

grouped under an attribute with the same name as the tag name.

2) If a tag has a sibling with the same type as it, then its children will need to

include its name as part of the SIENA attribute name.

3) Ignore any XSchema annotation tags and its children.

 37

4) If an attribute is designated as fix, it can be ignored.

5) If an attribute is designated as required and can only appear one time this

attribute should be considered as a way to make a tag unique.

These are only basic guidelines in attempt to allow broad range of XML

notifications to be translated into SIENA notifications. Because they are only

basic guidelines there may be instances where more detailed rules need to be also

used. The user rules fill this role, which will be talked about later.

When the processor is given an XSchema file it then uses a XML parser to parse

the file and create a DOM for it. The processor walks through the DOM depth

first, using the local names of the node as a key into the map returned by the rules

parser. If there is a match in the map for the key then the processor takes the

value returned and extracts one or more rules from it. Then for each rule the

processor sees if the rule should be applied to the XML tag by asking the rule to

check its conditions against the node. If the rule returns true then the processor

knows that it should apply the rule to the node. The rule is asked to apply itself

to the node and when it is finished return a string. This string will contain one of

two things: A notification attribute name or a processing instruction. The rule

determines what is returned by what action was specified in the rule.

If the rule has a group action, the tag specified after the group key word is

returned. For ignore actions the string “IGNORE” is returned. The unique

action will return a string that is the combination of the tag specified after the

unique key word appended with a dollar sign and the target for the rule. For the

path action the string “PATH” is returned. Otherwise the value in the action

string is returned.

Once the rule has returned a string then an entry into the XML to SIENA map is

made consisting of the key, which is the local name of the current node, and a

 38

value, which is the string returned by the rule after it applied itself to the node.

By the time the processor finishes waling through the DOM tree a complete map

will have been created that takes an XML tag and returns either a processing

instruction or notification attribute name. At this point the processor is finished

and stores the map internally. Figure 14 displays a map that would be generated

from processing the XSchema in figure 4, duplicated here for ease of reading.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

 <xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

 39

 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->
 <xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

The map generated using the generic rules:

USPrice=USPrice, comment=comment, USAddress=USAddress,
shipTo=PATH, orderDate=orderDate, state=state,
productName=productName, shipDate=shipDate, quantity=quantity,
street=street, items=items, SKU=SKU,
purchaseOrder=purchaseOrder, country=IGNORE, city=city,
billTo=PATH, PurchaseOrderType=PurchaseOrderType, Items=Items,
zip=zip, item=item/$partNum, name=name

Figure 14: XML to SEINA map generated by an
XSchema and generic rules

 40

C h a p t e r 4

IMPLEMENTATION

Core Package

The implementation of the interface is contained in the base package siena.xml.

There are two other sub-packages under this one that contain specific

components that are used by the main classes in the base package. There is a

third package that contains a GUI interface used as an example of how to use the

XMLClient object. The base package will be examined first followed by the two

sub-packages. The gui sub-package will not be explained as it dose not contribute

to the XML client interface.

Figure 15 is a class diagram of the classes contained in the base package. There

are three main classes that implement the XML interface to SIENA. The three

classes are:

• XMLProcessor: This class handles the translation of a notification into a

SEINA notification.

• XMLSubscriptionHandler: This class deals with the XPath translation

into a SEINA subscription and the testing of the XPath against the XML

notification that is received from a server.

• XMLSchemaProcessor: This file handles the loading of the generic rules

and creating the XML to SIENA map used in the translation processes.

The XMLClient class is an extension to the siena.ThinClient class that can be

used as the interface to SIENA. It adds two methods that allow a client to

publish XML Notifications without having to know about the translation process

and to subscribe to events using XPath as the subscription language. The other

 41

class, DOMParserWrapper, is a class wrapper around the Xerces DOM parser.

This class is used to parser a XML document and creates a DOM tree from it.

Figure 15: Class diagram of the classes in the base
package.

 42

The XMLProcessor has five public methods for the use of external programs.

The methods that have to be used in order for an XML notification to be

correctly translated into a SIENA notification are: “setStyleSheet” and

“translate”. The “setStyleSheet” method tells the processor the location of the

file that contains XSchema of the XML notification. Not calling this method will

result in an exception being thrown by the translate method with the error

message of: “XSchema has not been specified. Processing of the XML

notification can not be done without it.” Once this method has been called the

XMLProcessor will tell the XSchemaProcessor the location of the XSchema. The

XSchemaProcessor will then generate a HashMap that maps an XML tag to a

SIENA attribute name or a processing instruction. The XMLProcessor will store

this table internally and use it while executing the “applyRules” method. The

translation method is used to translate the XML notification, sent in as a String

object, into a SIENA notification, which is returned. Figure 16 contains a

condensed version of a sequence diagram of this method.

The method first calls the method applyRules to apply the map generated by the

XSchemaProcessor to the XML tags and also to apply any user rules that may

have been set by the method setUserRules.

The applyRules is a recursive method that works on the nodes of the DOM tree.

The arguments to the method are a node to be processed and a prefix that should

be used when creating the final name of the notification attribute. This method

works on all of the nodes in the DOM, including the attribute nodes and the

special text nodes. The first thing the method does is check to see if a user rule

can be applied to the node that was passed in. In the method that handles the

processing of the user rules a check is made to see if two user rules can be applied

to the same node but produce different mappings. If this happens the method

 43

will print out to a log file that XML tag the rules can be applied to and the rules

that could be applied. The last rule found in the user rules file is the one that will

be applied to the node.

Figure 16: Sequence diagram for the translate
method

If so, the XMLProcessor has the rule apply itself to the node and the return value

is used as the name of the notification attribute. The map is still consulted for an

attribute name even if a user rule was found that did apply to the node. This is

 44

done to check to see if a user rule defines a different mapping from an XML tag

to a SEINA name attribute than a default rule. If this is the case then the method

will print out a warning to a log file stating that the user rule over rides a default

rule. The user rule will always be used in this case. If a value was found for the

XML tag in the map or the user rules then it is checked to see if it is one of the

special processing instructions. If so the XMLProcessor deals with the processing

instruction accordingly. If the node has a value then the value of the node is then

associated with the notification attribute name and stored in the attributeValue

HashMap. This HashMap associates a Vector of values with a String that is the

name of the SIENA notification attribute. If there is not a value for the node

then the method checks to see if the node and its children are to be ignored. If

so the method is done and returns otherwise the attribute nodes and the children

nodes are processed by calling the applyRules method on them.

The next method called after the applyRules method is finished is

populateNotification. This method takes in a notification as an argument and

proceeds to fill in the notification with the names and values of the notification

attributes contained in the attributeValue map. After this the

generateMinMaxValues method is called to store in the notification the minimum

and maximum values of the XML tags that have numeric data for values. After

these two methods have been called the SIENA notification has been created and

is almost ready to be sent. The last thing that the translation method does is to

build an ObjectOutputStream on top of a GZIPOutputStream on top of a

ByteArrayOutputStream. Then the XML notification String is written to the

object output stream that results in the notification being compressed and stored

into a byte array. This byte array is then stored in the SIENA notification under

the “_xml” attribute name. After this the notification is returned back to the

caller of the method.

 45

The XMLSubscriptionHandler is the class that handles the translation of the

subscriptions and checking to see if a notification received from SIENA matches

the XPath supplied by the client. The class was designed so that there could be

multiple instances of the class running at the same time. Each instance would be

in charge of a single subscription. In order to intercept the SIENA notifications

the XMLSubscriptionHandler registers itself with the SIENA servers as the

object to be notified. When notified the XMLSubscriptionHandler will then

check the XML notification against the XPath to see if it returns at least one

node. If so the XMLSubscriptionHandler informs the client about the XML

notification. The observer pattern is used with the XMLSubscriptionHandler

class being the subject. The observers are the clients who are submitting the

XPath subscriptions to the XMLSubscriptionHandler. The client must register

itself with the XMLSubscriptionHandler by calling the “attach” method, passing

itself in. When a XML notification is received the XMLSubscriptionHandler calls

the “inform” method that calls the “update” method on all of its observers. The

“update” method takes a single parameter of type XMLSubscriptionHandler. The

XMLSubscriptionHandler will pass itself as the parameter to the update method.

This allows multiple clients to be informed about the same subscription.

 46

Figure 17: Sequence diagram for the buildFilter
method

The method that is invoked to build the subscription is the buildFilter method. A

sequence diagram of this method is show in figure 17. The method takes a String

 47

containing an XPath statement as an argument and returns a filter based on the

XPath. A SienaException can be thrown by the method.

The method first checks to see if the last filter created could be used for the

XPath passed in. This is a simple check to see if the XPath passed in as an

argument is the same stored in the class and if the filter is not equal to null. If

these conditions are met then the filter is returned and the method finishes

otherwise an XPath object is created from the argument passed in. Then for each

step in the XPath the node test is retrieved and checked for any processing

instructions. For the path instruction the method appends the name of the step

to the prefix string. After the processing instructions are handled a check is made

to see if there are any predicates for the step. If so the method checks to see if the

predicate is either a compound predicate or a regular predicate. The compound

predicate has to be handled differently because it has multiple predicates that

need to be translated into attribute constraints for the subscription.

To handle the compound predicate the method invokes another method called

buildFiltersFromTree. This method takes as one of its arguments a BinaryNode

object. Using this object as the root of a tree the method will walk the tree depth

first. When the method hits a leaf it simply converts the predicate into a filter

calling the addConstrint method. It then stores this new filter into a vector in the

node’s user data section. When the method is processing a node in the tree then it

takes two different types of actions based on the type of node. If the node

represents an “or” Boolean operation then the method will take the filters from

the children of this node and simply add them together. The new set of filters is

then stored in the current node’s user data section. In this way filters are

propagated from bottom of the tree to the top. If the node represents an “and”

Boolean operation then all possible combinations of the children filters is

produced. The new set of filters is then stored in the current node’s user data

section. When the method finishes the node that was passed in contains a vector

 48

that contains all of the filters that should be issued to the SIENA server in order

to cover all the possible combinations that the compound predicate covers.

 The translation of a predicate happens in the “addConstraint” method for which

the sequence diagram is shown in figure 18. This method will return true only if a

constraint was added to the filter. The return value is combined with a result

Boolean using a logical “or” operation. After all the steps for the XPath have

been examined the “buildFilter” method checks to see if the result Boolean is

true or not. If the value is true then the method returns an array of filters. If the

value is false then an exception is thrown stating that there was not enough

information in the XPath subscription to generate a SIENA subscription.

 49

Figure 18: addConstraint sequence diagram

 50

The “addConstraint” method takes as arguments a Predicate object, a String

containing a prefix to be applied to the notification attribute name, and a String

containing the name of the current step, which is the node test. The method first

determines the type of predicate being processed using the “getType” method in

the Predicate class and the predefined types. Once the type of predicate has been

determined the Predicate object passed in as one of the arguments is cast into its

subtype for ease of processing.

For equality predicates the method builds a new constraint based on the type of

equality. The type is can be a double, or an integer, or a string and is based on

what used as operands in the expression. The name of the target tag or attribute

is retrieved from the EqualityPredicate object and used as the name of the

SIENA notification attribute to apply the constraint to. If the tag returned is a

unique processing instruction then the base part, everything before the dollar

sign, is extracted and used as the name of the SIENA attribute after it is

appended with the string “$quant”.

When a position predicate is found the method checks to see if the current step

name is empty. If so the method returns false because the position predicate

needs to know the current step name to generate the name of the notification

attribute to build the constraint for it. If the step name contains a dollar sign then

the method will generate the attribute name by taking the name before the dollar

sign and appending it with the string “$quant”. An attribute constraint is built

using the “greater than or equal to” operation and setting the value to the

position specified in the predicate. If the step dose not contain the dollar sign

then the attribute constraint built uses the “any” operation and inserts the string

“any” as the value to check for. This value is ignored because of the “any”

operator that is being used. The name of the notification attribute is set to be the

same as the current step name.

 51

The comparison predicate is handled by first checking to see if the comparison is

a greater then or lesser than operation. If it is a greater than operation then the

attribute name is built from the string argument retrieved from the comparison

predicate appended with the string “$min”. For the lesser than operation the

attribute name is appended with the string “$max”. The minimum value for an

attribute is checked for the greater than operation because if the lower limits of

the range of values for the notification attributes is greater than the value supplied

in the predicate then all of the values of any of the XML tags being searched for

will be greater than the value submitted. The predicate then will never be satisfied

by the XML notification. The same logic applies to the less than operation being

compared with the maximum value of the attribute. Once the notification

attribute name has been created the method determines if a comparison to an

integer is being made. If so the constraint is built using the operation and the

integer argument from the predicate. Otherwise the double argument is used

instead of the integer argument. The prefix string is cleared at the end of the

method because the min/max attributes generated by the XMLProcessor consist

only of the name of the XML tag and no prefixes. If the prefix was not cleared

then it would be applied to the notification attribute name generated by this

method and create an attribute name that would possible not exist in the SIENA

notification.

For the function predicates the method checks to see if the function is a string

function. If so, the method creates an attribute constraint using the substring

operator. The method checks to see which argument was the literal string,

referred to as the quoted string in the code, and which one is the name of the tag

or attribute the predicate is working on. The literal string is supplied to the

constraint as the value to look for in the substring expression while the other

argument is used to create the name of the notification attribute. For other

functions no attribute constraint is generated because it may not make sense or

be possible to convert them into a constraint.

 52

At the end of the addConstraint method the generated notification name and

attribute constraint are added to the filter and a true value is returned unless the

notification name is null. In this case false is returned.

In the case where a step does not have a predicate the buildFilters method will

see check to see if the step has a rule/mapping associated with it. If so then a

filter is created where the name of the SIENA attribute is whatever was mapped

to the XML tag and the value looked for is set to “any”. This allows paths that do

not have predicates to still work as subscriptions.

The only other method of interest in the XMLSubscriptionHanlder is the

“notify” method. This method receives a SEINA notification as an argument that

matches the subscription generated by the “buildFilter” method. The notify

method extracts the “_xml” attribute and proceeds to unzip the contents of the

attribute to generate the original XML notification. Then using the Xalan XML

engine by Apache[9] the method checks to see if the XML Notification satisfies

the requirements specified in the XPath which was used in the creation of the

subscription. If so, the XMLSubscriptionHandler invokes the “inform” method

to inform all of its observers about the notification. Otherwise the notification is

discarded and the method finishes.

The other main class in the core package is the XSchemaProcessor. There are

only three public methods in the class: the constructor, setXSchema, and

getXMLRules methods. When the constructor is invoked the XSchemaProcessor

loads the generic rules by creating a siena.xml.rules.RulesGenerator object and

passing it a FileStreamInput that is connected to the file specified in the static

attribute DEFAULTRULES. The RulesGenerator object will generate a

HashMap that will contain a map between a target XML tag and a vector of

siena.xml.rules.Rule objects that can be applied to the target. The

XSchemaProcessor stores the HashMap for latter use. The constructor also loads

 53

a set of rules that are used to identify the types being defined by the XSchema.

The RulesGenerator object is built again but is loaded with a different set of rules

that are located in the file named in the VALUERULES attribute. The hash map

returned is also stored for later use. The setXSchema method takes the name of

the file that contains the XSchema and builds an org.sax.InputSource object that

is connected to the XSchema file. The method then invokes the parse method in

the DOMParserWrapper object to parse the XML and generate the DOM for it.

The method returns the root node of the DOM. The method generateXMLRules

is called passing it the root node of the XSchema.

The generateValueInformation method is used to determine what types will not

have a value associated with them. Simply checking to see if the type is defined as

a complex Type does this. However, if the definition of the complex type has the

mixed attribute set to true in it, then it will hold values and will not be included in

the list of types that do not have values. This list is then used in the

generateXMLRules method to determine if the XML tag to SIENA name

attribute mapping should be stored.

The generateXMLRules method is a recursive method that has the following

arguments: a Node to examine to see if a rule can be applied to it and a string that

contains the name of current type being processed. The method will walk

through the DOM depth first in search of nodes that have rules that can be

applied to them. The first thing done is to determine the current type being

processed. This is based on the name of the of XSchema tag “complexType”.

The name attribute of the tag is used as the name of the current type. There is a

case when a complexType tag will appear after an element tag. The complexType

will not have a name attribute in this situation. To get the current name of the

type the parent element tag’s name attribute is used instead. The method does

this by checking all of the element tags and storing the value of the name attribute

into a String called newCurrentType. Then the method checks for the

 54

complexType tag and try to set the newCurrentType value to the value of the

attribute name. By doing the processing this way the method is able to know the

name of the parent element if the complexType dose not have a name attribute.

Once the type is determined the method then checks a list to see if the XML tag

being process will have a value or not. If it will not have a value then no more

processing is done and the children of the DOM tree node are processed.

Otherwise the method will try to retrieve a rule for the node. The method

“getRule” is invoked, which takes the current node as an argument. The method

will then call the “getLocalName” method of the node and use it as a key into the

map that contains the generic rules. The “getRule” method returns whatever the

map returns. This can be a vector object or null.

If a vector was returned then the “generateXMLRules” method will call the

method “useRules” to apply the rule to the node. The “useRules” method takes

the vector and node as arguments. In the “userRules” method each element,

which is a Rule object, is extracted from the vector using a for loop. The rule

object’s method “doesRuleApplyToNode” is invoked, passing it the node. If this

method returns true then the “applyRule” method is called in the

XSchemaProcessor and a true value is returned. Otherwise the loop starts its next

iteration. If the for loop is able to finish then the method returns false to indicate

that no rules in the vector could be applied to the node.

If the “useRules” method returns false the “generateXMLRules” method

retrieves the set of rules that can be applied to any tag using the string “any” as a

key into the generic rules map. This will return a vector containing the rules that

have been designated as applying to any tag. The method then calls the

“useRules” method again, passing in the any rules vector. After this the

“generateXMLRules” method retrieves all the children from the current node and

 55

calls it self one time for each child node, passing in the child node as an

argument.

The “applyRule” method main purpose is to handle the unique processing

instruction. First the rule’s “apply” method is invoked, passing it the node. The

valued return from this method is stored in the variable attributeName. If this

variable is null, the method returns without doing anything else, otherwise it

checks for the index of the dollar sign. If the index is not –1 then the substring

from index 0 to the index of the dollar sign is extracted and stored in a variable

called xmlTagName. If the value of the substring is equal to “currentTag” then

the method substitutes the value in the xmlTagName with the value in the

currentType attribute. Then a “put” operation is used on the currentRules

HashMap with the xmlTagName as the key and the value the concatenation of

the xmlTagName, a slash, and the substring of the attributeName starting at the

dollar sign index to the end of the string.

If the index was –1, then the “applyRule” method attempts to get the value of the

attribute name from the node. If the name attribute exists then it is used as the

key for the “put” operation to the currentRules. The value that is associated with

the key is the value of the attributeName variable. If a name attribute does not

exist then the method simply returns.

By the time the generateXMLRules method finishes with all of its recursion the

currentRules HashMap will contain a mapping between a XML tag and a SIENA

attribute. This is the map shown in the architecture with the name XML to

SIENA map.

Rules Subpackage

This sub-package contains the classes that define what a rule is. The main class is

the Rule class with the other classes taking the roles of supporting or utility

 56

classes. Figure 19 shows the class diagram for this package. Here are the classes

and a brief description of each

• Rule: This class defines what a rule is and how it works

• Condition: An interface that contains a method to check to see if a Node

object meets a condition.

• ExistsCondition: This class is a condition that checks for the existence, or

nonexistence of a XML tag or attribute.

• EqualityCondition: This class is a condition that checks to see if two

strings are equal.

• NumberEqualityCondition: This is a condition class that checks to see if

two numerical operands are equal.

• InequalityCondition: This compares two numbers and returns true

depending on the operation and the values of the numbers. The two valid

operations are: less than and greater than.

• RulesGenerator: This class uses the RulesParser to parse an input stream

and produce a HashTable of rules. The HashTable maps the target of a

rule to the rule object. This class is generated with the Antlr utility.

• RulesParser: A parser generated from the rules grammar (see Appendix A)

by the Antlr[10] utility.

 57

Figure 19: Class diagram for the rules sub-package.

 58

• RulesLexer: The lexer for the rules language. Generated by Antlr [10]using

the rules grammar (ass Appendix A).

• rulesTokenTypes: Support class for the RulesLexer class that contains the

tokens for the rules language. Generated by Antlr[10].

• rulesParserTokenTypes: A support class for the RulesParser class.

Generated by Antlr[10].

Five of the classes in this package where automatically generated by the tool

Antlr[10]. Antlr is a software package that generates parsers and lexers defined by

a grammar. In this case the grammar is for the rules language. The only generated

class that is used in the interface is the RulesGenerator class. This class hides the

details of the parser and lexer and provides a convenient way of getting a

HashMap of rules from a file.

There are two important methods in the Rules class: the

“doesRuleApplyToNode” method and “applyRule” method. These two methods

control what nodes in the DOM the rule is applied to and how the rule is applied

to the node. Figure 20 shows the sequence diagram for the

“doesRuleApplyToNode” method.

 59

Figure 20: Sequence diagram for the
doesRuleApplyToNode method

The “doesRuleApplyToNode” method starts off by first checking to see if the

local name of the node is the same as the target for the rule or if the target is

“any” for the rule. If either case is true the method continues on to check to see if

the node meets the conditions for the rule. Otherwise false is returned to the

caller of the method.

The Rule object has two attributes that effect the execution of the condition. One

attribute is called the targetAttribute and the other one is called attributeTargets.

Only one of these attributes can be set to a value for a rule. The first attribute is

 60

set if the target of the rule specified an attribute. The rule definition would look

like the following:

rule: any@type = “xsd:string” group:CurrentTag

In this case the targetAttribute would be set to “type” and the target would be set

to “any”. This is done in the RulesParser object. When the

“doesRuleApplyToNode” method is evaluating a condition and the

targetAttribute is not null then the method retrieves the attribute node that has

the name specified in the targetAttribute attribute. The attribute node then is

passed in to the “meetCondition” method instead of the original node that was

passed in.

The attributeTargets attribute is an array of string that contains the names of all

the attributes that were listed in a compound condition. A compound condition

specified in a rule looks like the following:

rule: any and { @maxOccurs = 1 @minOccurs = 1 @fixed notpressent } ….

The attributeTargets attribute would then have the following values: maxOccurs

in element zero, minOccurs in element one, and fixed in element two. If this

attribute is not null during the processing of the conditions then the method will

get the attribute node that has the same name of the element in the array indexed

by the for loop count variable. This is done so that the correct condition is

matched with the correct attribute it targets. Using the rule above as an example

the conditions would be evaluated in the following order: “= 1”, “= 1”, and

“notpresent”. The names of the attribute in the array are in the exact same order

as the conditions, which allows the for loop counter work as the index for both

the conditions and the attribute names.

If neither of the two attributes, targetAttribute or attributeTargets, are set then

the node that was passed in is used as the argument to the “meetCondition”

 61

method. At the end of the “for” loop there is an “if” statement which checks to

see if the result is false and if the type of rule is an “ANDRULETYPE”. If this is

true the method will return false since the rule type indicates that all of the

conditions must be meet in order for the rule to apply to the node. At the end of

the method it simply returns true.

The attribute ruleType is set during the parsing of the rules file. The default value

for it is “ANDRULETYPE” indicating that all the conditions have to be met

before the doesRuleApplyToNode return true. When a compound condition is

encountered in the rules file, the condition’s type sets the ruleType attribute. If

the compound condition is “and” then the ruleType attribute is not changed. If it

is “or” though, the ruleType attribute is set to “ORRULETYPE”. The

“ORRULETYPE” indicates that only one of the conditions of the rule has to be

true in order for the “doesRuleApplyToNode” method return true.

The other method in the Rule class worth looking at is the “apply” method. This

method is called when the rule should be applied to a node. What this means is

that the action of the rule will be examined to determine the name of the

notification attribute the node’s value should be stored in or if a processing

instruction needs to be returned. The method first checks to see if the action is

“ignore”. If so it returns the string “IGNORE” back to the caller. If the action is

not ignored then the action is checked to see if it equals “path”. If the action is

“path” then the method returns the string “path”. If the method is still executing

the next step it takes is to determine what the name of the notification attribute

the action specifies is. This is the name of the location in the SIENA notification

to store the value of the node. Once this is determined then an attempt to extract

the name of the node is made. This is done by either checking for an attribute

that has the name “name” or by getting the attribute node specified in the

targetAttribute attribute of the Rule object. This last case is used for the rules

specified by the user because they are not being applied to the XSchema but to

 62

the XML notification. It is possible that the name of the node is not attainable. In

this case the variable that holds the name of the node is set to null. The method

checks to see if the node has any text node children that would contain the value

of the node. If the node does not have a text node child or any attributes then the

rule is unable to apply itself to the node and null is returned to the caller.

Otherwise this method continues processing by checking to see if the action is a

group action and if the group name is not “currentTag”. When this happens the

method simply returns the attribute name that was specified after the colon in the

action. After this a check is to see if the action specified was unique is made. If

the check is true the unique processing instruction is created by concatenating the

name of the notification attribute specified in the action after the colon, a dollar

sign, and then the name of the current node. This new value is then returned to

the caller. The last thing the method executes is a return statement containing the

name of the node that was passed in, if it is not null, or the rule’s action variable.

The Condition classes execute their respective operators against the Node object

passed in during the execution of the “meetsCondition” method. If the operation

returns true after being applied to the node then the method also returns true.

Otherwise false is returned.

This ends the look description of the rules sub-package. The last package that is

going to be looked at is the xpath package that contains the classes to handle and

manipulate an XPath.

XPath Sub-package

Figure 21 is the class diagram for the xpath sub-package. The following are the

classes in this package an brief description of each:

• XPath: This is the main class that is used to represent the XPath.

• Step: This class represents a single step in the XPath statement.

 63

• Predicate: An abstract class that is also a factory used to build the correct

type of predicate based on the string argument passed in to it.

figure 21: Class diagram for the xpath sub-package.

• ComparisonPredicate: This predicate handles any of the expressions that

deal with comparing values with an inequality operator, such as greater

than.

 64

• CompoundPredicate: This predicate is a container for two or more

predicates that are joined together by a Boolean operation.

• EqualityPredicate: This predicate represents the expressions that check to

see if two values are the same or not.

• FunctionPredicate: When a function is specified in a predicate statement

this class is used to represent it. The only functions that do not use this

predicate are position and last, which are covered by the

PositionPredicate class.

• PositionPredicate: This is used when a position of a tag is specified in a

predicate.

When an XPath is passed into the XMLSubscriptionHanlder it creates a new

XPath object, passing it in the String object that contains the XPath expression.

The XPath object tokenizes the string using the slash as the separator. For each

token the XPath object creates a new Step object, passing it the current token,

and stores it in a Vector. All of this is done in the constructor for the XPath

object.

In the Step object’s constructor it determines if a tree axis specifier is used by

checking for the index of a double colon. If the double colon exists then a tree

axis specifier is being used in the step. The constructor saves this information

into the axis attribute of the class. The next piece of information extracted from

the string is the existence of a predicate. By checking a bracket the constructor is

able to determine if a predicate exists and the location in the string the definition

of the predicate begins. The predicate is removed from the argument string using

the substring method and passed in as an argument to the Predicate static method

“buildPredicate”. This method will return a reference to a Predicate object that

represents the predicate defined by the string passed into it. The Step constructor

saves this object in the predicate attribute.

 65

After the predicate has been dealt with the Step constructor determines what the

node test is from the argument passed in to it and saves it in the nodeTest

attribute. If there is a parenthesis in the node test name then the Boolean

function is set to true to indicate that the node test is a function of some sore

instead of a name of a node to test for.

The “buildPredicate” method in the Predicate class is the factory method used to

create predicates based on the information passed in through the String object

parameter. First thing to be done is strip the string parameter of the braces that

enclose the predicate. After that a check is made for different values in the string

to determine the type of predicate that should build. The first thing checked for is

for the Boolean operators “and” and “or”. If one of these is present then a

CompoundPredicate object is created, passing the constructor of the

CompoundPredicate the string parameter passed into this method.

The CompoundPredicate uses a predicate parser to generate a tree where each

node is a Boolean operator, either AND or OR, and each leaf is a predicate. By

building a tree in this fashion it is easier to create the all possible combinations

that the OR’s and AND’s can produce. This is done when creating filters for this

predicate.

The “buildPredicate” method then checks to see if it can convert the string

argument into an integer. If this works or the string starts with the words “last”

or “position” then a PositionPredicate is created. The next check is for the

equality sign. If the index for the equality sign is not –1 then it is determined if

there is an exclamation point in front of it. In either case a EqualityPredicate is

built and then returned to the caller of the method. There is a special case that is

checked for when building the EqualityPredicate. If one of the values of the

expression happens to be a function then a CompoundPredicate is built instead.

This allows for functions to be correctly translated into SINEA subscriptions by

 66

the XMLSubscriptionHandler. If this were not done then the information

contained in the function would be lost, as the EqualityPredicate would not

correctly process it. The next check is to see if the string contains a ‘>’ or a ‘<’

character. If so then a ComparisonPredicate is built otherwise the default is the

creation of a FunctionPredicate object.

This ends the description of the implementation of the architecture. The next

section details a testing plan for the implementation followed by the next chapter

on the evaluation of the implementation.

Testing plan

There are two basic methods of unit testing that are going to be done on the

implementation: white box and black box testing. The reason for using both is

that for some of the more complex classes white box testing will be able to test

the class more thoroughly because it can test the private methods individual and

make sure they are generating the correct output which black box testing can not

do. Black box testing on the other hand can test the consistency of class by

checking to see if the public methods, which call the private methods,

consistently return the desired results. If they don’t and the white box testing

indicates that the private method is working correctly then there is a problem

with the public method calling the private methods correctly. Not all classes need

to have both white and black box testing applied to them as some are very basic

in nature and black box testing will adequately test the class. The only classes that

will use both types of testing will be the XMLProcessor class,

XMLSubscriptionHanlder class, and the XSchemaProcessor class.

Black box testing will be implemented using the JUnit library. JUnit is a set of

classes in java that create a “simple framework to write repeatable tests. It is an

instance of the xUnit architecture for unit testing frameworks.”[6]. JUnit is

developed by Erich Gamma and Kent Beck and more information on it can be

 67

found on the JUnit website [6]. All of the classes will have separate JUnit test

classes for black box testing that were automatically generated by the Netbeans

IDE [7].

The white box testing will be done using inner classes that will use the JUnit

framework. Inner classes have the unique ability to access the private members

and methods of its outside class, which allows private methods to be tested and

private members to be checked to see if they contain the correct values before

and after the execution of the methods. The inner classes are declared to be static

and all of them have the main method in them to execute the tests. There are

individual public methods in each class that tests a particular method or control

path in the code. There is at least one test for each private method in the outside

class with more test methods for the more complicated methods.

All of the test classes are stored in a separate directory under the xml directory

called tests. A class called TestAll can be used to run all of the tests and print out

the results onto the screen. The test classes will not be included in the default

make of the XML client interface.

 68

C h a p t e r 5

EVALUATION

To evaluate the interface two tests were created to see how well it handled the

translation of a XML notification into a SIENA notification. One test examined

the time it took to generate the notification with the DOM tree for both the

XSchema and the XML Notification being very broad while the other test

examined the time for the notification to be generated with the DOM trees very

deep.

Figure 22: Graph of Total Time to Process the
XML Notification

 69

Figure 22 shows the graph comparing the number of nodes in the DOM tree to

the total amount of time to process the XML notification. The spikes in the

graph are anomalies produced by increased usage of the computer running the

tests. The layout of the data points suggest a linear relationship between the

number of nodes in the DOM and the time needed to translate an XML

notification into a SIENA notification. The translation process performs a little

better when dealing the deeper trees. A possible explanation for this is that in the

“applyRules” method there is a “for” loop near the end of it which loops until all

of the children of the current node are processed. With the DOM tree being

skewed in a way so that there was a single child per node the “for” loop only

executed once instead of many times.

Figure 23: Graph showing the total amount of time
spend in the applyRules method

 70

In figure 23 the graph showing the total amount of time spent in the

“applyRules” method compared to the number of nodes in the DOM. The three

spikes in the graph are anomalies that were generated during high use of the

computer running the test. In general though the translation process faired better

with the deep DOM tree than the shallow DOM tree. This is to be expected

since the graph in figure 22 showed the same result. The time spent in the

“applyRule” method is a fraction of the time spent overall in translating the

notification, though it increases at a greater rate than the time needed to translate

the notification in general. The reason for this is that the translation time includes

the time to serialize a String object and compress it. This part of the translation

takes up a significant portion of the processing time.

Figure 24: Graph showing the number of calls to
the applyMethod

 71

The graph in figure 24 shows the number of calls to the “applyMethod”. A very

linear relationship can be seen in the data. This is to be expected since the

“applyMethod” is called for every node in the DOM tree. It also shows that the

shape of the DOM tree has no bearing on the number of calls that are made. The

only thing that affects the number of calls is the number of nodes in the DOM.

Figure 25: Graph showing the average time spent
in the applyRules method

The graph in figure 25 is the most interesting graph. It shows that as the number

of nodes increase in the trees, the less amount of time was spent in the

“applyRules” method. The three spikes in the deep tree data near the tail end of

the graph are the anomalies explained previously for figure 23. The layout of the

data suggests that there is a lower limit to the amount of time spent in the

“applyRules” method. This is reasonable as there is a limit to how fast a single

instruction can be executed on the computer. The somewhat exponential decay

 72

of time though is what is counter -intuitive. Logic would suggest that the average

amount of time spent in the “applyRules” method would increase as the number

of nodes to process increases. A possible explanation for this is that the method

runs rather quickly without any outside influences. However, it is possible that

the JVM at different times executes the garbage collector when the method is

being executed. When the method is only executed once then the additional time

incurred by the method can perhaps be traced to the JVM doing something else

in the background. This would result in the time in the method being larger than

what it truly is. As more calls are made to the “applyRules” method then the time

impact from the JVM is reduced which could produce the pattern of the data in

the graph.

 73

C h a p t e r 6

CONCLUSSIONS

Using the structure of an XML document provides useful information in the

translation process of a XML notification to a SIENA notification. The

information gathered from a XSchema document guides the translation process

by indicating elements that do not need to be included in the notification, by

specifying elements that would need a unique way to identify them, and removed

the need to include any type of structural information in the SIENA notification

because the client also has access to the XSchema which it can use to reconstruct

the XML notification from the SIENA notification.

A nice side effect from the use of the structure is that the same information

generated from the XSchema could also be used directly in the client that is

subscribing to the XML notification. The XPath expression is translated into

SIENA attribute constraints using the same set of guidelines that were used to

translate the XML notification. This allows client applications using the XML

interface to SEINA to be separated from knowing about how SIENA works.

Instead the client applications simply publish XML notifications and subscribe to

the notifications using XPath expressions.

The main source of difficulty in the implementation of the interface was the

development of the rules language and generating a basic set of rules that could

be used with any XSchema to translate an XML notification. The reason is that

the rules language had to be powerful enough to express some rather complex

ideas yet be simple enough that some one new to the system could understand

 74

the language fairly easily and starting using it right away. The generic rules were

difficult because they had to cover a wide range of cases and possibilities that

could exist in an XML document and provide the correct type of processing to

guarantee that a XML notification could be transformed into a SIENA

subscription. No proof or data has been generated to prove or disprove if the

current rule set meets this goal.

In closing it has been determined that the interface is a success because it does

not reduce the power of the clients using XML but instead empowers them to

use a power event notification system without needing to know how it works.

 75

C h a p t e r 7

FUTURE WORK

From this point there are some different possibilities to explore. The next

logical step would be an effort to push the XML interface into the SIENA

servers. This would reduce the amount of client side processing because some

of it would go into the servers and also some of it would disappear

completely, such as the translation process of the XML notification into

SIENA notifications. Some difficulties in doing so though would include the

re-architecture of the notification system so that the native format would be

XML. This would effect any of the optimizations the servers use to route the

notifications. The implementation of the routing algorithms would have to

change also to take advantage of the properties of XML.

Just recently a draft of the specification for XPath 2.0, the next version of

XPath, was released. This newer version has been updated to meet the

requirements that the XQuery specification has. This new specification could

be evaluated tp see if the new enhancements to it allow it to work as a better

subscription language than version 1.0.

Another expansion would be the use of XQuery as the subscription language.

Because XQuery is more complex and powerful than XPath more effort

would have to be made in converting the query into a SIENA subscription. If

the XML interface was pushed back into the SIENA servers then it would

also require changing the subscription language for SIENA which could be a

major piece of software engineering work.

 76

The use of an XSchema to guide the translation process of a XML

notification into a SIENA notification could be furthered researched. One

direction would be to look at the generic rules and the application of them to

the XSchema. What other pieces of information are available in the XSchema

which can be exploited by the proper set of rules? How can this technique be

used in other applications that transmit XML data across networks?

 77

BIBLIOGRAPHY

[1] A. Carzaniga, D.S. Rosenblum,

A.L. Wolf, Interfaces and Algorithms
for a Wide-Area Event Notification
System, Technical Report CU-CS-
888-99, Department of Compute
Science, University of Colorado,
1999. (Revised 2000)

[2] Bert Bos, XML in 10 Points,
http://www.w3.org/XML/1999/
XML-in-10-points, 1999.

[3] James Clark, Steve DeRose,

editors, XML Path Language
(XPath) Version 1.0,
http://www.w3.org/TR/xpath,
1999.

[4] David C. Fallside, editor, XML

Schema Part 0: Primer,
http://www.w3.org/TR/xmlsche
ma-0/, 2001.

[5] Don Chamberlin, editor, XQuery

1.0: An XML Query Language,
http://www.w3.org/TR/xquery/,
2001.

[6] Erich Gamma and Kent Beck,

JUnit, http://www.junit.org, 2001

[7] Sun Microsystems, Netbeans,

http://netbeans.org

[8] TogetherSoft, Together

ControlCenter,
http://www.togethersoft.com

[9] Apache foundation,
http://xml.apache.org/

[10] Antlr parser generator,

http://www.antlr.org

78

APPENDIX A

Lexer grammar

tokens {
 "rule"; "group"; "ignore"; "unique"; "path"; "and"; "or";
"present";
"notpresent"; "notunique"; "sibling"; "child"; "parent";
"novalue";
}

WS : (' '
 | '\t'
 | '\n' {newline();}
 | '\r')
 { _ttype = Token.SKIP; }
 ;

SL_COMMENT :
 "//"
 (~'\n')* '\n'
 { _ttype = Token.SKIP; newline(); }
 ;

NOT: '!'
 ;

LCURLY: '{'
 ;

RCURLY: '}'
 ;

LESS: '<'
 ;

GREATER: '>'
 ;

EQUAL
 : '='
 ;

COLON: ':'
 ;

79

COMA: ','
 ;

SLASH
 : '/'
 ;

CHAR_LITERAL
 : '\'' (ESC|~'\'') '\''
 ;

STRING_LITERAL
 : '"' (ESC|~'"')* '"'
 ;

protected
ESC : '\\'
 ('n'
 | 'r'
 | 't'
 | 'b'
 | 'f'
 | '"'
 | '\''
 | '\\'
 | '0'..'3'
 (
 options {
 warnWhenFollowAmbig = false;
 }
 : DIGIT
 (
 options {
 warnWhenFollowAmbig = false;
 }
 : DIGIT
)?
)?
 | '4'..'7'
 (
 options {
 warnWhenFollowAmbig = false;
 }
 : DIGIT
)?
)
 ;

protected
DIGIT

80

 : '0'..'9'
 ;

DOT: '.' ;

INT: (DIGIT)+;

ID
options {
 testLiterals = true;
 paraphrase = "an identifier";
}
 : ('a'..'z'|'A'..'Z'|'_')
('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
 ;

ATTRIBUTE : '@' ID
 ;

Rules grammar

program =
 : (rule)* EOF
 ;

rule
 : TK_rule COLON target conditions action
 ;

target
 : (tag (ATTRIBUTE)?)
 | STRING_LITERAL
 ;

tag
 : (path)* ID
 ;

path
 : ID SLASH
 ;

conditions
 : expr
 | compound LCURLY ATTRIBUTE expr (COMA ATTRIBUTE expr)*
RCURLY
 ;

81

compound
returns [String type]
{type = null;}
 : TK_and
 | TK_or
 ;

action
 : TK_group COLON ID
 | TK_unique COLON (tag | treeAxis)
 | TK_notunique
 | TK_path
 | TK_ignore
 | TK_novalue
 ;

treeAxis
 : TK_sibling
 | TK_child
 | TK_parent
 ;

exprTarget
 : (treeAxis)? target
 ;

expr
 : assignExpr
 | notequalExpr
 | presentExpr
 | notpresentExpr
 | lessThanExpr
 | greaterThanExpr
 ;

assignExpr
 : EQUAL (exprTarget | INT)
 | EQUAL INT DOT INT
 ;

notequalExpr
 : NOT EQUAL (exprTarget | INT)
 | NOT EQUAL INT DOT INT
 ;

presentExpr: TK_present ;

notpresentExpr: TK_notpresent ;

82

lessThanExpr
 : LESS INT
 | LESSINT DOT INT
 ;

greaterThanExpr
 : GREATER INT
 | GREATER INT DOT INT
 ;

atom
 : ID
 | INT
 | CHAR_LITERAL
 | STRING_LITERAL
 ;

83

APPENDIX B

RULES

Creating a Rule

Rule definitions are stored in files on the local file system to the client. The files

can contain any number of rules as long as they follow the basic structure of a

rule. The basic structure of a rule consists of four parts: The declaration, the tag

specifier, the condition, and the action.

rule: tag-specifier condition action

The declaration is simply the word “rule” followed by a colon. This indicates the

beginning of a new rule. The tag specifier indicates the XML tag the rule is to be

applied to. The condition specifies any constraints that the XML tag must meet

before the rule is applied to it. The action indicates what is to be done with the

XML tag. Each of these parts is discussed in further detail in the following

sections.

Tag Specifiers

The tag specifier is an identifier followed by an optional attribute identifier. An

identifier is a string that starts with a character or underscore and is followed by

zero or more characters, numbers, or underscores. Here are some examples of a

tag specifier:

• annotation: Matches only annotation XML tags.

84

• item@partNum: Matches item XML tags that have an attribute

named partNum. If an item XML tag exists that does not have this

attribute the rule would not be applied to it since it is not the target of

the rule.

• any: Matches any tag.

• any@type: Matches any XML tag that has an attribute named type.

• any@any: Matches any attribute in any tag.

The word “any” can be used in the tag specifier to indicate that any XML tag or

any attribute would work for the rule. As seen in the examples the “any” keyword

can be used as the tag identifier, the attribute identifier, or as both.

Conditions

The condition is a test to be applied to the XML tag that matches the name

specified in the tag specifier. The condition has a set of operators that are applied

to the XML tag, such as numerical comparisons and tests to see if the XML tag

or attribute is present or not. A list of the operators and a brief description of

what they do is below. Only when all of the conditions are met is the rule applied

to the XML tag.

= value – This condition compares the value of the XML node to value. Only

if the XML Tag value and the value specified are equal does the action get

applied to the XML tag. The value can be a quoted string, a number, or a

tree axis followed by a tag specifier.

!= value - This condition compares the value of the XML node to value. Only

if the XML Tag value and the value specified are not equal does the

85

action get applied to the XML tag. The value can be a quoted string, a

number, or a tree axis followed by a tag specifier.

[<,<=] value – This condition compares the value of the XML tag to value. If

the tag value is less than or less than or equal to the value then action is

applied to the XML tag. The value can only be some type of numerical

value.

[>,>=] value - This condition compares the value of the XML tag to value. If

the tag value is greater than or greater than or equal to the value then

action is applied to the XML tag. The value can only be some type of

numerical value.

present – This checks to see if the XML tag or attribute is present. If so the

action of the rules is applied to the XML tag.

notpresent – This condition checks to see if the XML tag or attribute is not

present. If it is not, then the rule is applied to the XML Tag. This

condition really only works with attributes and checking to see if a XML

tag does not have a particular attribute.

If the condition requests a test to be done on something that does not exist, i.e.

testing the value of the name attribute except the current XML tag does not have

a name attribute, the condition will always fail. This is shown in figure 26.

Conditions can be grouped together in a rule by using a Boolean operator. The

Boolean operations supported are “and” and “or”. When using a Boolean

operator the conditions that it works upon must be enclosed in braces. All of the

sub-conditions can only be applied to the attributes of the tag and nothing else.

Therefore it is not possible to check to see if a XML tag has a specific value and

if it has an attribute that contains another value. The “and” operator imposes the

condition that all of the sub-conditions in the rule must be satisfied by the XML

tag before the action is applied to it. The “or” condition simply states that one or

86

more of the sub-conditions must be satisfied before the action is applied to the

XML tag. Examples of the Boolean operators are given in figure 26.

rule: attribute and {
 @maxOccurs = 1,
 @minOccurs = 1,
 @fixed notpresent,
 @use = "required"
} unique:currentTag

This rule would apply to this tag:
<example minOccurs=”1” maxOccurs=”1” use=”requied”>
but not this one:
<example minOccurs=”1” use=”required”>
because the attribute maxOccurs is not present and therefore
untestable by the rule.

rule: attribute and {
 @maxOccurs notpresent,
 @minOccurs notpresent,
 @fixed notpresent,
 @use = "required"
} unique:currentTag

rule: any@type or {
 @type = “xsd:string”
 @type = “xsd:date”
} IGNORE

The following XML tags would satisfy the rule:
<example type=”xsd:string”>
<example type=”xsd:date”>
This tag would not though
<example type=”myType”>

Figure 26: Example of rules using the Boolean
operators.

Actions

The last part of a rule definition that must be specified is the action. An action is

applied only when an XML tag satisfies all the conditions of the rule. The action

states where to store the value of the XML tag, or attribute, in the SIENA

87

notification or a processing instruction that guides the program when translating

the XML notification into a SIENA notification. When specifying the name of a

SIENA attribute a valid identifier is all that is needed. If multiple tags have the

same action then the values are stored in a coma-separated list in the SIENA

notification attribute. The following list contains all of the valid processing

instructions along with a description of what they do.

• ignore this will ignore the tag and not include it in the notification.

• group:name this states that multiple instances of this tag should be

grouped together under the attribute named name.

• path this action indicates that the XML tag should have its named

added to a prefix that is used to generate the names of the SIENA

attributes.

• unique:target this specifies that this tag or attribute can be used to

uniquely identify the tag specified by the target. Target is a tag

specifier.

When the program finds a rule that contains the processing instruction “ignore”

it will skip over the XML tag any of its children tags. For attributes the program

simply skips over the attribute and continues to process the remaining attributes.

rule: ignoredTag present ignore
<example>
<ignoredTag attr=”nothing”>
<child1/>
<child2/>
</ignoredTag>
<nexTagInLine/>
</example>

Figure 27: XML Example and ignore action

88

In figure 27 an example XML notification is given with a rule containing an

ignore processing instruction. When the program applies the rule to the

ignoredTag in the XML it will skip the processing of the attributes of the tag and

its children and resume processing with the nexTagInLine XML tag. The XML

tags child1 and child2 are not processed nor the attribute “attr” in the

ignoredTag.

The group instruction specifies that the value in the XML tag should be grouped

together with other values in the attribute with the name name. When there is

more than one value to be stored in the SIENA attribute then each value is

separated by a coma.

The path instruction will cause the program to append the name of the XML Tag

that matches the rule to the name of the SIENA attribute. Figure 28 shows an

example of an XML notification along with the rule containing the path

processing instruction and the resulting SIENA notification.

RULE:
rule: pathTag present path

XML NOTIFICATION:
<example>
<pathTag>
<child1> child1 </child1>
<child2> child2 </child2>
</pathTag>
<otherTag>
<child1>child1</child1>
</otherTag>
</example>

SIENA NOTIFICATION:
pathTag/child1=”child1”
pathTag/child2=”child2”
child1=”child1”

Figure 28: path processing instruction example

89

The unique processing instruction informs the program how to uniquely identify

an XML tag from its siblings that have the same tag name in the XML

notification. The program will append the value of the tag, or attribute, to the

SIENA attribute, similar to what the path processing instruction does. Figure 29

shows an example of the unique processing instruction and the resulting SIENA

notification.

RULE:
rule: tag@uniqueAttr present unique:tag

XML NOTIFICATION:
<example>
<tag uniqueAttr=”u1”>
<child1> child1 </child1>
<child2> child2 </child2>
</tag>
<tag uniqueAttr=”u2”>
<child1> child1 </child1>
<child2> child2 </child2>
</tag>
</otherTag>
</example>

SIENA NOTIFICATION:
tag/u1/child1=”child1”
tag/u1/child2=”child2”
tag/u2/child1=”child1”
tag/u2/child2=”child2”

Figure 29: unique processing instruction example

In the action the keyword “currentTag” can be used to indicate to the program

that whatever the current name of the XML tag it is examining should replace the

word “currentTag” in the action. When processing an XSchema file the program

treats the “currentTag” keyword a little different. During the processing of the

file the program keeps track of the element and complex definitions so that when

the “currentTag” keyword is used the XSchema tag is not used but instead the

90

current XML tag being defined by the XSchema. An example of this is in the

default rules:

rule: any present group: currentTag

When processing an XSchema file with this rule the program will determine what

the current XML tag being defined is and use the name of the XML tag as the

name of the SIENA attribute to store its value in. The only real use for this

keyword is in rules that specify “any” as the tag specifier. Once the action has

been specified then the rule definition is finished and another rule can be started.

Submitting Rules to the Program

There are two ways that the program is able to get rules. The first method is

through the set of default rules. These rules are meant to be very generic so that

they can adapt to any situation and provide a basic framework to translate the

XML notification into a SIENA notification. It is recommended that these rules

not be altered. The second method of giving the program a set of rules is by

using the user rules interface. This interface allows an application to give the

program a set of rules, defined in a file, to be used when translating the XML

notification. If there is a conflict between a default rule and a “user” rule then a

warning message will be logged stating the conflict. The program will then use the

“user” rule instead of the default rule. More information about the user rules

interface is contained in a later portion of this document.

Rule Conflicts

It is permissible for rules to have the same tag specifier, same actions and even

the same conditions. When there are multiple rules that have the same tag

specifier there is a possibility that an XML tag will satisfy the conditions for all

the rules that have the same tag specifier. The type of rule that is being processed

91

determines the outcome of this situation. If the rule is one of the default rules

then the first rule to match is the one used for the XML tag. If the rule is one that

was specified by a user then a warning message would be logged listing the rules

that could match the XML tag and the last rule to match is applied to the XML

tag. The warning message is only logged if the matching rules produce different

actions or results when applied to the XML tag.

92

APPENDIX C

SIENA’S XML INTERFACE

Introduction

There are two ways to use the XML client for SIENA. One way is to use the

XMLClient object as the main interface to SIENA. The second way is to use the

XML client package classes directly, such as the XMLProcessor and the

XMLSubscriptionHandler. The second way of using the client requires more

knowledge of SIENA than the first and should be used only by applications that

may need to monitor the data flowing between the SIENA client and server

closely. The first method is described first.

Using the XMLClient Class

The XMLClient object provides a XML interface to the SIENA servers. The

application client only needs to know XML and very little about the underlying

SIENA data structures. When an XMLClient object is created the name of a

SIENA server is passed to it in the form of “senp: host.name: port”. The host

name is the name of the server where the SIENA server resides. The port is the

port the SIENA server is listening on. The constructor will create a connection to

the SIENA server if it can. If a server cannot be connected to then the

constructor will throw a siena.InvalidSenderException.

The next step of setting up the XMLClient is to tell it where the file containing

the XSchema for the XML notification is located. Before sending or receiving

XML notifications this must be done otherwise the XML Client will not be able

93

to correctly translate the notifications and subscriptions into their SIENA

equivalents. The setStyleSheet method is used for this purpose. The method takes

a single string argument which should contain the name, and if necessary the

path, to the XSchema file. The method will then process the contents of the file.

If there is an error during processing a siena.SienaException is thrown containing

information about the error that occurred.

To publish a XML notification to SIENA the publish method in the XMLClient

object is invoked. This method takes a single parameter, a string containing the

XML notification. The method will then translate the XML notification and send

it to the SIENA server for publishing. If an error occurs during this process a

siena.SienaException is thrown containing the error message. This is all that

needs to be done to publish a XML notification.

To subscribe to XML notifications the method subscribe is called in the

XMLClient object. The subscribe method has two parameters: a string containing

the XPath expression that is the subscription language for the XML notification

and a siena.Notifiable object. The interface siena.Notifiable has two methods that

are called when a XML notification matches a subscription. The application client

needs to fill in these methods with the code to process the XML notifications.

The notify methods both receive a siean.Notification object. This object will have

a single attribute in it called “xml”. This attribute will be a string containing the

complete XML Notification. See figure 5 at the end of this appendix for an

example of how to extract the XML notification from the SIENA notification.

This is all that needs to be done to subscribe to XML notifications. Multiple

subscriptions can be issued using the same method. The XMLClient keeps track

of the different subscriptions and objects that are to be notified when a particular

subscription is fulfilled.

94

If there are user rules that the program should know about then the method

setUserRules is invoked, passing it the name of the file that contains the rule

definitions. If the rules cannot be processed then a siena.SienaException is

thrown with the message containing information about the error that occurred.

Otherwise the user rules will be used on the subsequent translation method calls.

Note that this method can be called multiple times and the user rules will be

combined together into one set. If two rules have the same tag specifier then the

rule that was added last is the one that is used. To clear the user rules the method

clearUserRules can be called. This will clear all user rules that have been given to

the program.

Using the XMLProcessor and XMLSubscriptionHandler Classes

The second way of using the XML client is to directly use the XMLProcessor and

XMLSubscriptionHandler objects. The application client must handle the

registering of a SIENA client with the SIENA server. It must also handle the

actual publishing and subscribing of the SIENA notifications and filters. In order

for the XMLProcessor and XMLSubscriptionHandler objects to correctly handle

the XML notifications they need to have the setStyleSheet method called. This

method, like the one for the XMLClient object, accepts a single parameter that is

the name of the file containing the XSchema. The objects will process the file and

build the internal map they use for translations. Only after this method has been

invoked will the translation methods work correctly. If an error happens during

the processing of the file the method will throw a siena.SienaException with a

message containing information about the error.

If any user rules are to be used in the processing of the XML notification the

setUserRules method should also be called at this time, though it is not necessary

to do so. This method takes in the name of the file that contains the user rules. A

siena.SienaException is thrown if there are any troubles processing the rules. If

95

this method is called more than once then the rules in the newer file will be

appended to the current set of rules. For rules that have the same tag specifier

then the new rule will replace the current rule.

To publish a subscription the translate method on the XMLProcessor is called,

passing it a string containing the XML notification. The method will return a

siena.Notification object that contains the original XML notification translated

into a SIENA notification. It is up to the application client to send the

notification to the SIENA server. There are no methods on the XMLProcessor

that do this for the application client.

Creating a subscription for a XML notification is more complex than sending a

XML notification. The XMLSubscriptionHandler constructor requires a

siena.Notifiable object to be passed in to it. The object passed in will be the one

that will be notified when an XML notification has met the requirements of the

XPath statement. After the XMLSubscriptionHandler is built then the

setStyleSheet method is invoked as describe in a previous paragraph. The

XMLSubscriptionHandler will then be ready to build filters for a subscription.

To build a filter for the subscription the buildFilter method is invoked with a

single parameter. The parameter is the string containing the XPath expression to

be used as the subscription. This method will return an array of siena.Filter

objects that are based on the XPath passed in. The application client is

responsible for submitting the Filter objects to a SIENA server as a subscription.

When the application client does this the XMLSubscriptionHandler should be the

object given to the server as the object to be notified. The reason for this is that

the XMLSubscriptionHandler does some post processing on the SIENA

notification in order to validate the XPath against the XML notification received.

The application client must also call the attach method, passing in an Observer

96

object. If this is not done then the application client will never receive a XML

notification, as the XMLSubscriptionHandler has no way to inform the

application client that a XML notification has been received. When a XML

notification is validated, i.e. the XPath statement returns at least one node, the

XMLSubscriptionHandler will notify the application client buy invoking the

update method on the Observer object, passing itself into the method. The

application client is responsible for getting the siena.Notifiable object from the

XMLSubscriptionHandler, given to it during its construction, and call the notify

method on it, passing it the siena.Notification object stored in the

XMLSubscriptionHandler. The siena.Notification object can be retrieved from

the XMLSubscriptionHandler by calling the getNotification method. The XML

notification must be extracted by the Notifiable object from the

siena.Notification object using the getAttribute method with the string parameter

equal to “xml”. Calling toString on the returned object will return a String object

containing the complete XML notification sent by another client. This process is

shown in figure 30.

Public void notify(siena.Notification notification) {
 String xmlNotification =
 notification.getAttribute(“xml”).toString();
}

Figure 30: Extracting a XML Notification

It is possible for the XMLSubscriptionHandler not to be the object notified by

the SIENA servers when a SIENA notification matches a subscription but the

application client would have to reconstruct the XML notification and then

validate it against the XPath expression. This is duplicate work since the

XMLSubscriptionHandler already does all of this.

Using either method to use the XML client interface to SIENA works. In fact,

the XMLClient uses the second method itself to implement the first method. In

97

the end though the same results occur, the use of XML as a notification language

in the SIENA environment.

