2012 Proceedings IEEE INFOCOM

Fully Decentralized Estimation
of Some Global Properties of a Network

Antonio Carzaniga

University of Lugano

Lugano, Switzerland
Email: antonio.carzaniga@usi.ch

Abstract—It is often beneficial to architect networks and
overlays as fully decentralized systems, in the sense that any
computation (e.g., routing or search) would only use local
information, and no single node would have a complete view or
control over the whole network. Yet sometimes it also important
to compute global properties of the network. In this paper we
propose a fully decentralized algorithm to compute some global
properties that can be derived from the spectrum of the network.
More specifically, we compute the most significant eigenvalues
of a descriptive matrix closely related to the adjacency matrix
of the network graph. Such spectral properties can then lead
to, for example, the “mixing time” of a network, which can be
used to parametrize random walks and related search algorithms
typical of peer-to-peer networks. Our key insight is to view the
network as a linear dynamic system whose impulse response can
be computed efficiently and locally by each node. We then use
this impulse response to identify the spectral properties of the
network. This algorithm is completely decentralized and requires
only minimal local state and local communication. We show
experimentally that the algorithm works well on different kinds
of networks and in the presence of network instability.

I. INTRODUCTION

A peer-to-peer system is essentially a network of applica-
tions used to communicate and share resources. The nodes
in this network, called “peers,” are typically interconnected
through point-to-point overlay links and typically maintain
only a local view of the network consisting of a little more
than a list of adjacent peers. Therefore, a peer-to-peer system
is a good example of a decentralized network. Their decen-
tralized nature makes peer-to-peer systems ideal for emergent
and naturally decentralized environments (e.g., infrastructure-
less or end-user networks) and also makes them particularly
resilient to failures. On the other hand, for some core network
functions (e.g., maintenance and search) it is still desirable
that peers be able to measure certain global properties of the
network.

In this paper we propose a method to measure some
global properties of a network such as a peer-to-peer system
in a completely decentralized and efficient manner, where
decentralized and efficient means that the memory required
at each node and the traffic on each link are asymptotically
sublinear in the size of the network and practically very small.

We focus on properties of a networks that can be derived
from the spectrum of the network. By spectrum of the network
we mean the eigenvalues of a chosen descriptive matrix closely

978-1-4673-0775-8/12/$31.00 ©2012 |EEE

Cyrus Hall
University of Lugano
Lugano, Switzerland

Email: hallcp@acm.org

Michele Papalini
University of Lugano
Lugano, Switzerland

Email: michele.papalini@usi.ch

related to the adjacency matrix of the network graph. For
example, one useful property that can be derived from the
spectrum of the network is the network’s mixing time. The
mixing time is the number of hops after which a random walk
becomes independent of its starting point, and is an important
parameter of many search and gossip algorithms. The mix-
ing time can be derived from the second-largest eigenvalue
modulus of the transition probability matrix, which is simply
a weighted adjacency matrix of the network graph. Similarly,
other useful properties of the network can be derived from the
spectrum of the same and other related matrices. Kempe and
McSherry discuss some such properties in detail [1].

Our intuition is that each node in the network can, with a
simple, efficient, and fully decentralized algorithm, compute
the impulse response of a particular linear dynamic system
whose state-transformation matrix corresponds to the chosen
descriptive matrix derived from the network graph. In other
words, a node can not see or use the whole network graph
(efficiently) but can compute the impulse response of a dy-
namic system whose behavior is defined by the structure of
that graph. This impulse response can then be used to compute
the desired salient spectral properties of the network graph by
applying well-established identification and realization tech-
niques developed within the theory of dynamic systems.

In general, a complete and exact identification would require
a very large number of steps of the impulse response (at least
2n — 1 for a network of n nodes). However, as it turns out,
a much shorter, truncated impulse response is sufficient to
reveal useful information in low-diameter networks, which
include essentially every network of practical use. In this
paper we demonstrate experimentally that this is the case for
some important classes of networks and for significant network
sizes. Furthermore, we show that our technique is, to some
extent, resilient to network instability (or “churn”).

We now discuss in Section II how this work relates to
research in the computation of global network properties as
well as in distributed spectral analysis. Then, in Section III we
declare the basic models we rely on, including the model of the
network. Based on these models, in Section IV we formally
describe the problem we are solving and detail the algorithm
we propose to solve it. In Section V we present the results
of the algorithm’s empirical evaluation, and in Section VI we
conclude with a discussion of open problems.

630

II. RELATED RESEARCH

The core idea of this paper is to apply system identifica-
tion and realization techniques to the estimation of global
properties of networks such as peer-to-peer systems. In this
section we first discuss other ideas on how to estimate global
properties in a decentralized manner. Then we review specific
methods that are relevant to the computation of the spectrum
of a network. Our review of related research is set within the
context of peer-to-peer systems, even though most of the ideas
and techniques developed in this paper are more generally
applicable to other, conceptually similar networks (e.g., sen-
sor networks, computational clusters) and to communication
networks in general.

A. Monitoring and Aggregate Measurements

One way to measure global properties of a peer-to-peer
system is to sample local properties and then to infer global
projections. Another way is to compute global aggregates of
data distributed over the network using specific aggregation
algorithms. Sometimes, these techniques use the same basic
notions or the same building blocks, as in the case of random
walks and gossip algorithms.

We start with aggregation algorithms. One of the founda-
tional algorithms of this kind was proposed by Kempe et
al. and is called Push-Sum [2]. Push-Sum is a probabilistic
algorithm for the computation of various aggregates, such as
the sum and average of node data. Each node v starts with
a value z, and builds, through the running of the algorithm,
an estimate of some global value, such as the sum Zv Ty
or the average 1/n) x, of x, over the network (n is the
size of the network). Push-Sum is simple and, given a desired
error bound, converges in O(logn) rounds. Push-Sum has
also been improved and extended [3]. Mosk-Aoyama and
Shah developed an algorithm that also computes sums in a
completely distributed manner [4]. Their algorithm extends
to the more general class of separable functions over node
data and to any fixed topology, whereas Push-Sum requires
complete connectivity. Separable functions can be expressed
as the sum of individual functions, and therefore include
summation and averaging.

Aggregation algorithms are undoubtedly very useful. How-
ever, like other techniques described in this section, they are
limited to simple functions of node data (e.g., sum, average)
and do not seem to be directly applicable to properties of
the network that are more intrinsically dependent on its con-
nectivity and structure (e.g., spectral properties). Aggregation
algorithms can, however, serve as basic building blocks for
the computation of such properties (see Section II-B).

Within the rubric of sampling, it is useful to distinguish
two broad categories of techniques that operate on peer-to-peer
systems. The first category includes techniques developed for
specific systems or topologies. Conversely, the second category
includes general-purpose techniques, which we further classify
in two main subcategories: those based on random walks, and
those based on gossip protocols.

King and Saia present a method to select a node uniformly
at random from any distributed hash table (DHT) that supports
the common ID-based lookup function where get(x) returns
the closest node to ID z [5]. Similarly, studies of churn
dynamics in DHTs often assume that nodes can be sampled by
looking up randomly selected values in the address space [6].
However, many DHTs show a preference toward storing long-
lived nodes in routing tables in order to increase reliability,
which biases the selection toward such nodes. Further, natural
differences in the distribution of IDs biases toward nodes that
are responsible for larger portions of the ID-space. In general,
any technique which samples nodes in a manner correlated
with session length will lead to biased results [7], [8]. Beyond
their statistical properties, these techniques are also limited in
that they are only applicable to DHTs.

Moving away from system-specific techniques, Massoulié et
al. develop two generic techniques to solve the peer-counting
problem, namely the estimation of the size n of a peer-to-
peer network [9]. The first technique, called Random Tour,
which also extends to summations, exploits a property of
random walks. More specifically, the sampling is done through
a random tfour, which can estimate the size of the network
essentially because the hitting time (i.e., the expected number
of hops before a random walk goes back to the originating
node) relates to the global visitation probability of the origi-
nator node and can be computed locally. The second technique,
also based on sampling and called Sample and Collide, is
an extension of a technique by Bawa et al. [10] based on
the birthday paradox. In essence, the algorithm measures the
expected number of uniform samples taken before a collision
is recorded (i.e., before the same node is sampled twice). Then,
by the birthday paradox, the total size n is computed as the
square of the expected collision sample size.

Beyond the use of specific properties of random sampling
and random walks, such as the birthday paradox and hitting
time, the most common approach to estimate a globally dis-
tributed property is to measure it over a statistically significant
portion of the network. And a common way to do that is once
again to use random walks, where the property is sampled at
a node selected at the end of a sufficiently long random walk.
The cost and precision of this sampling technique depend on
the mixing time of the network, which is itself a property that
can not be computed through simple aggregation, and that
leads us back to the main objective of this paper.

B. Distributed Spectral Computations

The techniques we review now are particularly relevant to
the work presented in this paper because they are intended
to compute structural properties of the network, and more
specifically properties of the spectrum of the network graph.

Kempe and McSherry propose to compute the top-k eigen-
vectors of a matrix distributed across a network using a
fully distributed version of the traditional orthogonal itera-
tion algorithm [1]. Instead of using QR decomposition to
orthonormalize in each round, Kempe and McSherry use Push-
Sum [2] to estimate a matrix K related to the system, which

631

is then factored by each node to find the orthonormalization
matrix. The algorithm halts by detecting convergence in a
distributed fashion. Since it computes the eigenvectors of a
distributed matrix, the algorithm of Kempe and McSherry is
clearly very powerful. By contrast, the method we propose in
this paper is intended to provide more high-level information,
since it only computes the top-k eigenvalues (see Section [V-A
below for more details). However, we should note that the
algorithm of Kempe and McSherry is also slower, roughly by
a factor of at least log?n, and significantly more expensive
in terms of traffic. Also, notice that the impulse-response
method we propose here does not inherently exclude the
computation of the eigenvectors. Rather, it is the computation
of the eigenvectors of the full system, with its (n) memory
requirement for each node, that does not match our basic
efficiency requirements.

EigenSpeed and EigenTrust both use distributed power
iteration to find the first eigenvector of a matrix [11], [12].
Both EigenSpeed and EigenTrust approach the problem of
malicious nodes, which we do not address in this paper.
While the power method can be used to find more than just
the first eigenvector, each additional eigenvector must be run
sequentially, making the process slow and expensive. Also,
this process is not evaluated in the presence of churn.

III. PRELIMINARIES

We model a network as a directed graph G = (V,E)
over n vertexes, where each vertex represents a node and
each edge represents a one-way link between two nodes. (A
duplex link is represented by two edges.) We use deg(v) to
denote the out-degree of node v. We make two assumptions
regarding the network graph. First, we assume that the network
is ergodic. Formally, this means that G is strongly connected
and aperiodic. That is, the greatest common divisor of the
lengths of its cycles is 1. In practice, this means that, starting
from any node, a sufficiently long walk can reach every other
node and it can do so at every (sufficiently long) length.
Second, we focus on networks with low diameter A < n and,
less crucially, low (maximum) degree d. These assumptions
are quite reasonable in practice. For example, practically all
peer-to-peer networks have diameter A = O(logn) and many
of them have average degree d = O(logn).

The estimation technique we propose uses classic methods
from system identification and realization. Therefore, we re-
view the basic model of a dynamic system that we use. We
consider a linear time-invariant dynamic system defined by the
following state-space equations:

x(t+1) = Az(t) + Bu(t) (1)
y(t) = Cx(t) 2)

More specifically, this is a discrete-time, linear, time-
invariant, single-input-single-output, deterministic system in
which z(t) € R™ is a vector representing the state of the
system at time ¢, u(t) € R is a scalar representing the input
at time ¢, and y(¢) € R is the output; A € R™"*" is the state-
transformation matrix, B € R"™ is a vector that maps the input

value into the state of the system, and C' € R" is a vector that
maps the state into the output. The size n of the state vector
x is also called the order of the system.

We denote the impulse response of the system with h(t)
for ¢t = 1,2,... starting from the quiescent state x(0) = 0.
Thus, h(t) is the output of the system when the input is the
unit impulse («(0) = 1 and u(¢) = 0 for ¢ > 0) and can be
written as h(t) = CA*~ !B (for t = 1,2,...).

IV. SPECTRAL ESTIMATION

We propose an algorithm to compute global network prop-
erties using the spectral properties of the adjacency matrix
of the network graph. In this paper we focus our evaluation
on a property called the mixing time of the network, which
is related to the second-largest eigenvalue modulus of a
matrix closely related to the adjacency matrix of the network.
However, as we will argue below, the algorithm can also be
applied to other matrices related to the adjacency matrix, and
therefore to other properties of the network studied in spectral
graph theory.

A. Problem Statement

Given a network graph G, we say that a matrix A = (ay,)
is related to the adjacency matrix of G (or simply related
to G) if ay, # 0 only if there is an edge (v,u) in G
or if 4w = w. Notice that, contrary to other models, we
associate the position (u,v) in the adjacency matrix to the
(v,u) edge in G. As should become clear later, we do that for
consistency with the standard model of equations (1) and (2).
We are interested in matrices related to G that are induced
by local information held by nodes in the network. Thus,
intuitively, each column (a.,) of A is associated with node v
and represents the outgoing edges of v (correspondingly, each
row (a,.) represents the incoming edges of u).

Given a matrix A related to G and stored column-wise by
the nodes of G—meaning that each node v stores the v-column
of A—we propose an algorithm to compute the dominant
spectral components of A, namely the largest eigenvalues of
A (largest in modulus).

As an example, consider a random walk on G. Such a walk
can be modeled as a Markov chain with transition matrix P €
[0,1]"*™ = (pyy), Where py, is the probability to go from
node v to the node u in a step of the random walk. In an
unbiased random walk, P is related to the adjacency matrix
of G as follows: p,,, = 1/deg(v) for all edges (v, u) in G, and
DPuv = 0 otherwise. In general, each column p.,, in P can define
any probability distribution over the outgoing edges of node v.
In either case, each node v decides how to bias the probability
of walking from v to all its neighbors, and therefore effectively
holds the column p., in P. This is how random walks are
implemented in many peer-to-peer systems. The algorithm we
propose would compute the first two eigenvalues of P and
then return the second one, which determines the mixing time
of the network and therefore the minimal length of a random
walk necessary to achieve the desired approximation of the
asymptotic visitation probability over G. (The algorithm would

632

compute the first two eigenvalues, but in this case the first is
not used because it is known to be always equal to 1, since
P is a stochastic matrix.)

B. Estimation Algorithm

The algorithm could identify the full spectrum of A exactly.
However, in practice it would be used to produce an estimate
of the dominant eigenvalues. Therefore, we refer to it as an
estimation algorithm. The algorithm consists of three phases: a
first phase consisting of k rounds, denoted witht =1,2,... k,
in which each node in the network exchanges a message with
each of its neighbors; a second phase in which nodes perform
a local calculation that yields the estimated eigenvalues; and
a third optional phase in which nodes may engage in a one-
hop gossip to refine their estimate based on those of their
neighbors.

We now describe the algorithm assuming that the execution
of each round is synchronous, meaning that all nodes execute
round ¢ at the same time, and finish that execution within
a bounded interval. In particular, all nodes start from the
first iteration (¢ = 1) at the same time. In Section IV-C we
discuss how the algorithm can be implemented without global
synchrony and coordination.

Each node v maintains a scalar variable z,. Node v also
holds the v-column (a.,) of the target matrix A. Notice that
this is a sparse column with only a few non-zero values
corresponding to the out-edges of v.

Algorithm 1 estimation algorithm executing at node v

x, < choose a value from {0, 1} uniformly
hv(l) — Ty
fort < 2...k do
for u € out-neighbors(v) do
send value x,a,, to u
end for
collect all values w sent by in-neighbors
Ty ¢ YW
hy(t) x,
end for
C A, = Kung’s realization with h, (1), ..., h,(k)
12: compute the dominant eigenvalues of A,
13: exchange the eigenvalues with neighbors
14: collect estimates from neighbors
15: adjust estimates to the median of the collected estimates

R A A R ol e

..
-

With this local state and local input, the first phase of the
algorithm proceeds as follows (see Algorithm 1). Each node v
initializes x, to 0 or 1 (line 1); then at every round, each node
v sends the value x,a,,, to each node w in its out-neighborhood
(line 5) and then updates its value x, with the sum of the
values received from its in-neighbors (line 8). Each node v
also records the value of z, for each round as h,(t) for t =
1,2,.... k.

Notice that, denoting with x(¢) the column vector of all the
node-local values z, at round ¢, each round of the algorithm

amounts to a distributed computation of the linear transforma-
tion x(t+1) = Ax(t), where the initial value z(1) is the vector
of zeros and ones each chosen randomly by a node. In other
words, for each node v, the sequence h, (1), hy(2),...hy(k)
computed by the algorithm corresponds to the impulse re-
sponse of the following linear time-invariant dynamic system:

z(t+1) =
yt) =

where B = (1) and C, is a row vector of all zeroes except
for a 1 in position v, and therefore simply extracts z, from x.

Notice also that, although the algorithm requires all nodes to
participate in the computation of the impulse responses, a node
that is not interested in computing the spectral properties of
A does not have to store the impulse response (lines 2 and 9)
and therefore may terminate the execution after the first phase
(line 10). Thus, after the first phase, each node v that is indeed
interested in computing the spectral properties of A holds the
impulse response h, (t) of a particular node-specific dynamic
system whose state-transition matrix is the target (unknown)
matrix A.

In the second phase, node v uses h,(t) to compute a real-
ization of a surrogate system with the same dynamic behavior
as the system of equations (3) and (4). This computation
uses Kung’s classic realization algorithm [13], [14]. Kung’s
algorithm produces an approximation of a linear system in
the state-space, starting from a truncated impulse response
of that system. In particular, given & = 2] — 1 values of
the impulse response h,(1),h,(2),...,h, (20 — 1), Kung’s
algorithm computes a triple /LJ, BU, C’v of matrices that define
a system that approximates the system defined by equations (3)
and (4) but possibly of lower order 7 < n < [. In our algorithm
we ignore B, and C, and use only A, to compute its spectrum
using a standard numeric linear-algebra method.

Notice that Kung’s algorithm requires an impulse response
of at least k = 2n — 1 steps to realize a system of order n.
This means that a full and exact estimation would require an
impulse response twice the size of the network. However, we
propose to use much shorter impulse responses. In particular,
we propose to use k on the order of the diameter of the
network, as opposed to its size n. In other words, we propose
a non-standard use of Kung’s algorithm.

This aspect of the algorithm is a bit delicate. The essence
of the problem is that we want to identify the dominant
spectral properties of a high-dimensional system (i.e., a large
network) using only a few steps of its impulse response.
Although it is known that a short impulse response may
not lead to a valid approximation in all cases, such method
seems justified within our chosen application domain. As we
argued in Section III, networks are by nature ergodic and
have low-diameter. Thus, our intuition is that even a short
prefix of the impulse response—one that would have to be
significantly larger than the diameter of the network, but still
much smaller than the size of the network—would contain
enough information about the entire network to allow for a

Az (t) + Bu(t) 3)
Cypz(t) 4)

633

good approximate realization. This intuition is confirmed by
the experimental results we present in Section V. However,
establishing a more formal relation between the length k of
the impulse response, the diameter of G, and the quality of
the resulting realization remains an open problem.

As it turns out, the estimation is not uniformly good across
the network, meaning that different nodes observe different
systems that then lead to different surrogate realizations, which
in turn lead to different spectral estimations with different
levels of accuracy. The third and last phase of the algorithm is
intended to make the estimate a bit more uniform across the
network through a simple one-hop “gossip” exchange between
nodes. In particular, each node exchanges its estimates of the
dominant eigenvalues with its neighbors, and also collects
the estimates of its neighbors. Then each node adjusts its
estimates to the median of the estimates of its neighbors plus
its own. (The median is applied to the moduli of the computed
eigenvalues.)

C. Initiation and Coordination

The computation of the impulse response, which we de-
scribed as a completely synchronous process, can also be
initiated and carried out in a completely decentralized and
asynchronous environment. Initiation and execution are quite
simple if one can assume that all nodes have synchronized
clocks. In that case, the initiation could be scheduled ahead
of time (e.g., on a regular basis at fixed times) or it can
be requested from a single node by broadcasting an absolute
starting time through a controlled flood. The execution could
then proceed with each round executed in agreed-upon time
intervals.

The situation is only a bit more involved if one does not
assume synchronized clocks. In this case we do not assume
any agreed-upon schedule but we still assume that all nodes
complete the execution of each round (a trivial computation)
in a bounded amount of time. In this setting, the computation
is initiated by a requesting node with a broadcast message
transported through a controlled flood. This controlled flood is
such that each node v sends one broadcast to its out-neighbors,
and correspondingly receives a copy of the same from all
nodes in its in-neighborhood. In fact, this initial flood can also
carry the initial value z, (1) for all nodes v. Therefore, after a
reasonable bootstrap interval, each node v has identified its in-
neighborhood and can proceed with the computation at round
t = 2. For all subsequent rounds ¢ > 2, the computation at
each node v can make progress in a completely decentralized
and asynchronous manner with v sending out its round-¢
message as soon as v receives all round-(¢ — 1) messages
from its in-neighbors.

Notice that the initial bootstrap interval can be reasonably
short, since that must be proportional to the network diameter,
which we assume to be small. Notice also that the purpose
of the bootstrap interval is to establish in-neighborhoods,
so if one can assume that in-neighborhoods are known, the
computation may proceed immediately without the initial
bootstrap interval.

V. EVALUATION

In this section we present the results of the experiments
we conducted to evaluate the spectral estimation algorithm
with different kinds of graphs. We start by looking at ideal
networks, where no faults or node disconnections can occur
during the execution of the algorithm. We show that in this
case our algorithm provides a good approximation of the
desired global property using a short impulse response. We
also show how the additional gossip round affects the results
by reducing the variance in the estimation between the nodes.
Then we look at the behavior of the algorithm in the presence
of churn. In particular, we study what happens when one
failure occurs during the algorithm execution and we study
how the failure affects the estimates at different points in the
computation of the impulse response.

A. Experiment Setup

In order to validate the estimation algorithm we test it with
three different kinds of graphs:

e Barabdsi-Albert: This class of graphs are generated using
a preferential-attachment model: a new node connects to
high-degree nodes with higher probability [15]. We use
a preferential factor of 1/2.

o Erdds-Rényi: This is a random graph where an edge exists
between two nodes with a given probability p [15]. In our
case, we set p = logn/n, so as to obtain nlogn edges
in expectation.

e Chord: This graph emulates the topology generated in a
Chord peer-to-peer system [16].

All the graphs we use satisfy our initial assumptions, and
in particular they are strongly connected and ergodic. All
the graphs have n = 10,000 nodes. In our experiments we
consider a matrix corresponding to the transition probability
matrix of the Markov model of an unbiased random walk over
G. Therefore, all the edges coming out of a node v have the
same transition probability 1/deg(v).

For each graph we study two closely related global proper-
ties. The first is the spectral gap (or simply gap) of the graph.
This measurement is given by the difference between the two
eigenvalues with largest moduli, A\; and A5. In our case, since
we consider a stochastic matrix (all columns sum to 1) which
is known to always have a first eigenvalue of A\; = 1, the
spectral gap is defined as g = 1 — |\2|. The second property
is the mixing time T, that is the necessary length of a random
walk needed to reach the stationary distribution of visitation
probabilities within a certain error €. More specifically, given
a graph G, the probability of terminating at node v after a
random walk of length ¢ starting from node vy depends on
v, t, and vg. However, for longer and longer walks, in the
limit for ¢ — oo, the probability to reach v depends only on
v. This probability is called the stationary distribution of G.
Now, given a desired error €, the mixing time is the minimum
number of hops after which a random walk approximates the
stationary distribution with a maximum difference of .

634

Given a graph G and its transition probability P, a way
to compute the mixing time is through repeated matrix mul-
tiplication, since if x(t) is the vector representing visitation
probabilities at ¢, the same vector after one hop in the random
walk is z(t + 1) = Pz(t) and from an initial starting point
represented by z(0), z(¢t) = P'z(0). However, this method is
very slow. Instead, approximations and bounds to the mixing
time can be computed using the spectrum of P [12], [17],
exploiting the eigenvalue decomposition of P. In particular, we
find an upper bound of the mixing time considering the error
€ as the maximum possible contribution from the distribution
associated with the second eigenvector of P. This is because
all components on the second and successive eigenvectors
vanish to zero exponentially in ¢, and the component on the
second eigenvector is the one that vanishes at the slowest rate.
We consider maz(gs2), the maximum value in the normalized
eigenvector associated with \5. In the worst case, where the
random walk starts at the node which gives the maximum
contribution maz(gz2), the node contribution decreases with
rate |\2|*, where ¢ is the number of hops taken. So we
can approximate the mixing time 7 with {. Therefore, the
maximum error ratio with respect to the stationary distribution
is |A2]%, and if we demand that ratio be lower than ¢, then the
mixing time must be 7 ~ t = log),, €.

Note that a small error in the estimation of the spectral gap
g may lead to a large error in the estimation of the mixing
time 7, especially when |As| is close to 1 and therefore the
spectral gap is close to 0. Therefore, it makes sense to study
the accuracy of the estimation of both the spectral gap and the
mixing time.

B. Ideal Networks

In the first experiment we test the estimation error of the
spectral gap for each type of network graph. The results are
shown in Figure 1, where figures la, 1c, and le on the
left column show the error before the gossip round, while
figures 1b, 1d, and 1f on the right column show the error after
the gossip round. Each data set is labeled as follows: ba is
for Barabdasi-Albert, er for Erd6s-Rényi, and chord for Chord
graphs. We plot the length k£ of the impulse response on the
x-axis and the percent error on the y-axis, defined as

9—9

9

where ¢ is the estimated spectral gap value and g is the actual
gap. In all the plots we show the 10th, 50th (median), and 90th
percentile of the estimations of all the nodes in the network.
More specifically, we repeat each experiment with 10 different
graphs of the same type, and then we compute, for each length
of k, the 10th, 50th, and 90th percentile of the estimations
performed by all the nodes in all the graphs (100,000 nodes
in total). The small inner plots (top-right corner) zooms into
the results obtained for k between 60 and 120 (again, we have
k on the x-axis and the percent error on the y-axis).
Erd6s-Rényi graphs (figures 1a and 1b) show a fast conver-
gence while Chord graphs (figures le and 1f) are slower to

x 100

(a) ba: spectral gap before gossip (b) ba: spectral gap after gossip

140
120
100
80
60
40
20

140 1
120
100
80
60 60 80
40
20

oNn & ® ® O

oNn s ® ® O

percent error
percent error

60 80 100 120 100 120

TIIIIIE
20 40 60 80 100 120 20 40 60 80 100 120
k k

(c) er: spectral gap before gossip (d) er: spectral gap after gossip

140 1

140 1
120
100

120

100

80 80

60 60 80 100 120 60 60 80
40 40
20 \M\Lu_u 20
0 TITTITTTITTITIIITITITIT 0

20 40 60 80 100 120 20 40 60 80 100 120
k k

T
TIICITIIII]

o N & o ® O
o N s o ® O

100 120

percent error
percent error

(e) chord: spectral gap before gossip (f) chord: spectral gap after gossip

140 |
120
100

80

140 ’
120
100

ol Ml

60 60 80 100 120

on & ® O

oNn A~ @ ® O

60 60 80 100 120

40 40
20 } H 20
0 o
20 40 60 80 100 120 20 40 60 80 100 120
k k

percent error
7
percent error

Fig. 1. Spectral gap estimation error

converge. In all cases, an impulse response of length £ > 60
yields an acceptable estimation error for all the different
graphs. However, regardless of the rate of convergence, the
estimation incurs a fixed error that does not seem to depend on
k, but that differs depending on the type of graph. For example,
the estimation converges after £ ~ 20 for ErdGs-Rényi graph
(figures la and 1b), but converges to a value that is small
but still positive. This is not a surprising behavior, since the
estimated system has a much lower order than the real system,
although as of yet, we do not completely understand the nature
of this fixed error.

As for the one-hop gossip, a comparison between figures
on the left column and figures on the right column shows
that the one-hop gossip exchange is quite effective in reducing
variability, especially in the graphs that seem to converge at
the slowest rate (Chord, figures le and 1f).

In Figure 2 we show the same type of results, for the
same experiments, but focusing on the computation of the
mixing time instead of the spectral gap. Again, the figures
on the left (2a, 2c, and 2e) show the results before the gossip
reconciliation round, while the figures on the right (2b, 2d,
and 2f) show the results after the gossip reconciliation round.
We plot again the impulse response length k£ on the x-axis and

635

the percent error on the y-axis, defined in the same way as for
the spectral gap.

(a) ba: mixing time before gossip (b) ba: mixing time after gossip

140 140 10

120 120 8
f — 6
S 100 S 100 4
[} [0}
£ 80 P 80 2
8 1 0
a,' 60 B 60 60 80 100 120
S 40 = a0

20 20

20 40 60 80 100 120 20 40 60 80 100 120
k k

(c) er: mixing time before gossip (d) er: mixing time after gossip

-
N
o

140 ;

10 0

120 8 120 8
P 6 o 6
5 100 . S 100 .
[0 . (]
z e : : : [T
8 60 0 8 &0 0
5 60 80 100 120 t‘l-.) 60 80 100 120
S a0 = 40

20 \Lm 20

o iiEsgisdaananingnannni|
20 40 60 80 100 120 20 40 60 80 100 120
k k

(e) chord: mixing time before gossip (f) chord: mixing time after gossip

140 0 140 0

120 8 120 8
P 6 o 6
5 100 . S 100 .
[0 (]
5 80$: HL g & : mﬂm
% 60 60 80 100 120 g 60 60 80 100 120
S 40 || S a0

20 2 l{J—ELLTl

0 0 i

20 40 60 80 100 120 20 40 60 80 100 120
k k

Fig. 2. Mixing time estimation error

We can see that, for short impulse responses, the median
error is much smaller in the estimation of the mixing time
than the estimation of the spectral gap. However, in the case
of Chord (figures 2e and 2f) we observe a high variability
highlighted by the difference between the 10th and 90th per-
centiles. This means that a few nodes compute bad estimates
of the mixing time. Fortunately, as shown in Figure 2f, the
gossip round is quite effective in mitigating this imprecision,
and again after an impulse response of length k ~ 60 we can
obtain a good approximation for all the graphs.

We should also highlight a strange behavior in the case
of the Chord graphs for impulse-response lengths around
k = 30. Here we observe a significant peak of variability (i.e.,
inaccuracy) in the estimation. Probably, this depends on the
fact that Chord graphs do not mix very well, which means that
[A2] is very close to 1, so even a small error in the estimation
of Ao may result in a substantial error in the estimation of
the mixing time. Nevertheless, this error disappears and the
estimation converges after £ > 60.

C. Network Instability (or Churn)

The previous analysis shows the accuracy of the estimation
in an ideal network in which nodes and links are reliable
and stable. However this is not always a realistic scenario.
Even in the absence of failures, peer-to-peer networks are
affected by churn, that is, nodes leaving or joining the network,
thereby changing the adjacency matrix of the network that
the algorithm intends to identify. In order to test whether our
algorithm is resilient to these changes, we induce a failure
corresponding to one node leaving the network at a certain
time f; during the computation of the impulse response.
We then analyze the effect of the failure on the estimation
of the spectral gap and mixing time. Notice that in this
case, the estimation is performed at time & > f;, by the
remaining nodes, using the complete impulse response, which
is effectively computed across two network configurations.
Then, in order to evaluate the estimation errors, we choose
the actual gap and mixing time of the configuration at time k,
that is, after the failure.

(a) spectral gap, median (b) spectral gap, 10%—-90% range

120 200 120 200
100 100
150 150
80 80
ft 60 100 f 60
40 40
50
20 20
] 0 _ ol 0
20 40 60 80 100 120 20 40 60 80 100 120
k k

(c) mixing time, median (d) mixing time, 10%-90% range

120 200 120 200
100 100 |
150 150
80 80 |-
ft 60 100 fi 60 |-
40 40 1
50
20 20 -
1 il il O L il 0
20 40 60 80 100 120 20 40 60 80 100 120
k k

Fig. 3. Barabasi-Albert graphs: estimation error with churn

In Figure 3 we see the effect of a failure in the case
of Barabdsi-Albert graphs. We plot “heat maps” representing
three-dimensional data. On the x-axis we plot the length &
of the impulse response, and on the y-axis we indicate the
time f; at which the failure occurs. Thus, all the points above
the diagonal correspond to failure-free estimations, while the
points below the diagonal correspond to estimations based
on an impulse response that extends over the failure. Each
point in the map is color-coded with a gradient of colors
representing the estimation error aggregated over all nodes
across 10 different graphs of each type. Intuitively, the heat
maps should be analyzed by fixing f; and therefore by reading
each chosen row left-to-right, with each point in the row

636

corresponding to the estimation error at that value of k.

Figure 3a represents the median percent-error of the spectral
gap estimation computed over all nodes in 10 different graphs.
The percent error is defined as before (e.g., as in Figure 1).
Figure 3b shows the variability of the estimation computed as
|Go0% — G109 | where Gggy, and Gioy, are the 90th and 10th
percentile of the percent error of the spectral gap estimation.
This way, we effectively measure the range that contains the
central 80% of the estimates.

In figures 3c and 3d we plot the same values but for the
mixing time. In order to test the worst situation possible, we
induce the failure of node number 2 in the graph. Because
of the way the graphs are constructed with the Barabdsi-
Albert model, node 2, which is the second node added to
the graph, is one of the nodes with the highest number of
neighbors. So, a failure of this node affects the entire network
in a significant way. We do not induce the failure of node 1
(which has even more neighbors) because that would typically
partition the network. In all the other graphs (Erdés-Rényi and
Chord) all nodes have the same number of neighbors with high
probability, so we induce a failure in a randomly chosen node.

As shown in Figure 3a, the estimation error may be very
high after a failure (more than 200% in same cases). However,
with a sufficiently long impulse response, it is possible to
recover and once again obtain a good approximation of the
actual value. The range of variability (Figure 3b) is also quite
low when the estimation reconverges. For the mixing time, we
can draw essentially the same conclusions.

(a) spectral gap, median (b) spectral gap, 10%—90% range

120 200 120 200
100 100
150 150
80 80
f 60 100 f 60 100
4 4
0 50 0 50
20 20
e 0 I 0
20 40 60 80 100 120 20 40 60 80 100 120
k k
(c) mixing time, median (d) mixing time, 10%-90% range
120 200 120 200
100 100
150 150
80 80
fi 60 100 f 60 100
40 4
50 0 50
20 20

n i . n . . 0
20 40 60 80 100 120 20 40 60 80 100 120
k k

Fig. 4. Erd6s-Rényi graphs: estimation error with churn

In figures 4 and 5 we present the same results for Erdds-
Rényi and Chord graphs, respectively. Again the results show
that the algorithm converges even in the presence of churn
events, and in fact can also recover from an error with a
reasonable length of the impulse response.

(a) spectral gap, median (b) spectral gap, 10%—-90% range

200 120 200

120

100 100

150

80

100 f 60 100

ft 60

40

4
50 0 50

20

0
20 40 60 80 100 120

I
0
20 40 60 80 100 120

k k

(c) mixing time, median

(d) mixing time, 10%-90% range
200 120 200

120

100 100

150 150
80 -

100 fi 60 |-

80

ft 60

40

40 |

20 20 -

I I O I
20 40 60 80 100 120 20 40 60 80 100 120
k k

Fig. 5. Chord graphs: estimation error with churn

Erd6s-Rényi graphs induce a behavior of the estimation al-
gorithm similar to Barabdasi-Albert graphs, although the former
type seem to give better results. In particular if the failure
happens at the beginning of the computation (k < 24) the error
in the gap estimation (figures 4a and 4b) remains relatively
low and the algorithm converges again to the expected value
in a few steps. In Erd6s-Rényi graphs we also observe low
variance, with most of the nodes computing the right value.

In the case of Chord graphs (Figure 5) we also obtain a
good estimation with a sufficiently long tail of the impulse
response after the failure. The main problem of this kind of
graphs, however, is that the algorithm converges slowly to the
best estimate, and not in a monotonic fashion, as evidenced
in figures 1 and 2. This same behavior is highlighted also
in Figure 5 in the presence of failures. Still, as we observed
before, an impulse response of k = 60 is enough to obtain a
good estimate, and this remains true even when we introduce
a failure in the network. In fact, the number of steps needed
to recover from a failure in the case of Chord graphs is
comparable to the other two types of graphs.

VI. CONCLUSIONS

In this paper we presented an algorithm to estimate the
spectral properties of a network. These properties can then
be used to compute various useful global properties of the
network. As an example, in this paper we focused on the
mixing time, which is an important parameter of search algo-
rithms based on random walks as well as other probabilistic
distributed algorithms.

Our spectral estimation algorithm has a number of ad-
vantages. It is completely decentralized, as nodes maintain
only local information (their adjacency list) and interact only
locally; it requires a minimal amount of local state (a vector

637

of k real values or a single real value for nodes that are not
interested in the estimation); it requires minimal and local
communication (k rounds of very short messages sent on each
link); it is simple, in the sense that it does not involve any
complex interaction and it could be easily implemented so as
to piggy-back the necessary communication on other traffic;
and it also involves completely local computations that are
efficient and can be carried out with common libraries. In
short, the algorithm is simple and efficient.

The experimental evaluation we conducted shows that the
algorithm is effective in estimating the dominant spectral char-
acteristics of networks (specifically, the second eigenvalue)
achieving good precision in 10,000-node networks with 60
rounds of communication, which in practice can be carried
out in a few seconds. We then show, again experimentally,
that the algorithm is also to a good extent resilient to network
instability (specifically, individual node failures) although with
varying results over different types of networks.

The research that lead us to develop this algorithm [18] also
raises a few important questions that remain open. The most
important ones are on the theoretical basis of the algorithm.
In particular, the algorithm relies on the identification of a
very high-dimensional system (the whole network) through
an impulse response of much smaller dimensionality. Our
conjecture is that this approach is generally valid whenever
the diameter of the network is small. However, although
our experimental analysis lends credibility to this conjecture,
and in particular it shows a link between diameter and the
necessary length of the impulse response, we do not have a
proof that such a link is valid in general. Establishing such a
link, or at least defining the theoretical bounds of applicability
of our algorithm would be very useful and interesting, perhaps
even beyond its applications in network research.

Exploring more practical developments, we also envision
some ways to engineer the basic estimation algorithm so as to
obtain even more robust and reliable results in the presence
of churn. A potentially fruitful strategy, which we plan to
explore in future research, is to compute and then use mul-
tiple, partially overlapping impulse responses. In algorithmic
terms, this means running multiple instances of the estimation
algorithm in a sort of pipeline, and then aggregating their
individual outcomes appropriately. For example, using impulse
responses of length £ = 120, we may run 5 parallel instances
of the estimation algorithm spaced in time at a distance of
20 iteration steps. Now, since failures seem to have negative
effects only when the estimation is performed immediately af-
ter the failure, and since the parallel estimations are uniformly
spaced in time, a single failure is likely to severely upset only
a minority of the estimations. Therefore, a simple majority
voting scheme might increase the precision of the estimate,
making this parallel estimation almost completely oblivious
to failures. Notice also that such parallel estimations would
incur only a minimal cost for the additional local memory
and processing, and practically no additional communication
cost, since messages carrying parallel instances between two
neighbors can be easily bundled.

ACKNOWLEDGMENTS

This work was supported in part by the Swiss National
Science Foundation under grant number 200021-132565.

REFERENCES

[1] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” in Proceedings of the 36th Annual ACM Symposium on Theory
of Computing (STOC), Jun. 2004.

[2] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’03), Oct. 2003.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:

Design, analysis and applications,” in Proceedings of IEEE INFOCOM

2005, Mar. 2005.

D. Mosk-Aoyama and D. Shah, “Computing separable functions via

gossip,” in PODC ’06: Proceedings of the twenty-fifth annual ACM

symposium on Principles of distributed computing, Jul. 2006.

V. King and J. Saia, “Choosing a random peer,” in Proceedings of the

23rd Symposium on Principles of Distributed Computing (PODC), 2004.

[6] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,” in

Proceedings of the 2nd International Workshop on Peer-To-Peer Systems

(IPTPS), Jun. 2003.

D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On un-

biased sampling for unstructured peer-to-peer networks,” in Proceedings

of the 6th Internet Measurement Conference (IMC), Oct. 2006.

[8] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th Internet Measurement Conference
(IMC), Oct. 2006.

[9] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer
counting and sampling in overlay networks: Random walk methods,” in
PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, Jul. 2006.

[10] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating
aggregates on a peer-to-peer network,” Stanford InfoLab, Technical
Report 2003-24, Apr. 2003.

[11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust
algorithm for reputation management in P2P networks,” in Proceedings
of the 12th International World Wide Web Conference (WWW), May
2003.

[12] R. Snader and N. Borisov, “EigenSpeed: Secure peer-to-peer bandwidth
evaluation,” in Proceedings of the 8th International Workshop on Peer-
to-Peer Systems (IPTPS), Apr. 2009.

[13] S. Kung, “A new identification and model reduction algorithm via
singular value decomposition,” in Proceedings of the 12th Asilomar
Conference on Circuits, Systems and Computers, Nov. 1978.

[14] G. M. Pitstick, J. R. Cruz, and R. J. Mulholland, “Approximate realiza-
tion algorithms for truncated impulse response data,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 34, no. 6, Dec. 1986.

[15] R. Albert and A.-L. Barabdsi, “Statistical mechanics of complex net-
works,” Reviews of Modern Physics, vol. 74, no. 1, 2002.

[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4,
2001.

[17] S. Datta and H. Kargupta, “Uniform data sampling from a peer-to-
peer network,” in 27th IEEE International Conference on Distributed
Computing Systems (ICDCS 2007), Jun. 2007.

[18] C. Hall and A. Carzaniga, “Uniform sampling for directed P2P net-
works,” in Euro-Par 2009, Aug. 2009.

[4

=

[5

—_

[7

—

638

