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Despite the best intentions, the competence, and the rigorous methods of designers and developers, software
is often delivered and deployed with faults. To cope with imperfect software, researchers have proposed the
concept of self-healing for software systems. The ambitious goal is to create software systems capable of
detecting and responding “autonomically” to functional failures, or perhaps even preempting such failures,
to maintain a correct functionality, possibly with acceptable degradation. We believe that self-healing can
only be an expression of some form of redundancy, meaning that, to automatically fix a faulty behavior,
the correct behavior must be already present somewhere, in some form, within the software system either
explicitly or implicitly. One approach is to deliberately design and develop redundant systems, and in fact
this kind of deliberate redundancy is the essential ingredient of many fault tolerance techniques. However,
this type of redundancy is also generally expensive and does not always satisfy the time and cost constraints
of many software projects.

With this article we take a different approach. We observe that modern software systems naturally
acquire another type of redundancy that is not introduced deliberately but rather arises intrinsically as a
by-product of modern modular software design. We formulate this notion of intrinsic redundancy and we
propose a technique to exploit it to achieve some level of self-healing. We first demonstrate that software
systems are indeed intrinsically redundant. Then we develop a way to express and exploit this redundancy
to tolerate faults with automatic workarounds. In essence, a workaround amounts to replacing some failing
operations with alternative operations that are semantically equivalent in their intended effect, but that
execute different code and ultimately avoid the failure. The technique we propose finds such workarounds
automatically. We develop this technique in the context of Web applications. In particular, we implement
this technique within a browser extension, which we then use in an evaluation with several known faults
and failures of three popular Web libraries. The evaluation demonstrates that automatic workarounds are
effective: out of the nearly 150 real faults we analyzed, 100 could be overcome with automatic workarounds,
and half of these workarounds found automatically were not publicly known before.
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1. INTRODUCTION

Complete correctness is an elusive objective for many software systems. One reason is
that developing correct software is fundamentally difficult, since even the best methods
are typically either incomplete or too costly. For example, testing can improve the
quality of software at reasonable costs, but cannot guarantee the absence of faults, and
conversely, analysis and verification techniques that give absolute guarantees are often
intractable. Another reason is that software systems are typically used in ways or in
environments that are poorly specified or even never anticipated, and yet the software
is expected to somehow behave correctly. In other words, even those systems that could
be considered correct, in the sense that they behave according to the specifications,
effectively become faulty because they are used in unspecified situations or because
user expectations change. In summary, whether due to economic pressure or unrealistic
expectations, software is often deployed with faults, actual or perceived.

This status quo challenges the traditional notion of software maintenance and even
the very notion of correctness. Traditional fault-fixing is in fact an offline and often
slow process. Typically, the developers would have to be notified of a failure. They
would then have to reproduce it, identify the root causes and develop a corrective
change. The corrective change would then be incorporated in a new version of the
system that would then be released and deployed. And each of these activities is
time consuming, so a failure may reduce the utility of a system for a long period of
time. The situation is somewhat different but not less challenging in the case of Web
applications. On the positive side, the release process may be simpler and faster, since
it involves relatively few application servers independently of the end-users. On the
other hand, the execution platform is more complex and diverse, with a multi-tier server
side and a client side connected by a more or less fast and reliable network, possibly
through a chain of filtering and caching proxy servers, and with each client using a
potentially different combination of operating system, browser type, and version. And
such complexity and diversity may lead to specific problems that are hard to reproduce
and therefore hard to fix.

We consider a different notion of fault-fixing and in general of software correctness.
We still assume a traditional development and maintenance process. However, we
only assume that such process would produce software that is almost correct—that is,
software that behaves as expected in most situations, but that may occasionally fail.
We then propose to cope with such failures online within the deployment environment.

This general idea is not new. In fact, in order to cope with software faults while
maintaining the system somewhat functional, researchers have for decades studied
techniques to either avoid or mask failures. Such techniques are generally referred to
as fault tolerance and, more recently, self-healing. In essence, fault tolerance techniques
attempt to mimic reliable hardware architectures in software. In hardware, reliability
is typically achieved by replicating components, under the assumption that faults are
independent and therefore that multiple components are very unlikely to fail at the
same time. For example, RAID is a successful technology that overcomes faults in disk
storage (as well as some performance limitations) by bundling and controlling an array
of disks, and presenting them as a single and more reliable storage device [Patterson
et al. 1988].

The successes of redundant hardware led researchers to apply the same principles
to software, in particular in an attempt to address development faults in safety critical
systems. N-version programming and recovery blocks are among the most well-known
techniques in this line of research [Avizienis 1985; Randell 1975]. In N-version pro-
gramming, a system consists of multiple independently designed and developed ver-
sions of the same program. The N versions execute independently with the same input,
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and their output is combined, typically through a majority vote, to produce the output
of the system. Similarly, recovery blocks are independent blocks of code intended to per-
form the same function that, instead of running in parallel, may be called sequentially,
each one taking over in case of a failure in the previous one.

The essential ingredient of N-version programming and recovery blocks, as well as
many other software fault-tolerance techniques, is some form of redundancy [Carzaniga
et al. 2009]. In particular, a redundancy that is introduced deliberately within the soft-
ware system. Unfortunately, this form of deliberate redundancy has some fundamental
shortcomings in cost and effectiveness, which can be explained by considering some
differences between hardware and software. Unlike redundancy in hardware, which
multiplies production costs, redundancy in software multiplies design and development
costs, which are typically much more onerous. Also, unlike hardware faults, which are
mostly independent, software faults exhibit correlations that fundamentally defeat the
whole idea of redundancy [Knight and Leveson 1986; Brilliant et al. 1990; Hatton
1997].

In this research we focus on Web applications, and in particular on failures that may
depend on the integration of external Web services. Modern Web 2.0 applications are
ever more sophisticated and now increasingly similar to desktop applications in terms
of their rich functionalities and user interactions. Such applications often integrate and
combine external services through complex Web libraries,1 which may lead to integra-
tion problems often exacerbated by the scale, the heterogeneity, and the decentralized
nature of the Web.

Consider the case of popular Web services and APIs used by many Web applications,
some of which may also be developed by end-users. These cases pose problems on
both sides of the Web API. On the one hand, the applications are likely to use the
Web libraries and services in unanticipated ways, pushing them beyond the nominal
and even the correct user behavior assumed by the developers. On the other hand, the
applications have no control over the release schedule of the APIs and services they use.
So regression problems introduced with new releases may lead to application problems
that cannot be fixed by the application developer, and that may only be avoided by
means of appropriate workarounds. In fact, the use of such workarounds is a common
practice among developers of Web applications, as indicated by the many discussions
of workarounds found in online support groups.

In this article we propose a new approach to software self-healing for Web applica-
tions. We still propose to exploit redundancy to overcome failures. However, our key
insight is to exploit a form of redundancy that is intrinsic in software systems. This form
of redundancy is a by-product of modern software design and development methods,
and as such does not incur the extra costs that characterize deliberate redundancy. We
first argue that software is indeed inherently redundant, and then develop and exploit
this notion of redundancy to obtain effective workarounds for Web applications

Several considerations lend plausibility to the idea of intrinsic redundancy. First,
large software systems are known to contain significant quantities of code clones, in-
cluding semantic clones [Gabel et al. 2008; Jiang and Su 2009]. Admittedly, code clones
may be considered a sign of poor design. However, other forms of redundancy are a
natural consequence of good design practices, such as modularization and reuse. In
fact, modern software is often built out of components, probably the most common
way of reusing software modules. Thus a system might incorporate different compo-
nents, each used for a different functionality, that also provide additional and similar

1Examples of such external functionalities include photo sharing, mapping, blogging, advertising and many
more. The www.programmableweb.com site illustrates well the growing popularity of Web APIs. In May
2011 the site referenced more than 3000 Web APIs.
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or even identical and therefore redundant functionalities. Other times the same func-
tionality is intentionally duplicated within a system. This might be done to address
different nonfunctional requirements. For example, the GNU Standard C++ Library
implements its basic stable sorting function using the insertion-sort algorithm for
small sequences and merge-sort for the general case. Another source of redundancy
is design for reusability in libraries or frameworks. Reusable components are often
designed, for the convenience of their users, to export the same logical functionality
through a wide variety of slightly different but mostly interchangeable interfaces that
may also be backed up by partially redundant implementations. Yet another source
of redundancy are deprecated or otherwise duplicated functionalities in libraries that
are kept to guarantee backward compatibility. Beyond these plausibility arguments,
in this article we present experimental evidence that demonstrates the existence of
intrinsic redundancy in software systems.

Not only redundancy is inherent in software systems, but this type of intrinsic re-
dundancy can also be exploited to achieve some level of self-healing through what we
call automatic workarounds. This is the main technical contribution of this article. We
say that two different executions are redundant if they present the same observable
behavior. We then say that a redundant execution is a workaround when it substitutes
a failing execution producing the expected behavior. At a high-level, the key idea is to
first document the intrinsic redundancy of a system, in particular through the spec-
ification of rewriting rules that substitute executions with redundant ones, and then
to use those rules to automatically find workarounds for failing executions. Thus, a
workaround substitutes a code fragment that executes faulty operations with one that
is supposedly equivalent but that in reality executes redundant code that somehow
avoids the faulty operations.

In this article we develop the notion of automatic workarounds in the context of
Web applications where we also evaluate their effectiveness. We focus specifically on
JavaScript libraries, since those are essential components of modern Web applications,
and are often the source of their failures [Carzaniga et al. 2010a]. We also make two
important assumptions that are reasonable in the context of Web applications and that
we validate in part through specific experiments. First, we assume that reexecuting
code on the client side does not invalidate the state of the application on the server
side. Second, we take advantage of the highly interactive nature of Web applications
by assuming that users are willing and able to report perceived failures.

We start by analyzing the issue trackers of several popular JavaScript libraries to
categorize faults and redundant executions often proposed by developers as temporary
workarounds for open problems. We find that workarounds are often proposed to avoid
known issues, that such workarounds are used as temporary patches to prevent failures
caused by faults that are yet to be fixed, and that sometimes workarounds can also lead
to permanent fixes for those faults. We use the information extracted from the issue
trackers to identify families of workarounds, which we then generalize and abstract
into rewriting rules.

We then apply the rewriting rules in response to unanticipated failures in an at-
tempt to find valid workarounds. We implement this technique to find such automatic
workarounds within a browser extension. The extension allows users to report failures,
reacts by applying rewriting rules that are likely to lead to a workaround, and then
allows the user to validate the execution of those workarounds.

We evaluate the proposed technique by selecting more than 150 known issues of
three popular JavaScript libraries and by trying to automatically find valid worka-
rounds for them. The results of our experiments are encouraging, since a failure can
be automatically avoided for more than 100 of those issues.
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This article extends a previous paper published at SIGSOFT FSE in 2010 [Carzaniga
et al. 2010a]. In the FSE paper we presented the core idea of exploiting intrinsic
software redundancy to automatically generate workarounds for Web applications, and
provided initial experimental evidence of the applicability of the technique. This article
extends the FSE paper in several ways: (i) We discuss the nature and characterize the
presence of intrinsic redundancy in Web applications. (ii) We provide detailed examples
of rewriting rules, a key element of our approach, as well as a definition of the syntax
and semantics of code rewriting rules for JavaScript using the λJS formalism. (iii) We
present the detailed design of the enhanced prototype used for our experiments. (iv) We
present the results of a new set of experiments conducted on large applications that
confirm and significantly extend the experimental evaluation presented in the FSE
paper. (v) We experimentally validate our hypothesis that users can detect failures in
Web applications.

The remainder of the article is structured as follows. In Section 2, we discuss the
intrinsic redundancy of software libraries: We investigate the existence of redundancy
in popular libraries, introduce the concept of rewriting rules, and show how rewriting
rules can efficiently capture some redundancy present in Web libraries. In Section 3,
we present the main approach to automatically generate workarounds, motivate and
formalize the concept of rewriting rules, and illustrate the priority and validator mech-
anisms that we use to identify valid workarounds among the many redundant exe-
cutions identified with rewriting rules. In Section 4, we illustrate the main features
of the prototype implementation that we used in our experiments. In Section 5, we
present the results of our empirical evaluation on popular libraries widely used in Web
applications: Google Maps, YouTube and JQuery. In Section 6, we overview relevant
work that exploits software redundancy to prevent system failures and improve soft-
ware reliability, and discuss the relation with the approach presented in this article.
In Section 7, we summarize the main contribution of the article, and indicate new
research directions opened by the results of our research.

2. INTRINSIC REDUNDANCY

Many studies indicate that software is intrinsically redundant. Intuitively, two differ-
ent executions are redundant when they have the same observable behavior, that is, if
a user cannot distinguish the outcome of the two executions. Two software components,
for example two methods, are redundant when their executions are redundant, that is,
they produce the same expected effect for all relevant inputs. Redundant executions
do not necessarily behave in exactly the same way. They may for example produce dif-
ferent internal states or have different performance or usability characteristics. Still,
they have the same effect from the perspective of an external observer, that is, any
element that interacts with the component. For instance, two implementations of a
sorted container may use different sorting algorithms with different performance pro-
files, and they may store data using different internal structures, but still they may be
redundant from an external viewpoint if they both return a sorted set as expected by
the external observer, who has no access to the internal state and may or may not see
or in any case may well tolerate performance differences.

Intrinsic redundancy can manifest itself at different levels of granularity: it can in-
volve entire components, as in the case of multiple similar reusable libraries, redundant
functions or methods, as in the case of reusable components, and only few redundant
statements, as in the case of semantic or syntactic clones. Some kinds of redundancy,
for instance redundancy at the unit level in the form of syntactic code clones, may de-
rive from poor development processes and may increase development and maintenance
costs, and should therefore be avoided when possible [Baxter et al. 1998]. Furthermore,
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code clones, including semantic clones, may be limited to fragments of code that may
not be usable as replacements in a different context. However, many other forms of re-
dundancy are a natural consequence of good design practices, and as such are present
in well designed systems, and can be safely exploited. In particular, we observed that
redundancy at the function or method level is quite common in reusable components,
precisely because those are designed to offer many variants of their functionality in or-
der to suit specific user needs. This is the type of redundancy we are mainly interested
in.

As an example of redundancy induced by a design for reusability, consider JQuery, a
popular library for Web applications. JQuery offers many ways to display elements in
a Web page: fadeIn(), show(), fadeTo(), animate(), etc. Although these functions differ in
some details, they have the same effect from the user viewpoint, and thus represent a
form of functional redundancy. Similarly, many graphic toolkit libraries provide differ-
ent methods for setting the position and dimensions of graphic elements. For instance,
the Java SWT library offers the mutually interchangeable methods setLocation(Point)
and setLocation(int x, int y), setSize(Point) and setSize(int), etc. Many other examples
are easy to find in container libraries. Containers typically offer methods to add a sin-
gle element (for instance, add()) and methods to add elements from another container
(for instance, addAll()), which can become functionally indistinguishable, for example
when addAll() is used with a container that contains a single element. Also, the Java
containers offer the functions add(Component comp), add(Component comp, int index),
add(Component comp, Object constraints), add(Component comp, Object constraints, int
index), remove(Component comp), remove(int index), removeAll(), that can be combined
in different ways to produce indistinguishable results. Interchangeable interfaces may
or may not correspond to radically different implementations, and therefore may be
more or less redundant. As we will see, our goal is to exploit this kind of redundancy
opportunistically, whenever it is present and whenever it can be effective.

Performance optimization is another source of redundancy. For example, the Apache
library Ant2 provides a StringUtils class with a method endsWith() that replicates the
functionality of the same method of the standard Java String class, but more effi-
ciently. Similarly, the method frequency() of the CollectionUtils class in Ant is an ef-
ficient reimplementation of the same method in java.util.Collection, and the method
SelectorUtils.tokenizePathAsArray() reimplements tokenizePath(), etc. Another example
is the log4J library, which is designed to duplicate many of the functionalities offered
by the standard Java library java.util.Logging but with better performance.

A library might also offer the same service in two variants optimized for different
cases. A classic example is sorting. A good implementation of a sorting function is likely
to use different sorting algorithms, even to implement a single interface function. For
example, the GNU Standard C++ Library implements its basic (stable) sorting function
using the insertion-sort algorithm for small sequences, and merge-sort for the general
case. Similarly, other functions may be implemented in two or more variants, each one
optimized for a specific case, for instance memory vs. time.

Redundancy may also come from the need to guarantee backward compatibility, as
in the case of the many deprecated classes and methods available in Java libraries.
For example, the Java 6 standard library contains 45 classes and 365 methods that
are deprecated and that duplicate exactly or almost exactly the same functionality of
newer classes and methods.

All the examples discussed so far show that intrinsic redundancy is plausible. Our
recent studies show that such redundancy indeed exists in software systems, and in

2http://ant.apache.org.
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particular in reusable components frequently used in Web applications [Carzaniga
et al. 2008; Carzaniga et al. 2010a].

2.1. Rewriting Rules

We capture the intrinsic redundancy of software systems at the level of function or
method call by means of rewriting rules. A rewriting rule substitutes a code fragment
with a different code fragment with the same observable behavior as the original one.
We thus abstract away from internal aspects, such as details of the internal state that
do not affect the observable behavior of the system, and nonfunctional properties, such
as performance or usability.

Let us consider for example a container that offers the operations add(x) to add
an item, addAll(x,y,. . . ) to add several items, and remove(x) to remove an item. The
executions of add(a); add(b) and of addAll(a,b) produce the same observable result, as
expressed by the following rule:

addAll(a,b) → add(a); add(b).

Similarly the executions of addAll(a,b); remove(b) and add(a) are equivalent, as ex-
pressed by the following rule:

add(a) → addAll(a,b); remove(b).

Notice that the executions of add(a); add(b) and addAll(b,a) may also produce the same
result if the insertion order and the possibly different internal states are irrelevant or
invisible externally.

Our approach can be extended using other forms of transformations, beyond the
syntactic replacement of method calls, to better cover other programming constructs.
For example, to deal with API migration, Nita and Notkin [2010] propose the use of
“twinnings” capable also of expressing the replacement of types and exceptions.

2.2. Common Forms of Redundancy in Web Applications

In order to better understand and model the kind of redundancy present in Web appli-
cations, we studied the API of several popular Web libraries.3 As a result, we identified
three common forms of redundancy with some corresponding rewriting rules. We clas-
sify these as functionally null, invariant, and alternative rewriting rules. Although
other forms of redundancy may not fall into these three categories, the type of redun-
dancy that belongs to these categories has been effective in automatically generating
workarounds. Other forms of redundancy may further extend the effectiveness of our
approach. In the following we illustrate these forms of redundancy using concrete ex-
amples of rewriting rules that express successful workarounds used to cope with real
faults.

Functionally Null Rewriting Rules. These are general rules that express the sim-
plest form of redundancy. As discussed above, we define executions as redundant if
they have the same functional behavior, that is, their functional results are indistin-
guishable from the user viewpoint. Thus, rules that introduce only operations that deal
with non functional aspects of the computation produce redundant executions. For ex-
ample, the Thread.sleep() operation in Java controls the scheduling of the application
but does not alter its functional behavior, and similarly the setTimeout operation in

3YouTube (http://code.google.com/apis/youtube), Flickr (http://www.flickr.com/services/api), Picasa
(http://code.google.com/apis/picasaweb), Facebook (http://developers.facebook.com), Yahoo! Maps
(http://developer.yahoo.com/maps), Microsoft Maps (http://www.microsoft.com/maps/developers), Google
Maps (http://code.google.com/apis/maps) and JQuery (http://jquery.com).
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Fig. 1. Application of a functionally null rewriting rule: the rewritten code fragment differs from the original
only for the functionally null operation setTimeout.

Fig. 2. Issue 519 of the Google Maps API, the faulty behavior on the left hand side is obtained by executing
SEQ1a of Figure 1; the correct behavior on the right hand side is obtained by executing SEQ1b of Figure 1.

JavaScript delays the execution of some operations without altering their functional
effects. Although less common, we found functionally null operations implemented also
in software components. For example the JQuery JavaScript framework that enhances
HTML pages with JavaScript functionalities offers the delay() function that sets a timer
to delay the execution of an animation effect.

Figure 1 shows a simple example of application of a functionally null rewriting rule
for JavaScript. The rule produces a code fragment that differs from the original only for
the functionally null operation setTimeout. The code fragment identified as SEQ1b was
suggested as a workaround for code SEQ1a to fix Issue 519 of Google Maps, which was
reported in July 2008.4 Figure 2 illustrates the issue. The original code (SEQ1a) did
not show the information window correctly when the openInfoWindow function, which
opens the information window, was invoked immediately after setCenter, which sets
the center of the map to a given geographical location. The modified code that executes
SEQ1b instead of SEQ1a, and thus differs only for the invocation of settimeout, avoids
the problem and produces the desired result.

Invariant Rewriting Rules. These rules describe sequences of operations with no
functional effect when executed in some contexts, and therefore are also quite gen-
eral. Invariant operations are typically sequences of two complementary operations in
which the second one reverse the effect of the first. Simple examples of complemen-
tary operations are add and remove operations for containers, or zoom-in and zoom-out
operations for graphical elements. When suitably combined, such operations do not

4The GoogleMaps issues presented in this article are now closed.
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Fig. 3. Application of an invariant rewriting rule. The rewritten code adds the invariant sequence of opera-
tions v = polyline.deleteVertex(polyline.getVertexCount()-1); polyline.insertVertex(polyline.getVertexCount()-1,v).

Fig. 4. Issue 1305 of the Google Maps API, the faulty behavior on the left hand side is obtained by executing
SEQ2a, the correct behavior of the right hand side is obtained by executing SEQ2b.

alter the functional behavior of the application and can thus generate valid rewriting
rules.

Figure 3 shows a simple example of an invariant rewriting rule that differs only for
the invariant operations deleteVertex()-insertVertex(), which do not alter a shape when
the vertex provided as parameter to both functions already belongs to the shape. Se-
quence SEQ2b was suggested as a workaround for sequence SEQ2a to fix Issue 1305
of Google Maps, which was reported in 2008. Figure 4 illustrates the issue: the orig-
inal code (SEQ2a) did not produce the correct polygonal line when a new vertex was
added to the line. The modified code (SEQ2b) that differs only for the invocation of
a deleteVertex()–insertVertex() sequence, solves the problems and produces the desired
result.

Alternative Rewriting Rules. These rules capture the most application-specific form
of redundancy. Alternative operations are different sequences of operations that are
designed to produce the same result. The equivalence we presented above between
add(a); add(b) and addAll(a,b) on containers is a good example of a rule that captures
alternative operations. In general, adding several elements together or one at a time
should produce the same result.

Figure 5 shows a simple example of the application of an alternative rewriting rule.
Sequence SEQ3b was suggested as a workaround for sequence SEQ3a to fix Issue 1209
of Google Maps, which was reported in April 2009. Figure 6 illustrates the issue:
the original code (SEQ3a) did not remove the marker as expected; the modified code
(SEQ2b) works around the problem and produces the desired result.

2.3. Identifying Rewriting Rules

Rewriting rules can be seen as a form of specification, and therefore may be formulated
manually by developers. As reported in Section 5, domain experts with some familiar-
ity with a Web library used by the application can identify an equivalent sequence and
produce the corresponding rewriting rule in a few minutes. The presence of redundancy
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Fig. 5. Application of an alternative rewriting rule that produces a different sequence of operations with
the same expected result.

Fig. 6. Issue 1209 of the Google Maps API, fixed with alternative operations.

captured by means of rewriting rules is the essential ingredient of our technique, as
libraries that come with more rewriting rules are more likely to offer an escape in
case of failures. Thus, the amount of redundancy can be used as a proxy measure of
the effectiveness of the approach. Our experience tells us that Web libraries are often
redundant, and that it is worthwhile to model such redundancy in the form of equiv-
alent sequences to make the Web applications that use such libraries more resilient
to failures. We recently developed a technique that automatically identifies equivalent
sequences, and that could be used to assess the applicability of our approach to a new
library [Goffi et al. 2014].

For the experiments reported in this article, we identified all the rewriting rules
manually by examining the library API specifications. Alternatively, rewriting rules
can be derived from other forms of specification, including API documentation writ-
ten in natural language, or they may be synthesized automatically. Semantic clone
detection [Jiang and Su 2009] and behavioral model inference [Dallmeier et al. 2006;
Lorenzoli et al. 2008; Zhang et al. 2011] may provide useful information to identify
equivalent sequences, and our recent work confirms that it is possible to find equiva-
lent sequences automatically (in Java programs) using search-based techniques [Goffi
et al. 2014].

3. AUTOMATIC WORKAROUNDS

In the previous section we introduced the idea of intrinsic redundancy and we presented
a method to express this redundancy through code rewriting rules. We also showed
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real faults in Web libraries with corresponding workarounds that exploit the intrinsic
redundancy of those libraries as expressed by specific rewriting rules.

As it turns out, workarounds are a common and sometimes effective way to cope
with faulty Web applications, as demonstrated by the numerous cases discussed in
online fault repositories and support systems (surveyed in Section 5.2). However, such
workarounds are identified manually by expert users and developers, and they are
communicated in an ad-hoc manner to other users who must still apply them man-
ually. In other words, such workarounds are helpful but can not effectively mask
failures.

We now present a technique to mask failures through automatic workarounds. The
technique focuses on failures caused by incorrect interactions between Web applications
and reusable components such as libraries, services, and frameworks. Specifically, the
technique responds to a failure by finding and applying workarounds automatically
and at runtime. The technique tries to construct a valid workaround for some failing
code by applying relevant rewriting rules to that code. Thus the technique exploits the
intrinsic redundancy expressed by those rewriting rules.

3.1. Automatic Workarounds for Web Applications

Automatic workarounds require a preliminary step at design time, namely the identi-
fication of a set of meaningful rewriting rules. Rewriting rules apply to a specific Web
library and may be written by the developers or the users of that library, possibly with
the aid of an automatic search algorithm [Goffi et al. 2014].

At runtime, the technique operates within a layer between the Web application and
a Web library. The technique takes advantage of two fundamental properties of Web
applications and JavaScript code: the interactive nature of the application and its
stateless behavior on the client side. Web applications are typically highly interactive,
so we assume that users can detect failures in the displayed pages and therefore invoke
a workaround. Users can then also verify the correctness of the proposed workarounds,
and therefore accept or reject them. We validated our hypothesis that users can detect
failures in Web applications through a qualitative user study discussed in Section 5.3.2.
JavaScript code runs mainly on the client side, which we assume to implement a
stateless component of the application.5 The stateless nature of the client side of the
application allows one to reload a page without worrying about possible side-effects on
the state of the application.

As shown in Figure 7, the layer that implements our technique acts as a proxy
between the server that contains the requested Web pages and the client that re-
quests the pages. We refer to the proxy as the automatic workaround browser extension
(AW browser extension). When a user notifies a failure in the displayed page, the AW
extension selects and deploys a workaround by applying relevant rewriting rules and
by re-executing that modified code. The AW extension has two execution modes. The
normal execution mode (steps 1–5 in the diagram of Figure 7) corresponds to a client–
server interaction without failures. In this case the AW extension simply scans the
incoming JavaScript code looking for references to Web libraries for which the exten-
sion has applicable rewriting rules. If workarounds are applicable, the AW extension
activates its failure reporting mechanism (a simple button in the browser toolbar).
When the user reports a failure, the AW extension switches to its workaround mode
(steps 6–10) in which it tries to automatically deploy a workaround for the signaled
failure.

We now detail each operation of the AW extension. We start from a client requesting
a specific page (step 1, request(URL)). The AW extension forwards every request to the

5In this work we do not consider Ajax requests.
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Fig. 7. The high level architecture of the Automatic Workarounds approach for Web applications. The
UML communication diagram indicates the main logical components, the essential actions and the core
parameters.

server (step 2, forward(URL)). The AW extension then examines the objects returned by
the server (step 3, send(page)) looking for references to third-party libraries augmented
with rewriting rules. If the page contains references to such libraries, the AW extension
activates a failure-reporting mechanism in the browser and instruments the JavaScript
code to trace the execution (step 4, enable failure report and JS tracing(page)). The execution
trace may be used later to select relevant workarounds (as described in Section 3.3).
The AW extension then returns the result to the browser (step 5, send(page)) and the
browser displays the page and executes the embedded JavaScript code, which might
in turn retrieve and execute additional code fragments from Web libraries. If the page
displays correctly and therefore the user does not report any failure, the interaction
continues in normal mode with the AW extension effectively acting as a transparent
proxy.

If the user perceives a failure, then he or she may report it through the previously
activated failure-reporting mechanism (step 6 notify(failure)). The failure signal switches
the AW extension to workaround mode. The AW extension first extracts the JavaScript
code from the page and selects an applicable rewriting rule for that code (step 7, se-
lect(rule)). The AW extension then changes the code according to the rewriting rule and
forwards the page with the new code to the automated validator (step 8, evaluate(rule)).
If the validator confirms that the new code indeed behaves differently from the fail-
ing code (see Section 3.4) then the AW extension applies the same rewriting rule to
the original page (step 9, apply(rule)) and displays the new page to the user (step 10,
send(page)). If either the validator discards the page as equivalent to the failed one
(step 8, evaluate(rule)) or the user reports a new failure (step 6), the AW extension re-
iterates the process (steps 7–10) until a valid workaround is found or until no more
applicable rewriting rule are available, or until the user gives up reporting problems.

In the following sections we detail the syntax and the semantics of the rewriting
rules used by the AW extension, the process by which the AW extension selects an
prioritizes the rewriting rules, and the process by which the AW extension detects and
immediately rejects useless rules through its automatic validator.
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3.2. Code Rewriting Rules

We capture the intrinsic redundancy of software systems by means of rewriting rules.
A rewriting rule expresses the supposed equivalence between two code fragments.
In other words, a rule asserts that a certain code fragment should have the same
observable behavior as another code fragment, and therefore that the two fragments
may be used interchangeably at runtime to meet the same goals. Since a failure is an
unexpected deviation from the specified behavior, the idea is to recover from the failure
by replacing the failing code with some other code that is supposed to be semantically
equivalent, but that in reality would avoid the failure.

The notion of a rewriting rule is quite general. However, in practice we must define
rules that are specific to the target language. Thus in this section we define a specific
syntax and semantics for rules that apply to JavaScript code using the λJS formal-
ism [Guha et al. 2010]. In particular, we formalize JavaScript, the patterns that occur
in the code rewriting rules, and the code rewriting rules themselves.

JavaScript. We first define a grammar for the abstract syntax of the essential ele-
ments of JavaScript borrowing from Guha et al. [2010].

e ::= x | let x = e in e | s | e. f | e. f = e | e.m(e∗) | new C(e∗). (1)

An expression e can be a local variable x (including this), a let expression that
introduces new local variables x in an expression e, a string literal s, a field access
e. f , a field assignment e. f = e, a method call with zero or more parameters e.m(e∗)
or an instantiation of a new object through a call to a constructor with zero or more
parameters new C(e∗).

We then define a rewriting context E for Grammar 1 inductively. The rewriting
context is an “expression with a hole”. The hole may then be filled with an expression
to obtain another expression. In other words, the hole represents an element to be
rewritten, and therefore is the basis for the code rewriting rules.

E ::= [•] | let x = E in e | E. f | x.E | x.E(e∗) | e. f
= E | E.m(e∗) | e.m(e∗, E, e∗) | new C(e∗, E, e∗). (2)

Grammar 2 defines the rewriting context E. For each expression there can be only
one hole [•]. The hole in the expression can be located in an instantiation of a new local
variable (let x = E in e), an object that accesses a field (E. f ), a field of an object (x.E),
a method called on an object (x.E(e∗)), a value stored in a field (e. f = E), an object
on which a method is called (E.m(e∗)), a parameter of a method (e.m(e∗, E, e∗)), or a
parameter of a constructor (new C(e∗, E, e∗)).

We will use rewriting contexts to define which parts of a program may be changed
by a code rewriting rule. Let us consider for example a source program fragment
P = oldObject.field that accesses the field field of an object oldObject, and a target
program P ′ = newObject.field. The transformation between P into P ′ effectively re-
places oldObject with newObject. This replacement corresponds to the rewriting context
[•].field, which is consistent with Grammar 2 and therefore acceptable.

Pattern. Code rewriting rules are pairs of patterns 〈pattern, pattern′〉, where pattern
is an expression that matches a code fragment of the Web application and pattern′ is the
replacement code. In code rewriting rules, in addition to normal JavaScript expressions,
a pattern p may contain meta-variables, which we refer to as mv(p) = {$X1, . . . , $Xk}.
Thus a pattern is a subset of JavaScript expressions augmented with meta-variables
and can be defined as

p ::= x | p.m(p∗) | s | new C(p∗) | $X. (3)
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A pattern p can be a local variable x, a method call with zero or more parameters
p.m(p∗), a string literal s, a parameter in a constructor (new C(p∗)) or a meta-variable
$X.

Code Rewriting Rule. We can now define a code rewriting rule with the grammar:

r ::= q ANY (p �→ p′) | q ALL (p �→ p′)+. (4)

The qualifier q indicates the kind of redundancy, and can be one of the keywords
null (for functionally null), invariant, or alternative. The keywords ANY and ALL define the
scope of the rule within the program code. If the scope is ANY, the transformation is
applicable to any one of the occurrences of the substitution pattern. Therefore, an ANY
rule can produce several new programs, each differing from the original in exactly
one specific application of the transformation. If the scope is ALL, the rule applies to
all the occurrences of the substitution pattern, and therefore may produce only one
new program. Rules apply to either exactly one occurrence of the left hand side of a
code rewriting rule (rules of type ANY) or all occurrences of the left hand side (rules
of type ALL), but not a subset of occurrences. Rules of type ALL can apply one or more
substitutions (q ALL (p �→ p′)+), while rules of type ANY can apply only one substitution
(q ANY (p �→ p′)). This is because we cannot infer the semantic relation between
different code fragments. We can for example modify all occurrences of put and pop in
a method of a stack, but to modify a specific pair of put and pop we would need context
information that indicates which pop is related to which push in the code.

The mapping (p �→ p′) defines a transformation from a pattern p, called substitution
pattern, to a pattern p′, called replacement pattern. The meta-variable in the replace-
ment pattern refers to the corresponding meta-variables in the substitution pattern,
thus we require for all rules p �→ p′ that mv(p′) ⊆ mv(p).

Application of Code Rewriting Rules. In order to define the semantics of a code
rewriting rule, consider a general ANY rule

r = q ANY (p �→ p′)

of kind q, scope ANY, and transformation patterns (p �→ p′), and without loss of gen-
erality let mv(p) = mv(p′) = {$X1, . . . , $Xk}. Given a program P, rule r applies to any
fragment P within P if, for each meta-variable Xi in p there exists a rewriting context
Ei in P such that $Xi matches the hole in Ei, and the rest of P matches the rest of
pattern p completely, token by token. We indicate this condition as follows:

P = PL · P · PR where P = p[$X1 = e1, . . . , $Xn = en],

where p[$X1 = e1, . . . , $Xn = en] indicates pattern p in which a concrete expression ei
replaces each meta-variable $Xi.

The rewritten program code is then

P ′ = PL · P
′ · PR where P

′ = p′[$X1 = e1, . . . , $Xn = en],

that is, program fragment P in P is rewritten as P
′
corresponding to the replacement

pattern p′ in which each meta-variables $Xi is replaced with the concrete code ei bound
to $Xi in the substitution pattern.

The semantics of a code rewriting rule with scope ANY extends naturally to rules
with scope ALL. Intuitively, the substitution applies to all disjoint program fragments P
where it would be applicable in an identical ANY rule. Operationally, the transformation
of an ALL rule can be obtained by applying the corresponding ANY transformation to
the leftmost applicable fragment P, and then recursively to the rest of program to the
right of P. A bit more formally, let rANY and rALL be two identical rules with scope ANY
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Fig. 8. Examples of code rewriting rules.

and ALL, respectively, and let r(P = PL · P · PR) = PL · P
′ · PR indicate the application

of the r transformation to the leftmost fragment P in P, then the ALL transformation
can be defined recursively as rALL(P = PL · P · PR) := PL · P

′ · rALL(PR).
Notice that in any case rewriting rules are applied statically, independent of any

dynamic context in which the code executes. However, the replacement code in a rule
may contain a conditional expression, which would effectively allow a rule to apply a
substitution dynamically, depending on the runtime context.

Figure 8 shows three examples of code rewriting rules. Rule 1 applied to code frag-
ment SEQ1a of Figure 1 generates code fragment SEQ1b; rule 2 applied to code frag-
ment SEQ2a of Figure 3 generates fragment SEQ2b, and rule 3 applied to code fragment
SEQ3a of Figure 5 generates fragment SEQ3b. Rule 1 changes one invocation at a time
of the setCenter function so that it would be delayed to avoid potential timing issues.
Rule 2 adds a sequence of deleteVertex and insertVertex right before every invocation of
the enableDrawing function so as to avoid potential problems with polylines. Rule 3 re-
places all sequences of invocations to show and hide with addOverlay and removeOverlay
to avoid potential problems with the visibility of overlays.

3.3. Selecting Code Rewriting Rules

Even only a few code rewriting rules apply to a simple program can produce many
alternative variants of that program, and the simplistic application of all the available
rules would typically generate too many candidate workarounds, which would greatly
reduce performance and usability.

The Automatic Workaround browser extension uses a tracer and a priority scheme
to select the rules that are more likely to lead to workarounds. The tracer identifies
which parts of the application code were indeed executed during the failing execution
and therefore reduces the number and scope of applicable code rewriting rules. The
tracer alleviates but typically does not completely eliminate the problem of the many
candidate workarounds produced with code rewriting rules.

We complement the tracer with a priority scheme that selects the candidates for
workarounds that are most likely to be effective. We use a priority scheme based on
the history of usage of workarounds, having observed that workarounds that were
successful in the past are often successful also in the future. We define the historical
priority value of a particular rule as a pair of values 〈success-rate, successes〉, where
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Fig. 9. A fragment of code that fails due to a fault in the first statement.

Fig. 10. Some code rewriting rule for Google Maps with their priority.

successes is the number of successful applications of the rule (i.e., the number of times
a rule has produced a successful workaround), and success-rate is the ratio between
the number of successful applications of the rule (successes) and the total number of
times the rule was used:

success-rate = number of successful applications
total number of uses

.

A rule with a higher success-rate is given priority over one with lower success-rate.
When two rules have the same success-rate, priority is given to the rule with higher
absolute successes. In other words, priority order is defined first on success rate and
then on absolute successes, so p1 = (r1, s1) is greater than priority p2 = (r2, s2) if r1 > r2
or if r1 = r2 and s1 > s2. When no historical information is available, the priority of a
rule is assigned an initial success-rate = 1 and successes = 1. The priority scores are
then updated at each application of the rule.

When two or more code rewriting rules have the same priority, which is the case with
the first failure, we heuristically use alternative rules first, then invariant rules and
finally null rules. We prefer alternative operations over invariant or null operations
because those replace code in the failing sequence, and therefore are more likely to
avoid faults. We then prefer invariant operations over null operations because the
former are API-specific and therefore are more likely to mask faults in the API.

Let us assume for example that a failure occurs within the code fragment of
Figure 9, and that our mechanism automatically applies the code rewriting rules shown
in Figure 10 to the first statement of Figure 9.

If the priorities associated to the rules are the ones shown in Figure 10, the AW
extension will try to apply rule 2 first, then rule 1, and finally rule 3, since both rules
1 and 2 have higher success rate than rule 3, and rule 2 has a number of absolute
successes higher than rule 1. If rule 1 succeeds in generating a valid workaround, the
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Fig. 11. Updated priorities after the unsuccessful application of rule (2) and the successful application of
rule (1).

system modifies the priorities as shown in Figure 11. The readers should notice that
the failure of rule 2 and the success of rule 1 change both the frequency of successes
for both rules and the absolute amount of successes for rule 1.

3.4. Automatic Validator

A priority scheme may increase the probability of selecting code rewriting rules that
would lead to valid workarounds, but cannot guarantee an immediate success. The
AW extension may still generate several candidate workarounds before finding a valid
one, especially in the early phases when little or no information is available on the
effectiveness of each code rewriting rule. Such numerous repeated attempts to find a
workaround, each submitted to the user for approval, are likely to frustrate the user
and would therefore limit the usability of the technique.

Ideally, we would like to have an automatic validator capable of discarding all invalid
workarounds and of selecting the valid ones. Such an ideal validator would allow us
to relieve the user from having to review candidate workarounds, and therefore would
completely automate the search for workarounds. It is conceivable that such a valida-
tor could be built, perhaps based on a complete specification of the Web application.
However, such specifications are very rarely available for deployed applications.

Here we propose to use a partial validator based on a comparison between the
failing pages and the pages generated by each candidate workaround. In practice,
this validator automatically identifies and discards those candidate workarounds that
produce an identical Web page as the failing one.

More specifically, when the user reports a failure, the validator saves the HTML and
JavaScript code of the original (failing) page. The validator then compares the saved
failing page with the new page generated with the variant code obtained through the
rewriting process. If the two pages show no structural differences, that is, if their
DOM representations are identical, the validator rejects the new page. Otherwise the
validator accepts the page and displays it to the user, in which case the user can either
accept the page or reject it by signaling another failure. When the user rejects a page,
the AW extension adds that page to the current set of failing pages that is used for
further comparisons by the automatic validator. The set of failing pages is cleared when
the user decides to proceed with a new page. Although comparing DOMs may lead to
spurious results, for example when including variable elements like timestamps that
may change when reloading the page, these cases seem quite rare and we have not
experienced either false negatives or false positives in our experiments.

Figure 12 shows an example of a failing Web page together with three internal
attempts to find a workaround. Only one of these candidates is presented to the user and
is not valid. The screenshot on top of the figure shows a Google Map with markers that
should be draggable in a nondraggable maps, but are not.6 Any click on the draggable
markers is ignored, and the attached information window is not displayed. This is the
original faulty page. The second screenshot shows the results of a first attempt to fix the

6http://code.google.com/p/gmaps-api-issues/issues/detail?id=33.
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Fig. 12. The validator automatically discards the first attempt. Thus, the user evaluates only one failing
page (beside the original faulty one) before having the page fixed.
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map by inserting the invariant sequence map.enableDragging(); map.disableDragging(). This
attempt does not change the behavior of the Web page, as evidenced by the same DOM of
the two pages that is recognized and automatically rejected by the validator. The third
screenshot shows the result of a new attempt to fix the map by delaying the execution
of the creation of the map (map = new GMap2(. . . )). This attempt does not produce a
correct page either, but the new page fails in a different way, with a different DOM
than the one of the failing pages. Consequently, the validator accepts the new page,
which is displayed to and rejected by the user. The last screenshot shows the results
of the final attempt that amounts to delaying the execution of openInfoWindowHtml on
the faulty markers, and that produces a valid workaround. The DOM of the page is
different from any of the previous rejected attempts, the validator accepts the page and
the user approves the workaround. In this example, the validator identifies one of the
two invalid attempts. The results reported in Section 5 indicate that our validator can
be very effective in rejecting many invalid pages thus increasing the usability of the
approach.

Notice that any valid workaround would change the observable behavior of the page,
and consequently its structure. Thus the validator acts conservatively, by accepting
any change as a potentially valid workaround. The pages rejected by the validator are
considered as pages rejected by the user for the purpose of computing the priorities
associated with rules.

4. PROTOTYPE IMPLEMENTATION

We implemented the Automatic Workaround technique in RAW (Runtime Automatic
Workarounds), an extension of the Google Chrome and Firefox browsers [Carzaniga
et al. 2010b]. RAW extends the browser interface by adding three control buttons: Fix
me, Approve fix and Give up, as shown in the screenshots in Figure 13. The Firefox
extension adds the three buttons to the toolbar. The Chrome extension adds a single
Fix me button to the toolbar, and opens a pop-up window containing the other control
buttons when the user presses this button.

The Fix me button activates the automatic generation of workarounds. The button is
active only when the currently loaded page uses one or more Web libraries supported by
RAW, that is, libraries for which RAW has a set of rewriting rules. A user experiencing
a failure with the displayed page may press the Fix me button to report the problem
and request a workaround at runtime.

The Approve fix and the Give up buttons become active only when RAW operates in
workaround mode in response to a failure (signaled by the user with the Fix me button).
The user may press the Approve fix button to confirm that a workaround was successful,
or the user may reject a workaround by pressing the Fix me button once again, or in the
end the user may signal a failure and also terminate the search for workarounds with
the Give up button. Notice that the Approve fix and Give up buttons are not essential
from the user’s perspective, since the user may implicitly accept or reject a workaround
by continuing to another application page or to some other activities. In our prototype
those two buttons also provide useful information for the priority scheme.

We illustrate the use of RAW through an example that refers to a known (and now
fixed) problem of the Google Maps API, reported as Issue 1264 in the Google Maps
bug-reporting system.7 Figure 13 presents two screenshots of a simple Web page that
illustrates this Google Maps issue. The page shows the map of the campus of the
University of Lugano, and offers a set of checkboxes to display the various buildings
as polygonal overlays. The buildings of each Faculty should appear on the map only
when the corresponding checkbox is checked. Initially, the page should not display the

7http://code.google.com/p/gmaps-api-issues/issues/detail?id=1264.
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Fig. 13. Issue 1264 in Google Maps automatically fixed by RAW.

polygons, which should become visible only after selecting the checkboxes on top of the
map. When visible, the polygons should scale according to the zoom level. As illustrated
by the screenshot on the top of Figure 13, the initial page does not display correctly, as
all polygons are visible with no selected checkbox. Zooming into the page would also
show that the polygons do not scale as expected.

With a standard browser interface, users who experience this problem may only
attempt to reload the page several times. Once noticed that the problem is deterministic
users can report the problem to the application developers and hope for a fix sometime
in the future. With RAW, users experiencing this problem can request an immediate
workaround by pressing the Fix me button in the toolbar (screenshot on the top of
Figure 13). The Fix me button activates RAW, which extracts the JavaScript code of
the current page, applies one of the code rewriting rules, and reloads the page with
the new JavaScript code. If not satisfied by the reloaded page, the user may request
another workaround by pressing the Fix me button once again. The screenshot on the
bottom of Figure 13 shows the correct behavior of the application as fixed by RAW.
If satisfied by the reloaded page, the user may report the successful workaround by
pressing the Approve fix button. The user may also press the Give up button to stop
searching for valid workarounds. When there are no code rewriting rules left to apply,
RAW gives up and displays a warning message.
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We implemented the RAW prototype under the assumption that users are not mali-
cious, and would therefore act in good faith when reporting failures or when approving
workarounds. Malicious users cannot use RAW to attack the applications, but they can
reduce the effectiveness of the tool by providing incorrect feedback.

Popular Web applications may have thousands or even millions of visitors, and simple
problems like the one illustrated above may affect many users for a long period before
the application or API developers provide a fix. To handle recurring problems more
efficiently, RAW keeps track of reported failures and successful workarounds. In par-
ticular, RAW records the URL, the workaround, and the specific execution conditions,
including the type and versions of the browser and of the operating system.

When a user loads a page for which RAW has known workarounds, the Fix me button
signals the presence of workarounds. Thus, if the Web page does not display correctly,
the user would know immediately that other users may have experienced the some
problem, and that they obtained valid workarounds for those problems. Although RAW
could proactively apply known workarounds to notoriously faulty pages, we choose to
implement a conservative and less intrusive behavior and still wait for a failure report
from the user.

RAW is composed of a client side and a server side. The client-side component is the
browser extension that implements the user interface described above, and is written
primarily in JavaScript. The server-side component implements the main functionality
of the Automatic Workarounds technique in Python, and runs on a centralized server.

The browser extension checks the header of the Web page requested by the user and
looks for references to supported JavaScript libraries. The extension activates the Fix
me button when it finds one or more such library references. When the user presses the
Fix me button, the browser extension extracts the JavaScript code from the Web page
together with information about the used Web API, including the name and the version
of the API. Then, it sends this information to the centralized server that manages the
database of code rewriting rules.

The server component selects a code rewriting rule, depending on the priority scheme
it applies the rewriting to the JavaScript code, and sends the new code back to the
browser extension. The browser extension then substitutes the JavaScript code in
the DOM of the current page with the new code, and executes the new code without
retrieving again the content from the remote server.

The client and server components communicate through XMLHttpRequest objects.
Usually the JavaScript code of a Web page must obey the same origin policy that forces
the client to send and receive data only to and from the origin server of the current
page. However, browser extensions do not have this limitation, and RAW can therefore
send requests to the external server that hosts the server-side components.

The automatic validator that automatically discards Web pages that look like the
ones that the user reported as failing, is hosted in the client-side extension. Once the
new JavaScript code is executed, the browser extension extracts the DOM of the new
Web page and compares it to the previous ones. If the DOMs are the same, the validator
discards the page and asks for a new one by sending a new request to the server.

The execution tracer traces the executed JavaScript code, and is also hosted in the
client side. Upon a load event, the tracer extracts the JavaScript code of the current
Web page and instruments it to trace the execution at the statement level. At runtime,
the tracer keeps track of which lines are executed, and sends that information to the
server in case of failure.

We now briefly describe the components shown in Figure 14, the Rewriting Rule
Repository that contains the code rewriting rules, the JS Rewriter that applies the
changes to the JavaScript code, the WA Generator that is responsible of selecting which
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Fig. 14. Overall architecture of RAW.

rule to apply, the Rule Manager that is an interface to manage code rewriting rules,
and the Automatic Validator that discards non valid attempts.

Rewriting Rule Repository. The Rewriting Rule Repository contains the code rewrit-
ing rules as described in Section 3.2. Each rule is stored in the repository with a unique
id, and is associated with a specific API, and with its priority value.

Rule Manager. The Rule Manager is a Python interface that allows developers to
update the information stored in the Rewriting Rule Repository. Developers initialize
the repository with a set of rules generated from the specifications of the Web library or
service. Developers can later update the existing rules and add new ones, for example
by coding workarounds found and reported by other developers or users outside the
RAW system. Developers can also use the Rule Manager to extract information about
successful workarounds and failure conditions to identify and implement permanent
fixes for their applications.

JS Rewriter. The JS Rewriter is the Python module that applies code rewriting rules
to the JavaScript code. When the user reports a failure in the current Web page, the
RAW browser extension extracts the JavaScript code, the information about the API
used in the current Web page and the list of executed JavaScript statements, and
forwards all the data to the JS Rewriter. The JS Rewriter forwards the information
about the API to the WA Generator that returns a code rewriting rule selected accord-
ing to the priority scheme described in Section 3.3. The JS Rewriter implements the
substitutions specified by the rule using the sed stream text processor.8

WA Generator. The WA Generator is responsible for selecting the rules that are more
likely to generate valid workarounds. To rank rules, the WA Generator uses the history-
based priority value of the rule (see Section 3.3). When the JS Rewriter requests a rule,
the WA Generator selects the rules associated with the API used, and checks if there
are known workarounds for the current URL. If any rule is known to solve the problem
of the Web page that RAW is trying to fix, then this rule is selected and applied first.
If no workaround is known, the WA Generator selects the next rule with the highest
priority.

8http://www.gnu.org/software/sed.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 16, Pub. date: May 2015.



Automatic Workarounds: Exploiting the Intrinsic Redundancy of Web Applications 16:23

Automatic Validator. The Automatic Validator discards clearly invalid workaround
candidates. Every time the user reports a failure, the Automatic Validator extracts the
DOM of the Web page, computes its hash value, and stores it. Every time RAW applies
a new rule to the original JavaScript code and reexecutes the new JavaScript code, the
Automatic Validator extracts the DOM of the newly generated page and compares the
hash value of the current DOM with all the hash values of the DOMs of the previously
discarded pages. RAW automatically discards all workaround candidates that produce
pages with a DOM equal to any of the failing or otherwise discarded pages. Then, in
case of failure, RAW invokes the JS Rewriter once again.

5. EVALUATION

The main research hypothesis of this article is that software systems, in particular in
the form of reusable components such as Web libraries and services, are intrinsically
redundant, in the sense that the same functionality can be achieved in different ways,
and this redundancy can be exploited to avoid failures at runtime. Various studies show
that software systems contain several semantically equivalent code fragments [Jiang
and Su 2009; Gabel et al. 2008], and our studies confirm the presence of redundancy in
many software systems [Carzaniga et al. 2010a; Carzaniga et al. 2008]. In this section
we demonstrate experimentally that it is possible to exploit the intrinsic redundancy
of software, and in particular of Web libraries, to automatically generate effective
workarounds for Web applications. In particular, we validate our hypothesis by first
studying the effectiveness of workarounds in dealing with runtime failures, and then by
studying automatic workarounds, and specifically those generated by our technique in
the context of Web applications. Thus our evaluation is articulated around the following
three research questions.

Q1. Can workarounds cope effectively with failures in Web applications?
Q2. Can workarounds be generated automatically?
Q3. Can the Automatic Workarounds technique generate effective workarounds to
avoid failures in Web applications?

The first question (Q1) explores the effectiveness of workarounds to handle failures
in general. This includes ad-hoc workarounds developed manually by users or devel-
opers. We ask whether such workarounds exist and whether they can be used for Web
applications. In Section 5.1 we report the results of our survey of fault repositories and
other online forums dedicated to well known Web APIs to document the use of work-
arounds to fix failures in popular Web applications. The second question (Q2) asks
whether it is possible to generate workarounds automatically by exploiting the intrin-
sic redundancy of software systems, and, in particular, of Web libraries. In Section 5.2
we identify workarounds that can be automatically generated with our approach. The
third question (Q3) evaluates the ability of the technique presented in Section 3 to
generate and deploy valid workarounds. In Section 5.3 we investigate the amount of
failures that can be automatically avoided with our technique.

5.1. Q1: Can Workarounds Cope Effectively with Failures in Web Applications?

To answer question Q1, we analyzed the fault reports of popular Web applications and
we identified the amount of failures addressed with a workaround.

We referred to the official bug-tracking systems when available, as in the case of
Google Maps, YouTube, and JQuery, we relied on online discussion forums otherwise,
as in the case of Yahoo! Maps, Microsoft Maps, Flickr and Picasa.

Of all the available official and unofficial reports, we selected those that we thought
might reveal useful information on workarounds. We did that with simple textual
searches. We then examined all the failure reports that even superficially indicated the

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 3, Article 16, Pub. date: May 2015.



16:24 A. Carzaniga et al.

Table I. Faults and Workarounds for the Google Maps and YouTube API

API
reported

faults
analyzed

faults
proper

workarounds

Google Maps 411 63 43 (68%)
YouTube 21 21 9 (42%)

possibility of a workaround. We did that to exclude irrelevant reports and to precisely
identify failures and workarounds for the relevant reports.

Our study of several repositories and forums dedicated to open as well as fixed faults
in popular Web APIs indicates that workarounds exist in significant number, and are
often effective in avoiding or mitigating the effects of faults in Web applications. To
quantify the effectiveness of workarounds in mitigating the effects of faults, we limited
our analysis to the issue trackers of Google Maps9 and the YouTube chromeless player.10

We selected these issue trackers because they contain a number of issue reports that
is large enough to contain useful information, and yet small enough to be manually
inspected in a reasonable amount of time. Table I summarizes the results of our survey
for Google Maps and YouTube.

We studied the Google Maps API issue tracker at the beginning of 2010, and we found
a total of 411 faults. We excluded the bug reports that were marked as invalid by the
Google team. We selected the entries potentially related to workarounds by searching
for the keyword “workaround” in the bug descriptions. We obtained 63 entries and then
focused on those entries, ignoring other possible workarounds not marked explicitly as
such. Upon further examination, we found that 43 of them were proper workarounds
and not spurious uses of the keyword. For all the 43 Google Maps API issues we then
verified that the reported workarounds were valid by reproducing the failures and by
checking that the workaround could indeed avoid the failure. In one case we could not
reproduce the problem, since it was attributable to transient environment conditions.11

The 43 valid workarounds we found for Google Maps amount to about 68% of the
analyzed faults and 10% of the total reported. The actual overall prevalence of worka-
rounds is likely to be somewhere in between, since on the one hand the selection of the
“workaround” keyword makes the analyzed set highly relevant, but on the other hand
it might also exclude valid workarounds that were not described as such or simply not
known. We discuss some of these cases in our experimental evaluation.

In the case of the YouTube chromeless player we considered the 21 issues reported
in the issue tracker at the time of this investigation (beginning of 2010). Given the
modest size of the repository, we analyzed all the issues without resorting to any pre-
filtering. Out of the 21 reports, we identified 9 workarounds, corresponding to about
42% of all issues. This second result confirms that workarounds can effectively address
many runtime issues. Unfortunately, we could not reproduce the issues there were
already fixed at the time of the investigation, because YouTube provides access only
to the current version of the API. Consequently, we could not verify the validity of the
proposed workarounds, and we had to rely on the comments of other users who had
confirmed their effectiveness.

The data collected with the analysis of the Google Maps and YouTube API issue
trackers indicate that it is often possible to overcome Web APIs issues by means of
appropriate workarounds.

9https://code.google.com/p/gmaps-api-issues.
10https://code.google.com/p/gdata-issues/.
11http://code.google.com/p/gmaps-api-issues/issues/detail?id=40.
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5.2. Q2: Can Workarounds be Generated Automatically?

Having observed that a significant number of failures in Web applications can be
avoided with workarounds, we asked ourselves whether some of the workarounds could
be found automatically, perhaps exploiting the intrinsic redundancy of Web applica-
tions and libraries. To answer question Q2 we further analyzed the 52 workarounds
selected for Google Maps and YouTube (43 and 9, respectively). In particular, we in-
tended to exclude workarounds that are ad-hoc and difficult to generalize, or that
were developed through a complex manual process or a particularly clever intuition. In
other words, we wanted to exclude workarounds that could not conceivably be obtained
through an automated process at runtime using code rewriting rules.

To illustrate the notion of an ad-hoc workaround, consider Issue 40 from the bug-
tracking system of Google Maps.11

Some previously working KML files are now reporting errors when entered
in Google Maps . . . The team confirms this is due to problems with Google
fetching servers right now. Moving the file to a new location is a possible
temporary workaround.

The KML files mentioned in the report are files that the application must make
available to Google Maps by posting them to an accessible Web server. Due to some
problems with the Google servers, Web applications using the Google Maps API could
not access the KML files, thereby causing a failure. The proposed workaround amounts
to moving the KML files on a different server that the Google servers could access
correctly.

This report offers a good example of workaround not amenable to automatic general-
ization and deployment. This is the case for a number of reasons. First, the workaround
is tied to an internal functionality of the Google Maps application. Second, the worka-
round has almost nothing to do with the code of the application, and cannot be imple-
mented by changing the application code. Third, the solution involves components that
are most likely outside of the control of the client application or anything in between
the client application and the application server. Fourth, the report indicates that the
problem exists “right now” and therefore might be due to a temporary glitch, which is
unlikely to generalize to a different context at a different time.

By contrast, consider the workaround proposed for Issue 61 from the same Google
Maps bug tracker.12

Many times the map comes up grey . . . a slight setTimeout before the set-
Center . . . might work. . . . if you change the zoom level manually . . . after
the map is fully loaded, it will load the images perfectly. So, what I did was
add a “load” event . . . and had it bump the zoom level by one and then back
to its original position after a really short delay.

The report describes a problem with maps that are not visualized correctly when
using dynamic loading. External JavaScript files can be loaded either statically by
adding their reference in the HEAD section of a Web page, or dynamically on demand
by the application. The dynamic loading was causing problems with the maps displayed
during the loading phase (the maps would come up grey). This report indicates two
workarounds that exploit redundancy: the first is to add a setTimeout, the second is
to add a zoom-in-zoom-out sequence, which are good examples of null and invariant
operations, respectively, as defined in Section 2.1 and 3.2.

12http://code.google.com/p/gmaps-api-issues/issues/detail?id=61.
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Table II. Number of Reusable Workarounds

API
analyzed

workarounds
reusable

workarounds

Google Maps 43 14 (32%)
YouTube 9 5 (55%)

Table II summarizes the results of the analysis of the suitability of workarounds
for automation: 32% and 55% of the known workarounds found in the Google Maps
and YouTube repositories are instances of redundant operations, and therefore are
good candidates for automatic generation. This analysis provides some evidence that
workarounds can be generated at runtime from redundant operations.

5.3. Q3: Can the Automatic Workarounds Technique Generate Effective Workarounds to
Avoid Failures in Web Applications?

To answer question Q3 we performed various experiments with the Google Maps,
YouTube, and JQuery APIs. These experiments aim to evaluate the ability of the
technique to find valid workarounds, both for faults for which a workaround had already
been reported, and for faults for which no workaround was publicly known.

We conducted experiments to investigate (1) the reusability of code rewriting rules,
that is, the ability of rules derived from valid workarounds to solve new problems,
thus simulating the expected usage pattern of developers populating the repository of
code rewriting rules incrementally as more and more workarounds are found; (2) the
effectiveness of code rewriting rules derived directly from the documented redundancy
of Web libraries, thus validating the efficacy of the rules themselves; and (3) the ef-
fectiveness of the priority and validation schemes, thus evaluating the usability of the
automatic workaround approach.

5.3.1. Reusability of Code Rewriting Rules. This first experiment is intended to assess
whether workarounds are reusable in different contexts, in other words whether some
workarounds that are known to solve some issues can also serve as workarounds for
other issues.

To assess the reusability of workarounds, we started with an empty repository of rules
to which we incrementally added rules corresponding to the workarounds reported in
the issue tracker.

We considered the 14 issues with known workarounds identified in the study de-
scribed in Section 5.2 plus 24 additional issues for which no workaround was known at
the time. We selected the 24 additional issues without known workarounds among the
issues on the bug tracker that had already a sample Web page reproducing the failure,
to minimize the efforts of reproducing the issues.

We considered each issue in ascending order of index number in the issue-tracking
system, assuming that this order corresponds to the chronological order of appear-
ance. We also repeated the experiment with random ordering without noticing any
substantial difference. We then tried to solve each issue automatically using the rules
available in the repository at that time. Whenever we could not find a workaround at
all we recorded the workaround as none. Otherwise we recorded the workarounds as
automatic if we could solve the issue with available rules, or as manual whenever the
issue had a known workaround that we could not find automatically using the rules
available in the repository at that time. For each manual workaround, we immediately
added a corresponding rule in the repository.

Table III shows the results of this experiment. The first and the last columns show the
issue number and a reference to the corresponding code rewriting rule listed in Table IV,
respectively. The central columns indicates the classification of the corresponding
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Table III. Reusability of Code Rewriting Rules for Google Maps

Google Maps

workaround
issue none manual automatic rule

15 � –
29 � –
33 � G1
49 � G2
61 � G4
193 � –
240 � –
271 � –
315 � –
338 � G2
456 � G4
519 � G4
542 � –
585 � G2
588 � G4
597 � G7
715 � –
737 � G4
754 � G2
823 � –
826 � –
833 � G4
881 � G14
945 � G2

1020 � G4
1101 � –
1118 � –
1200 � –
1205 � –
1206 � –
1209 � G2
1234 � G2
1264 � –
1300 � –
1305 � G8
1511 � G13
1578 � G2
1802 � –

TOTAL 19 6 13 -

workaround (none, manual, automatic). We highlight two very positive results of this
experiment. First, one third of the issues (13 out of 38) could have been solved by work-
arounds generated automatically on the basis of previously identified workarounds.
Second, in half of the cases in which a workaround was found automatically (7 out of
13) the workaround was not previously known (not publicly at least). These issues for
which we found new workarounds are marked in gray in Table III.
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The experiment also shows that several workarounds can be effective multiple times
and in different contexts. We can see for instance that rules G2 and G4 in Table IV can
each solve 8 and 7 issues, respectively. Therefore, if Google developers had coded the
workarounds that they found incrementally in the form of code rewriting rules, they
would have solved automatically several subsequent different issues, including many
that were not solved manually.

5.3.2. Effectiveness of Users as Failure Detectors. We considered our group Web site, which
uses the JQuery library, and we substituted the current correct version of the JQuery
library with an obsolete faulty version. In particular, we included a version affected by
some of the faults that we use in our evaluation in Section 5. We then asked potential
users to perform a set of eleven tasks as part of a study about the usability of the Web
site. Five tasks could be executed correctly, while six could not, due to faults in the
JQuery library. We performed the study with a set of twenty users of different gen-
der, age, education and occupation, excluding people with a specific computer science
background to avoid bias.

All twenty users reported a problem for three of the faulty tasks. Eighteen out
of twenty reported a problem for one other task, and only two did not perceive the
behavior as faulty. The remaining two faulty tasks were perceived as such by eleven
and thirteen users, respectively. In one case, the users who did not report a failure
obtained the expected behavior with a workaround (using the browser back button
instead of the faulty return feature offered by the application). In the other case, the
users who did not report a failure simply did not realize that the results displayed
on the page were wrong due to a lack of familiarity with the academic organization
described by that page.

We repeated the experiment with seven master students in computer science, and
we confirmed both the results and our evaluation. The computer science students
reported the problems with the same frequency, except for the two border-line cases:
most computer science students used the obvious workaround of the back button, and
only one did not report the fault that requires some familiarity with the academic
organization. Although limited and of qualitative nature, these results confirm our
hypothesis that users can perceive failing behaviors as such.13

5.3.3. Effectiveness of Code Rewriting Rules. This second set of experiments conducted
with Google Maps, YouTube, and JQuery aims to assess the effectiveness of code rewrit-
ing rules derived from API specifications.

We selected these libraries because of the possibility of replicating failures and work-
arounds. We could easily replicate workarounds with JQuery, since it is an open source
library and its entire version history is publicly available. We could also replicate work-
arounds with Google Maps, since Google used to export the complete version history of
their Web APIs. Unfortunately, during our evaluation process, Google removed many
versions from its publicly available history, and we were unable to complete all the
experiments we had planned. In particular, we could not repeat all our initial experi-
ments with the automatic validator described in Section 3.4. In the case of YouTube we
could only reproduce the failures caused by open issues, since YouTube does not expose
older versions for its API.

We first populated the repository of code rewriting rules with three sets of rules, one
for each of the three selected libraries. We derived the rules by referring only to the
API specifications. We wrote these rules following the classification of rules introduced
in Section 2.2, expressing the semantic equivalences that we could evince by reading
the documentation of the three libraries. In total, we wrote 39 rules for Google Maps,

13The details of the user study are available at http://star.inf.usi.ch/star/software/awa/awa.htm.
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40 rules for YouTube, and 68 for JQuery. A subset of the Google Maps and YouTube
rules are listed in Table IV with labels G1–G14 and Y1–Y6, respectively. A subset of
the rules for JQuery is listed in Table V.

To estimate the cost of manually deriving rewriting rules from APIs, we conducted
an additional study using JQuery. Independently of the 68 rules already found, we
examined 131 interface elements out of 307 of a much more recent release of the
library, and we derived 222 rewriting rules in eight working hours, with an average of
four minutes per element. Thus we expect that a domain expert can identify rewriting
rules rather quickly. The 222 rewriting rules refer to 86 interface elements (that is, we
found at least one rewriting rule for 86 out of 131 examined elements) and therefore
we observe that redundancy is widely present in the library.

Google Maps. We considered 38 issues from the issue tracker of Google Maps, in-
cluding the 24 issues considered in the reusability evaluation (see Section 5.3.1) plus
14 other issues with a known workaround (see Section 5.2). We reproduced each of
the 38 issues using RAW, following the chronological order given by their issue-tracker
number, and initializing RAW with the same priority 〈1, 1〉 for all the 39 rules.

In an initial run of these experiments, we used a prototype implementation of RAW
that did not include the automatic validator. We later repeated the experiments with
the latest prototype implementation of RAW that includes the automatic validator.
Unfortunately, some versions of the Google Maps API became unavailable before we
could conduct the second set of experiments, and consequently we could only reproduce
24 of the original 38 issues in the final runs of the experiment.

Table VI reports the results of the experiment. The first column (issue) indicates
the issue number in the issue tracker. The following set of columns (workaround)
reports the results of using RAW to generate workarounds: “none” indicates cases in
which RAW could not generate any valid workaround, “known” indicates that RAW
automatically generated a workaround that was already known, and “new” indicates
that RAW generated a new valid workaround for an open problem. Out of the 24 issues
for which no workaround was known, RAW could automatically find a solution for 15
of them. Moreover, it was interesting to find out that for issues 338 and 1264, for which
a workaround was already known, RAW could find additional previously unknown
workarounds.

The fact that RAW could not only generate all the known workarounds, but also
many additional workarounds for open problems, provides an affirmative answer to
our third research question (Q3) and confirms our general research hypothesis.

The rule column reports the rule that generated the valid workaround (see Table IV
for the corresponding rules). The experiment shows that workarounds are generated
from different rules, and that some rules can generate more than one workaround,
thus confirming the observations about rule reusability discussed above.

The last two columns (attempts) measure the effectiveness of the priority scheme and
the automatic validator. Both columns, labeled “without validator” and “with valida-
tor”, indicate the number of user interventions required to either identify a workaround
or to conclude that RAW could not generate a valid one. The two columns report the
number of necessary interventions when RAW functions with or without the auto-
matic validator. As discussed above, we could not reproduce all the failures for the
experiments with validator, so that column is incomplete. The results confirm that
the priority mechanism is quite effective in finding valid workarounds, but can still
involve the user in a fairly high number of iterations (up to 15). On the other hand, the
automatic validator seems very effective in discarding many invalid attempts and let-
ting the users focus on a few relevant cases. The validator prunes the set of candidate
workarounds and allows RAW to identify a correct workaround in the first attempt for
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Table VI. Experiments with Google Maps API Issues

Google Maps

workaround attempts

issue none known new rule
without

validator
with

validator

15 � – 10 2
29 � G12 1 –
33 � G1 6 1
49 � G2 2 1
61 � G4 9 –
193 � – 13 3
240 � – 10 2
271 � G5 2 –
315 � G6 1 1
338 � G2 3 1
456 � G4 1 –
519 � G4 1 –
542 � G10 4 –
585 � G2 4 –
588 � G4 2 –
597 � G7 1 –
715 � – 10 1
737 � G4 3 –
754 � G2 13 2
823 � – 10 2
826 � – 15 3
833 � G4 2 –
881 � G14 2 1
945 � G2 3 –
1020 � G4 1 –
1101 � G10 1 1
1118 � G11 1 1
1200 � – 14 3
1205 � – 14 2
1206 � – 8 1
1209 � G2 2 –
1234 � G2 2 1
1264 � G3 3 2
1300 � G3 2 1
1305 � G8 1 1
1511 � G13 1 1
1578 � G2 3 1
1802 � G9 1 1

TOTAL 9 14 15 - - -

16 out of 25 issues. It also always succeeds within the third attempt, either producing
a valid workaround or signaling that such a workaround could not be found.

The 38 issues that we considered in this experiment represent field bugs of old
versions of Google Maps, 25 of which have been fixed, 4 are still open at the time of
writing, and 9 are WontFix bugs, that is, bugs that the developers closed after a while
without a fix. We computed the time the bugs stayed open by referring to the closing
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Table VII. Experiments with YouTube API Issues

YouTube

workaround attempts

issue none known new rule
without

validator
with

validator

522 � Y1 6 -
981 � Y2 8 -

1030 � Y3 8 -
1076 � Y4 8 -
1180 � Y2 1 -
1320 � Y5 8 1

TOTAL 0 5 1 - - -

time for the closed and the WontFix bugs, and the day of our analysis for the bugs that
are still open. These bugs stayed open for a variable amount of time, ranging from a
few weeks up to 68 months, with an average of 16 months. The 29 bugs that RAW can
mask with a workaround stayed open for a similar amount of time, from a few weeks
up to 63 months, with an average time of 12 months. Each of these bugs potentially
affects all Google Maps users.

YouTube. We repeated the same effectiveness experiment with the YouTube chrome-
less player. The issue tracker of the YouTube chromeless player contained only 21
entries at the time of the investigation, and YouTube does not provide access to the
version history of their API, so we could not reproduce any issue that was later fixed.
We first populated the repository with the 40 rules that we derived from the specifica-
tion (a subset of the rules are listed in Table IV) and we applied them manually to the
21 issues. We verified that we could generate valid workarounds for the five problems
reported with known workarounds. These were the five issues that were identified in
the previous study of the automatic generation of workarounds (Section 5.2). We then
selected the only open issue that we could reproduce, for which no workaround was
known. We sorted the six issues (five issues with known workaround and 1 open issue)
in chronological order, and we used RAW to find valid workarounds.

Table VII shows the results of the experiment. Beside the five known workarounds,
RAW could find a new workaround for the only open issue. Moreover, for the only open
issues that we could consider, the validator filtered out all the failing attempts, thus
proposing the valid workaround as the first attempt.

JQuery. To confirm the positive results of the studies on the Google Maps and
YouTube libraries and services, we studied the API and the issue tracker of JQuery,
which is a widely used open-source JavaScript library. JQuery uses a publicly available
repository to store the entire version history of the API. Moreover, given the popularity
of the API, the development activity is high, and so is the number of reported issues.
Therefore, JQuery seemed to be a good system to experiment with.

We populated the RAW rule repository with 68 code rewriting rules that we derived
from the API specifications (some of which are listed in Table V), and we selected a total
of 102 issues, 25 of which already had a known workaround, and 77 without known
workarounds. We considered the issues in chronological order. Table VIII reports the
results of the experiment.

The most noticeable result is that RAW could automatically find a valid workaround
for more than half of the issues without a publicly known workaround (42 out of 77),
beside finding all the workarounds that were already known (25 out of 25).
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Table VIII. Experiments with JQuery API issues

JQuery
workaround attempts

issue none known new rule
without

validator
with

validator
8 � J1 1 1

118 � J2 1 1
151 � J2 1 1

1008 � J3 1 1
1167 � J4 1 1
1239 � J5 2 1
1359 � J6 2 2
1360 � J7 1 1
1414 � – 1 0
1439 � – 2 0
1733 � – 1 0
2233 � J5 1 1
2352 � J8 1 1
2416 � J9 1 1
2551 � J10 3 2
2636 � J8 1 1
3255 � J6 1 1
3343 � J5 1 1
3380 � J11 1 1
3395 � J5 1 1
3745 � J12 2 1
3814 � J12 1 1
3828 � J13 1 1
3891 � J12 1 1
3940 � – 1 0
3972 � – 3 0
4028 � J12 1 1
4088 � J14 1 1
4130 � – 2 0
4161 � – 1 0
4174 � – 2 0
4186 � J15 1 1
4281 � J16 1 1
4468 � J12 1 1
4472 � J16 1 1
4512 � – 1 0
4535 � J17 2 2
4649 � J18 1 1
4652 � J18 1 1
4681 � J19 1 1
4687 � – 2 1
4691 � – 2 1
4761 � J11 1 1
4817 � J11 1 1
4965 � J11 1 1
4984 � J10 2 2
5010 � J20 2 1
5018 � – 1 0
5130 � J21 2 2
5163 � – 2 1
5177 � J22 1 1

JQuery (continued)
workaround attempts

issue none known new rule
without

validator
with

validator
5316 � J23 1 1
5388 � J24 1 1
5414 � J12 1 1
5452 � J10 1 1
5505 � J11 1 1
5555 � J10 1 1
5637 � J25 1 1
5658 � J7 1 1
5700 � J12 1 1
5708a � – 1 0
5708b � J26 1 1
5724 � – 1 0
5806 � – 1 0
5829 � – 8 2
5867 � – 1 0
5873 � – 2 1
5889 � – 2 0
5916 � – 1 0
5917 � J23 1 1
5986 � – 1 0
6035 � – 2 2
6038 � J7 1 1
6050 � – 2 1
6056 � – 1 0
6088 � J24 1 1
6158 � J23 1 1
6159 � J7 1 1
6160 � – 3 2
6264 � J18 1 1
6309 � J27 1 1
6330 � – 3 2
6476 � – 3 2
6496 � J19 1 1
6576 � – 3 0
6581 � – 2 2
6585 � J20 2 1
6610 � – 1 0
6643 � J2 1 1
6723 � J28 1 1
6731 � – 5 1
6774 � – 1 0
6835 � – 3 1
6837 � J10 1 1
6838 � J12 1 1
6895 � J19 5 2
6945 � J18 1 1
6982 � J24 1 1
6999 � J17 2 2
7007 � – 1 1
7141 � J19 1 1
7151 � J19 1 1

TOTAL 35 25 42 - - -
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Fig. 15. Summary report of the three experiments on Google Maps, YouTube, and JQuery.

The second positive result of this experiment is about the priority mechanism and the
automatic validator. Most of the times, RAW proposes a valid workaround at the first
attempt, even without the validator. Moreover, the automatic validator could discard
most failing attempts in the cases where a workaround could not be found (35 cases out
of 102). More precisely, for 14 of the issues that we could not solve, the validator auto-
matically rejected all the proposed failing attempts. In such cases, which are identified
in the table with a value of zeros in the last column, RAW could immediately warn
the users that no solution could be found. To decide the success of a workaround we
carefully checked each execution, making sure that it not exhibit visually detectable
failure. Comparing our generated workarounds with patches written by developers
would provide further evidence of their efficacy. However, only a few of these faults
(i.e., a subset of the JQuery faults) have publicly available patches.

The experiments described so far demonstrate that the Automatic Workarounds tech-
nique implemented by the RAW prototype achieves excellent results in finding valid
workarounds. The bar chart in Figure 15 summarizes the results of the experiments
across the three libraries. The chart reports the number of workarounds found by RAW
that were already known, the number of workarounds that were not previously known,
and the number of issues that are left without a solution.

5.3.4. Effectiveness of the Priority Mechanism. To avoid any bias, in the former experiments
we used the Web pages that developers attached to the issue tracker to reproduce
the failures, and most of the times for JQuery such Web pages were intentionally
simplified to a few lines of JavaScript code to highlight the issue. As a consequence,
most of the times only few of the 68 code rewriting rules could be applied on each
page, thus reducing the number of attempts. This represents a bias for the validity of
the effectiveness of the priority mechanism shown in Table VIII. We therefore decided
to perform one last experiment with a set of Web pages that use large amounts of
JavaScript code.

We selected two Web applications that use JQuery quite heavily (up to more than
900 lines of JavaScript code per page): iPatter, a marketing and communication Web
platform, and UseJQuery, a user manual Website that shows how to use the JQuery
framework through a set of examples.14 In this experiment we used some old versions
of JQuery to reproduce failures that no longer exist with the newer versions of the
library. This allowed us to reproduce 7 issues using three older versions of the API.

14http://ipatter.com and http://usejquery.com.
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Table IX. Effectiveness of the Priority Mechanism

iPatter

no prioritization with prioritization
tracing and tracing and

issue attempts tracing validator saving attempts Tracing validator saving

3828 6 4 1.67 72% 5.3 5.3 3 43.3%
5316 10 7 5.3 47% 5.3 5 3.3 37.7%
6158 10 7.3 3.67 63% 8.3 7.3 4.3 48.2%
6264 12.67 9 5 60% 2.3 2.3 1.3 43.5%
6723 8.3 6 2.67 68% 9.67 8.3 4.3 55.5%
6982 14.3 10 5 65% 10 8.3 4.3 57%
6999 13.67 10.3 6.3 53% 12 10 5 58.3%
AVG 10.71 7.67 4.24 60.4% 7.57 6.67 3.67 51.5%

UseJQuery

no prioritization with prioritization
tracing and tracing and

issue attempts tracing validator saving attempts tracing validator saving

3828 5 3 1.3 74% 5.3 4.3 1.67 68.5%
5316 9.3 6 4.67 49.8% 6 4.67 2 66.6%
6158 9.67 6.67 3.67 62% 8.3 6.3 3 63.8%
6264 11.3 7.67 4.3 61.9% 3.3 3.3 1.3 60.6%
6723 7.3 5.3 2.67 63.4% 8.67 7.3 3 15.8%
6982 13.67 9.3 4.3 68.5% 9.3 7.67 3.67 17.5
6999 12.67 9.67 5.3 58.1% 12 9 4.67 25%
AVG 9.85 6.81 3.76 61.8% 7.57 6.09 2.76 63.5%

We set up the experiment such that only one issue at a time could manifest itself. We
then simulated 100 different users visiting these Web pages such that, at each visit,
a user would experience one of the 7 issues selected at random. For each simulated
user we then counted the number of attempts needed to identify a valid workaround
both with and without the tracer and the automatic validator. We ran this experiment
twice, once considering and once ignoring the priority mechanism. Table IX reports a
summary of the results of this experiment.

Columns attempts, tracing, and tracing, and validator report the number of attempts
needed on average to find a valid workaround, without the tracer and the automatic
validator (attempts), considering only the tracer (tracing), and considering both the
tracer and the automatic validator (tracing and validator), respectively. We can see
that the tracing information can already significantly reduce the number of attempts
that should be executed and evaluated by the automated validator. The latter then can
filter even more attempts, leaving only a few to be manually evaluated by the user.
Columns labeled as “saving” report the percentage of attempts that do not have to be
evaluated by the user when the tracer and the automatic validator are used together.
Table IX reports the results of the experiments with (left-hand side) and without (right-
hand side) the prioritization mechanism. The salient result is that the prioritization
can substantially reduce the amount of attempts needed to find a valid workaround also
in presence of large amounts of JavaScript code. On average, the maximum number of
attempts is 3.67 for iPatter and 2.76 for JQuery.

5.4. Limitations and Threats to Validity

The Automatic Workarounds technique is limited primarily by the assumed nature of
failures in Web applications. We assume that failures are visible to the users who report
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them correctly. We thus assume both an interactive nature of Web applications and a
virtuous behavior of the users. In fact, since we rely on the users to reveal failures and
train the priority mechanism, we assume that users would report failures whenever
they notice them, and that they would also correctly accept valid workarounds.

The Automatic Workarounds technique is also limited by the assumption that mul-
tiple executions of the JavaScript code should not have side-effects. We are aware that
the execution may be not only at the client side, and some requests can be sent to the
server side with potential side effects. Even if we restrict our technique to Web applica-
tions built according to the Post-Redirect-Get pattern that we described in Section 3.1,
we still need to assume that the data that are sent to the server are not affected by the
issue at hand.

Another limitation of the technique is about the number of failures, as it implicitly
assumes that there is at most one issue causing a failure in each Web page. In the
presence of two or more issues, the technique should apply several rules at the same
time, leading to a combinatorial explosion of applicable code transformations.

Our experiments indicate that many popular Web applications are interactive and
side-effect free, and that popular applications contains a few faults rarely appearing
more than once in page.

Other threats to the validity of the experiments are related to the amount of data
collected and to the number of Web APIs studied so far. Although we used a relevant
number of real issues for the experiments, we still focused our attention on only three
APIs. The results obtained from the analysis of these libraries may not represent well
the wider domain of Web APIs. We investigated other APIs, but most of the times the
failures that we found were not reproducible, because of the lack of access to previous
versions of the API with the described faults. JQuery is a notable exception, this is
why most of the data reported here come from this library. Google Maps is a partial
exception, since when we started our experiments we had access to all the previous
versions of the library. However, during experiments Google changed their policy and
removed some old versions from the public repository, and consequently we had to
abandon several issues that we could no longer reproduce. This is the reason why most
of the initial experiments that come from Google Maps could not be used through the
whole work, and that prompted us to switch to JQuery.

6. RELATED WORK ON SELF-HEALING SYSTEMS AND SOFTWARE REDUNDANCY

In this article we present the Automatic Workarounds technique, which adds self-
healing capabilities to Web applications by means of intrinsic redundancy. The idea of
relying on some form of redundancy to mask failures is quite old, and finds its roots in
the early work on fault tolerance. The classic fault tolerance approaches are based on
common techniques for hardware and system fault tolerance, which in essence amounts
to adding some form of redundancy to the systems to overcome production failures and
other forms of runtime failures. Examples of these techniques include RAID storage
systems [Patterson et al. 1988] and replicated databases [El Abbadi et al. 1985].

Simply replicating software components, however, does not help in tolerating soft-
ware faults, since all replicas would contain the same faults, and consequently would
fail on the same inputs. Instead, software fault tolerance techniques use design diver-
sity, that is, the independent design and implementation of multiple variants of the
same software components to achieve reliability. The redundant variants can run in
parallel and tolerate faults through a voting mechanism, as in the seminal work on
N-version programming [Avizienis 1985]. Alternatively, the redundant code can run
sequentially, with one block taking over only in case of failures of another block. This is
in essence how recovery blocks work [Randell 1975]. The two approaches have also been
combined to obtain self-checking components [Yau and Cheung 1975]. More recently
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Hosek et al. proposed to keep two consecutive versions of the same software compo-
nents and switch to the old versions to recover from failures in the new ones [Hosek and
Cadar 2013]. Samimi et al. [2010], instead, refer to formal specifications to compute
the correct output to recover from failures.

In a similar fashion, Web systems may use redundancy in the form of design diversity
to achieve higher reliability. In fact, several techniques propose to integrate multiple
variants, designed and maintained independently, of core components such as Web
services and databases, and to use them interchangeably in case of failures or in parallel
as in the N-version programming paradigm [Nascimento et al. 2013; Looker et al. 2005;
Gashi et al. 2004; Dobson 2006]. A significant amount of research has studied how to
dynamically replace redundant versions of Web services in case of failures, specifically
to increase the transparency of the replacement process [Subramanian et al. 2008;
Taher et al. 2006; Sadjadi and McKinley 2005; Mosincat and Binder 2008].

Our work does not require to deliberately add redundant components, as is the case of
all the aforementioned approaches. Instead, we propose to exploit a form of redundancy
that is intrinsically present in software. Thus our approach is more opportunistic in
nature: on the one hand it is not guaranteed to be effective in all cases, but on the other
hand it is also significantly less expensive, as it does not incur the multiplicative cost
of design diversity [Carzaniga et al. 2009].

Other techniques increase software reliability by making a single variant of a system
more resilient to failures using some intrinsic redundancy. Data diversity, for instance,
“re-expresses” data inputs to generate logically equivalent inputs that may avoid fail-
ures [Ammann and Knight 1988; Nguyen-Tuong et al. 2008; Long et al. 2012]. Our
Automatic Workarounds technique is based on a similar idea, in the sense that both
techniques rely on supposedly equivalent executions that may be used interchange-
ably. However, while data diversity exploits equivalences given by symmetries or other
algebraic properties of the the data space, our technique exploits equivalences in the
code, which are arguably more common, especially in Web applications.

Exception handlers may also be seen as redundant code. Exceptions are linguistic
constructs that allow developers to specify how the application should deal with excep-
tional and typically erroneous situations [Goodenough 1975; Cristian 1982]. Exception
handlers are usually very much application specific. However, several techniques ex-
tend basic exception handling mechanisms towards general handler that can work
for multiple applications [Cabral and Marques 2011; Chang et al. 2013; Harmanci
et al. 2011]. A similar approach, whereby a rule-based response mechanisms encodes
alternative operations executed in response to a failure, has been applied to Web sys-
tems [Baresi and Guinea 2011; Modafferi et al. 2006; Friedrich et al. 2010]. Also
related to rule-based exception handling is the notion of wrappers, which embody gen-
eral transformation rules that filter or adapt inputs and outputs of specific components
to somehow avoid anomalous interactions between components, and therefore prevent
failures [Popov et al. 2001]. Similar techniques have also been proposed for Web sys-
tems, mainly to deal with possible incompatibilities between Web services [Denaro
et al. 2013]. Both exception handlers and wrappers can effectively handle failures that
are at least partially predictable at design time. In contrast, our technique may also be
effective with unpredictable failing conditions at runtime.

Several solutions have been proposed to either avoid or handle nondeterministic
failures. These solutions range from simply reexecuting a failing operation [Elnozahy
et al. 2002], to changing the execution environment before reexecuting the failing op-
eration, typically by cleaning or restructuring the system memory [Candea et al. 2003;
Zhang 2007; Qin et al. 2007; Garg et al. 1996; Huang et al. 1995]. These approaches
are related to what we propose in this article with null operations. Also related to null
operations, some techniques introduce variations in the scheduling of multithreaded
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applications (using sleep()) to avoid race conditions and deadlocks in Java applica-
tions [Nir-Buchbinder et al. 2008; Křena et al. 2009]. While these techniques target
solely nondeterministic failures, Automatic Workarounds can deal with deterministic
failures as well.

Recently, several techniques were proposed to automatically generate patches for
software faults [Wei et al. 2010; Dallmeier et al. 2009; Arcuri and Yao 2008; Weimer
et al. 2009; Debroy and Wong 2010; Nguyen et al. 2013; Kim et al. 2013; Liu et al. 2013;
Garvin et al. 2011; Perkins et al. 2009]. Although these automatic-fixing techniques
share the same fundamental objective as our Automatic Workarounds technique, that
is to avoid failures, our technique focuses on specific and temporary fixes for particular
failure conditions, while automatic fixing aims to be more general and produce fixes
that remain valid over a longer time horizon. Therefore our technique is designed
to be effective for short-term fixes at runtime, while automatic fixing aims for more
general fixes and thus requires a more sophisticated analysis that is suitable for the
development environment but not at runtime.

7. CONCLUSIONS

In this article we present a technique to automatically generate workarounds for Web
applications. The technique exploits the intrinsic redundancy of software systems that
can be found at the method level.

Software is intrinsically redundant in the sense that it offers many methods that
differ in the executed code, but provide the same functionality. The technique proposed
in this article augments Web applications with a simple mechanism that allows the
users to signal possible failures, usually pages that do not correspond to the users’
expectations, and that responds to such failures by automatically finding and deploying
suitable workarounds. The experimental results reported in the article show that the
technique is efficient and effective in many cases.

The technique described in this article relies on some strong assumptions that are
reasonable in the domain of Web applications, namely that the client-side component
of the application is stateless, and that the interactive nature of the application allows
the user to easily identify and report failures.

However, the underlying idea of exploiting the intrinsic redundancy of software to
automatically deploy workarounds in response to runtime failures is more general.
The same abstract idea of an automatic workaround can also be applied to stateful
components and without direct assistance from the user in detecting failures. In fact,
as an evolution of the work described in this article, we have been researching a new
technique to generate and deploy automatic workarounds at runtime within general
Java programs [Carzaniga et al. 2013]. The results we obtained with this new technique
are very encouraging and in many ways confirm the basic notions we developed in
the context of Web applications. We can thus conclude that the technique proposed in
article for Web applications can be applied to more general software systems, if properly
extended to deal with stateful behavior and lack of interactive notification of failures.

So far, we have focused on functional failures, but we envisage the possibility of
extending the approach to some classes of non functional failures as well. For example,
we may address performance problems by replacing the execution of a problematic
component with a redundant one that achieves better response times. This challenge
is part of our future research plans.

We successfully generated workarounds for many different kinds of faults, but we
did not investigate the relation between the faults that can be addressed with our
approach and the generated workarounds and also the final fixes of the developers, due
to the difficulty of retrieving enough data for a meaningful comparison. Investigating
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the relations between faults, automated workarounds, and final fixes is part of our
future research plans.

In this work we aim to exploit the redundancy intrinsically present in Web applica-
tions and more generally in software systems. Our investigation indicates that redun-
dancy is indeed largely present in modern software systems, but we have no detailed
data about the pervasiveness of intrinsic redundancy. We may consider extending the
work by defining a set of design guidelines to produce strongly redundant software
systems to enable self-healing capabilities.

Progressing further, we would like to develop the notion of intrinsic redundancy
more broadly, beyond the specific techniques to deploy automatic workarounds. We
see intrinsic redundancy as a resource to be developed and exploited to improve the
reliability of software but also for a variety of other software engineering activities.
Therefore we are now working on other uses of redundancy, for example in testing, and
more generally we are trying to develop a principled and systematic characterization
of intrinsic redundancy in and of itself.
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