
Continuous Remote Analysis for Improving
Distributed Systems’ Performance∗

Antonio Carzaniga
Department of Computer Science

University of Colorado
carzanig@cs.colorado.edu

Alessandro Orso
College of Computing

Georgia Institute of Technology
orso@cc.gatech.edu

ABSTRACT
Engineering a highly distributed system requires the abil-
ity to evaluate and optimize the protocols that control the
movement and processing of information throughout the sys-
tem. Because the design of such protocols is often charac-
terized by conflicting goals and trade-offs, the designer must
calibrate the parameters of the protocols, seeking the best
balance of performance in the most common usage scenar-
ios. Unfortunately, fully testing these calibrations requires
experiments conducted on large, expensive testbeds that are
very difficult to deploy and maintain.

In this paper, we propose a new approach for the opti-
mization of a highly distributed system’s performance. The
approach is based on leveraging data collected from fielded
components to fine-tune the behavior of the system and its
protocols. Captured data is “replayed” in simulations per-
formed directly in the field during off-peak hours. The re-
sults of these simulations are then used to control the system
directly in the field, and/or to report aggregate performance
and behavior information to the system designer.

1. INTRODUCTION
In this paper, we investigate the use of execution data

for tuning and optimizing highly distributed systems. We
use the term highly distributed system to refer to a system
capable of delivering a service to many clients through a
large number of distributed access points. Examples of such
systems are various forms of general-purpose communica-
tion systems, application-level overlays, networks of caching
servers, peer-to-peer file-sharing systems, distributed data-
bases, replicated file systems, and distributed middleware
systems in general.

Engineering a highly distributed system is challenging in
a number of ways. In particular, one activity that poses se-
rious practical obstacles is the evaluation and optimization
of performance. The performance of a highly distributed
system is determined to a large extent by the protocols
that control the movement and processing of information
throughout the system, and the design of such protocols is
often characterized by conflicting goals and trade-offs. In
optimizing a highly distributed system, the designer must
therefore calibrate the parameters of the protocols, seeking

∗This work was supported in part by National Science Foun-
dation awards CCR-9988294, CCR-0096321, CCR-0205422,
SBE-0123532 and EIA-0196145 to Georgia Tech, and by the
State of Georgia to Georgia Tech under the Yamacraw Mis-
sion.

the best balance of performance in the most common usage
scenarios. Unfortunately, fully testing these calibrations re-
quires experiments conducted on large, expensive testbeds
that are very difficult to deploy and maintain.

In current practice, because of these practical obstacles,
protocol design decisions are tested using simulations, on the
basis of assumptions about the behavior of the system, its
clients, and its operating environment. While simulations
greatly reduce the costs of running experiments, they also
introduce unavoidable inaccuracies. Specifically, simulation
suffers from two classes of problems:

• by its nature, it tests an abstraction of the system that
may not realize a sufficiently accurate representation of
the behavior of the actual system, and that may there-
fore hide problems or optimizations opportunities;

• it relies on the use of synthetic workloads that may
or may not capture actual usage patterns and other
characteristics of a live execution environment.

In essence, we observe a general trade-off between accu-
racy and cost in this design process, where testing the actual
implementation in its actual environment gives the most ac-
curate results at the expense of a complex, costly exper-
imental setup, while simulation gives less accurate results
but with the advantage of a low-cost process.

We also notice that these two approaches are complemen-
tary and that they are most useful in different phases of the
design and development process. The use of simulations is
most appropriate in the early stages of the design process,
when several high-level design alternatives must be tested,
and therefore when practicality is more important than ac-
curacy. Conversely, working with the actual implementation
in a live environment is most appropriate later on in the
development process, when the design focuses on low-level
implementation details, and when performance analysis and
improvement requires the identification and optimization of
hot spots for the most common cases.

We believe, and our previous research suggests, that soft-
ware development can greatly benefit by augmenting analy-
sis and measurement tasks performed in-house with analo-
gous tasks performed on the software deployed in the field.
We call this the Gamma approach [5]. There are two main
advantages of the Gamma approach: (1) analyses rely on
actual field data, rather than on synthetic user data, and
(2) analyses leverage the vast and heterogeneous resources
of an entire user community.

There are many scenarios in which the Gamma approach
can be exploited, and numerous tasks that can benefit from

1



applying it. In previous work, we investigated the use of the
Gamma approach for collecting coverage information from
deployed instances of the software, determining classes of
users of the software, and assessing the costs and identify-
ing the issues associated with collecting and analyzing field
data [1, 4].

In this paper, we investigate the use of the Gamma ap-
proach to support the evaluation and tuning of systems and
protocols as they are deployed in the field. Our approach is
to use dynamically configurable, minimally intrusive instru-
mentation techniques with fielded systems to collect various
forms of execution traces. These traces can then be used
locally to perform a simulation that uses real environment
settings and real workloads.

The result of the simulation can then be analyzed locally
to optimize the distributed system. Examples of such anal-
yses include computing various types of coverage metrics,
identifying hot spots in algorithms and protocols, and identi-
fying bottlenecks in the network. The results of these on-line
analyses can then be fed back into the system by fine-tuning
system-configuration parameters. Furthermore, the results
of the analysis can also be sent back to the designers for
further analysis.

In the next section we detail our approach in relation to a
specific class of distributed systems. We then discuss open
issues and implications of our approach, and conclude with
some directions for future research directions.

2. APPROACH AND EXAMPLE
To develop our approach, we started by considering a dis-

tributed publish/subscribe system [2] that we use as a repre-
sentative of a particular class of highly distributed systems.

A publish/subscribe service supports dynamic, many-to-
many communications in a distributed environment by pass-
ing information from producers (publishers) to consumers
(subscribers) through a subscription mechanism. With a
publish/subscribe service, producers simply publish infor-
mation while consumers declare their interests by sending
subscriptions that define selection criteria over information.
The service evaluates subscriptions against publications and
delivers each publication to all the subscribers that declared
subscriptions matching that publication.

A distributed publish/subscribe system is a highly dis-
tributed system that implements the publish/subscribe ser-
vice. Distributed publish/subscribe systems are usually ar-
chitected as an interconnection of servers (or dispatchers),
where each individual server acts as an access point for
a subset of publishers and subscribers, and as a “router”
of publications and subscriptions for all the other servers.
Distributed publish/subscribe systems implement specific
“routing” protocols to exchange and process subscriptions
and publications between servers in such a way that the en-
tire network of servers behaves collectively as a single pub-
lish/subscribe service.

Publish/subscribe systems are very appropriate for our
study because their behavior and performance depend on
the particular choice of protocols, on the environment, and
on the workload generated by clients. In particular, among
other things, a publish/subscribe protocol determines which
subscriptions are propagated from one server to which neigh-
bors, how and how often the propagation occurs, and which
subscriptions are combined during the propagation process
and how. All these protocol parameters must be calibrated

to obtain the best operational responsiveness and efficiency
within the given environment—characterized by the num-
ber and type of nodes, by the topology of their intercon-
nections, and by the latency, bandwidth, and reliability of
the underlying communication links—and under the given
workload—characterized by the number, content, and tim-
ing of subscriptions and publications posed by each client.

As stated in the introduction, our approach is to use field
data to measure the quality parameters of the system and to
tune it accordingly. We describe the approach with the help
of Figure 1, which represents a high level view of a system
implementing the approach. The figure shows the different
instances of the system. For each instance, a data-collection
module on the same network gathers execution data from
the nodes in the instance. We collect two kinds of execution
data: topological information and event traces.

Topological information consists of information about the
number of nodes in the system, their type, and their con-
nections. Event traces are traces of the observable events
that occur in the distributed system. For the specific sys-
tem considered, we collect the following types of events:

Subscribe event: A subscribe event is generated every time
a host issues a subscription for a given content. We
record subscribe events as a quadruple (s, hg , hr, t),
where s is the actual subscription, hg is the host that
generated the subscription, hr is the server that re-
ceived the subscription from hg , and t is the time at
which the subscription was received by hr.

Publish event: A publish event is generated every time a
host publishes some information. Analogously to sub-
scribe events, we record publish events as a quadruple
(p, hg , hr, t), where p is the information published, hg

is the host that published p, hr is the server that re-
ceived p from hg, and t is the time at which the pub-
lication was received by hr.

Subscription-forward event: A subscription-forward event
is generated every time a server forwards a subscrip-
tion to another server, to spread the subscription infor-
mation in the system. We record subscription-forward
events as a quadruple (s, hf , hr, t), where s is the for-
warded subscription, hf is the host that forwarded the
subscription, hr is the server that received the sub-
scription from hf , and t is the time at which the sub-
scription was received by hr.

Receive event: A receive event represents the reception
of some published information by a host. We record
subscribe event as a triple (s, h, t), where p is the pub-
lished information, h is the host that received p, and t

is the time at which p was received.

At a minimum, both events and topological information
can be collected by suitable network probes located in the
proximity of servers. Alternatively, if the system itself sup-
ports some form of logging facility, events can be directly
and more efficiently extracted from server logs. Collected
events and topological information are then stored in a lo-
cal database, as shown in Figure 1.

Every given time interval, the execution data are retrieved
by the simulator module, which replays the execution of the
system simulating it with real topological information and
real workloads. The result of such simulation, together with

2



server

server

server

Instance n

Instance 1

Data
Collection

Local Data
Analysis

Execution
Data

Simulator

Data
Collection

Local Data
Analysis

Simulator

Global Data Analysis

Execution
Data

Figure 1: High-level view of a system that implements the approach.

the execution data, are then passed to the local data-analysis
module, which measures quality parameters of the system
as follows.

• Communication latency: the communication latency is
expressed as Tric−Tpub, where Tric is the time at which
a given published information is received and Tpub is
the time at which the information was published. Us-
ing the event traces collected, the communication la-
tency can be computed for each publish event, and the
average, standard deviation, maximum, and minimum
values for such latency can be computed.

• Protocol latency: although the protocol latency can-
not be directly measured, we can use the number of
false negatives in the system as an indicator of such
latency. A false negative consists of some published in-
formation that should have been delivered to a node,
according to the node’s subscriptions, and was not.
Although false negatives may occur because of faults
in the protocol and because of network-related prob-
lems, they are usually the consequence of latencies
in the propagation of the subscription information.
False negative can easily be measured in our approach:

in the replayed execution, we can assume instanta-
neous network communication and instantaneous sub-
scription propagation, and thus identify all the receive
events that should have occurred, but did not occur in
the actual execution.

• Ratio of control information to actual content: we can
measure this ratio by leveraging the execution data
collected. The ratio r is given by the simple formula:

r =

P

s|(s,hs,hr,t)∈{subscription-forward events} size(s)
P

p|(p,hg ,hr,t)∈{publish event} size(p)

(1)

Once this information is computed and collected at each
individual server, it can be used to control some parameters
of the routing protocol for each server. For example, assum-
ing a “heart-beat” routing protocol that propagates sub-
scriptions at periodic intervals, a simple control algorithm
could decide to slow down the heart-beat rate whenever the
ratio of control information to actual content exceeds a given
threshold value. Similarly, because the heart-beat rate is
a general control parameter for the responsiveness of the

3



service, a complementary control algorithm could decide to
increase the heart-beat rate whenever the protocol latency
raises above a given limit.

Obviously, the information collected on-site may also be
shipped back to the protocol designer for further analysis.
In fact, the use of the kind of close-loop control mechanism
used in the previous examples may introduce dangerous in-
stabilities in the protocol. So, before activating such auto-
matic feedback controls, the designer might want to analyze
the behavior of the system and either set the heart-beat rate
at a fixed value, or set the automatic triggers to some safe
threshold values.

3. DISCUSSION
We realize that the success of this approach depends on

the wide-spread adoption and use of instrumented applica-
tions and their corresponding infrastructure in real settings.
It is therefore extremely important that this approach be
minimally intrusive in the normal operation of the system
as perceived by the end-user. In particular, we see the fol-
lowing requirements:

• Light-weight operation: the instrumentation must in-
troduce minimal overhead. The overhead must be
adaptable to the overall load of the system so as to
exploit periods of low activity to perform low-priority
analyses and/or to communicate partial results or en-
tire traces for off-site or off-line analyses.

Our approach has the advantage that many kinds of
information can be collected by simply monitoring the
network. Those monitoring techniques impose no over-
head on the nodes. However, some instrumentation
may be necessary for collecting specific kinds of infor-
mation (e.g., traditional coverage information).

• Security and privacy : the data collected by instru-
mented applications is likely to reveal sensitive infor-
mation about the end-user or its operating environ-
ment. End-users must therefore be able to apply se-
lection policies to determine exactly what may and
may not be exposed. In any case, collected data must
be protected against unwanted access both on the in-
strumented site, and in other communications between
cooperating sites.

As far as privacy is concerned, our approach is based
on the idea of using sensitive information, such as sub-
scription contents, only for the local data analysis;
only filtered and summarized information, according
to the users’ preferences, is sent back to the system’s
designer. As for the security aspect, we have not yet
considered any specific mechanism do define and en-
force security policies for collected data. However we
are confident that we will be able to leverage existing
mechanisms, such as private/public key cryptography
and digital signatures.

The effectiveness of our approach depends also on the
type and complexity of the metrics that can be computed
by on-site low-priority analysis modules. Here we envi-
sion a spectrum of levels of complexity. At one end of the
spectrum, there are analyses that are computed entirely by
self-contained and completely localized modules (i.e., by al-
gorithms that use only locally-collected information). At

the extreme opposite, there are analyses that themselves
require intense information exchange and coordination be-
tween analysis modules at different sites. Our current focus
is clearly on self-contained analyses, although future devel-
opment of our approach might include more complex, dis-
tributed analyses.

4. REFERENCES
[1] J. Bowring, A. Orso, and M. J. Harrold. Monitoring

deployed software using software tomography. In
Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Ana lysis for Software Tools and
Engineering (PASTE 2002), pages 2–8, Charleston, SC,
USA, Nov 2002.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

[3] A. Carzaniga and A. L. Wolf. A benchmark suite for
distributed publish/subscribe systems. Technical
Report CU-CS-927-02, Department of Computer
Science, University of Colorado, Apr. 2002.

[4] A. Orso, J. Jones, and M. J. Harrold. Visualization of
program-execution data for deployed software. In
Proceedings of the ACM symposium on Software
Visualization, San Diego, CA, USA, June 2003 (to
appear).

[5] A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma
system: Continuous evolution of software after
deployment. In Proceedings of the International
Symposium on Software Testing and Analysis
(ISSTA’02), pages 65–69, Jul 2002.

4


