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Abstract—Redundancy is the presence of different elements
with the same functionality. In software, redundancy is useful
(and used) in many ways, for example for fault tolerance and
reliability engineering, and in self-adaptive and self-checking
programs. However, despite the many uses, we still do not know
how to measure software redundancy to support a proper and
effective design. If, for instance, the goal is to improve reliability,
one might want to measure the redundancy of a solution to then
estimate the reliability gained with that solution. Or one might
compare alternative solutions to choose the one that expresses
more redundancy and therefore, presumably, more reliability.

We first formalize a notion of redundancy whereby two code
fragments are considered redundant when they achieve the
same functionality with different executions. On the basis of
this abstract and general notion, we then develop a concrete
method to obtain a meaningful quantitative measure of software
redundancy. The results we obtain are very positive: we show,
through an extensive experimental analysis, that it is possible
to distinguish code that is only minimally different, from truly
redundant code, and that it is even possible to distinguish low-
level code redundancy from high-level algorithmic redundancy.
We also show that the measurement is significant and useful for
the designer, as it can help predict the effectiveness of techniques
that exploit redundancy.

I. INTRODUCTION

A software system may implement the same functionality in

different ways. For example, a container library may provide

two functionally equivalent sorting algorithms: a simple in-

place algorithm like insertion-sort, which is preferable for

small sequences, and a more complex but asymptotically faster

algorithm like merge-sort to be used on larger sequences. Even

algorithmically identical operations could be performed in

different ways. For example, a program may create a table of

formulas in a spreadsheet by adding the first row and then

copying that row vertically, or by adding the first column and

then copying horizontally. A system might even contain replicas

of exactly the same single operation (semantic clones) and

sometimes that might be a good design choice. For example,

a drawing function from a graphics library may have been

refactored with only syntactic changes, but the library may

also retain the old version for backward compatibility.

In all these cases—whenever a system is capable of perform-

ing the same function with different code, or even with the same

code but executed in different ways—we say that the software

system is redundant. Redundant elements can be present in

different forms and at different granularity levels, from code

snippets to entire systems. Sometimes this redundancy is

introduced systematically, by design, as in the case of N-version

programming, while other times it arises as a side-effect of

other design goals, as in the examples above.

Software redundancy has many useful applications. In

N-version programming, where the design is deliberately

redundant, redundancy is intended to provide fault-tolerance.

Other techniques exploit the intrinsic redundancy exempli-

fied above, for example to avoid failures through automatic

workarounds [5], to generate and deploy test oracles [4], and

to overcome failures and fix faults automatically [1], [35].

However, a common limitation of all these techniques is

that, while they seek to exploit redundancy, they provide no

mechanism to assess how much redundancy is in fact there

to be exploited. So, for example, three teams of developers

may work on three independent versions of a system, but

the resulting versions may turn out to be based on the same

algorithm and therefore might be susceptible to correlated

failures, and the developers would not be able to assess the

level of independence of the three versions and therefore the

level of reliability of the system.

Similarly, a self-healing system may try to deploy an

automatic workaround for a failing method by replacing that

method with a supposedly equivalent but hopefully non-failing

alternative. But the fundamental question remains: how much

redundancy is there in the chosen alternative? And therefore,

how likely is it that the chosen alternative would avoid the

failure? More specifically, is the alternative executing different

code or is it merely a thin wrapper for the same code? Even if

the code is different, is the alternative radically different, or is

it using essentially the same algorithm? More fundamentally,

how do we even quantify redundancy?

With this paper, we intend to provide answers to these

questions. We begin by formulating a very general and

abstract notion of redundancy, which in essence we define

as functional equivalence with execution diversity. Then, again

abstractly, we define a measure of redundancy in terms of the

dissimilarity between the execution traces of equivalent code

fragments, computed over a certain type of execution traces,

and aggregated over a space of executions.

These abstract notions of redundancy and its measure are

conceptually important but they are also ultimately undecidable

and therefore not directly usable in practice. Notice in fact that

equivalence alone is undecidable, and that the dissimilarity mea-

sure should be computed over an infinite space of executions.

We therefore develop a method to measure redundancy that is

based on the abstract model but is also practical and in fact

quite efficient. The method considers a finite set of execution
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traces obtained from generated input values (generated tests),

uses a specific projection of the execution trace in which we

log changes in the application state (memory accesses), and

measures a specific form of edit distance between traces.

We first validate our method through micro-benchmarks

to show that the measurement is internally consistent and

stable with respect to some forms of program transformations.

We then use the method to take measurements in a number

of case studies to assess the significance of the measure.

The results show that the measurement is a very good

indicator of redundancy. In particular, the measurement clearly

distinguishes shallow differences where two apparently different

code fragments reduce to the same code underneath, from

deep code differences, from algorithmic differences where not

only the code is different but the algorithmic nature of the

two executions differs significantly. We also demonstrate that

our measures of redundancy can be good predictors of the

effectiveness of techniques that exploit redundancy, such as

automatic workarounds.

In summary this paper contributes a complete and consistent

definition of redundancy for software systems, and develops

and evaluates a practical method to measure redundancy

quantitatively. We see this as a first foundational step in a

broader study of software redundancy. We see redundancy as a

precious resource that can and should be exploited to improve

software quality. In particular, we believe that many software

engineering techniques can produce an added value only to

the extent that they can find and exploit information within

the software itself. In other words, those techniques feed on

the redundancy of software. It is therefore important to study

redundancy, at a minimum to characterize it qualitatively and

quantitatively in specific cases, but then also to generalize its

characterization, perhaps to identify properties of a design or

development process that lead to more or less redundancy.

II. BACKGROUND AND MOTIVATION

Redundancy has many applications in software engineering,

including fault tolerance [2], [30], self-healing systems [5], [6],

self-adaptive services [10], [14], [22], [24], [31], [33], [34],

self-checking programs [36], self-optimizing code [9], [25],

automatic fault fixing [1], [35], and the automatic generation of

test cases and oracles [4]. It is exploited at different abstraction

levels, from a service or subsystem [14] to a method call [5],

[11], [16]. Some techniques and applications deliberately

introduce redundancy within a system, as in the case of N-

version programming and recovery blocks [2], [30], while other

techniques exploit redundancy available outside the system,

for example in a marketplace of Web services [10], [33], [34],

and yet other techniques seek to exploit the redundancy that

is intrinsic in software systems [5], [6].

We now briefly review a few relevant applications of

redundancy in the domains of software reliability, self-healing

systems, and automated fault fixing. We do that to motivate the

idea of measuring redundancy. Then we review the research

work most related to that idea.

N-version programming is a well-known technique to meet

the reliability requirements of safety critical applications [2]. An

N-version system consists of multiple independently developed

implementations (of the same system) that execute in parallel

on the same input. The system then outputs the result of the

majority of the versions, so the gain in reliability rests on the

assumption that coincidental faults in independently developed

components are very unlikely. The validity of this assumption

has been disputed, most notably by Knight and Leveson [21]

who argue that independently developed components may not

be as independent—or as redundant—as one would expect. This

suggests that a consistent measure of redundancy would support

the engineering of N-version systems by at least identifying

weak components.

Automatic workarounds exploit redundancy in methods and

code fragments to achieve a form of self-healing [5]. The

idea is to identify redundant code fragments that can replace

failing fragments at runtime to automatically circumvent a

fault and avoid the failure. The technique relies on the amount

of redundancy of alternative code fragments. A measurement

of that amount could indicate the likelihood that a particular

alternative fragment would succeed in avoiding the failure, thus

leading to a more efficient self-healing mechanism.

A recent approach to fixing faults automatically is to use

genetic programming, to “evolve” a faulty code towards a

correct one [35]. Thus redundancy plays a crucial role also

in this case, because some of the mutations through which

the system evolves replace a fragment of code with another

fragment taken from the system itself. Therefore, a measure

of redundancy could indicate the likelihood of success for the

entire evolutionary process, and it could also be used as a

fitness function for the selection of an individual mutation.

Measuring software redundancy seems like a useful propo-

sition, but it also remains an open problem. Some researchers

have proposed ideas and concrete techniques to assess the

semantic similarity of code fragments within a system, which

is an essential ingredient of redundancy. In particular, the most

relevant work is that of Jiang and Su, who consider the problem

of identifying semantic clones [20]. Their definition of clones

is based on a notion of equivalent code fragments similar to the

one we also develop in this paper. However, it is in the definition

of equivalence relation that our model differs significantly. In

essence, Jiang and Su consider fragments with identical effects,

whereas we consider two fragments to be equivalent when their

observable effects are identical. We re-examine this difference

in more detail in Section III-A.

Another related work is described in a recent paper by Higo

and Kusumoto on the “functional sameness” of methods [18].

Here too the authors are interested in the semantic similarities

between methods within a system. However, their approach

differs almost completely from ours (and also from Jiang and

Su), since they use an exclusively static analysis of the code,

and furthermore they do that by combining three measures

of similarity that, in and of themselves, have little to do with

the actual semantics of the code. Specifically, they use the

similarity of the vocabulary of variables (symbols), the name
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of the methods, and the “structural” distance of methods within

the package hierarchy. The most interesting aspects of the work

of Higo and Kusumoto is that, perhaps thanks to the simplicity

of their analysis, they were able to analyze a massive amount

of code.

III. CHARACTERIZING SOFTWARE REDUNDANCY

We now formalize our notion of redundancy. We first give

an abstract and general definition that we then specialize to

develop a practical measurement method.

We are interested in the redundancy of code. More specif-

ically we define redundancy as a relation between two code

fragments within a larger system. A code fragment is any

portion of code together with the necessary linkage between

that code and the rest of the system. A fragment can be seen

as the in-line expansion of a function with parameters passed

by reference, where the parameters are the linkage between

the fragment and its context. Figure 1 illustrates the notion

of redundant fragments with two examples. For each pair of

fragments, we specify the linkage between the fragments and

the rest of the system by listing the variables in the fragments

that refer to variables in the rest of the system. All other

variables are local to the fragments.

linkage: int x; int y;

int tmp = x;
x = y;
y = tmp;

x ^= y;
y ^= x;
x ^= y;

linkage: AbstractMultimap map; String key, Object value;

map.put(key, value); List list = new ArrayList();
list.add(value);
map.putAll(key, list);

Fig. 1. Examples of redundant code fragments.

The first example (first row) shows a code fragment that

swaps two integer variables using a temporary variable (left

side) and another fragment that swaps the same variables

without the temporary by using the bitwise xor operator (right

side). The second example refers to a multi-value map in

which one can add an individual mapping for a given key

(put) or multiple mappings for the same key (putAll). In both

cases, the fragment on the left is different from, but equivalent

to, the fragment on the right. This is our intuitive definition

of redundancy: two fragments are redundant when they are

functionally equivalent and at the same time their executions
are different. We now formalize these two constituent notions.

A. An Abstract Notion of Redundancy

We want to express the notion that one should be able to

replace a fragment A with a redundant fragment B, within a

larger system, without changing the functionality of the system.

This means that the execution of B would produce the same

results as A and would not cause any noticeable difference in

the future behavior of the system. In other words, we want B

to have the same result and equivalent side-effects (or state

changes) as A.
Other studies on semantically equivalent code adopt a purely

functional notion of equivalence, and therefore assume no

visible state changes [11]. Yet others consider state changes to

be part of the input/output transformation of code fragments,

but then accept only identical state changes [20]. Instead, we

would still consider two fragments to be equivalent even if

they produce different state changes, as long as the observable
effects of those changes are identical. This notion is close to the

testing equivalence proposed by De Nicola and Hennessy [27]

and the weak bi-similarity by Hennessy and Milner [17]. We

now formulate an initial definition of equivalence between code

fragments similar to testing equivalence.
1) Basic Definitions: We model a system as a state machine,

and we denote with S the set of states, and with A the set of

all possible actions of the system. The execution of a code

fragment C starting from an initial state S0 amounts to a

sequence of actions α1,α2, . . . ,αk ∈A that induces a sequence

of state transitions S0
α1−→ S1

α2−→ ·· · αk−→ Sk. In this model we

only consider code fragments with sequential and terminating

and therefore finite (but unbounded) executions, and without

loss of generality we consider the input as being part of the

initial state.

We then use O to denote the set of all possible outputs, that

is, the set of all externally observable effects of an execution.

We use Out(S,α)∈O to denote the output corresponding to the

execution of action α starting from state S, and, generalizing,
we denote with Out(S0,C) ∈ O

∗ the output of the sequence

of actions α1,α2, . . . ,αk corresponding to the execution of C
from state S0.

2) Observational Equivalence: We say that two code

fragments CA and CB are observationally equivalent from

an initial state S0 if and only if, for every code fragment

CP (probing code), the output Out(S0,CA;CP) is the same as

Out(S0,CB;CP), where CA;CP and CB;CP are code fragments

obtained by concatenating CA and CB with the probing code

CP, respectively.

This definition requires that the two code fragments and

the follow-up probing code produce exactly the same output,

which does not take into account the intended semantics of the

system whereby different output sequences may be equally valid

and therefore should be considered equivalent. For example,

consider a container that implements an unordered set of

numbers that in state S0 represents the set {10}. Consider

now a fragment CA that adds element 20 to the set, and a

supposedly equivalent fragment CB that also adds 20 to the

set but with a different internal state transformation: CA leaves

the set in a state such that an iteration would first go through

10 and then 20, while CB causes the same iteration to first go

through 20 and then 10. CA and CB would not be considered

observationally equivalent according to the definition above,

since a probing code that iterates through the elements of the

set would expose a difference.

To account for the semantics of the system, we consider

a more general definition that requires the output of the two
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fragments and the follow-up probing code to be equivalent

according to an oracle relation that embodies the semantics of

the system. Let TS0,CA,· be a family of equivalence relations

(hereafter oracles) that, depending on S0 and CA, and for

every valid probing code CP defines an equivalence oracle

TS0,CA,CP ⊆O
∗ ×O

∗ that essentially says whether two output

sequences are both correct (and therefore equivalent) for the

execution of CA;CP from S0. Thus we say that CA and CB are

observationally equivalent in a semantically meaningful sense,

from an initial state S0, when, for every probing code fragment

CP, the output sequences Out(S0,CA;CP) and Out(S0,CB;CP)
are equivalent according to the oracle. More specifically, we

say that CB can replace CA when the outputs are equivalent

according to TS0,CA,CP , and vice-versa CA can replace CB when

the outputs are equivalent according to TS0,CB,CP . Finally, we

say that CA and CB are equivalent when they can replace each

other. Notice that the former and more strict definition is a

special case in which the oracles reduce to the identity relation.

3) Redundancy: Putting the pieces together, we say that two

code fragments CA and CB are redundant in state S0 when they

are observationally equivalent from state S0 in a semantically

meaningful sense, and their executions from S0 differ, meaning

that the sequence of actions αA,1,αA,2 . . . induced by CA (from

S0) differs from the sequence αB,1,αB,2 . . . induced by CB (from

S0). We then say that CA and CB are always redundant if they

are redundant in every state S0 in which their application is

valid (every syntactically valid application of the fragments

with every valid input).

B. Discussion and Practical Considerations

This model of redundancy is built upon our practical

experience in developing various concrete techniques to capture

and exploit software redundancy [4], [5], [6], [15], and

generalizes to other uses of software redundancy such as N-

version programming [3] and recovery blocks [30]. However,

our main objective now is to abstract from each technique

and to capture the essence of software redundancy, and this

is why we formulated an abstract and general model. We see

this as a first necessary step towards understanding the nature

of redundancy in software systems and to use it systematically

to improve the reliability of software systems.

From this abstract model, we then want to derive a concrete

method to characterize the redundancy of a system. In particular,

we would like to obtain a measurement that would somehow

correlate with the attainable benefits of the redundancy present

within a system. To do that, we need to overcome two obstacles.

First, our abstract notion of redundancy is not decidable, since

it subsumes a basic form of equivalence between programs

that amounts to a well-known undecidable problem (by Rice’s

theorem). We therefore need to either limit the expressiveness

of the model or somehow accept an incomplete or imprecise

decision procedure. Second, our model expresses a binary

decision, but we would like a more informative measure, for

example to rank different designs by the amount of redundancy
they possess. We must therefore enrich the model with a form

of distance and we must define a corresponding operational

measurement method.

The first problem (deciding equivalence) has been studied

extensively from a theoretical perspective independent of its

relation to the notion of redundancy. We also explored the

same problem from a practical perspective and specifically

in relation to redundancy. In particular, we initially proposed

a completely manual method to simply express equivalence

in the form of rewriting rules that we then used to annotate

potential sources of redundancy in code bases of significant

size and complexity [5], [6]. We then developed a method to

automatically test the equivalence of code fragments in the

specific context of test oracles using a bounded search. In

this paper we enhance this bounded-search method to decide

equivalence and therefore redundancy.

The second problem (obtaining a non-binary measurement

of redundancy) is our main focus here. We discuss it next.

C. A Practical and Meaningful Measure of Redundancy

Recall once again that redundancy is present whenever two

code fragments induce different executions with the same

functional effect on a system. We now want to extend this

abstract binary condition, which is defined for each starting

state S0, to obtain a more general and meaningful measurement

of the redundancy of two code fragments. By “meaningful”

we mean a measurement that can serve as a good indicator or

predictor for software designers. In particular, we consider a

measure of redundancy to be meaningful when it is indicative

of some useful property or some design objective related to

redundancy. For example, if we use redundant fragments in an

N-version programming scheme to increase the reliability of a

system, then a meaningful measurement of their redundancy

should correlate with the gain in reliability attainable with

that scheme. Here we formulate a general method that can

be specialized with several different metrics, and later in

Section IV we experimentally evaluate the predictive ability

of each specialization.

We define a meaningful measure of redundancy by first

turning the binary condition into a richer non-binary metric,

and then by aggregating this metric over several starting states.

Informally, given two code fragments, we combine a measure

of the degree of functional equivalence of the fragments with

a measure of the distance between their executions, and then

aggregate the results over a set of representative initial states.

A bit more formally, let eS(CA,CB)∈ [0,1] denote the degree

of equivalence between two code fragments CA and CB in state

S. Intuitively, eS(CA,CB) can be seen as the probability that a

probing code CP would not expose any difference between CA
and CB when starting from state S. Also let dS(CA,CB) ∈ [0,1]
denote the distance (normalized) between the executions of

CA and CB starting from S. Thus dS(CA,CB) = 0 indicates two

identical executions while dS(CA,CB) = 1 indicates completely

different executions.

With these equivalence and distance measures, we define the

(generic) measure of the redundancy of CA and CB, in state S,
as RS = eS(CA,CB)dS(CA,CB). Then, ideally, we would like to
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compute the expected value of RS over the space of all possible

initial states S. In practice, we aggregate over a limited sample

of the state space.

input: code fragments CA,CB
repeat n times:

1: S ← choose from S // sample the state space

2: e← eS(CA,CB) // measure equivalence

3: d ← dS(CA,CB) // measure difference

RS ← e ·d
4: return aggregate all RS // RS in expectation

Fig. 2. General algorithm to measure redundancy.

In summary, we measure the redundancy of two fragments

using the algorithm of Figure 2. We now present the techniques

that implement steps 1, 2, 3, and 4 of the algorithm.
1) Sampling of the State Space: We must choose and set

up a number of initial system states from which to execute the

two code fragments CA and CB. This amounts to generating

tests for the system in which, at some point, we can insert

the two fragments (either one). To do that, we employ two

common testing methods, namely random testing and input

category partitioning.

The main method we use is random test input generation.

In principle, once we have a test, we could insert one of the

two fragments in almost any position in the test. However,

this would require some care in linking the fragments with

the system. So, to automate this process completely, we let

the test generator itself insert the fragments directly into the

test. In practice, we generate many tests and select those that

already contain CA, and for those with multiple instances of

CA we consider as an initial state the state right before each

instance of CA.

In addition to random testing, in some special cases, we also

manually categorized the input to the system so as to represent

classes of equivalent inputs. We then compile a list of tests

that cover each category. We then use these tests as operational

definitions of the initial state.
2) Observational Equivalence Measure: We compute the

degree of observational equivalence eS(CA,CB) by directly

applying its definition: we generate a large number of probing

code fragments CP, which we execute right after CA and CB,

respectively, from state S, and we compare the output for each

pair of executions. We then return the percentage of cases in

which the outputs are the same.

In essence, probing code fragments amount, once again, to

random tests, specifically for the variables corresponding to

the linkage of the two fragments. We therefore implement a

specialized random test generator that starts from a pool of

variable descriptors, each indicating name and type. At each

step, the generator selects a variable from the pool together

with a public method to call on that variable, and adds that call

to the test. Then, if the method returns a primitive value, or

if the variable is itself of a primitive type, then the generator

adds a statement to output the value. Otherwise, if the method

returns another object, the generator assigns the result of the

call to a newly declared variable, and also adds a descriptor

for the new variable (name and type) to its pool of variables.

The generator also adds the necessary code to catch and output

any exception that might be raised at each step of the test.

The generator terminates and outputs the generated test after

a preset number of steps. Figure 3 shows an example of a

generated probing code fragment for a code fragment similar

to the second example of Figure 1.

// ... testing code to set up initial state...

// Code fragment A (linkage: boolean result; ArrayListMultimap map;)
boolean result = map.put(var1, var2);

// generated probing code:
System.out.println(result);
boolean x0 = map.isEmpty();
System.out.println(x0);
map.clear();
java.util.Map x1 = map.asMap(); // x1 added to the pool
int x2 = map.size();
System.out.println(x2);
int x3 = x1.size();
System.out.println(x3);
java.util.Set x4 = x1.entrySet(); // x4 added to the pool
java.util.Iterator x5 = x4.iterator(); // x5 added to the pool
boolean x6 = x4.isEmpty();
System.out.println(x6);
try {

x5.remove();
} catch (java.lang.IllegalStateException e) {

System.out.println(e);
}

Fig. 3. Example of a generated probing code executed immediately after one
of the code fragments (A) under measurement. (The code is simplified and
abbreviated for presentation purposes.)

Notice that we compare the output of the generated probing

code fragments using a simple equality test that in general

leads to a conservative form of observational equivalence (as

described in Section III-A2). Still, this method is both practical

and efficient, and it is also exact (no false negatives) for all

the subjects considered in our evaluation (Section IV).

3) Difference Between Executions: We define a distance

measure dS(CA,CB) by applying a dissimilarity measure to a

projection of the executions of the two code fragments CA and

CB starting from state S. We define and experiment with many

such distance measures by combining various dissimilarity

measures with various projections. A projection of an execution

α1,α2, . . . ,αk is a particular trace in which we log a subset of

the information associated with each action αi. In particular,

we use two categories of projections.

In code projections, for each action we log the code executed

in that action. We experimented with a number of code

projections in which we log a simple identifier of the line

of source code, the line of code plus its depth in the call stack,

or to the full call stack.

In data projections, for each action we log the read/write

operations performed in that action. We only log read or write

operations on object fields or static fields. Both read and write

entries, logged individually, consist of an address part that

identifies the field from which we read or into which we write,

and a data part that identifies the value being read or written.

We then specialize this projection by encoding different pieces
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of information in the address and data parts. For the address

we use the field name, the class name, or the type of the field

being read or written, and a number of their combinations. For

the value we use its string representation for basic types or

arrays of basic types, or no value at all.

We experimented with various combinations of code and data

projections, and also with slightly more elaborate variants of

each. For example, for write operations we log the old value as

well as the new value. Table I summarizes the most significant

projections we propose to use. The examples refer to the

simple code fragment boolean x = map.put(k,v). We evaluate

the effectiveness of these projections in Section IV.

TABLE I
PROJECTIONS USED TO DERIVE AN ACTION LOG FROM AN EXECUTION

Type Projection Example from an actual log(a)
Code statement ArrayListMultimap.put(LObject;LObject;)Z@66

AbstractListMultimap.put(LObject;LObject;)Z@95
AbstractMultimap.put(LObject;LObject;)Z@200

depth, statement 3:ArrayListMultimap.put(LObject;LObject;)Z@66
4:AbstractListMultimap.put(LObject;LObject;)Z@95
5:AbstractMultimap.put(LObject;LObject;)Z@200

Data type, value Ljava/util/Map;→{}
Ljava/util/Set;→[]
Ljava/util/HashMap;→{}
I→1
I←1

field, value map→{}
map→{}
entrySet→[]
this$0→{}
modCount→1
expectedModCount←1

class, field, value AbstractMultimap.map→{}
HashMap.entrySet→[]
HashMap$EntrySet.this$0→{}
HashMap$HashIterator.modCount→1
HashMap$HashIterator.expectedModCount←1

type, old value map→{}
entrySet→[]
this$0→{}
modCount→1
expectedModCount 0←1

no value AbstractMultimap.map→
HashMap.entrySet→
HashMap$EntrySet.this$0→
HashMap$HashIterator.modCount→
HashMap$HashIterator.expectedModCount←

(a)code fragment: boolean x = map.put(k,v);
abbreviations:
ArrayListMultimap is com.google.common.collect.ArrayListMultimap
AbstractMultimap is com.google.common.collect.AbstractMultimap
HashMap is java.util.HashMap
Object is java.lang.Object

To obtain a clean execution log, we also discard log entries

corresponding to platform-related actions that we consider

irrelevant and potentially confusing for our purposes. For

example, in our implementation, which is in Java, we log

the actions of the Java library but we discard those of the

class loader. With such logs we then proceed to compute the

difference measure for code fragments.

Let LS,A and LS,B be the logs of the execution of fragments

CA and CB from state S. We generally compute the distance mea-

sure dS(CA,CB) = 1− similarity(LS,A,LS,B) where similarity is

a normalized similarity measure defined over sequences or sets

(interpreting the logs as sets). Intuitively, the normalization

of the similarity measures takes into account the length of

the logs, but in general each measure has its own specific

normalization procedure. Notice that in the application of the

similarity measure, we consider each entry as an atomic value

that we simply compare (equals) with other entries. Table II

lists the most effective similarity measures we experimented

with. (The abbreviations on the right side identify the measures

in their experimental evaluation in Section IV.)

TABLE II
SIMILARITY MEASURES APPLIED TO ACTION LOGS

se
q
u
en

ce
-b
as
ed

Levenshtein [26] (Lev)
Damerau–Levenshtein [26] (DamLev)
Needleman–Wunsch [32] (Need)
Cosine similarity [8] (Cos)
Jaro [19] (Jaro)
Jaro–Winkler [19] (JaroW)
Q-grams [8] (qGrams)
Smith–Waterman [12] (SmithW)
Smith–Waterman–Gotoh [12] (SmithG)
Overlap coefficient [7] (Ovlp)

se
t-
b
as
ed

Jaccard [8] (Jaccard)
Dice [8] (Dice)
Anti-Dice [8] (ADice)
Euclidean [7] (Euclid)
Manhattan [7] (Man)
Matching coefficient [7] (MC)

4) Aggregating the Measure of Redundancy: Ideally we

would like to obtain the expected redundancy of two fragments

CA and CB. However, we also want to use a general aggregation

method, independent of the particular distribution of the input

for the system at hand. We therefore simply compute the

average of the redundancy measures over the sample of initial

states. We also experimented with other obvious aggregation

functions, such as minimum, maximum, and other quantiles,

but those proved less effective than the simple average.

IV. EXPERIMENTAL VALIDATION

We conduct an experimental analysis to validate the measure-

ment method we propose. We consider two validation questions.

The first question (Q1) is about consistency: we want to check

that our measurements are internally consistent. In particular,

we want to verify that the method yields measurements that

remain stable when using common semantic-preserving code

transformations (such as refactoring) and also when we sample

the state space from a domain of semantically similar inputs.

The second question (Q2) is about significance: we want to

make sure that the measurements we obtain are meaningful and

useful. In general we want to show that those measurements

can help developers make design decisions related to the

redundancy of their system. Thus we judge their significance

and their utility by correlating the measurements with specific

uses of redundancy.

A. Experimental Setup

We conduct a series of experiments with a prototype

implementation of the measurement method described in
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Section III-C. We consider a number of subject systems

(described below) for which we consider a number of pairs

of code fragments (also detailed below). For each system we

generate a set of test cases either manually using the category

partition method [28] or automatically with either Randoop [29]

or Evosuite [13] depending on the experiment. We use the tests

generated for each system with all the pairs of code fragments

defined for that system to sample the input space as described

in Section III-C1. Then for each pair of fragments and for

each initial state (test) we measure the degree of observational

equivalence as explained in Section III-C2. For each pair of

fragments and initial state, we also trace the executions of the

two fragments using the DiSL instrumentation framework [23].

With these traces, we then apply a number of projections as

explained in Section III-C3, and with the resulting logs we

compute a number of similarity measures using a modified

version of the SimMetrics library.1 Finally, we compute the

redundancy measure for each initial state, and aggregate with

its overall average and standard deviation.

We experiment with two sets of programs:

• Benchmark 1 is a set of different implementations of two

search algorithms and four sorting algorithms. Table III

lists each algorithm and the number of corresponding

implementations. In the case of Benchmark 1 we consider

each whole system as a code fragment and we compare

code fragments of the same category. For example, we

may compare one implementation of bubble sort with one

of quicksort, or two implementations of binary search.

• Benchmark 2 is a set of classes of the Google Guava

library. The set of Guava classes contains methods that

can be substituted with other equivalent code fragments

(equivalent according to the documentation). We therefore

consider all pairs of fragments consisting of a method

(CA) and an equivalent fragment (CB). Table IV lists all

the subject class with the number of methods for which

we have equivalent fragments, and the total number of

equivalent fragments.

TABLE III
BENCHMARK 1: DIFFERENT IMPLEMENTATIONS OF SEARCH AND SORTING

ALGORITHMS

Algorithm Implementations
Binary search 4
Linear search 4
Bubble sort 7
Insertion sort 3
Merge sort 4
Quicksort 3

B. Internal Consistency (Q1)

We check the internal consistency of the measurement

method with three experiments. The first experiment checks

1http://sourceforge.net/projects/simmetrics/, the modifications are to reduce
the space complexity of several measures. For example, the Levenshtein
distance in SimMetrics uses O(n2) space, which is necessary to output the edit
actions that define the edit distance. However, since we only need to compute
the numeric distance, we use a simpler algorithm.

TABLE IV
BENCHMARK 2: GUAVA CLASSES, SOME OF THEIR METHODS AND THEIR

EQUIVALENT IMPLEMENTATIONS

Library Class Methods Equivalences

Guava

ArrayListMultimap 15 23
ConcurrentHashMultiset 17 29
HashBimap 10 12
HashMultimap 15 23
HashMultiset 17 29
ImmutableBimap 11 17
ImmutableListMultimap 11 16
ImmutableMultiset 9 27
Iterators 1 2
LinkedHashMultimap 15 23
LinkedHashMultiset 18 30
LinkedListMultimap 15 23
Lists 8 20
Maps 12 29
TreeMultimap 13 21
TreeMultiset 17 29

the obvious condition that a fragment is not redundant with

itself (since the two executions should be identical). We

conduct this experiment using the code fragments (programs)

of Benchmark 1, for which we indeed obtain a redundancy

measure of 0.

With the second experiment we check that the measurement

is stable with respect to semantic-preserving program trans-

formations in code fragments, as well as with semantically

irrelevant changes in the input states. We use once again the

fragments of Benchmark 1. In a first set of experiments, we

first apply all the automatic refactoring operations available

within the Eclipse IDE (Extract to Local Variable, Extract

Method, Inline Expression and Change Name) as many times

as they are applicable, but only once on each expression. We

then measure the redundancy between each original fragment

and its refactored variants.

Figure 4 shows a minimal but indicative subset of the

results of the refactoring experiments (all other results are

consistent). We plot the redundancy measure for the binary

search case study, with data and code projections in histograms

corresponding to all the refactoring operations, identified by

the color of the bar. The X-axis indicates the similarity

measure used to compute the redundancy (see Table II for

the abbreviations of the similarity measures).

We notice immediately that code projections are inconsistent,

and are negatively affected by essentially all refactoring

operations under every similarity measure. By contrast, data

projections have an excellent consistency and stability, and

correctly report zero or near-zero redundancy under all refac-

torings and with all similarity measures. An analysis of the

results reveals that data projections based on type rather than

field name are particularly robust for some refactoring activities,

such as Extract-method and Change-name, and less robust with

respect to others that may change the execution actions. For

example, if we apply the Extract-local-variable operator to the

variable in a for loop condition that checks the length of an

array field, then that changes the number of field accesses and

thus the data projections.
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Fig. 4. Consistency of the redundancy measure using various projections on binary search. Notice that the scale of the first chart is from 0 to 0.2. This is to
better highlight the fact that the results for the data projection are very low, either exactly zero or very close to zero.

In a second consistency check, we consider the redundancy

measured between executions of the same fragment, but

starting from a different but semantically equivalent state (test

case). This experiment does not conform to our definition of

redundancy. Still, it can be useful to test the stability of the

measurement with respect to small (insignificant) variations in

the initial state. For these experiments we use the test cases

that select the initial states within the same input category

(input category partitioning). We report the results of these

experiments also in Figure 4 in the rightmost bar in each group

(darkest color, labeled “Equivalent input”). The results are in

line with those of the other consistency checks, that is, data

projections have excellent consistency and stability, while code

projections are inconsistent.

TABLE V
OBSERVATIONAL EQUIVALENCE FOR THE METHODS OF THE GUAVA CLASS

ARRAYLISTMULTIMAP

Method Equivalence (average)
clear() 1.00
containsEntry(Object,Object) 1.00
containsKey(Object) 1.00
containsValue(Object) 1.00
create() 1.00
create(int,int) 1.00
isEmpty() 1.00

keys() 0.61 (median: 0.57)(a)

put(Object,Object) 1.00
putAll(Multimap) 1.00
putAll(Object,Iterable) 1.00
remove(Object,Object) 1.00
removeAll(Object) 1.00
replaceValues(Object,Iterable) 1.00
size() 1.00
(a)see detailed measurements in Table VI

With the third consistency experiment, we focus specifically

on the measure of the degree of equivalence, which corresponds

to the probability that a probing code would not reveal a

difference (see Section III-C2). For this experiment we can not

use the fragments from Benchmark 1, since we know that those

are all equivalent. We therefore focus on the particular case of

the ArrayListMultimap class taken from Benchmark 2. Table V

lists all the methods that define our first code fragment (CA) for

ArrayListMultimap. For each one of them, we then measure and

report in the table the degree of observational equivalence with

all the corresponding fragments from Benchmark 2 (average

over several other fragments CB and over all initial states). The

degree of equivalence is exactly 1 for all methods, which is

what we expected, except for method keys, which is paired

with a fragment that uses keySet.

TABLE VI
EQUIVALENCE MEASUREMENT OF METHODS keys() AND keySet()

Initial state generated CP failed CP Equivalence
S1 13 6 0.54
S2 16 5 0.69
S3 16 5 0.69
S4 15 5 0.67
S5 14 6 0.57
S6 16 7 0.56
S7 16 7 0.56

Average: 15.14 5.86 0.61

A closer examination indicates that keys and keySet are

similar but not completely equivalent, since they differ when the

multimap contains multiple values for the same key. To better

analyze the case, we repeated the experiment with 106 probing

codes CP starting from 7 different initial states S1, . . . ,S7. The

results show that the measurement correctly quantifies the

differences in the sequences of actions, and that the results are

consistent across initial states and probing codes.

In summary, the results of the three experiments described

so far demonstrate the internal consistency and robustness of

the measurement. These experiments were also essential to

identify the best projections and similarity measures. In the

following experiments, we use only data projections with a few

of the most effective similarity measures. When not indicated,

the similarity measure is the Levenshtein distance.
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C. Significance (Q2)

We evaluate the significance of the redundancy measurements

obtained through our method in two ways. We first assess the

ability of the measurement to identify differences (redundancy)

at various levels of abstractions, and more specifically low-level

code redundancy versus high-level algorithmic redundancy. We

conduct this series of experiments on the cases of Benchmark 1.

Then, in a second series of experiments based on some

cases taken from Benchmark 2, we assess the ability of the

redundancy measure to predict the effectiveness of a particular

technique designed to take advantage of redundancy.

B
in
ar
y
S
ea

rc
h

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
ed

un
da

nc
y

L
in
er

S
ea

rc
h

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
ed

un
da

nc
y

B
u
b
b
le
-S

o
rt

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
ed

un
da

nc
y

In
se
rt
io
n
-S

o
rt

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
ed

un
da

nc
y

Fig. 5. Redundancy between implementations of the same algorithm.

Figure 5 shows the measurements of the redundancy between

fragments that implement exactly the same algorithm. Each plot

shows groups of values representing the average and standard

deviation over the measurements between each implementation

and every other implementation. However, notice that in some

cases the results are always zero, and therefore do not appear

in the histogram. So, for example, the first histogram shows

the case of the four implementations of binary search (see

Table III), one of which has zero redundancy, and therefore

the histogram shows three bars for each similarity measure. In

general, the redundancy measures are low, which makes sense,

since all the fragment pairs implement the same algorithm and

can only have low-level code differences.
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Fig. 6. Redundancy between different algorithms.

Figure 6 shows the redundancy between fragments that

implement different algorithms. Here each histogram repre-

sents one particular algorithm, and shows the comparisons

between each implementation of that algorithm and every other

implementation of another algorithm in the same category

(sorting and searching). Here the measures are relatively high,

indicating a high degree of redundancy, which makes sense,

since all the fragment pairs implement different algorithms,

and therefore should have significant differences.

The last series of results we present are intended to assess

the significance of the measurement in terms of its predictive

ability. For this we analyze the redundancy of some equivalent

fragments that we used as automatic workarounds with a

technique intended to increase the reliability of systems [5]. In

particular, we consider a number of pairs of equivalent code

fragments used with varying degrees of success as workarounds.

We then measure the redundancy for each pair, and see how

that correlates with the success ratio.

Table VII shows the results of these experiments. For each

subject system we sort the equivalent pairs by their success ratio

to highlight the correlation with the measure of redundancy.
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TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments

(CA and CB) are either not redundant at all or completely

redundant. When there is no redundancy, the equivalence is also

completely ineffective to obtain workarounds, and conversely,

when we obtain a measure of complete redundancy in the case

of Iterators.forArray(a) in Caliper, the equivalence is always

effective as a workaround.

The redundancy measure is also a good indicator of the

success of a workaround in the other non extreme cases. Con-

sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher

redundancy measure and a higher success ratio than the second

one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case

shows that the redundancy measure can be an effective predictor

to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)

from which we conclude that our redundancy measure is indeed

a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the

validity of our experimental results. Here we briefly discuss

the countermeasures we adopted to mitigate such threats. The

internal validity depends on the correctness of our prototype

implementations, and may be threatened by the evaluation

setting and the execution of the experiments. The prototype

tools we used are relatively simple implementations of well

defined metrics computed over execution logs and action

sequences. We collected and filtered the actions of interests

with robust monitoring tools and we carefully tested our

implementation with respect to the formal definitions.

Threats to external validity may derive from the selection

of case studies. An extensive evaluation of the proposed

measurements is out of the scope of this paper, whose goal

is to discuss and formally define the concept of software

redundancy. We present results obtained on what we would

refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check

the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy

of software, to make software more reliable and adaptive.

Several other techniques, more or less mature, exploit the

redundancy of software in a similar way. On the basis of this

past experience, we now want to gain a deeper and at the same

time broader understanding of software redundancy. And the

first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that

we consider expressive and meaningful, and we derived from

it a concrete measurement method that we evaluated for its

consistency (does the measurement make sense at a very basic

level?) and predictive ability (is it a good indicator of useful

properties?). Our experiments show that the measurements are

indeed consistent and significant, which means that they can

be useful in support of a more principled use of redundancy

in software design.

We see a number of ways to build upon this work. One would

be to enhance the model. The main limitation of the model is

that it considers only single-threaded code fragments. Notice

in fact that the model, as well as the measure of dissimilarity,

is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code

would be to linearize parallel executions, although that might

be an unrealistic oversimplification. Other straightforward

extensions include a more extensive experimentation and an

improved measurement, in particular in sampling the state

space. However, our primary interest is now in using the model

and the measurement to study redundancy further. Our ultimate

goal is to comprehend redundancy as a phenomenon, to harness

its power by design.
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